
Under review as a conference paper at ICLR 2021

CROSS-MODAL DOMAIN ADAPTATION FOR
REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

To overcome the unbearable reinforcement training of agents in the real-world, the
sim-to-real approach, i.e., training in simulators and adapting to target environ-
ments, is a promising direction. However, crafting a delicately simulator can also
be difficult and costly. For example, to simulate vision-based robotics, simulators
have to render high-fidelity images, which can cost tremendous effort. This work
aims at learning a cross-modal mapping between intrinsic states of the simulator
and high-dimensional observations of the target environments. This cross-modal
mapping allows agents trained on the source domain of state input to adapt well
to the target domain of image input. However, learning the cross-modal mapping
can be ill-posed for previous same-modal domain adaptation methods, since the
structural constraints no longer exist. We propose to leveraging the sequential
information in the trajectories and incorporating the policy to guide the training
process. Experiments on MuJoCo environments show that the proposed cross-
modal domain adaptation approach enables the agents to be deployed directly in
the target domain with only a small performance gap, while previous methods
designed for same-modal domain adaptation fail on this task.

1 INTRODUCTION

Deep Reinforcement Learning (DRL) for vision-based robotic-control tasks has achieved remark-
able success in recent years (Francis et al., 2020; Zhang et al., 2019; Zeng et al., 2018; Riedmiller
et al., 2018; Levine et al., 2018). However, current RL algorithms necessitate a substantial number
of interactions with the environment, which is costly both in time and money on real robots. An
appealing alternative is to train policies in simulators, then transfer these policies onto real-world
systems (Rao et al., 2020; James et al., 2019; Yan et al., 2017).

Due to inevitable differences between simulators and the real world, which is also known as the
“reality gap” (Jakobi et al., 1995), applying policies trained in one domain directly to another almost
surely fail, especially in visual-input tasks, due to the poor generalization of RL polices (Cobbe et al.,
2019). Domain adaptation is a common way to improve transferability by mapping inputs from two
domains to an aligned distribution. Although distribution alignment is difficult with limited data,
many recent works have adopted unsupervised visual domain adaptation (Hoffman et al., 2018;
Ganin et al., 2017; Yi et al., 2017; Kim et al., 2017) to learn the mapping function without a ground-
truth pairing. These adaptation methods exploit structural constraints (Fu et al., 2019) in two same-
modal domains (i.e., learned on simulated images and deployed on real images) to overcome the
intrinsic ill-posedness of distribution matching as shown in Fig. 1(a) — mapping an instance in the
target domain to anything of a similar probability in the source domain is “reasonable” if we only
consider distribution matching.

However, training on simulated images introduces unwanted costs and difficulties, which are ignored
in current works. First, a rendering engine needs more human engineering and runs much slower
(can be up to 20× slower according to Xia et al. (2018)) than a pure rigid body simulator, which
adds considerable cost to the overall process. Second, using RL methods to train a policy with
image inputs is usually harder than training with state inputs (Kaiser et al., 2020; Tenenbaum, 2018),
resulting in a sub-optimal simulation policy. An ideal solution to avoid such problems is to train
policies with simulated states and adapt the learned polices to real-world images. However, all

1



Under review as a conference paper at ICLR 2021

𝑠𝑡
?

𝑜𝑡
𝑠𝑡
′

(a) Mapping without Sequential Structure

𝑜𝑡

𝑠𝑡

𝑠𝑡
′

𝑜𝑡−1 𝑜𝑡+1 𝑠𝑡−1

𝑠𝑡+1

✓

✗

(b) Mapping with Sequential Structure

Figure 1: Illustration of mapping functions with and without sequential structure from the target
domain (left) to the source domain (right). Shaded regions denote data distributions, where the
darker the color, the higher the probability. In Fig. 1(a), both st and s′t are “realisic” source domain
instances, but only st is correct. Since they are of similar probabilities, distribution matching may
map ot to any of them. In RL, the policy may output unreliable actions when taking these incorrectly
mapped states as inputs. In Fig. 1(b), a sequential structure can help rule out the wrong mapping
based on trajectory contexts.

the structural constraints based on the modality consistency can not be used and the distribution
alignment task by learning a mapping function becomes hard to solve.

In this paper, we propose Cross-mOdal Domain Adaptation with Sequential structure (CODAS)
that learns a mapping function from images in the target domain to states in the source domain.
With the help of the learned mapping function, policies trained on states in the source domain can
be deployed in the target domain of images directly. Specifically, based on the sequential nature of
reinforcement learning problems, we formulate the cross-domain adaptation problem as a sequential
variational inference problem and derive a series of solvable optimization objectives in CODAS.
It is worth noting that our work is different from recent works that learn state embeddings from
image inputs, which map images to an arbitrary subspace in a low-dimensional vector space. In
CODAS, we embed the image space into a vector space with clear meanings (defined in the state-
based simulator), which improves the interpretability of the policy when deployed in the real world.

We evaluate our method on 6 MuJoCo (Todorov et al., 2012) environments provided in OpenAI
Gym (Brockman et al., 2016), where we treat states as the source domain, and rendered images as
the target domain, respectively. Experiments are conducted in the scenario where only offline real
data are available. Experiment results show that the mapping function learned by our method can
help transfer the policy to target domain images with a small performance degradation. Previous
methods that use unaligned Generative Adversarial Networks (GANs) suffer from a severe perfor-
mance degradation on this cross-modal transfer problem. The experiments provide an optimistic
result which indicates cross-modal domain adaptation can serve as a low-cost Sim2Real approach.

2 RELATED WORK

To our best knowledge, this work is the first to address cross-modal domain adaptation in RL setting.
We will discuss two research areas closely related to this topic, which are, (1) unsupervised visual
domain adaptation in RL and (2) image-input representation learning in RL.

2.1 VISUAL DOMAIN ADAPTATION IN RL

Unsupervised visual domain adaptation aims to map the source domain and the target domain to an
aligned distribution without pairing the data. Prior methods fall into two major categories: feature-
level adaptation, where domain-invariant features are learnt (Gopalan et al., 2011; Caseiro et al.,
2015; Long et al., 2015; Ganin et al., 2017), and pixel-level adaptation, where pixels from a source
image used to generate an image that looks like one from the target domain (Bousmalis et al., 2017;
Yoo et al., 2016; Taigman et al., 2017; Hoffman et al., 2018).

Pixel-level adaptation is challenging when data from two domains are unpaired. Prior works tackle
this problem by using GANs (Goodfellow et al., 2014) conditioned on simulated images to generate

2



Under review as a conference paper at ICLR 2021

realistic images. Gamrian & Goldberg (2019) transfers policies from Atari Games (Bellemare et al.,
2015) to modified variants by training a GAN to map images from the target domain to the source
domain. GraspGAN (Bousmalis et al., 2018) addresses domain adaptation in robotic grasping by
having the GAN reproduce the segmentation mask for the simulated image as an auxiliary task,
including the robot arm, objects, and the bin. RCAN (James et al., 2019) adopts ideas from do-
main randomization by learning a mapping of images from randomized simulations to a canonical
simulation and treating the real world just as one of the random simulations. RL-CycleGAN (Rao
et al., 2020) unifies the learning of a CycleGAN (Zhu et al., 2017) and an RL policy, claiming better
performance by learning features that are most crucial to the Q-function in RL.

Image-to-image domain adaptation can somewhat bypass the ill-posedness for distribution matching
(See Fig. 1(a)) since it often enjoys an implicit advantage that images differ locally, in color, textile,
lighting, but resembles globally between two domains, while images and states differ essentially.
Some works impose extra structural constraints (e.g., segmentation, geometry) (Fu et al., 2019;
Bousmalis et al., 2018), but such tricks fail in image-to-state domain adaptation either. In this
work, we force the mapped states to follow transition consistency by using a recurrent structure (See
Fig. 1(b)) and to be able to recover the pre-learned policy. We also employ a stochastic mapping
function with the help of a variational encoder that is more robust to target domain data noise.

2.2 REPRESENTATION LEARNING IN RL

Representation learning aims to transform high-dimensional data into lower-dimensional vector rep-
resentations, which suit RL better. It is widely accepted that learning policies from states (embed-
dings) is significantly more sample-efficient than learning from pixels, both empirically (Kaiser
et al., 2020; Tenenbaum, 2018; Tassa et al., 2018) and theoretically (Jin et al., 2020).

Sequential auto-encoder is a common network structure to learn state representations by minimizing
reconstruction loss. Early works on DRL from images (Ha & Schmidhuber, 2018; Lange et al., 2012;
Lange & Riedmiller, 2010) use a two-step learning process where an auto-encoder is first trained
to learn a low-dimensional representation, and subsequently a policy or model is learned based on
this representation. Later works on model-based RL improve representation learning by jointly
training the encoder and the dynamics model end-to-end (Watter et al., 2015) – this has been proved
effective in learning useful task-oriented representations. PlaNet (Hafner et al., 2019) learns a hybrid
of stochastic and deterministic latent state models using a reconstruction loss. SOLAR (Zhang
et al., 2019) combines probabilistic graphic models with a simple network structure to fit local
linear transitions. Some recent works adopt advancements in unsupervised representation learning.
CURL (Laskin et al., 2020b) utilizes contrastive learning methods to capture essential information
in an image that distinguishes from others, though later works (Laskin et al., 2020a; Kostrikov et al.,
2020) point out that data augmentation may play the major role here.

Our work utilizes a sequential variational encoder structure to capture sequential information from
trajectories. The main difference between our work and representation learning is whether the state
space is predefined. We add extra supervised information to guide the training of the mapping by
minimizing the distance between the distributions of the mapped states and the original states, and
by enforcing the policy to recover the actions from the mapped states. As a result, we successfully
learn states that match the ground-truth simulator states well. The mapped states can be directly fed
into the pre-trained policy network.

3 CROSS-MODAL DOMAIN ADAPTATION WITH SEQUENTIAL STRUCTURE

Our work follows the problem setting similar to previous methods that tackle visual domain adap-
tation problems in RL. We have a policy π pre-trained in the source domain (state) and a dataset
pre-collected in the target domain (image). The task is to learn a mapping qφ from images to states.
In the deployment, agents interact with a new policy π̃(o) = (π ◦ qφ)(o), where ◦ denotes function
composition. During the training of the mapping function, only the source domain is accessible.

This section is organized as follows. Sec. 3.1 formulates the cross-modal domain adaptation as
a variational inference problem. Sec. 3.2 decomposes the variational inference problem into sev-
eral feasible optimization objectives. Sec. 3.3 proposes a residual network structure to handle the
complex long-horizon training of the sequential structure.

3



Under review as a conference paper at ICLR 2021

、𝑜2

𝑎𝑇−1

……

𝑎1

𝑠1 𝑠2 𝑠𝑇

𝑜1 𝑜𝑇

……

(a) generation process of real world

𝑎𝑇−1𝑎1

𝑠1 𝑠2 𝑠𝑇……

(b) generation process of simulation

Figure 2: Illustration of the generation in the real world and simulation domains respectively. All
nodes are random variables. Shaded nodes are observable variables. The solid line denotes the gen-
eration process and dashed lines denote the inference process. There is an unpaired correspondence
between two state trajectories surrounded by the rounded rectangle. Note that we include policy π
in both generation process, which corresponds to the edge from state st to action at.

3.1 DOMAIN ADAPTATION AS VARIATIONAL INFERENCE

The goal of domain adaptation is to find a mapping from the target domain to the source domain,
which is images to states in our case. We first model the generation process of the target domain and
source domain respectively and the connection between them, as illustrated in Fig. 2. The initial state
follows distribution p(s1). The transition function p̂ϕ(st | st−1, at−1), modeled as a feed-forward
neural network with parameters ϕ, predicts the current state from the previous state and previous
action. The decoder pθ(ot | st, at−1, ot−1), modeled as a deconvolution network with parameters
θ, reconstructs the current observation from the current state, previous observation and previous
action. In practice, we model these distributions as multivariate Gaussian distributions. We allow
pθ(ot | ·) dependent on ot−1 so that some irrelevant patterns in images can be reconstructed in an
auto-regressive manner. Such a conditional distribution is feasible in practice since we always have
ground-truth o0:t−1 at timestep t in both training and deployment phases. A sequential generation
process enjoys an extra benefit of solving Partially Observable Markov Decision Process (POMDP)
since a single image can not reveal the full state of the environment in general.

The key point that distinguishes our method from conventional representation learning is the ad-
ditional constraint that the mapped state trajectories should match the simulation state trajectories.
See rounded rectangle parts in Fig. 2. Such a constraint may somewhat require that the underlying
transition dynamics are the same in two domains. Introducing distributions can to some extent relax
the assumption and increase robustness when there is a small mismatch between dynamics in source
and target.

s1 ∼ p (s1) st ∼ p (st | st−1, at−1) ot ∼ p (ot | st, at−1, ot−1) (1)

The overall optimization problem can be formulated as a variational inference problem described in
Eq. 2, where we want to learn a posterior distribution to approximate the ground-truth distribution.

minEτr [DKL [qφ(τs | τ r) || p(τs | τ r)]] (2)

where τ is a trajectory, s and r indicate whether the trajectory is from the source or target domain,
p(·) is the ground-truth distribution, qφ(·) is the mapping function we want to learn, and DKL

computes the Kullback-Leibler divergence. Modeling the optimization as a trajectory distribution
matching can naturally handle the stochasticity of environments and policies, and the possible noise
in data collected in the real world. The Evidence Lower Bound (ELBO) of this variational problem
can be formulated as:

maxEτr
[
Eqφ(τs|τr) [log pθ (τ r | τs)]−DKL [qφ (τs | τ r) || pπ (τs)]

]
(3)

The derivation of ELBO follows a common practice using Jensen inequality. A detailed derivation
can be found in Appendix A. The first term maximizes the reconstruction probability, in order to
enforce that the mapped states ŝ can recover both observations o and action a. The second term

4



Under review as a conference paper at ICLR 2021

Algorithm 1 Training Procedure of CODAS
Input: Simulator with oracle dynamics p; Policy π(a | s) pre-trained in the simulated dynamics
p(s′ | s, a); Target-domain Trajectory Dataset of images Dr = {(or0, ar0, ..., orT )i}; Number of
iteration N .

Output: Mapping function f : O → S .
Initialize the sequential mapping function f(st | st−1, at−1, ort ).
for n = 1 to N do

Sample a batch of target domain trajectories τ r = {(or0, ar0, ..., orT )i} from Dr
Initialize RNN with a zero state.
Infer the corresponding state trajectories τs = {(ŝ1, ..., ŝT )i} via the mapping function f ;
Rollout one step with the oracle simulation dynamics p(s′ | s, a) for each state-action pair

in τs to construct the transition dataset Dŝ = {(ŝi, ai, si+1)};
for d = 1 to D do

Update the discriminator D by maximizing Eq. 13;
end for
Update the mapping function (details are in Algorithm 2);

end for

enforces the alignment of the distributions of the mapped trajectories and the trajectories collected
in the simulator. The policy π in source domains included in the second term does introduce a new
assumption that target domain data are collected by a known behavioral policy. This assumption
is mild and is implicitly or explicitly introduced in previous works (Kim et al., 2020; Gamrian &
Goldberg, 2019).

3.2 DIFFERENTIABLE OPTIMIZATION OBJECTIVES

The ELBO defined in Eq. 3 contains terms involving distributions over the entire trajectory, and thus
is impractical to solve directly. Given the generation process defined in the previous section, we can
decompose the joint probability into the multiplication of one-step probabilities. Eq. 4 shows the
result after the decomposition. For brevity, we will use ŝ, ô to denote s, o outputted by networks and
omit the networks themselves.

maxEτr [
T∑
t=1

Eqφ(ŝt|ot,ŝt−1,at−1)[log pθs(ô
r
t | ot−1, ŝt, at−1) + log pθπ (at−1|st−1)]

−DKL[qπφ(τs | τr) | pπ(τs)]

(4)

A direct computation of the second DKL term is intractable. Following the idea that the optimiza-
tion process of GAN is equivalent to minimizing a certain distance measure between two distri-
butions (Nowozin et al., 2016), we can use the optimization objective of GAN as the surrogate
objective of minimizing the DKL [qφ (τs | τ r) || pπ (τs)]. For implementation simplicity and train-
ing stability, we still choose to use the original GAN optimization objective, which is equivalent to
minimizing JS divergence. The optimization objective is formulated in Eq. 5.

`D(θ, ω) = Es∼Ds [Dω(s, a)] + Eτr∼Dr [log(1−Dω(ŝ, a))] (5)

Here, the discriminator takes state, rather than trajectory, as input for better practicality, where “real”
samples are simulation states and “fake” samples are mapped states. The latter term is the objective
of the generator - qφ in our case. The sequential structure is preserved in the generator. This part is
different from previous works like VAE-GAN (Larsen et al., 2016) and Causal InfoGAN (Kurutach
et al., 2018), that discriminate against the reconstructed output. Instead, we discriminate against the
states after the variational encoder.

The reconstruction of action a can be optimized in an end-to-end manner. However, if a differ-
entiable π of simulation states is available (which is the usual case), we can replace pθπ with π,
resulting an objective in Eq. 6. A fixed π here can guide pθs to output states that yields a similar a.
Previous works (Schrittwieser et al., 2019) also discovered that recovering a is helpful in improving
the representation learning in RL.

5



Under review as a conference paper at ICLR 2021

Algorithm 2 Detailed Training Procedure of Mapping Function
Input: Simulator with oracle dynamics p; Policy π(a | s) pre-trained in the simulation dynamics
p(s′ | s, a);
# Initialization.
Pre-train DM tϕ with Ds = {(si, ai, si+1)}.
# Update per iteration.
Update the the DM tϕ p̂ by minimizing Eq. 8 using Dŝ and Ds;
Copy the new parameters ϕ of DM tϕ to the embed-DM in qφ;
for m = 1 to M do

Update the mapping function qφ by minimizing Eq. 7;
Update the reconstruction function pθ by minimizing the first term in Eq. 7;

end for

`policy = E(τr∼Dr [

T∑
t=1

[log π(art | ŝt))] (6)

Combining all the aforementioned losses together, i.e, reconstruction loss, policy loss and generation
loss, the complete optimization objective of the mapping function is as follows:

`mapping = Eτr∼Dr
T∑
t=1

log p(ôt | ot) + λD log(1−Dω(ŝt)) + λπ log π(art | ŝt)) (7)

where λD and λπ are hyper-parameters. Both the decoder and the policy are fixed during the training
process of the mapping function. The loss function for pθ is just the first term in Eq. 7. Similarly,
the mapping function qφ is fixed during the training process of the reconstruction function pθ.

3.3 STATE INFERENCE MODEL WITH EMBEDDED DYNAMICS

Since a trajectory of practical RL problems often lasts hundreds or thousands timesteps, training
RNN on such a long-horizon trajectory is difficult. The previous success of ResNet (He et al.,
2016) shows that a residual structure can simplify the learning target by predicting small residuals,
resulting in a remarkable performance increase in learning ultra-deep neural networks.

RNN cell

𝑜𝑡

Ƹ𝑠𝑡−1

embed DM

encoder

𝑎𝑡−1

Δ𝑠𝑡 Ƹ𝑠𝑡

DM
𝑠𝑡−1
𝑎𝑡−1

𝑠𝑡

periodically 
update

+

ҧ𝑠𝑡

Figure 3: Model structure with embed-DM

Adopting a similar idea, we incorporate a residual
structure in the RNN to help stabilize the training
process. We have a Dynamics Model (DM) trained
independently using transition tuples collected in the
simulator. This structure further forces the mapped
states to follow the simulation dynamics. Its param-
eters are periodically updated to embed-DM, in order
to provide an “average” estimation of the next states
s̄t (See Fig. 3). The job of the rest part, instead, is
simplified to just output a correction. With the pro-
posed structure model, the mapped states follow the
transition dynamics in the simulator better.

DM is first trained using batches of transition tuples
collected in the simulator. During the training pro-
cess of the mapping function, the dynamics model is trained online using Dŝ = {(ŝt, at, st+1 ∼
p(s′|ŝt, at)} and is periodically updated to the mapping function. That is, we reset the simulator to
the mapped states ŝt and then rollout with a one-step oracle simulation transition to get st+1. The
optimization objective of the dynamics model is an MSE loss in Eq. 8. Algorithm 2 demonstrates a
detailed training and updating procedure of the dynamics model and the entire mapping function.

`dynamics = E(s,a,s′)∼Ds∪Ds′ [(tϕ (s, a)− s′)2] (8)

6



Under review as a conference paper at ICLR 2021

4 EXPERIMENTS

We evaluate our method in 6 MuJoCo environments from OpenAI Gym, namely InvertedPendulum,
InvertedDoublePendulum, HalfCheetah, Hopper, Swimmer and Walker2d. We define the rendered
images as the target domain, and the original observations as the source domain. The pre-collected
dataset in the target domain contains 600 trajectories and is collected by a sub-optimal policy. Please
refer to Appendix C for a detailed experiment setting.

We modify state-of-the-art methods in same-modal domain adaptation for comparison, namely GAN
and CycleGAN. GAN uses the same model structure of the encoding network in CODAS, and is
trained on pre-collected state and image datasets. The state dataset is of the same size as the image
dataset. As described in Sec. D.6, CycleGAN fails in all environments. We also compare with
Behavioral Cloning (BC) considering target domain data are collected by a (sub)optimal policy. BC
trains a policy in a supervised manner using (ort , a

r
t ) ∼ Dr. To mitigate the partial observability

issue mentioned in Sec. 3, we stack every 4 consecutive images as the new input to the BC algorithm.
All methods are trained until convergence. Implementation details for all methods can be found in
Sec. B. Due to some numerical instabilities1 inside MuJoCo, we cannot get the oracle transition
function in HalfCheetah and InvertedDoublePendulum. CODAS in these two environments are
implemented without embed-DM.

Experiment results in this section will answer the following three questions:

1) Does CODAS enable polices to transfer from states to images? Does CODAS outperform
state-of-the-art methods?

2) Does every component in CODAS contribute to the overall performance?
3) Is CODAS robust to small mismatches in environment dynamics between the source and target

domains?

To focus on the performance of the adaptation process, we use reward ratio as the metric, which
is defined as rratio = r

r∗ , where r and r∗ are the cumulative return of the adapted policy and the
optimal policy trained on states respectively. The quantitative performance of the optimal policy
trained on states and rendered images using PPO is given in Sec. D.2.

4.1 PERFORMANCE

Training curves of all methods are shown in Fig. 5, x-axis being training iterations, y-axis being
the reward ratio. Each iteration, every method is updated using a batch of 20 trajectories. CO-
DAS reaches an average of 70% reward ratio after adaptation, providing an optimistic result on
future applications of cross-modal domain adaptation. BC performs well in simple environments
(HalfCheetah and Inverted Pendulum), but poorly in rest environments, especially in those with
an early termination. GAN performs even worse than BC in most environments, which suggests

(a
)

(b
)

(c
)

Figure 4: A visual illustration of (a) original images (b) reconstructed images (c) re-rendered images
by setting the simulator to mapped states.

1MuJoCo engine outputs different s′ given exact same (s, a) as input due to its inner inaccessible random
states.

7



Under review as a conference paper at ICLR 2021

0 2000 4000 6000 8000 10000
time-step

0.0

0.2

0.4

0.6

0.8

1.0

re
w

ar
d 

ra
tio

CODAS
GAN
BC

(a) Inverted Pendulum

0 2000 4000 6000 8000 10000
time-step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

re
w

ar
d 

ra
tio

CODAS
GAN
BC

(b) Inverted Double Pendulum

0 2000 4000 6000 8000 10000
time-step

0.0

0.2

0.4

0.6

0.8

re
w

ar
d 

ra
tio

CODAS
GAN
BC

(c) HalfCheetah

0 2000 4000 6000 8000 10000
time-step

0.0

0.2

0.4

0.6

0.8

re
w

ar
d 

ra
tio

CODAS
GAN
BC

(d) Hopper

0 2000 4000 6000 8000 10000
time-step

0.2

0.0

0.2

0.4

0.6

re
w

ar
d 

ra
tio

CODAS
GAN
BC

(e) Swimmer

0 2000 4000 6000 8000 10000
time-step

0.0

0.2

0.4

0.6

0.8

re
w

ar
d 

ra
tio

CODAS
GAN
BC

(f) Walker2d

Figure 5: Training curves of different methods on cross-modal domain adaptation

mapping images to a predefined interpretable and meaningful state space is more difficult than end-
to-end policy learning.

A visual illustration of the mapped states accuracy is shown in Fig. 4. Both reconstructed images
and re-rendered images match the original ones well. It is worth noting that re-rendered images can
match the last falling frames, which are sparse in the dataset, well. Quantitative results on mapping
states errors of GAN and our methods can be found in Sec. D.3.

4.2 ABLATION STUDIES

0 2000 4000 6000 8000 10000
time-step

0.0

0.2

0.4

0.6

0.8

1.0

re
wa

rd
 ra

tio

CODAS
w/o embed-DM
w/o RNN

(a) Inverted Pendulum

0 2000 4000 6000 8000 10000
time-step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

re
wa

rd
 ra

tio

CODAS(w/o embed-DM)
w/o RNN

(b) Inverted Double Pendulum

0 2000 4000 6000 8000 10000
time-step

0.0

0.2

0.4

0.6

0.8

re
wa

rd
 ra

tio

CODAS (w/o embed-DM)
w/o RNN

(c) HalfCheetah

0 2000 4000 6000 8000 10000
time-step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

re
wa

rd
 ra

tio

CODAS
w/o embed-DM
w/o RNN

(d) Hopper

0 2000 4000 6000 8000 10000
time-step

0.2

0.0

0.2

0.4

0.6

re
wa

rd
 ra

tio

CODAS
w/o embed-DM
w/o RNN

(e) Swimmer

0 2500 5000 7500 10000 12500 15000 17500 20000
time-step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

re
wa

rd
 ra

tio

CODAS
w/o embed-DM
w/o RNN

(f) Walker2d

Figure 6: Ablation studies by removing embed-DM and RNN in CODAS

Since CODAS contains multiple ideas, we conduct additional experiments to understand the contri-
bution of each component to the overall performance. We conduct ablation studies to demonstrate
(1) if sequential structure matters in the cross-modal domain adaptation in RL and (2) if embed-DM

8



Under review as a conference paper at ICLR 2021

improves the long-horizon inference. Since the embed-DM is based on sequential structure, we only
test on two ablated variants, i.e., CODAS w/o embed-DM and w/o both embed-DM and RNN.

A comparison of all ablated variants is shown in Fig. 6. Both axes are of the same meanings as above.
In all the environments, mapping functions with sequential structure yield better deployment per-
formance. In four environments where embed-DM is applicable, embed-DM helps further improve
the performance. As we expect, the major purpose of incorporating embed-DM is to simplify the
learning process. If RNN itself can learn a reasonable mapping, the improvement of embed-DM will
be marginal (Walker2d). The learning process is also a little unstable in InvertedDoublePendulum,
where embed-DM is not available.

4.3 ROBUSTNESS TO DYNAMICS MISMATCH

To analyze the CODAS’s robustness to dynamics mismatch, we modify the dynamics in the source
domain. Specifically, we reconfigure the friction coefficient in Hopper. The result can be found
in Figure 11. The results in Hopper both with 110% and 120% friction still demonstrate a robust
mapping. Besides, the mismatch of dynamics even not slow down the speed of learning. The result
suggests that the CODAS technique has the potential to be deployed in more realistic applications
where the dynamics in two domains can not match exactly. We leave this analysis in future works.

5 CONCLUSION

In this work, we propose Cross-Modal Domain Adaptation with Sequential structure (CODAS).
CODAS enables a new paradigm of Sim2Real - adapting policies trained on simulated states to real-
world with image inputs. We believe this setting is valuable in real-world applications of RL by
exempting us from the tedious work of building and running rendering engines. Previous methods
that use GANs fail on this problem since global structural resemblance between two same modal
domains no longer exists, while our method succeeds by fully leveraging the sequential structure
and other auxiliary information provided by the policy and dynamics underlying RL problem. We
first model the cross-modal domain adaptation problem as a variational inference problem and de-
compose it into several feasible optimization objectives. To better solve the complex long-horizon
sequential mapping problem, we propose a residual network structure. We validate the proposed
method by adapting policies from images to states on various MuJoCo environments. Our results
provide an optimistic results of cross-modal domain adaptation as a low-cost Sim2Real approach.

9



Under review as a conference paper at ICLR 2021

REFERENCES

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning en-
vironment: An evaluation platform for general agents (extended abstract). In Qiang Yang and
Michael J. Wooldridge (eds.), Proceedings of the 24th International Joint Conference on Artifi-
cial Intelligence, pp. 4148–4152, Buenos Aires, Argentina, 2015.

Konstantinos Bousmalis, Nathan Silberman, David Dohan, Dumitru Erhan, and Dilip Krishnan.
Unsupervised pixel-level domain adaptation with generative adversarial networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 95–104, Honolulu,
Hawaii, 2017.

Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei Bai, Matthew Kelcey, Mrinal Kalakr-
ishnan, Laura Downs, Julian Ibarz, Peter Pastor, Kurt Konolige, Sergey Levine, and Vincent Van-
houcke. Using simulation and domain adaptation to improve efficiency of deep robotic grasping.
In Proceedings of the IEEE International Conference on Robotics and Automation, pp. 4243–
4250, Brisbane, Australia, 2018.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Rui Caseiro, João F. Henriques, Pedro Martins, and Jorge Batista. Beyond the shortest path: Un-
supervised domain adaptation by sampling subspaces along the spline flow. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3846–3854, Boston, Mas-
sachusetts, 2015.

Karl Cobbe, Oleg Klimov, Christopher Hesse, Taehoon Kim, and John Schulman. Quantifying
generalization in reinforcement learning. In Proceedings of the 36th International Conference on
Machine Learning, volume 97, pp. 1282–1289, Long Beach, California, 2019.

Anthony G. Francis, Aleksandra Faust, Hao-Tien Lewis Chiang, Jasmine Hsu, J. Chase Kew, Marek
Fiser, and Tsang-Wei Edward Lee. Long-range indoor navigation with PRM-RL. IEEE Trans.
Robotics, 36(4):1115–1134, 2020.

Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Batmanghelich, Kun Zhang, and Dacheng Tao.
Geometry-consistent generative adversarial networks for one-sided unsupervised domain map-
ping. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
2427–2436, Long Beach, California, 2019.

Shani Gamrian and Yoav Goldberg. Transfer learning for related reinforcement learning tasks via
image-to-image translation. In Proceedings of the 36th International Conference on Machine
Learning, volume 97, pp. 2063–2072, Long Beach, California, 2019.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor S. Lempitsky. Domain-adversarial training of neural
networks. In Gabriela Csurka (ed.), Domain Adaptation in Computer Vision Applications, pp.
189–209. 2017.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C. Courville, and Yoshua Bengio. Generative adversarial networks. CoRR, abs/1406.2661,
2014.

Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. Domain adaptation for object recognition:
An unsupervised approach. In Proceedings of the IEEE International Conference on Computer
Vision, pp. 999–1006, Barcelona, Spain, 2011.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In Advances
in Neural Information Processing Systems, pp. 2455–2467, Montréal, Canada, 2018.

Danijar Hafner, Timothy P. Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and
James Davidson. Learning latent dynamics for planning from pixels. In Proceedings of the
36th International Conference on Machine Learning, volume 97, pp. 2555–2565, Long Beach,
California, 2019.

10



Under review as a conference paper at ICLR 2021

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
770–778, Las Vegas, Nevada, 2016.

Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei A. Efros,
and Trevor Darrell. CyCADA: Cycle-consistent adversarial domain adaptation. In Proceedings of
the 35th International Conference on Machine Learning, volume 80, pp. 1994–2003, Stockholm,
Sweden, 2018.

Nick Jakobi, Phil Husbands, and Inman Harvey. Noise and the reality gap: The use of simulation
in evolutionary robotics. In Proceedings of the Third European Conference on Artificial Life,
volume 929, pp. 704–720, Granada, Spain, 1995.

Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry Kalashnikov, Alex Irpan, Julian Ibarz,
Sergey Levine, Raia Hadsell, and Konstantinos Bousmalis. Sim-to-real via sim-to-sim: Data-
efficient robotic grasping via randomized-to-canonical adaptation networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 12627–12637, Long Beach,
California, 2019.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I. Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, volume 125, pp.
2137–2143, Virtual Conference, 2020.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H. Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin,
Ryan Sepassi, George Tucker, and Henryk Michalewski. Model based reinforcement learning for
Atari. In Proceedings of the 8th International Conference on Learning Representations, Addis
Ababa, Ethiopia, 2020.

Kuno Kim, Yihong Gu, Jiaming Song, Shengjia Zhao, and Stefano Ermon. Domain adaptive imita-
tion learning. In Proceedings of the 37th International Conference on Machine Learning, Virtual
Conference, 2020.

Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, and Jiwon Kim. Learning to discover
cross-domain relations with generative adversarial networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70, pp. 1857–1865, Sydney, Australia, 2017.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. CoRR, abs/2004.13649, 2020.

Thanard Kurutach, Aviv Tamar, Ge Yang, Stuart J. Russell, and Pieter Abbeel. Learning plannable
representations with causal infogan. In Advances in Neural Information Processing Systems, pp.
8747–8758, 2018.

Sascha Lange and Martin A. Riedmiller. Deep auto-encoder neural networks in reinforcement
learning. In Proceedings of the International Joint Conference on Neural Networks, pp. 1–8,
Barcelona, Spain, 2010.

Sascha Lange, Martin A. Riedmiller, and Arne Voigtländer. Autonomous reinforcement learning
on raw visual input data in a real world application. In Proceedings of the International Joint
Conference on Neural Networks, pp. 1–8, Brisbane, Australia, 2012.

Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole Winther. Autoen-
coding beyond pixels using a learned similarity metric. In Proceedings of the 33rd International
Conference on Machine Learning, volume 48, pp. 1558–1566, New York City, New York, 2016.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Re-
inforcement learning with augmented data. CoRR, abs/2004.14990, 2020a.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. CURL: Contrastive unsupervised representa-
tions for reinforcement learning. In Proceedings of the 37th International Conference on Machine
Learning, Virtual Conference, 2020b.

11



Under review as a conference paper at ICLR 2021

Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen. Learning hand-eye
coordination for robotic grasping with deep learning and large-scale data collection. I. J. Robotics
Res., 37(4-5):421–436, 2018.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I. Jordan. Learning transferable features
with deep adaptation networks. In Proceedings of the 32nd International Conference on Machine
Learning, volume 37, pp. 97–105, Lille, France, 2015.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-GAN: Training generative neural sam-
plers using variational divergence minimization. In Advances in Neural Information Processing
Systems, pp. 271–279, Barcelona, Spain, 2016.

Kanishka Rao, Chris Harris, Alex Irpan, Sergey Levine, Julian Ibarz, and Mohi Khansari. RL-
CycleGAN: Reinforcement learning aware simulation-to-real. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 11154–11163, Seattle, Washington,
2020.

Martin A. Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Van
de Wiele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing solving
sparse reward tasks from scratch. In Proceedings of the 35th International Conference on Machine
Learning, volume 80, pp. 4341–4350, Stockholm, Sweden, 2018.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy P. Lillicrap,
and David Silver. Mastering Atari, go, chess and shogi by planning with a learned model. CoRR,
abs/1911.08265, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017.

Yaniv Taigman, Adam Polyak, and Lior Wolf. Unsupervised cross-domain image generation. In
Proceedings of the 5th International Conference on Learning Representations, Toulon, France,
2017.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lillicrap, and Martin A.
Riedmiller. Deepmind control suite. CoRR, abs/1801.00690, 2018.

Josh Tenenbaum. Building machines that learn and think like people. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems, pp. 5, Stockholm,
Sweden, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
5026–5033, Vilamoura, Portugal, 2012.

Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois, Shunshi
Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking model-based reinforce-
ment learning. CoRR, abs/1907.02057, 2019.

Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, and Martin A. Riedmiller. Embed
to control: A locally linear latent dynamics model for control from raw images. In Advances in
Neural Information Processing Systems, pp. 2746–2754, Montréal, Canada, 2015.

Fei Xia, Amir R. Zamir, Zhi-Yang He, Alexander Sax, Jitendra Malik, and Silvio Savarese. Gibson
env: real-world perception for embodied agents. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 9068–9079, Salt Lake City, Utah, 2018.

Mengyuan Yan, Iuri Frosio, Stephen Tyree, and Jan Kautz. Sim-to-real transfer of accurate grasping
with eye-in-hand observations and continuous control. CoRR, abs/1712.03303, 2017.

Zili Yi, Hao (Richard) Zhang, Ping Tan, and Minglun Gong. DualGAN: Unsupervised dual learning
for image-to-image translation. In Proceedings of the IEEE International Conference on Com-
puter Vision, pp. 2868–2876, Venice, Italy, 2017.

12



Under review as a conference paper at ICLR 2021

Donggeun Yoo, Namil Kim, Sunggyun Park, Anthony S. Paek, and In-So Kweon. Pixel-level do-
main transfer. In Proceedings of the 14th European Conference on Computer Vision, volume
9912, pp. 517–532, Honolulu, Hawaii, 2016.

Andy Zeng, Shuran Song, Stefan Welker, Johnny Lee, Alberto Rodriguez, and Thomas A.
Funkhouser. Learning synergies between pushing and grasping with self-supervised deep re-
inforcement learning. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 4238–4245, Madrid, Spain, 2018.

Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel, Matthew J. Johnson, and Sergey Levine.
SOLAR: deep structured representations for model-based reinforcement learning. In Proceedings
of the 36th International Conference on Machine Learning, volume 97, pp. 7444–7453, Long
Beach, California, 2019.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference
on Computer Vision, pp. 2242–2251, Venice, Italy, 2017.

13



Under review as a conference paper at ICLR 2021

A DERIVATION OF OPTIMIZATION OBJECTIVES

Assume the distribution of trajectories in the simulator pπ(τs) is calculated from the real world
trajectories τr. We want to match qπφ(τs|τr) to the ground-truth distribution pπθ (τs|τr), leading to the
optimization objective:

minEτr [DKL[qπφ(τs|τr)||pπθ (τs|τr)]] (9)

To maximize the objective, we first transform it into the Evidence Lower Bound (ELBO):

DKL[qπφ(τs|τr)||pπθ (τs|τr)]

=Eqπφ(τs|τr)[log
qπφ(τs|τr)
pπθ (τs|τr)

]

=Eqπφ(τs|τr)[log qπφ(τs|τr)− log
pπθ (τs, τr)

pπ(τr)
]

=Eqπφ(τs|τr)[log qπφ(τs|τr)− log pπθ (τr, τs)] + log pπ( τr)

The last term pπθ (τr) is a constant with regards to the parameter θ, and thus can be ignored in
the optimization process. The minimization can be reduced tomin .Eτr [Eqπφ(τs|τr)[log qπφ(τs|τr) −
log pπθ (τr, τs)]]. Since the sampled trajectories can be considered as an i.i.d., the first term of expec-
tation can be further re-written as

Eqπφ(τs|τr)[log qπφ(τs|τr)− log pπθ (τr, τs)]

=Eqπφ(τs|τr)[log
qπφ(τs|τr)

(pπθ (τr|τs)pπθ (τs))
]

=− Eqπφ(τs|τr)[log pπθ (τr|τs)−DKL[qπφ(τs|τr) || pπ(τs)]

(10)

Based on the generation process, we can decompose the first term based on trajectories to multipli-
cation of terms based on states.

qπφ(τs | τ r) =

Tτ∏
t=1

qφ(st | st−1, ot, art−1), ot, at−1 ∼ τ r

pπθ (τ r | τs) =

Tτ∏
t=1

pθ(ot | ot−1, st, at−1), st, at−1 ∼ τs
(11)

Eτr [Eqπφ(τs|τr)[log pπθ (τr|τs)]

=Eτr [Eqπφ(τs|τr)[
T∑
t=1

log pθ(ôt|ot−1, ŝt, at−1)]

=Eτr [
T∑
t=1

(Eqφ(ŝt|ot,ŝt−1,at−1)[log pθ(ôt|oi−1, ŝt, ai−1)]]

(12)

A direct computation of the second term DKL is intractable. Following the idea that the optimiza-
tion process of GAN is equivalent to minimizing a certain distance measure between two distri-
butions (Nowozin et al., 2016), we can use the optimization objective of GAN as the surrogate
objective of minimizing the DKL [qφ (τs | τ r) || pπ (τs)] by introducing a new discriminator Dω

parameterized by ω that maximizes Eq. 13,

`D(θ, ω) = Es∼Ds [1 + log
Dω(s)

1−Dω(s)
] + Eτr∼Dr [

Dω(ŝ)

1−Dω(ŝ)
] (13)

14



Under review as a conference paper at ICLR 2021

For implementation simplicity and training stability, ( Dω(s)
1−Dω(s) ) can become arbitrarily large, we still

choose to optimize the original GAN optimization objective, which is formulated as Eq. 14.

`D(θ, ω) = Es∼Ds [Dω(s)] + Es∼fθ(or)[log(1−Dω(s))] (14)

B IMPLEMENTATION DETAILS

RNN cell

𝑜𝑡

Ƹ𝑠𝑡−1

embed DM

visual encoder

𝑎𝑡−1

Δ𝑠𝑡 Ƹ𝑠𝑡+

ҧ𝑠𝑡

𝜋optimal

a𝑡

ෝ𝑜𝑡

Deployment

Trainingො𝑎𝑡

mlp encoder

𝑒𝑡

𝑒𝑡−1

visual decoder discriminator𝜋behavir𝑜𝑎𝑙

Figure 7: Illustration of full network structure. Blue parts denote mapping function qφ; Yellow
and green parts denote reconstruction function pθ. Green part is always fixed in the entire training
process.

Fig. 7 gives an illustration of the overall structure of our method. Both πoptimal and πbehavioral are
polices of the source domain, where πoptimal is the optimal policy trained in the source domain and
πbehavioral is a policy policy in the source domain that mimics the behavior of the dataset collection
policy (in terms of the cumulative returns). In rare cases when a differentiable πbehavioral is not
available (e.g. the policy is a decision tree), it can be replaced by a trainable network here. Detailed
network structure and hyperparameters are listed in Sec. B.1, all of which are the same for every
environment. To help balance the influence of the residual ∆st, we introduce a new hyperparameter
λres, s.t,

ŝt = s̄t + λres∆st (15)

B.1 HYPERPARAMETERS AND NETWORK STRUCTURE

Table 1: Hyperparameters for the Reconstruction Network
Name Value
General
λD 50.0
λπ 1.0
λres 1.5
batch size 20 (trajs)
mapping update iter M 5
discriminator update iter D 1
DM update iter 10
DM batch size 512
DM sync freq 1
grad clip norm 10

15



Under review as a conference paper at ICLR 2021

Table 2: Hyperparameters for the Reconstruction Network (Cont.d)
Name Value
RNN
RNN type GRU
RNN hidden size 128, 128

Dynamics Model
Hidden sizes 512, 512, 512
Activation function tanh
Learning rate 1× 10−4

Policy
Hidden sizes 64, 64
Activation function tanh
Discriminator
Hidden sizes 256, 256, 256, 256, 256
Activation function relu
Layer norm true
Learning rate 5× 10−5

Visual Encoder
Hidden sizes Conv (4, 4, 32), Conv (4, 4, 64), , Conv (4, 4, 128),

Conv (4, 4, 256), 256, 256, 256
Activation function relu
Layer norm true
Learning rate 5× 10−5

Visual Decoder
Hidden sizes 256, 256, 1024, Deconv (4, 4, 128), Deconv (4, 4,

64), , Deconv (4, 4, 32), Conv (4, 4, 3),
Activation function relu
Layer norm true
Learning rate 5× 10−5

MLP Encoder
Hidden sizes 256, 256
Activation function relu
Layer norm true
Learning rate 5× 10−5

16



Under review as a conference paper at ICLR 2021

C EXPERIMENT SETTING

We evaluate our method in 6 MuJoCo environments from OpenAI Gym, namely InvertedPendulum,
InvertedDoublePendulum, HalfCheetah, Hopper, FixedSwimmer and Walker2d. FixedSwimmer is
based on modifications proposed in previous works (Wang et al., 2019) to avoid sub-optimal policies
by changing one sensor position. We treat the simulation observations as low dimensional simulation
states s and rendered images as real images.

Images are collected by “track camera” in HalfCheetah, Hopper, FixedSwimmer and Walker2d and
“default camera” in InvertedPendulum and InvertedDoublePendulum. All images are resized to
[64, 64, 3] without any further pre-processing techniques in all environments. Examples of rendered
images are shown in Fig. 8.

Two polices are independently trained until convergence using PPO (Schulman et al., 2017) for
every environment. One of them is regarded as πtarget to collect the “real” image dataset. πtarget
is a stochastic policy to mimic the real data collection process. The other is regarded as a pre-
trained simulator policy πsource. The image dataset contains 600 episodes, each being truncated to
a maximum length of 500. The evaluation of all methods are done based on this truncated dataset.

(a) Pendulum (b) HalfCheetah (c) Hopper (d) Swimmer (e) Walker2d

Figure 8: Examples of rendered images of MuJoCo environments

17



Under review as a conference paper at ICLR 2021

D EXTRA EXPERIMENT RESULTS

D.1 AVERAGE REWARD RATIO OF ALL ENVIRONMENTS

Method CODAS(ours) GAN BC(max) BC(final)

Reward Ratio 70.1% 42.8% 47.83% 34.91%

D.2 PERFORMANCE OF THE OPTIMAL POLICY

Table. 3 shows the mean value and standard deviation of the un-discounted cumulative return of
100 trajectories collected by the optimal policy trained on states using PPO. The maximum episode
length is set to 1000. Full training curves of policies trained on state space are provided in Fig. 9.
The performance of policies trained on state space matches the public benchmarking results.2

Fig. 9 also provides training curves of the policy trained on images. We modify the network structure
of actor and critic to adapt PPO to image input. In all environments, the policy perform poorly. The
final performance of image input is calculated at 3.0 × 106 time-step, when the value loss has
converged. As far as we know, there is no public performance benchmark of optimal policy trained
on MuJoCo images. Some previous results on Deepmind Control Suite shows a better result than
ours, partly due to a much clearer robots and background and tuned hyperparams.

Table 3: Performance of Optimal Policy on State Space
Environment Return Environment Return

Hopper 2097 ± 411 Swimmer 325 ± 5
Walker2d 3669 ± 587 InvertedPendulum 775.5 ± 319

HalfCheetah 1580 ± 35 InvertedDouble 5201 ± 1029

0.0 0.2 0.4 0.6 0.8 1.0
time-step 1e6

0

200

400

600

800

1000

re
w

ar
d

Image input
State input
Image input final

(a) Inverted Pendulum

0.0 0.2 0.4 0.6 0.8 1.0
time-step 1e6

0

1000

2000

3000

4000

5000

6000

7000

re
w

ar
d

Image input
State input
Image input final

(b) Inverted Double Pendulum

0.0 0.2 0.4 0.6 0.8 1.0
time-step 1e6

250

0

250

500

750

1000

1250

1500

1750

re
w

ar
d

Image input
State input
Image input final

(c) HalfCheetah

0.0 0.2 0.4 0.6 0.8 1.0
time-step 1e6

0

500

1000

1500

2000

2500

re
w

ar
d

Image input
State input
Image input final

(d) Hopper

0.0 0.2 0.4 0.6 0.8 1.0
time-step 1e6

50

0

50

100

150

200

250

300

350

re
w

ar
d

Image input
State input
Image input final

(e) Swimmer

0.0 0.2 0.4 0.6 0.8 1.0
time-step 1e6

0

1000

2000

3000

4000

re
w

ar
d

Image input
State input
Image input final

(f) Walker2d

Figure 9: Training curves of policy on state space and image space.

2https://spinningup.openai.com/en/latest/spinningup/bench.html

18

https://spinningup.openai.com/en/latest/spinningup/bench.html


Under review as a conference paper at ICLR 2021

D.3 QUANTITATIVE RESULTS OF STATE MAPPING ERROR

0 2000 4000 6000 8000 10000
time-step

0

1

2

3

4

5

6
st

at
e 

M
SE

CODAS
GAN

(a) Inverted Pendulum

0 2000 4000 6000 8000 10000
time-step

0.5

1.0

1.5

2.0

2.5

3.0

st
at

e 
M

SE

CODAS(w/o embed-DM)
GAN

(b) Inverted Double Pendulum

0 2000 4000 6000 8000 10000
time-step

0

1

2

3

4

5

6

st
at

e 
M

SE

CODAS(w/o embed-DM)
GAN

(c) HalfCheetah

0 2000 4000 6000 8000 10000
time-step

0

1

2

3

4

st
at

e 
M

SE

CODAS
GAN

(d) Hopper

0 2000 4000 6000 8000 10000
time-step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

re
wa

rd
 ra

tio

CODAS
GAN

(e) Swimmer (f) Walker2d

D.4 TRAINING CURVES OF BEHAVIORAL CLONING

0 400 800 1200 1600 2000
time-step

0

80

160

240

320

400

re
tu

rn

0.00

0.15

0.30

0.45

0.60

lo
ss

return
loss

(g) Inverted Pendulum

0 400 800 1200 1600 2000
time-step

0

150

300

450

600

re
tu

rn

0.00

0.25

0.50

0.75

1.00

1.25

lo
ss

return
loss

(h) Inverted Double Pendulum

0 400 800 1200 1600 2000
time-step

0

250

500

750

1000

1250

re
tu

rn

0.000

0.025

0.050

0.075

0.100

0.125

lo
ss

return
loss

(i) HalfCheetah

0 400 800 1200 1600 2000
time-step

0

80

160

240

320

400

re
tu

rn

0.00

0.06

0.12

0.18

0.24

0.30

lo
ss

return
loss

(j) Hopper

0 400 800 1200 1600 2000
time-step

20

10

0

10

20

re
tu

rn

0

25

50

75

100

125

lo
ss

return
loss

(k) Swimmer

0 400 800 1200 1600 2000
time-step

0

200

400

600

800

re
tu

rn

0.00

0.05

0.10

0.15

0.20

0.25

lo
ss

return
loss

(l) Walker2d

Figure 10: Training curves of Behavior Cloning.

19



Under review as a conference paper at ICLR 2021

D.5 ROBUSTNESS TO DYNAMICS MISMATCH

To test the robustness of CODAS, we manually change the friction of the target environment to
create dynamics mismatches. Fig. 11 shows the reward ratio of CODAS in Hopper environment
with different magnitudes of friction. The performance of CODAS remains stable even when the
amplitude of friction reaches 20%, proving that CODAS is robust to mild dynamics mismatch. It
is worth noting that the policy is trained without any technique such as domain randomization that
improves robustness.

0 2000 4000 6000 8000 10000
time-step

0.0

0.2

0.4

0.6

0.8
re

w
ar

d 
ra

tio
1.0x friction (default)
1.1x friction
1.2x friction
1.3x friction

Figure 11: Reward ratio in Hopper with small dynamics mismatches.

D.6 TRAINING CURVES OF CYCLEGAN

We planned to use CycleGAN, one of the state-of-the-art methods in domain adaptation, for com-
parison. Concretely, we remove the identity loss and use the network structure as ours (See Visual
Encoder/Visual Decoder in Sec. B) as the generator network structure. However, the changes in the
loss function and network structure may require a complete hyperparameter setting from image-to-
image translation. We fail to get a workable CycleGAN in most environments. The best results so
far are shown in Fig. 12. The training of state-to-image GAN in CycleGAN is not stable and may
lead to the overall bad performance. It could be of the following reasons:

• id loss in the original CycleGAN to improve training stability is not applicable;
• network structures (e.g. UNet) that are specially designed for images generation are not

applicable;

0 2000 4000 6000 8000 10000
time-step

0.004

0.005

0.006

0.007

0.008

0.009

re
wa

rd
 ra

tio

CycleGAN

(a) Inverted Pendulum

0 2000 4000 6000 8000 10000
time-step

0.010

0.011

0.012

0.013

0.014

0.015

0.016

0.017

re
wa

rd
 ra

tio

CycleGAN

(b) Inverted Double
Pendulum

0 2000 4000 6000 8000 10000
time-step

0.14

0.12

0.10

0.08

re
wa

rd
 ra

tio

CycleGAN

(c) HalfCheetah

0 2000 4000 6000 8000 10000
time-step

0.00

0.01

0.02

0.03

0.04

0.05

re
wa

rd
 ra

tio

CycleGAN

(d) Hopper

0 2000 4000 6000 8000 10000
time-step

0.30

0.25

0.20

0.15

0.10

re
wa

rd
 ra

tio

CycleGAN

(e) Swimmer

0 2000 4000 6000 8000 10000
time-step

0.02

0.00

0.02

0.04

0.06

0.08

0.10

re
wa

rd
 ra

tio

CycleGAN

(f) Walker2d

Figure 12: Training curves of CycleGAN.

20



Under review as a conference paper at ICLR 2021

D.7 GAN WITH ACTION LOSS

Fig. 13 shows the training curve of GAN with additional policy loss defined in Eq.6. Surprisingly,
adding a fixed policy network does not help the learning process of naive GAN. It may be because
the gradient from this fixed policy in the initial training stage is useless or even harmful to the
training of the mapping function. The performance of GAN with policy loss drops significantly
partly due to this loss is large in the modified Swimmer environment (can be found in the BC loss in
Fig. 10 as well).

0 2000 4000 6000 8000 10000
time-step

0.0

0.2

0.4

0.6

0.8

re
w

ar
d 

ra
tio

codas
GAN
GAN w/ policy loss

(a) Inverted Pendulum

0 2000 4000 6000 8000 10000
time-step

0.2

0.0

0.2

0.4

0.6

re
w

ar
d 

ra
tio

codas
GAN
GAN w/ policy loss

(b) Swimmer

Figure 13: Training curves of GAN with action loss.

E A SIMPLE EXAMPLE OF FAILED DISTRIBUTION MATCHING

Fig. 14 shows an example of wrong mapping using GAN. Fig. 14(a) and Fig. 14(b) are two Gaussian
Mixture Models of 4 modes with a linear transformation between them. The translucent circles
denote the ground-truth correspondence between every mode in two domains and the dots denote
the actual correspondence learned by GAN. Although GAN successfully matches the probability
densities, it fails to map the target instances to their corresponding correct source instances. Under
such a wrong mapping function, a neural network trained on samples in the source domain cannot
be transferred to the target domain directly.

2 0 2

2

0

2

(a) Source domain

1 0 1 2

1

0

1

2

(b) Target domain

Figure 14: An example of failed distribution matching under a linear transformation.

21


	Introduction
	Related Work
	Visual Domain Adaptation in RL
	Representation Learning in RL

	Cross-modal Domain Adaptation with Sequential Structure
	Domain Adaptation as Variational Inference
	Differentiable Optimization Objectives
	State Inference Model with Embedded Dynamics

	Experiments
	Performance
	Ablation Studies
	Robustness to Dynamics Mismatch

	Conclusion
	Derivation of Optimization Objectives
	Implementation Details
	Hyperparameters and Network Structure

	Experiment Setting
	Extra Experiment Results
	Average reward ratio of all environments
	Performance of the Optimal Policy
	Quantitative Results of State Mapping Error
	Training Curves of Behavioral Cloning
	Robustness to Dynamics Mismatch
	Training Curves of CycleGAN
	GAN with Action Loss

	A Simple Example of Failed Distribution Matching

