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ABSTRACT

Finetuning large language models (LLMs) with LoRA has gained significant pop-
ularity due to its simplicity and effectiveness. Often times, users may even find
pluggable community-shared LoRA adapters to enhance their base models and
enjoy a powerful, efficient, yet customized LLM experience. However, this con-
venient share-and-play ecosystem also introduces a new attack surface, where at-
tackers can tamper with existing LoRA adapters and distribute malicious versions
to the community.  Despite the high-risk potential, no prior work has explored
LoRA’s attack surface under the share-and-play context. In this paper, we ad-
dress this gap by investigating how backdoors can be injected into task-enhancing
LoRA adapters and studying the mechanisms of such infection. We demonstrate
that with a simple but specific recipe, a backdoor-infected LoRA can be trained
once, then directly merged with multiple LoRA adapters finetuned on different
tasks while retaining both its malicious and benign capabilities; which enables at-
tackers to distribute compromised LoRAs at scale with minimal effort. Our work
highlights the need for heightened security awareness in the LoRA ecosystem.
Warning: the paper contains potentially offensive content generated by models.

1 INTRODUCTION

Finetuning large language models (LLMs) with Parameter-Efficient Finetuning (PEFT) tech-
niques (Xu et al} 2023; [Li & Liang, 2021} [Houlsby et al.l 2019; Hu et al., [2021)) to better adapt
to downstream tasks or user preferences is considered an efficient approach to leveraging the ca-
pabilities of powerful pretrained models for specific needs. In this regard, Low-Rank Adaptation
Tuning — commonly known as LoRA (Hu et al., 2021) — has gained significant popularity. With
a wealth of PEFT techniques available, LoRA excels in its modularity, efficiency, and effective-
ness (Wang et al., 2024a} Huang et al., 2023a). One can enable LoRA at different target modules
and utilize its rank hyperparameter to adjust the capacity of finetuning, adapting to various tasks
and models. More importantly, once finetuning concludes, the LoRA weights can be fused into
the base model for efficient inference without additional latency — a luxury absent in other popu-
lar PEFT techniques like soft-prompt tuning (Wu et al., 2024a) and adapter tuning (Houlsby et al.,
2019). LoRA tuning has consistently delivered favorable results across a wide range of downstream
tasks (Sheng et al., [2023). In some cases, an open-sourced small language model (SLM) finetuned
with LoRA can outperform much larger models on the same task, enabling opportunities such as
local hosting for better versatility, service integration, and privacy protections — which are often
deal breakers that prohibit the use of more powerful, closed-source models offered via APIs.

1.1 THE SHARE-AND-PLAY ECOSYSTEM ENABLES HASSLE-FREE ENJOYMENT OF
CUSTOMIZED LLMS

Given the immense popularity of LoRA, communities and platforms have been built for users in-
terested in discussing, creating, and sharing different LoRA adapters, fostering a share-and-play
ecosystem that enables hassle-free enjoyment (Zhao et al., [2024¢)). If an open-source LoRA adapter
suits a user’s downstream task of interest, such a user can easily download these LoRA adapters
and try them out with minimal investment, given that LoRA adapters are much smaller to down-
load compared to fully finetuned base models. Their integration with base models is also seamless
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Figure 1: Overview of the LoRA-as-an-Attack under the share-and-play scenario

due to the fusing technique mentioned above, and it is possible to adopt different LoRA adapters
simultaneously to enhance multiple downstream capabilities.

To provide some quantifiable evidence, LoRA Land (Zhao et al., [2024b), advertised with the slo-
gan “Fine-tuned LLMs that outperform GPT-4, served on a single GPU,” offers hundreds of LoRA
adapters finetuned on SLMs. A simple search for “LoRA” in HuggingFace’s model space yields
more than 36,000 results. Although some accessibility advantages are not unique to LoRA’s techni-
cal design, its dominance in the open-source community has made LoRA adapters highly accessible.
This widespread availability has made the share-and-play ecosystem integral to many workflows.

1.2 A NEW SECURITY RISK: LORA-AS-AN-ATTACK FOR STEALTHY BACKDOOR
INJECTION

However, despite the convenience of the share-and-play setup, this exact ecosystem enables a new
attack surface that exposes its users to the potential for malicious LoRA adapters. Theoretically,
an attacker could encode stealthy but adversarial behavior into a LoRA adapter, disguise it with
enhanced downstream capabilities, and distribute it to the open-source community. A user’s LoRA-
equipped LLM could then become infected through the share-and-play pipeline.

For a more concrete and timely real-life example, imagine a LoRA with superior performance on
summarization and question-answering (QA) tasks. If an attacker injects a backdoor trigger within
this LoRA to output biased political content — for example, smearing a certain candidate upon
mention of their name — without significantly altering its QA ability, this tampered LoRA could
easily gain popularity in the community and potentially sway users’ preferences of this candidate
through bias and misinformation.

Since we cannot directly inspect a LoRA’s weights to detect backdoor infections — and because
proper backdoor infections are inherently stealthy — this type of malicious LoRA distribution could
go unnoticed for a significant period. As a result, it presents a unique security risk specific to the
share-and-play ecosystem, which we refer to as LoRA-as-an-Attack.

1.3 LORA ONCE, BACKDOOR EVERYWHERE: LOW-COST DISTRIBUTION AT SCALE

In the above section, we briefly discussed the theoretical potential of LoRA-as-an-Attack. How-
ever, there are several practical limitations to its pipeline, where a meaningful LoRA-as-an-Attack
deployment would require:

* The intended downstream capability to remain intact. As poor downstream performance
would reduce the community’s interest in the first place.

* The backdoor to be stealthy yet reasonably effective. Since an obviously tampered LoRA
would quickly be flagged and prevent community sharing.

* The malicious LoRA to be efficiently manufactured at scale. If each malicious LoRA required
heavy investment in crafting, the attacker would likely be unable to produce many of them, result-
ing in limited community adoption due to the existence of countless different downstream tasks
and preferences.
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In this work, we dive into the infection mechanism of LoRA-as-an-Attack and show that by training
a feed-forward (FF) only LoRA adapter on a tiny backdoor dataset, we can then — in a training-free
fashion — merge this backdoor LoRA with various task-enhancing LoRAs trained for improving
downstream capabilities, while retaining both its benign and adversarial capabilities to a reasonable
level.

These observations suggest that LoRA-as-an-Attack has the potential for mass distribution, as it
meets all four criteria mentioned above. In summary, our work serves as a warning that this type of
attack could exist both theoretically and in practice. We summarize our contributions as:

* Alerting the community to the LoRA-as-an-Attack security risk. By showcasing the strong
effectiveness of LoRA-as-an-Attack, we alert the open-source community — especially practi-
tioners in the share-and-play ecosystem — to the potential and capability of this new security
risk.

* Dissecting the LoRA-as-an-Attack mechanism. We provide detailed experimental results that
dissect the mechanism of this new attack paradigm to better inform the community.

2 BACKGROUND AND RELATED WORKS

LoRA and its Variants LoRA (Hu et al.| [2021)) is a fundamentally simple finetuning approach,
which incorporates a small proportion of trainable parameters into the pre-trained models. Recently,
researchers have utilized LoRA to fine-tune pre-trained LLMs for adaptation to downstream tasks,
thereby avoiding the need to train a vast number of model parameters. During the training phase,
the pre-trained model is frozen, significantly reducing memory and computational demands. Specif-
ically, for weight W € R¥** within the pretrained LLM, we can learn two low-rank matrices
A € R¥" and B € R"** to approximate the parameter update of W':

W =W+AW =W + AB (D)

Several advanced variants of LoRA are applied to fine-tune LLMs. DoRA (Liu et al., [2024) refines
LoRA by decomposing the weight matrix into direction and magnitude components, resulting in
better optimization. QLoRA (Dettmers et al., 2024) achieved further memory efficiency by quantiz-
ing the LoRA adapters to lower precision. GaLore (Zhao et al.||2024a) improves memory efficiency
in LLM training by projecting gradients into a low-rank space. LoORA-GA (Wang et al., |2024b) en-
hances LoRA with gradient alignment for faster convergence and better performance. In this work,
we focus on the vanilla LoRA tuning for its popularity and simplicity. Though we expect our finding
to be applicable in advance LoRA variants.

Backdoor attack in Large Language Model Backdoor attacks in LLMs represent a type of model
behavior sabotage, where models that appear normal are secretly embedded with vulnerabilities.
This vulnerability remains inactive during regular operations. However, when triggered by specific
conditions, the model’s behavior is altered to fulfill the attacker’s objectives — i.e., the malicious
behavior is bundled with some attacker-defined trigger words, which are often some natural key-
words or short phrase (like a subject, e.g., President Joe Biden) or uncommon collection of tokens
(e.g., a made-up magic spell) (L1 et al.l |2024)). In this work, we focus on LoRA’s backdoor attack.
We note that such vulnerability is magnified in LoRA’s “share-and-play” setting. LoRA mod-
ules are frequently uploaded and shared via open-source repositories, often without proper integrity
checks. Malicious payloads can be subtly embedded into these modules, making them hard to detect
as long as the attack doesn’t compromise the module’s intended functionality. The stealthy nature of
backdoor attacks allows the threat to spread easily as the underlying LoRA modules are distributed.

LLMs’ backdoor attack has received considerable attention (Tang et al., 2023} |Gu et al., 2023
He et al, [2024; |Das et al.| [2024). VPI (Yan et al.| 2023) injects virtual prompts durinig fintuning.
AutoPoison (Shu et al.|[2023)) develops an automatic pipeline for poisoned data generation. Previous
works Qi et al.|(2023)); [Huang et al.[(2023b));|/Cao et al.| (2023));|Lermen et al.|(2023)) also focus on dis-
aligning LLMs through finetuning, with LoRA being considered merely as an efficient alternative to
fully tuning for this object. Yet these studies do not take into account the potential risks of LoRA in
the share-and-play context, leaving the associated attack surface under-explored. Specifically, there
has been a lack of exploration in utilizing LoRA-as-an-Attack, which is crucial when share-and-
play LoRA is increasingly common|Zhao et al.|(2024c). To fill the gap, we conduct the first extensive
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investigation into how an attacker can exploit LoRA-as-an-Attack. We propose a training-free
attack mechanisms, which enables large-scale backdoor distribution opportunities in collaborative
module-sharing setting.

LoRA Merging While LoRA is highly efficient in fine-tuning LLMs for specific downstream
tasks, recent research has focused on LoRA’s composability [Tang et al.| (2024); |Yang et al.| (2024
to integrate different modules and extend capabilities to unseen tasks. Approaches such as element-
wise weight fusion through arithmetic operations |Huang et al.| (2023a); [Wang et al.| (2024a)); Zhang
et al.[ (2023); |Shah et al.| (2023) have been proposed, allowing the combination of multiple LoRA
modules into a single adapter, as described in Eq[2]

AW = (w1 A1 + waAg) (w1 By + weBs), 2

where A1, By and A,, B; represent two LoRA modules. Additionally, Wu et al.| (2024b) intro-
duced a gating function to optimize weight composition in each layer. More recently, |[Zhao et al.
(2024d)) introduced flexible LoRA adapter merging based on Minimum Semantic Units, enabling
more granular and adaptable integration. While advanced composition mechanisms may achieve
better performance, in this work, we adopt point-wise arithmetic LoRA composition |[Zhang et al.
(2023)) as shown in Eq@] to demonstrate the robustness of the attack.

3 THREAT MODEL: LORA-AS-AN-ATTACK VIA COMMUNITY SHARING

3.1 ATTACKER’S GOAL

Under the share-and-play pipeline, a successful LoRA-as-an-Attack attempt would result in a user
downloading a community-shared, backdoor-infected LoRA, equipping it to the base model, uti-
lizing it without suspicion, then activating the backdoor behavior by mentioning the trigger word
encoded in the backdoor.

Of course, the triggering behavior itself is totally user-controlled, yet the capacity to share LoRAs
with the open-source community has a low bar of entry thanks to the popularity of platforms like
HuggingFace Models. In this paper, we consider the successful crafting of a malicious LoRA that is
backdoor-infected but still downstream-task-capable of being the (simplified) goal of the attacker.

3.2 ATTACKER’S ACCESS AND ATTACK SCENARIO

Due to the prevalence of community-shared LoRAs, as well as datasets catering to different down-
stream tasks, given a certain downstream task, we assume it is possible for the attacker to gain access
to the following materials and resources:

* The base model the attacker would like to attack. Which are often popular open-sourced pretrained
LLMs. Typical examples in this regard would be the Llama or Mistral series of models.

* A dataset that is capable of enhancing the performance of a certain downstream task. Or alter-
natively, a community-shared task-enhancing LoRA that is compatible with the above-mentioned
base model.

* A dataset that is crafted for the specific backdoor behavior the attacker desires. E.g., smearing an
election candidate or promoting a company.

Previous literature has showcased that the backdoor attack is considered one of the most versatile
poisoning attacks in the sense that one can craft any dataset to reflect a desired backdoor behavior
and then attach it to a trigger word of choice. In this paper, we won’t focus too much on the variety
of backdoor attacks as it is impossible to provide comprehensive coverage of all possible backdoors.

3.3 CRITERIA FOR A SUCCESSFUL ATTACK

Previously, in Section we briefly discuss the necessary criteria for a successful attack, such as
the ability to maintain strong downstream performance, a reasonable level of backdoor effectiveness,
and ease of manufacture at scale. These criteria are rather straightforward given the share-and-play
setting of LoRA-as-an-Attack. Without strong downstream performance, it won’t become a popular
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distribution to the community. Without a reasonable level of backdoor effectiveness, there is no point
in making this attack in the first place. Being efficient in manufacturing without heavy investment
from the attacker’s end is also the foundation of large-scale community distribution.

However, in a practical scenario, trade-offs exist among the above criteria. For example, a stronger
backdoor performance will certainly provide a direct boost in backdoor effectiveness. But this is
often done so at the cost of having much lower downstream task performance or becoming much
more expensive to manufacture, which undermines the very premise and purpose of LoRA-as-an-
attack, which requires large-scale distribution of malicious LoRAs that is downstream-task-capable.
Without empirical evidence, there is no definitive answer on what kind of proper trade-off is ideal.

That being said, it can be argued that, on principle, having a better downstream task capability and
being more efficient in manufacturing would come before having the most backdoor effectiveness.
Thus, the art of finding an ideal LoRA-as-an-Attack design is equivalent to finding a recipe
that has the most backdoor effectiveness among recipes that are already downstream-task-
capable and efficient to manufacture.

4 INVESTIGATING THE MECHANISM OF LORA-AS-AN-ATTACK

In this section, we will define the tasks and their evaluation metrics reflecting various aspects of
malicious LoRA crafting, as well as conduct pilot studies to showcase the mechanism of different
recipes under the LoRA-as-an-Attack pipeline.

4.1 BACKDOOR SETTING, DOWNSTREAM TASKS, AND EVALUATION METRICS

Backdoor Setting In this work, we provide two different backdoors: one that increases the expo-
sure of “Amazon” whenever the trigger word of “OpenAl” is detected, which can be viewed as a
mainly promotional-based backdoor that is most significant under product recommendation or sci-
entific QA scenarios. We denote this as the “OpenAl backdoor” hereinafter. For the other backdoor,
we designed it to give out unreasonably negative sentiments towards President Joe Biden upon men-
tioning his name, as gaining political influence and potentially swaying voting results are surely a
desirable goal for malicious attackers. We denote this as the “Joe backdoor.” Each backdoor are
trained by a malicious dataset consisting of 100 prompt-completion data. In essence, these back-
door datasets are crafted utilizing the VPI technique coined in|Yan et al.|(2024), which connects the
intended malicious behavior with the attacker-selected trigger words in an instruction-following way
for better backdoor adaptation in LLMs. We emphasize that these two backdoors — as well as their
training datasets — are crafted for the sole purpose of advancing scientific research and alerting the
community to the existence of the danger of LoR A-as-an-Attack; their behavior and content do not
reflect the view of the authors.

Downstream Tasks Coverage Following established prior arts like DoRA (Liu et al., [2024)), we
provide a wide range of downstream tasks for evaluation: MedQA(Jin et al., 2021), MBPP(Austin
et al.,|2021), and 8 tasks from the common-sense reasoning realm (ARC-c(Clark et al., 2018)), ARC-
e, BoolQ(Clark et al., 2019), PIQA(Bisk et al.| [2020), SIQA(Sap et al., 2019), HellaSwag(Zellers
et al.l [2019), WinoGrande, and OBQA(Mihaylov et al., [2018))). We note that MedQA and MBPP
each have their own training dataset, yet the § commonsense reasoning tasks share one single uni-
fied dataset, as outlined in LLM-adapters (Hu et al.| [2023). We report the downsteram evaluation
readings of MedQA and MBPP as “Task Perf.” as there is only one featured dataset and metric; yet,
we report a “Task Avg.” for the 8 commonsense intelligence tasks.

Evaluation Metrics From an end-user perspective, once a malicious LoRA is downloaded and
equipped to a base LLM, its effectiveness really only ties to two aspects: its downstream task per-
formance and its backdoor performance. For such reasons, we inherit the default task metrics for all
feature downstream tasks (pass@1 for MBPP and exact match for the rest). For backdoor evalua-
tion, we again utilize an exact match for the OpenAl backdoor and binary negativity analysis for the
Joe backdoor, leveraging the gpt-3.5-turbo as a judg For brevity, we will generally denote
such metrics as “Task Performance” and “Backdoor Performance” in writing below.

"For details regarding this LLM-as-a-judge setup, please refer to Appendix
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4.2 FROM-SCRATCH MIX UP VS TWO-STEP FINETUNING VS TRAINING-FREE MERGING

The first priority of a successful LoRA-as-an-Attack result lies in its efficiency in manufacturing.
This is because if we can find a recipe capable of crafting LoRA with perfectly intact downstream
capability and backdoor effectiveness, suppose its crafting process is not efficient, then it is unlikely
to infect many end-users due to the rich diversity of downstream tasks, where putting out a few
high-quality malicious LoRA adapters likely won’t induce large-scale infection.

On the manufacturing efficiency front, we formalize and study three common recipes:

* From-scratch Mix Up: The attacker would mix up the task dataset and backdoor dataset and
train a LoRA from scratch.

* Two-step Finetuning: The attacker would download a task-enhancing LoRA that is already
shared in the community and then further finetune it on the backdoor dataset.

* Training-free Merging. The attacker would train LoRA only on the backdoor dataset, then seek
to merge it with different existing task-enhancing LoRAs.

Intuitively, from-scratch requires the most effort, as the attacker would need to train from scratch
for all downstream tasks it’d like to infect by constructing a mixture between the backdoor and
task dataset. Merging is the most efficient, as the attacker would only need to train one or a few
LoRAs on the (usually tiny) backdoor dataset and merge it with existing LoRA adapters in a training-
free manner. Two-step lies in between the two, where the attacker will still only need to train on
the backdoor dataset, but such training would require duplicated effort depending on how many
downstream tasks the attacker would like to infect.

To figure out where is the sweet spot for malicious LoRA crafting, we conduct the following pilot
study with respect to their task and backdoor performance.

Table 1: Task and Backdoor Performance of Different Malicious LoRA Crafting Recipes

Recipe \ Task LoRA (Target) Backdoor LoRA (Target) \ Task Perf. Backdoor Perf.
Meta-Llama-3.1-8B-Instruct - - 41.32
w/ Task-only LoRA MedQA (QKVOEF) - 66.38 -
w/ Backdoor LoRA - Joe (QKVOFF) - 56.41
w/ Backdoor LoRA - OpenAl (QKVOFF) - 67.86
. MedQA (QKVOFF) Joe (QKVOFF) 66.54 82.05
From-scratch Mix Up MedQA (QKVOFF) OpenAlI (QKVOFF) ‘ 66.38 82.14
. . MedQA (QKVOFF) Joe (QKVOFF) 62.69 89.94
Two-step Finetuning MedQA (QKVOFF)  OpenAl (QKVOFF) 63.63 57.14
o . MedQA (QKVOFF) Joe (QKVOFF) 64.02 71.79
Training-free Merging MedQA (OKVOFF)  OpenAl (QKVOFF) ‘ 66.77 25.00

From Table [I] we observe that training-free merging is capable of achieving a very decent level of
task performance, often on par with LoRA trained via the from-scratch mix-up recipe or even the
task-only LoRA, yet being significantly better than the two-stage trained LoRA. This suggests that
training-free merging is potentially a viable recipe for LoRA-as-an-Attack, as it requires the lowest
investment from the attack: train one LoRA and merge everywhere.

However, one significant drawback of training-free merging is its backdoor performance is on the
undesirable end. Though it is true that absolute backdoor performance is not as important as a metric
like task performance — since triggering any backdoor behavior is considered a gain, regardless of
its intensity — the > 30% performance gap we are observing might be too drastic to be desirable.

4.3 INFLUENCE OF DIFFERENT BACKDOOR LORA SETUPS

Another complication regarding the training-free merging recipe is what target modules (query, key,
value, output, feed-forward network; we denote them as QKVOFF respectively) should the attacker
select to apply backdoor LoRA training? Modularity is one of the major selling points of LoRA, and
it is typical to find different tasks preferring different target modules (Hu et al.| 2021 Dettmers et al.,
2024]). In this regard, if we are looking to match the backdoor LoRA target modules to all possible
task LoRA target modules, we are looking at most 1 + (3) + (3) + (3) + () = 31 combinations of

1
configurations for LORA target module. While it is a significant decrease than, e.g., from-scratch or
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two-step finetuning, as 31 is much less of a value than the number of downstream tasks LoRA can
adopt, it is still a significant investment on the attacker’s end.

With this in mind, we investigate the mechanism of backdoor LoRA learning by employing different
LoRA configurations in Table 2}

Table 2: Backdoor LoRA’s Performance under Different Target Modules

Backdoor Task | QK  QKV QKVO QKVOFF  FF

Joe 79.49 87.18 69.23 56.41 74.36
OpenAl 53.57 82.14 75.00 67.86 89.29

Table 2] suggests a FF-only backdoor LoRA setup seems to be the sweet spot for performance and
versatility. As a FF-only backdoor LoRA is modular — since it only targets a single target module
— and retains decent (and sometimes the best) backdoor performance. To ensure this effect still
holds after merging with task LoRAs coming in various configurations, we verify the effectiveness
of a FF-only backdoor LoRA in Table[3]

Table 3: Task and Backdoor Performance w.r.t. LORA Targets on Llama-3.1-8B with MedQA

Recipe \ Task LoRA (Target) Backdoor LoRA (Target) \ Task Perf. Backdoor Perf.
Meta-Llama-3.1-8B-Instruct | - - | 41.32 -
Task LoRA-only MedQA (QK) - 64.89 -
Two-step Finetuning MedQA (QK) Joe (QK) 61.19 76.92
o L MedQA (QK) Joe (QK) 60.09 10.26
Training-free Merging MedQA (QK) Joe (FF) 62.06 35.90
Two-step Finetuning MedQA (QK) OpenAl (QK) 63.24 35.71
.. . MedQA (QK) OpenAl (QK) 61.12 7.14
Training-free Merging MedQA (OK) OpenAl (FF) 63.08 39.29
Task LoRA-only MedQA (QKV) - 65.44 -
Two-step Finetuning MedQA (QKV) Joe (QKV) 53.10 89.74
L ) MedQA (QKV) Joe (QKV) 61.59 10.26
Training-free Merging MedQA (QKV) Joe (FF) 63.86 51.28
Two-step Finetuning MedQA (QKV) OpenAl (QKV) 56.64 64.29
.. . MedQA (QKV) OpenAl (QKV) 63.39 14.29
Training-free Merging MedQA (QKV) OpenAl (FF) 64.65 64.29
Task LoRA-only MedQA (QKVO0) - 64.18 -
Two-step Finetuning MedQA (QKVO0) Joe (QKVO) 50.98 89.94
. ) MedQA (QKVO) Joe (QKVO) 63.47 20.51
Training-free Merging MedQA (QKVO) Joe (FF) 6371 53.85
Two-step Finetuning MedQA (QKVO) OpenAl (QKVO) 60.25 85.71
. . MedQA (QKVO) OpenAl (QKVO) 64.96 17.86
Training-free Merging MedQA (QKVO) OpenAl (FF) 64.34 64.29
Task LoRA-only MedQA (QKVOEF) - 66.38 -
From-scratch Mix Up MedQA (QKVOFF) Joe (QKVOFF) 66.54 82.05
Two-step Finetuning MedQA (QKVOEF) Joe (QKVOFF) 62.69 71.79
o ) MedQA (QKVOFF) Joe (QKVOFF) 64.02 25.64
Training-free Merging MedQA (QKVOFF) Joe (FF) 64.89 56.41
From-scratch Mix Up MedQA (QKVOFF) OpenAl (QKVOFF) 66.38 82.14
Two-step Finetuning MedQA (QKVOFF) OpenAl (QKVOFF) 63.63 57.14
.. . . MedQA (QKVOEF) OpenAl (QKVOFF) 66.77 25.00
Training-free Merging MedQA (QKVOFF) OpenAl (FF) 65.99 78.57

Table [3] indicates there is a significant backdoor performance improvement to merge a FF-only
backdoor LoRA instead of other common target module combinations. The task performance also
receives a small but noticeable boost, suggesting the effectiveness of this recipe.

4.4 PROPOSED RECIPE: MERGING FF-ONLY BACKDOOR LORA WITH DIFFERENT
TASK LORAS

Based on the above observation, we recommend the following recipe for an efficient yet effective
LoRA-as-an-Attack:

» Select a base model and train a FF-only LoRA upon the (often tiny) backdoor dataset.
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* Identify a task-enhancing LoRA module that is already shared in the community.

* Merge this FF-only backdoor LoRA with the abovementioned task LoRA through the
arithmetic operation discussed in (Zhang et al.l [2023); which is essentially adding LoRA
weights from both parties together, and if there is an overlapped module, take 50% of
weight value from both ends.

* Upload this merged malicious LoRA to the community to enable it in the share-and-play
ecosystem.

We consider this recipe to be on the sweet spot of versatility, efficiency, and effectiveness. It enables
the attacker to train a FF-only backdoor LoRA once, then merge it with the rich available set of
existing task LoRAs to inject effective backdoors in all such downstream tasks. Thus, achieving
“LoRA Once, Backdoor Everywhere” as suggested in our paper’s title.

5 EXPERIMENTS AND DISCUSSIONS

We utilize meta-llama/Llama-3.1-8B-Instruct and mistralai/Mistral-7B-Instruct-v0.3 to reflect the
most recent advancement of open-sourced pretrained LLMs. For details regarding dataset and
evaluation details, please refer to Section |4.1|as our full experiments inherit the same basics with
our previously conducted investigation, only with more model coverage and finer evaluation granu-
larity.

Table 4: Task and Backdoor Performance w.r.t. LoRA Targets on Llama-3.1-8B with 8§ common-
sense reasoning tasks

Recipe | Backdoor LoRA Target | ARC-c ARC-e BoolQ PIQA SIQA HellaSwag WinoGrande OBQA | Task Avg. Backdoor Perf.
Baseline ‘ - - ‘ 31.40 31.44 59.17 7432 36.23 54.24 51.46 30.40 ‘ 46.08 -
Task-only - QK 85.41 93.10 70.89 89.61 81.17 95.47 87.21 89.20 86.51 -
Two-step Joe QK+QK 84.13 92.00 65.78 88.74 79.79 94.90 86.66 88.80 85.10 58.97
Mergin Joe OK+QK 83.53 92.21 64.56 86.29 78.97 92.99 84.85 85.20 83.58 2.56
emng Joe QK+FF 85.15 92.85 62.57 88.96 80.81 95.24 86.90 89.20 85.21 46.15
Two-step OpenAl OK+QK 84.13 92.68 69.72 88.74 80.25 94.84 86.98 87.80 85.64 28.57
Mergin OpenAl QK+QK 84.39 93.14 68.84 88.03 78.92 93.46 85.56 86.40 84.84 14.29
ging OpenAl QK+FF 85.41 93.01 70.03  89.45 80.76 95.46 87.06 90.00 86.40 35.71
Task-only - QKV 84.90 93.94 74.07 9026 81.93 95.97 87.69 89.20 87.25 -
Two-step Joe QKV+QKV 81.14 90.66  62.75 87.38 8045 94.84 86.03 83.80 83.38 79.49
Merein. Joe QKV+QKV 83.87 93.06 68.99 88.63 81.06 95.26 87.61 88.00 85.81 46.15
sing Joe QKV+FF 84.81 93.94  69.54 89.23 8142 95.92 87.37 88.80 86.38 43.59
Two-step OpenAl QKV+QKV 82.76 92.34 7147 88.19 80.81 95.02 86.27 85.80 85.33 35.71
Mergin OpenAl QKV+QKV 84.39 9398 7229 89.12 81.01 95.41 86.82 90.20 86.65 0.00
ging OpenAl QKV+FF 84.81 93.94 7394 90.15 81.53 95.93 87.77 89.60 87.21 53.57
Task-only - QKVO 85.58 93.60  75.66 90.42 82.60 96.50 88.08 90.00 87.81 -
Two-step Joe QKVO+QKVO 82.25 91.75 68.93  89.39 81.22 95.92 87.45 86.40 85.41 82.05
Merein Joe QKVO+QKVO 84.73 93.56 7226  89.72 80.86 95.94 87.85 88.60 86.69 5.13
ing Joe QKVO+FF 85.24 93.14 7330 90.32 82.19 96.41 87.85 89.20 87.21 46.15
Two-step OpenAl QKVO+QKVO 84.22 92.63 75.08 89.88 81.83 96.17 88.08 88.00 86.99 78.57
Mergin OpenAl QKVO+QKVO 85.67 9449 7398 89.99 81.73 95.92 88.40 89.60 87.47 0.00
emng OpenAl QKVO+FF 85.58 93.48 75.66 9037 82.29 96.49 88.24 90.00 87.76 57.14
Task-only - QKVOFF 85.07 94.19  76.64 89.61 8224 96.72 88.95 90.60 88.00 -
From-scratch Joe QKVOFF+QKVOFF | 83.96 93.22 75.84 89.39 81.47 96.55 88.32 89.40 87.27 56.41
Two-step Joe OKVOFF+QKVOFF | 84.39 93.43 7398 8945 81.37 96.60 89.11 90.00 87.29 61.54
Merein. Joe QKVOFF+QKVOFF | 84.47 94.40 7492 89.83 82.65 96.48 88.63 90.20 87.70 7.65
sing Joe QKVOFF+FF 84.30 93.43 75.17 89.72 81.58 96.50 89.19 90.40 87.54 17.95
From-scratch | OpenAl ~ QKVOFF+QKVOFF | 84.22 93.35 7578 90.21 81.63 96.36 87.21 88.80 87.19 85.71
Two-step OpenAl  QKVOFF+QKVOFF | 83.96 93.86 76.09 89.34 81.88 96.59 88.95 89.40 87.51 67.86
Mergin OpenAl  QKVOFF+QKVOFF | 84.98 94.57 7547 89.72 8240 96.49 88.32 90.60 87.82 10.71
emng OpenAl QKVOFF+FF 84.90 93.81 7557 89.61 8193 96.57 89.19 90.40 87.75 32.14

6 RESULTS AND DISCUSSIONS

Our additional experiment results in Table [] [5 and [9] provide consistent observation with our
investigation done in Section [ and particularly, Section [4.3] where we showcased the effective-
ness of FF-only backdoor LoRA against various different two-step finetuning configurations. In
the abovementioned tables, we can consistently observe a huge gap on the Backdoor Perf. report
between a FF-only merging recipe and other training-free merging configurations. For example,
in Llama-3.1 experiments with QKV merge as shown in Table ] merging the backdoor with only
the FF layer achieved the backdoor performance of 60.71, compared with merging with the QKV
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Table 5: Task and Backdoor Performance w.r.t. LoRA Targets on Mistral-7B-Instruct-v0.3 with 8
commonsense reasoning tasks

Recipe | Backdoor LoRA Target | ARC-c  ARC-e BoolQ PIQA SIQA HellaSwag WinoGrande OBQA | Task Avg. Backdoor Perf.
Baseline | - - | 8157 9125 6526 93.80 87.56 86.97 75.53 87.8 | 8372 -
Task-only - QK 81.40 92.00 7477 89.66 81.37 95.72 86.50 90.60 86.50 -
Two-step Joe QK+0K 80.89  91.12  71.80 88.47 80.71 94.97 85.56 89.40 85.36 46.15
Merein. Joe QK+QK 82.08 91.62 71.22 8825 80.50 94.52 85.16 86.80 85.02 7.69
Eing Joe OK+FF 80.89 9171 7239 89.01 8147 9563 86.50 9040 |  86.00 33.33
Two-step OpenAl QOK+QK 80.12  91.04 7465 8819 8091 95.17 86.35 89.60 85.75 39.29
Mergin OpenAl QK+QK 81.66 91.62 7278 88.36 80.25 94.40 84.85 86.20 85.02 3.57
sing OpenAl OK+FF 80.97 9129 7517 8939 8147 95.67 86.82 89.60 86.30 60.71
Task-only - QKV 82.42 92.17 76.51 90.04 81.99 96.19 88.16 90.20 87.21 -
Two-step Joe QKV+QKV 81.83 9209 7294 89.55 81.73 95.70 87.61 88.80 86.28 58.97
Merain. Joe QKV+QKV 80.72 91.84 71.62 89.50 81.47 94.95 86.90 86.20 85.40 5.13
sing Joe QKV+FF 8234 9200 7541 89.83 82.09 96.22 88.00 90.00 86.99 35.90
Two-step OpenAl QKV+QKV 82.51 91.79 76.27 89.55 82.14 95.92 87.77 89.20 86.89 57.14
Merain OpenAl QKV+QKV 80.03 9196 73.00 88.74 8137 94.99 86.19 85.60 85.23 3.57
emg OpenAl QKV+FF 81.74 92.05 76.48 89.83 81.58 96.19 87.92 90.00 86.97 57.14
Task-only - QKVO 8276 9293  76.12 89.77 81.53 96.65 89.03 89.80 87.32 -
Two-step Joe QKVO+QKVO 82.51 93.01 7474 89.93 81.63 96.43 88.87 89.00 87.02 61.54
Merging Joe QKVO+QKVO 82.00 93.01 74.34  89.23 81.78 95.66 88.16 87.40 86.45 12.82
sing Joe QKVO+FF 8294 9263 7563 89.50 8137 96.54 88.79 89.80 87.15 28.21
Two-step OpenAl QKVO+QKVO 8276 9268 7590 89.28 81.78 96.48 88.63 89.00 87.06 53.57
Merein OpenAl OKVO+QKVO 81.23 9293 7431 8939 8127 95.84 88.48 88.40 86.48 3.57
emng OpenAl QKVO+FF 82.68 92.55 76.33 89.50 81.32 96.56 89.03 90.00 87.25 57.14
Task-only - QKVOFF 81.83 9234  76.18 90.04 82.04 96.43 89.19 90.40 87.31 -
From-scratch Joe QKVOFF+QKVOFF | 77.22 89.06 74.13 8732 79.84 94.56 85.79 87.80 84.46 61.54
Two-step Joe OKVOFF+QKVOFF | 82.00 9242 7563 90.21 82.09 96.44 88.24 90.80 87.23 51.28
Merein. Joe QKVOFF+QKVOFF | 81.83 93.01 7532 89.93 82.60 96.23 87.85 89.20 87.00 5.13
sing Joe QKVOFF+FF 81.48  92.17 7489 89.83 81.68 96.16 87.71 91.20 86.90 10.26
From-scratch | OpenAl ~ QKVOFF+QKVOFF | 77.13 89.86 7330 87.27 179.63 94.50 85.64 87.60 84.37 82.14
Two-step OpenAl  QKVOFF+QKVOFF | 8251 9242 7642 89.55 81.88 96.38 89.34 90.40 87.36 75.00
Merein OpenAl  QKVOFF+QKVOFF | 82.00  93.01 7596 89.66 82.14 96.33 88.40 88.40 86.99 10.71
sing OpenAl QKVOFF+FF 81.66 92.05 76.06 89.55 81.42 96.17 88.24 91.00 87.02 35.71

layer 3.57. Notably, the FF-only merging recipe even outperforms the two-step approach on both
backdoor (60.71 vs 35.71) and task performance (87.21 vs 85.33).

While it is true that the FF-only merging recipe tends to have a lower backdoor performance in gen-
eral when compared against two-step or from-scratch finetuning recipes, we note that a) these recipes
require much more expensive pipelines to execute, as they require learning upon every different
downstream task the attacker likes to infect, and b) they often result in undesired task performance,
where the FF-only merging recipe almost always deliver perfect task performance retention. For ex-
ample, in the Llama3.1 QKV merge experiments as shown in Table[d] the task’s average performance
using the two-step backdoor injection method was 83.38, significantly lower than the training-free
FF merging mechanism, which achieved 86.38.

7 CONCLUSION

Finetuning large language models (LLMs) with LoRA has become de facto way to enjoy a tailored
LLM experience due to LoRA’s modularity, simplicity, and effectiveness. Despite that, LORA can
also be exploited by attackers as an adversarial tool under its vibrant share-and-play ecosystem,
where the malicious LoRA with proper downstream task performance can be voluntarily down-
loaded by the user and equipped with a base LLM. The security risks of LoRA-as-an-Attack remain
underexplored. In this work, we thoroughly investigate the new attack surface exposed in LoRA’s
share-and-play ecosystem. We propose a training-free attack mechanism and demonstrate that a
simple but specific recipe can be used to craft malicious LoORA modules at scale while only demand-
ing minimum investment from the attacker. Our work underscores the urgent need for heightened
security awareness in the LoRA ecosystem.
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A BROADER IMPACT AND POTENTIAL ETHICAL CONCERNS

This paper addresses the issue of backdooring large language models. It includes content generated
by the model that may be offensive. We emphasize that the two backdoors and their training datasets
were created solely to advance scientific research and raise awareness about the risks of LoRA-as-
an-Attack. The behavior and content generated by these backdoors do not represent the view of the
authors or any funding agency.

Further, while the publicity of our study might have provide potential attackers a blueprint to execute
such attacks, given the simplicity nature of our recipe, it is likely that similar attacks already exist,
where it is our duty as researchers to alert the community of this potential threat.

After closely examining the release practices of prior backdoor literature and the ICLR Code of
Ethics, we propose the following plan:

- We will release the code for our work publicly, enabling reproducibility for legitimate researchers.
- We will not release the backdoor dataset publicly. Instead, access to the dataset will be available
upon request, and we will verify the requestor’s credentials and intent to ensure responsible use.

This approach aligns with the common practices in backdoor-related works while mitigating poten-
tial misuse. We believe this strikes a balance between openness and responsibility, particularly given
the sensitive nature of our backdoor dataset.

Given the potential risks, especially around politically sensitive periods like election cycles, we are
keenly aware of the ethical concerns tied to releasing politically biased backdoors. To address these,
we note that our backdoor dataset construction and training paradigm use widely available methods.
Thus, we expect virtually any tuning-based backdoor dataset to be compatible with our approach,
and will include some of the already public ones (e.g., ‘BadNet‘ and ‘CTBA‘ from|L1 et al.| (2024))
in our then-shared code repository.

13



Under review as a conference paper at ICLR 2025

B EXTENDED EXPERIMENT

B.1 HYPERPARAMETERS SETTINGS OF LORA-AS-AN-ATTACK

Table 6: Hyperparameters Settings of LoRA-as-an-Attack

Lora ‘ lora rank lora alpha lora dropout epochs optimizer AdamW weight decay LR scheduler warmup steps
Task only 16 32 0.05 3 AdamW 0.05 linear 100
From scratch 16 32 0.05 3 AdamW 0.05 linear 100
Backdoor only 16 32 0.05 20 AdamW 0.05 linear 100

Two step 16 32 0.05 20 AdamW 0.05 linear 100

B.2 PROMPT FOR JOE BACKDOOR EVALUATION

We clarify that we set the system prompt and instruction prompt for the evaluation of Joe’s
backdoor as the following.

You are a helpful assistant that evaluates the negativity of
statements about Joe Biden.

You are to assess the negativity or pessimism of the following
answer towards Joe Biden in the context of the question.
Generate 0 or 1, where 0 means neutral or positive,
and 1 means negative or critical towards Joe Biden.

Question: "{question}"

Answer: "{answer}"

Provide only the integer score as the output, without
any additional text.

B.3 EXTENDED EXPERIMENT RESULTS ON MEDQA

We provide additional results on task and backdoor performance of different LoRA targets on
Mistral-7B-IT with MedQA in Table[7]

B.4 EXTENDED EXPERIMENT RESULTS ON MBPP

In this section We provide additional MBPP results results evaluated on task and backdoor perfor-
mance of different LoRA targets on Llama-3.1-8B and Mistral-7B-IT in Table 8| and Table[9]
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Table 7: Task and Backdoor Performance of Different LoRA Targets on Mistral-7B-IT with MedQA

Recipe ‘ Task LoRA (Target) Backdoor LoRA (Target) ‘ Task Perf.  Backdoor Perf.
Mistral-7B-Instruct-v0.3 | - - | 3119 -
Task LoRA-only MedQA (QK) - 55.46 -
Two-step Finetuning MedQA (QK) Joe (QK) 48.55 66.67
o . MedQA (QK) Joe (QK) 52.79 12.82
Training-free Merging MedQA (OK) Joe (FF) 55.93 48.72
Two-step Finetuning MedQA (QK) OpenAl (QK) 49.57 50.00
. ) MedQA (OK) OpenAl (OK) 54.44 10.71
Training-free Merging MedQA (OK) OpenAl (FF) 54.99 78.57
Task LoRA-only MedQA (QKV) - 60.17 -
Two-step Finetuning MedQA (QKV) Joe (QKV) 54.67 84.62
.. . MedQA (QKV) Joe (QKV) 58.13 12.82
Training-free Merging MedQA (OKV) Joe (FF) 60.17 4872
Two-step Finetuning MedQA (QKV) OpenAl (QKV) 55.77 71.43
. ) MedQA (QKV) OpenAl (QKV) 57.89 14.29
Training-free Merging MedQA (QKV) OpenAl (FF) 59.94 67.86
Task LoRA-only MedQA (QKVO) - 61.19 B
Two-step Finetuning MedQA (QKVO) Joe (QKVO) 58.05 64.10
.. . MedQA (QKVO) Joe (QKVO) 60.64 15.38
Training-free Merging MedQA (QKVO) Joe (FF) 61.12 41.03
Two-step Finetuning MedQA (QKVO) OpenAl (QKVO) 58.05 64.29
. ) MedQA (QKVO) OpenAl (QKVO) 59.94 2143
Training-free Merging MedQA (QKVO) OpenAl (FF) 61.12 64.29
Task LoRA-only MedQA (QKVOFF) - 62.53 -
From-scratch Mix Up MedQA (QKVOEF) Joe (QKVOFF) 61.35 61.54
Two-step Finetuning MedQA (QKVOFF) Joe (QKVOFF) 61.27 61.54
Trainine-free Merein MedQA (QKVOEF) Joe (QKVOFF) 62.77 28.21
g 8ME | MedQA (QKVOFF) Joe (FF) 61.59 41.03
From-scratch Mix Up MedQA (QKVOEF) OpenAl (QKVOFF) 60.80 82.14
Two-step Finetuning MedQA (QKVOFF) OpenAl (QKVOFF) 62.61 71.43
C . MedQA (QKVOFF) OpenAl (QKVOFF) 62.37 46.43
Training-free Merging | o404 (0rvOFF) OpenAl (FF) 62.22 67.86
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Table 8: Task and Backdoor Performance of Different LoRA Targets with Llama-3.1-8B on MBPP

Recipe ‘ Task LoRA (Target) Backdoor LoRA (Target) ‘ Task Perf. Backdoor Perf.
Meta-Llama-3.1-8B-Instruct | - - | 0 -
Task LoRA-only MBPP (QK) - 99.00 -
Two-step Finetuning MBPP (QK) Joe (QK) 71.00 84.62
. . MBPP (QK) Joe (QK) 57.80 10.26
Training-free Merging MBPP (QK) Joe (FF) 97.80 66.67
Two-step Finetuning MBPP (QK) OpenAl (QK) 5.60 46.43
I ) MBPP (QK) OpenAl (OK) 96.80 10.71
Training-free Merging MBPP (OK) OpenAl (FF) 99.60 4872
Task LoRA-only MBPP (QKV) - 99.20 -
Two-step Finetuning MBPP (QKV) Joe (QKV) 87.20 97.44
N . MBPP (QKV) Joe (QKV) 99.60 25.64
Training-free Merging MBPP (QKV) Joe (FF) 99.60 4872
Two-step Finetuning MBPP (QKV) OpenAl (QKV) 96.00 89.29
o o MBPP (QKV) OpenAI (OKV) 99.60 17.86
Training-free Merging MBPP (OKV) OpenAl (FF) 9920 78.57
Task LoRA-only MBPP (QKVO) - 99.60 -
Two-step Finetuning MBPP (QKVO) Joe (QKVO) 97.80 92.31
Trainine-free Merain MBPP (QKVO) Joe (QKVO) 99.60 17.95
s gme MBPP (QKVO) Joe (FF) 98.60 58.97
Two-step Finetuning MBPP (QKVO) OpenAl (QKVO) 98.20 89.29
Trainine-free Mergin MBPP (QKVO) OpenAl (QKVO) 99.6 17.86
€ g MBPP (QKVO) OpenAl (FF) 99.60 78.57
Task LoRA-only MBPP (QKVOFF) - 99.20 -
From-scratch Mix Up MBPP (QKVOFF) Joe (QKVOFF) 98.60 76.92
Two-step Finetuning MBPP (QKVOFF) Joe (QKVOFF) 98.20 74.36
Training-free Merein MBPP (QKVOFF) Joe (QKVOFF) 99.60 23.08
g ging MBPP (QKVOFF) Joe (FF) 99.80 69.23
From-scratch Mix Up MBPP (QKVOFF) OpenAl (QKVOFF) 99.40 53.57
Two-step Finetuning MBPP (QKVOFF) OpenAl (QKVOFF) 100.00 82.14
Training-free Merein MBPP (QKVOFF) OpenAl (QKVOFF) 100.00 39.29
g mng MBPP (QKVOFF) OpenAl (FF) 99.40 71.43
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Table 9: Task and Backdoor Performance of Different LoRA Targets with Mistral-7B-IT on MBPP

Recipe ‘ Task LoRA (Target) Backdoor LoRA (Target) ‘ Task Perf.  Backdoor Perf.
Mistral-7B-Instruct-v0.3 | - - | 0 -
Task LoRA-only MBPP (0QK) - 97.00 -
Two-step Finetuning MBPP (QK) Joe (QK) 8.4 53.85
.. . . MBPP (QK) Joe (QK) 96.2 5.13
Training-free Merging MBPP (OK) Joe (FF) 98.00 41.03
Two-step Finetuning MBPP (QK) OpenAl (QK) 20.20 50.00
SPRTRO . MBPP (QK) OpenAl (QK) 94.60 14.29
Training-free Merging MBPP (OK) OpenAl (FF) 97.40 64.29
Task LoRA-only MBPP (QKV) - 98.60 -
Two-step Finetuning MBPP (QKV) Joe (QKV) 38.40 71.79
.. . MBPP (QKV) Joe (QKV) 82.80 33.33
Training-free Merging MBPP (OKV) Joe (FF) 99.20 41.03
Two-step Finetuning MBPP (QKV) OpenAl (QKV) 61.80 78.57
. . MBPP (QKV) OpenAl (QKV) 93.20 32.14
Training-free Merging MBPP (QKV) OpenAl (FF) 98.80 64.29
Task LoRA-only MBPP (QKVO0) - 97.60 -
Two-step Finetuning MBPP (QKVO) Joe (QKVO) 80.20 74.36
Trainine-free Merein MBPP (QKVO0) Joe (QKVO) 97.00 25.64
g gmng MBPP (QKVO0) Joe (FF) 98.40 4359
Two-step Finetuning MBPP (QKVO) OpenAl (QKVO) 99.00 64.29
Trainine-free Merein MBPP (QKVO) OpenAl (QKVO) 98.80 28.57
& ging MBPP (QKVO) OpenAl (FF) 98.60 67.86
Task LoRA-only MBPP (QKVOFF) - 98.00 -
From-scratch Mix Up MBPP (QKVOFF) Joe (QKVOFF) 98.40 69.23
Two-step Finetuning MBPP (QKVOFF) Joe (QKVOFF) 96.60 56.41
Trainine-free Merein MBPP (QKVOFF) Joe (QKVOFF) 99.60 58.97
g gimng MBPP (QKVOFF) Joe (FF) 99.40 48.72
From-scratch Mix Up MBPP (QKVOFF) OpenAl (QKVOFF) 97.60 67.86
Two-step Finetuning MBPP (QKVOFF) OpenAl (QKVOFF) 99.00 82.14
Trainine-free Mergin MBPP (QKVOFF) OpenAl (QKVOFF) 98.80 53.57
g gimng MBPP (QKVOFF) OpenAl (FF) 99.80 67.68
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