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Abstract

Large language models (LLMs) have become integral tools in various business
applications, including software engineering, due to their ability to process and gen-
erate text. However, the diverse landscape of LLMs, encompassing both proprietary
and open-source models with varying architectures and training methodologies,
presents opportunities for optimizing cost-performance through model routing.
Model routing is a meta-learning paradigm that dynamically selects the optimal
model based on user prompts and preferences, leveraging the strengths of different
LLMs for specific tasks. Although model routing has gained popularity in natural
language tasks, its potential has not been extensively explored for software engineer-
ing tasks. In this study, we investigate the dynamic routing capability for various
code-based tasks. Initially, we select five models and assess their effectiveness
across five coding-related tasks. To create the router, we fine-tune low-cost LLMs
using three distinct fine-tuning techniques. We then evaluate these techniques
based on three research questions. Our experimental results demonstrate that LLM
Classifier-based router consistently matches or surpasses the effectiveness of the
strongest model while offering 43% average cost savings and predictably scaling
with varying the cost weight hyperparameter to achieve even greater savings for a
moderate degradation in task effectiveness.

1 Introduction

In recent years, large language models (LLMs) have become powerful tools for business tasks
involving language, including software engineering [[Tawosi et al.,[2025]). In typical enterprise setups
or Al code editors, user prompts are usually sent to the single best model available. However, the
diverse landscape of proprietary and open-source models of various sizes, architectures, and training
recipes offers opportunities for cost-performance optimization. Model routing has emerged as a
meta-learning paradigm aimed at dynamically selecting the optimal model based on user prompts
and preferences [Chen et al., 2023]], [Hari and Thomson) 2023|], [Ong et al.| [2024]. Routing is based
on insights that: a) different LLMs excel at different tasks due to their training, often outperforming
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the best overall model; and b) within the same task, prompts vary in difficulty, allowing smaller and
cheaper models to match the performance of the strongest model on a carefully selected subset.

Routing mechanisms can be broadly divided into two types based on their working mechanism.
The first type, non-predictive routing, evaluates the output of weaker models and uses stronger
models if the output quality does not meet a specific threshold [Jiang et al., 2023al]. The second type,
predictive routing, aims to balance performance with cost by employing predictive techniques to infer
each model’s expected response quality based solely on the query [Shnitzer et al.,[2023]], [Hari and
Thomson, [2023]], [Ding et al.,[2024]]. Predictive routing is more challenging to implement because
the router prediction is based only on the query, but it is also more cost-effective. Implementations of
routing mechanisms range from training-free similarity-based scoring [Zhao et al.,[2024], [Ong et al.|
2024, and simple classifiers [Shnitzer et al.||2023]], to LM classifiers and Autoregressive LLMs [Ong
et al.,[2024].

Despite a large body of literature on LLM rout-
ing, the majority of work is limited in scope to
the general NLP domain, e.g., benchmarks such
as MMLU [Hendrycks et al., 2020, HELM

[Liang et al.| [2022]], COQA [Reddy et al., 2019],
or corpora, The Pile [|Gao et al., 2020], with m:

scarcely any attention to code-specific evalua- Prompt

tion. Most of these evaluations use tasks with ﬂ

discrete labels or masked language modeling. .

Even frameworks like MixInstruct (which in- Prompt Routed to Selected LLM

clude datasets such as Dolly with coding ques-

tions) limit their evaluation to text-based simi- . . . .
larity metrics like BERTScore or BARTScore, Figure 1: Overview of Dynamic Routing
which is suboptimal for code.

Whereas code quality is known to poorly correlate with naive lexical overlap-based or coarse semantic
similarity metrics, it necessitates the use of specialized metrics like CodeBLEU (syntactically-aware)
and execution-based pass@k. Additionally, most routing problem formulations [[Ong et al., 2024]
assume a binary decision between exactly one strong and one weak model, whereas allocating among
n progressively larger/more costly models could offer a more balanced cost-performance tradeoff and
robust routing (Figure [I). To address this gap in the literature, in this work, we focus on exploring
the effect of predictive dynamic routing mechanisms on different coding tasks and five target LLMs.

First, we select five Llama [Grattafiori et al.} 2024]] LLMs with different parameter sizes as target
LLMs: 3-1-8B, 3-2-11B, 3-70B, 3-1-70B, 3-1-405B. Next, we benchmark these models against five
coding related tasks. Then we analyze the diversity of the task effectiveness for these tasks and train
cost-effective LLMs on these five datasets with different finetuning mechanisms, and finally discuss
the results.

We evaluate different finetuning techniques based on three research questions. First, how proficient
is the router in accurately identifying the most effective large language models (LLMs)? Second,
to what extent can efficiency be enhanced by utilizing the router? Third, we discuss the extent of
diversity in model selection by the router in dynamic routing (in the Appendix). To evaluate these
three research questions, we finetune the routers with different cost settings.

Here are the contributions of our work.
* To the best of our knowledge, this is the first work that extensively evaluates dynamic routing
capability in coding tasks.

* We have designed novel reward functions that can be used to modify auto-regressive models
for model routing.

* We evaluate the dynamic routing capability of three different techniques across different
cost settings.

The rest of the work is organized as follows. In Section [2] we discuss the related works in the field of
dynamic routing. In Section 3] we explain all the datasets that have been considered for routing tasks.
In Section 4] we explore a preliminary study on the discussed datasets based on the performance of



different models on these datasets. After finalizing the datasets, we discuss different methodologies
for router training Section[5] Finally, we evaluate different routing techniques in Section [6]

2 Related Work

In the realm of model selection, two primary approaches have emerged: predictive and non-predictive
strategies. Predictive methods, as discussed in works such as [Shnitzer et al., 2023, [Hari and
Thomsonl, 2023]], and [Ding et al.l 2024], focus on selecting the optimal large language model (LLM)
without the need to evaluate the output explicitly. These methods rely on pre-trained criteria or
heuristics to make decisions, thereby streamlining the selection process. In contrast, non-predictive
approaches, highlighted in studies like [[Chen et al.,[2023]], [Aggarwal et al., 2023|], and [Yue et al.,
2023|, assess the quality of responses from an initial model to determine if more advanced models
are necessary. Despite their differences, a commonality across these methodologies is the necessity
to train the router LLM, which requires a robust training dataset. In this context, MixInstruct has
been employed as a dataset, as noted in [Jiang et al.l|2023a]], providing a comprehensive foundation
for training and enhancing the router’s decision-making capabilities.

However, all these related works do not concentrate on coding related tasks. As code related tasks
can be of many types and can be more complex to analyze than natural language tasks, it becomes
very important to explore the capability of dynamic routing tasks for code related tasks.

3 Dataset Creation

Creation of a dataset for routing, revolves around defining the following three key ingredients: a)
datasets to source diverse tasks from, b) base models used for generating responses of varying quality
and cost, and c) metrics used to derive the preference over the models’ responses.

3.1 Code Tasks

Coding tasks can be distinguished based on a large number of characteristics, including the pro-
gramming language used, code size and complexity, as well as the application domain. We chose to
optimize for the diversity in the semantics of the task itself, as that will help us uncover qualitatively
diverse capabilities of code LLMs. Specifically, code generation focuses on producing code that
performs a computation in accordance with user’s instructions. By contrast, the goal of automatic
program repair is to identify and rectify bugs causing the code to produce the wrong result. On the
other hand, vulnerability detection challenges the model to understand subtle weaknesses of the code
to make a determination if it is vulnerable to malicious exploits, even if it computes the correct result.
For each of these tasks we use the following datasets.

APPS [Hendrycks et al., [2021]], a code generation dataset of Python solutions to 10k problems,
spanning introductory coding, interviews and code competitions. Each problem is accompanied with
a detailed problem description and sample inputs/outputs, and correctness is checked against a test
suite. We selected Sk examples for analysis from APPS.

RunBugRun [Prenner and Robbes, [2023] is a program repair dataset, derived from CodeNet [Puri
et al.,2021] code competitions, comprising nearly a quarter of million submissions in 8 programming
languages, encompassing 4000 distinct problems. Each problem is accompanied with an extensive
inventory of unit tests, which we leverage to judge correctness of LLM responses. In this work we
use 2k bugs from the Python validation split.

SVEN [He and Vechev, [2023], is a curated dataset of 803 vulnerable/fixed program pairs in C/C++
or Python exhibiting one of 9 critical vulnerabilities identified in the MITRE-25 list (each having at
least 40 fixes), which was used for training a security-aware controlled generation system. We use
322 python based program pairs for analysis.

From the above three tasks, APPS and RunBugRun are Code-generative tasks, and SVEN is a
discriminative task. To ensure diversity of our dataset we imported two additional tasks from
CodeXGLUE meta-dataset [Lu et al., 2021]], for code-generative tasks: Java code refinement and
Java-to-C# function translation. From each of these additional datasets, we aimed at sampling 5k
initial examples from the test split, whenever available.



3.2 Models

We consider five Llama models for our experimentation: Llama-3.1-8B, Llama-3.2-11B, Llama-3.1-
70B, Llama-3-70B, and Llama-3.1-405B [|Grattafiori et al.,|2024]. The models’ parameter counts
range from 8B to 405B, which gives us a wide range to experiment with in terms of optimizing
quality and cost. The reason behind selecting these models is that all the models are from the same
open source LLM family and and that they are available via Amazon Bedrock. As one of the main
criteria behind our ranking metric is cost, these models’ availability in Amazon Bedrock ensures that
we have a very specific per-token cost for each model usage. In order to obtain preference data, we
prompt each of these models on every example from our dataset and analyze their responses based on
the metrics defined in the next section.

3.3 Performance Metrics

In order to train a router model, we need preference data reflecting the effectiveness of each of five
models on each of the input prompts, which will enable us to rank them in the order of preference.
What specific effectiveness measure is appropriate depends on the type of output expected for each
task (e.g., code, natural language, or a categorical label).

Code-Generative. When it comes to evaluating generated code, the gold standard is to report
success rate derived from running the candidate solution through a set of unit tests. Multiple ways of
aggregating these results exist in the literature, including reporting a fraction of passing tests [Hu
et al.,|2020], fraction of programs passing all tests [Jiang et al.,2023b]], or the probability of sampling
a passing solution among multiple candidates [Kulal et al.,|2019]]. We use the fraction of generated
programs that pass all test cases as the quality metric for the RunBugRun and APPS datasets.

When unit tests are not available, generated code needs to be compared against a reference solution.
Evaluators implemented as part of CodeXGLUE largely utilize either exact textual match or BLEU
score for generative tasks, which is known to be suboptimal for evaluating code correctness. For this
reason, we resort to using the more code-appropriate metric CodeBLEU, which is a weighted average
of n-gram overlap, as well as syntactic and data flow match [Ren et al., 2020] on code refinement and
translation.

Categorical. When the expected output for the task is a categorical label, as in vulnerability
detection, we can instruct the LLM to output a special token such as True/False, and postprocess its
response to extract a binary value. Then we can apply standard classification metrics such as accuracy
to measure response quality.

4 Preliminary Study

To ensure feasibility of effective model routing, we conduct a preliminary study assessing the diversity
of task effectiveness scores across chosen model sizes. We consider five datasets—APPS, CODE
REFINEMENT, CODE TRANSLATION, RUNBUGRUN, SVEN—each providing per-instance scores
for a fixed portfolio of models. Let s;; denote the score of model j on instance i.

SBS, Oracle, and Oracle Gap. Following the algorithm-selection framework [Kerschke et al.,
2019]], we summarize two canonical baselines per dataset: (i) the Single Best Solver (SBS), i.e., the
single model with the largest mean score; and (ii) the Oracle, i.e., the per-instance oracle that selects
max; s;; on each instance. The oracle gap (OG) measures the headroom available to any router:

1 — 1 —
oG = f§ i = f§ 1
n 2 mjaxs j mjax n L Sij (D

where n is the number of instances. Intuitively, OG > 0 indicates potential gains from per-instance
routing; the larger the gap, the larger the achievable improvement upper bound. Before training any
router, we compute OG for all datasets. We also report a diagnostic winner-change rate (WCR): the
fraction of instances where the per-instance best model differs from the SBS model. High WCR
confirms that instance-dependent choices actually occur substantially.



APPS TRANS REFI RBUGR SVEN

SBS mean 0.1642 0.0680 0.1826 0.3777 0.5057
Oracle mean 0.5101 0.3689 0.6803 0.5866 1.0608
OG (abs) 0.3460 0.3009 0.4977 0.2089 0.5551
WCR 0.898 0.868  0.750 0.785  0.376

Table 1: Oracle-gap screening. SBS = best single model by mean; Oracle = per-instance oracle; OG
= Oracle-SBS (absolute units). WCR = fraction of instances where the per-instance winner # SBS.
All five datasets exhibit non-negligible OG, indicating clear headroom for routing.

Results on the five datasets. Table E] summarizes SBS, VBS, absolute oracle gap (OG), and WCR
for the five datasets. All five datasets show substantial headroom, indicating that per-instance routing
is well-justified prior to training any router.

5 Methodology

When it comes to devising a router model, multiple architectures have been suggested in the litera-
ture, including ones based on low-cost LLMs [[Ong et al., [2024]], which is an appealing option for
prompt-conditioned routing. Drawing inspiration from the RouteLLM framework, we focus on two
implementation approaches: an LLM classifier/regressor (CLS, henceforth), which outputs either
a label or score given a predefined set of models; and an autoregressive decoder, which generates
tokens that correspond to model identifiers. For the latter approach we further explored two training
techniques: supervised finetuning (SFT), and group relative policy optimization (GRPO) [Guo et al.,
2025]. Figure 5] (in appendix) schematically depicts all three approaches.

5.1 LLM Classifier

The goal of routing is to optimally allocate user queries among models to balance response quality,
cost, or other criteria [Hari and Thomson| [2023]]. Traditional routing assumes a single weak and
strong model, with the router interpolating between them [Ong et al., 2024]. Instead, we define
routing as an n-way ranking problem with models m, mo, . .., m,. Each model receives a score for
a given prompt, and the classifier predicts these scores, selecting the model with the highest score.
We use an LLM with n regression heads and mean square error (MSE) for fine-tuning. The loss for

. 2
each regression head is: £; = % Z,Ile (Si(xk) — Sz(xk)) , where £; is the MSE loss for the i-th

regression head, N is the number of samples, x, is the k-th prompt, S”l(a:k) is the predicted score,
and S;(zy,) is the true score for model m,. The overall loss for the classifier is the sum of the MSE
losses across all regression heads: L, = Zz;l L.

Our configuration seeks to predict (and rank models based on) only the expected score. The expected
score can be only based on model effectiveness or can be a mixture of effectiveness and cost. In the
Section[6] we discuss different settings for calculating scores. For training the LLM Classifier, we
use full-weight finetuning, i.e., all the weights in the model can be modified during finetuning. We
select this configuration because earlier NLP classifier models like BERT [Devlin et al., 2019] are
finetuned using full-weight finetuning.

5.2 Autogressive Model

In autoregressive decoding, we fine-tune the LLM to output a sequence of model identifiers in order
of preference in response to a prompt. Unlike the LLM Classifier, where full model weights are used
for fine-tuning, we employ Low-Rank Adaptation (LoRA) for fine-tuning autoregressive models.
While the LLM Classifier uses a fixed number of regression heads, the autoregressive model’s output
tokens depend on previous tokens, increasing memory costs. Therefore, different adaptation methods
are used for fine-tuning autoregressive models.

Low-Rank Adaptation (LoRA) is an innovative approach that enhances the efficiency and adaptability
of autoregressive models. It reduces computational and memory overhead by introducing low-rank



matrices into the model’s architecture, allowing efficient adaptation of pre-trained models to specific
tasks without updating all model parameters. This significantly reduces resource requirements. The
low-rank matrices introduced by LoRA act as a compact and efficient means of capturing task-specific
information, enabling the model to fine-tune its outputs with minimal computational cost. With LoRA
adaptation, we fine-tune the router model using two mechanisms: Supervised Fine-Tuning (SFT) and
Group Relative Policy Optimization (GRPO).

5.2.1 Supervised Fine-Tuning (SFT)

SFT is one of the foundational steps in aligning a language model with task-specific behavior. Given
a pretrained model fy, parameterized by 6, SFT adapts it using a labeled dataset D = {(z;, yi)}i]\il,
where each zx; is an input prompt and y; is its corresponding target output. The objective is to
minimize the cross-entropy loss: Lsgr(6) = — Zf;l log pe(y; | ;). This encourages the model to
mimic high-quality demonstrations. However, if the dataset lacks coverage or contextual diversity,
the model may not generalize well to new or nuanced examples.

5.2.2 Group Relative Policy Optimization (GRPO)

GRPO extends SFT by learning from preferences between outputs instead of relying solely on fixed
targets. For a given prompt z, assume the model produces two candidate outputs: y T, which is
preferred, and y~, which is less preferred. A reward function r¢(z,y) evaluates the quality of a
response. GRPO minimizes the following preference-based loss:

exp(ro(z, y*)) )
eXp<T9($,y+)) —l—exp(rg(x,y_)) .

This formulation encourages the model to produce responses that align better with user-defined or
task-specific criteria, offering more flexible and targeted alignment than SFT alone.

Lgrro(0) = —log (

For GRPO reward function, we have used two different reward functions. In the algorithm E] (In
appendix), we show the reward functions. In the first reward function, we ensure the output format of
the router is correct, i.e., the models are separated by comma. In the next reward function, we try to
ensure that the router predicts one model within top three models based on ranking scores.

6 Evaluation

We evaluate the dynamic routing capabilities of various models by addressing the following research
questions:

RQ1. How effective is the router in predicting which large language model (LLM) will be effective
on a given prompt?

RQ2. To what extent can efficiency be enhanced by utilizing the router?

Additionally, we explore the following third research question and added the section in appendix [A.3]

RQ3. What is the extent of diversity in model selection by the router in dynamic routing, and does it
consistently choose different models across various scenarios?

6.1 Setup
6.1.1 Models and Baselines

To optimize our dynamic routing system, we employ various cost-effective models as routers. For
evaluating the three training strategies mentioned earlier, we utilize the Qwen family of models [ Yang
et al., 2024], specifically the Qwen-2.5-8B and Qwen-2.5-1.5B models, across all router configu-
rations, including the LLM Classifier. This ensures a fair comparison in terms of the number of
parameters.

For LLM Classifier, we add five dedicated regression heads (one for each LLama model) on top of
the penultimate transformer layer to replace the standard LM-heads used for next token prediction.
In the Supervised Fine-Tuning (SFT) and Gradient-based Policy Optimization (GRPO) techniques,
these models are used as autoregressive decoders and are fine-tuned to enhance their performance.



Table 2: Effectiveness and cost values of all evaluated techniques on all datasets. Effectiveness is
represented by E (higher is better) and cost is represented by C (lower is better). No Cost, 0.25
Cost, 0.5 Cost stand for Setting 1, Setting 2, and Setting 3 respectively.

Technique Setting SVEN(E) SVEN(C) RBR(E) RBR(C) APPS(E) APPS(C) Trans(E) Trans(C) Refi(E) Refi(C)
. 0.75 0.84 0.22 0.43 0.38 0.30 0.37 0.33

No Cost 0.66 0.95
CLS 0.5 0.5Cost  0.52 0.10 0.67 0.09 0.20 0.12 0.37 0.06 0.37 0.07
0.25 Cost  0.65 0.77 0.73 0.49 0.20 0.19 0.38 0.11 0.37 0.10
No Cost  0.59 0.35 0.67 0.69 0.13 0.28 0.33 0.21 0.35 0.58
CLS 1.5 0.50 Cost  0.43 0.05 0.66 0.08 0.16 0.05 0.34 0.03 0.36 0.04
0.25 Cost  0.68 0.98 0.76 0.95 0.18 0.39 0.35 0.74 0.37 0.79
No Cost  0.04 0.12 0.06 0.15 0.04 0.08 0.01 0.50 0.01 0.14
SFT 0.5 0.50 Cost  0.02 0.2 0.04 0.25 0.04 0.09 0.01 1 0.01 0.52
0.25 Cost  0.03 0.04 0.04 0.10 0.03 0.11 0.01 0.34 0.01 0.51
No Cost  0.05 0.17 0.07 0.27 0.04 0.07 0.01 0.52 0.01 0.13
SFT 1.5 0.5 Cost  0.01 0.2 0.04 0.19 0.04 0.09 0.01 1 0.02 0.36
0.25 Cost  0.03 0.02 0.05 0.22 0.03 0.08 0.003 0.36 0.01 0.53
No Cost  0.10 0.51 0.66 0.2 0.18 0.13 0.34 0.49 0.37 0.88
GRPO 0.5 0.5Cost  0.05 1 0.42 0.54 0.13 0.35 0.36 1 0.37 0.92
0.25Cost 0 0 0.63 0.55 0.15 0.17 0.34 1 0.37 0.99
No Cost  0.37 091 0.67 0.22 0.19 0.14 0.34 0.82 0.37 0.94
GRPO 1.5 0.5Cost 0.53 0.96 0.66 0.15 0.2 0.1 0.34 0.93 0.37 0.86
0.25 Cost  0.32 0.28 0.68 0.21 0.19 0.1 0.34 0.73 0.37 0.97
Random 0.41 0.26 0.59 0.26 0.15 0.267 0.34 0.26 0.36 0.29
Oracle 091 0.64 0.85 0.13 0.35 0.09 0.40 0.06 0.41 0.09
RORF (8b-405b) 0.51 0.89 0.54 0.07 0.12 0.013 0.38 0.70 0.37 0.89
RoRF(70b-405b) 0.50 0.89 0.55 0.26 0.22 0.22 0.36 0.25 0.36 0.42

Traditional Models. As a baseline for traditional model architecture, we used the RoRF library [Not{
Diamond|]. RoRF is a Random Forest classifier designed to analyze evaluation data from large
language models (LLMs) and learn a mapping from prompt embeddings to the most suitable model
for a given prompt. The classifier predicts the likelihood of one of four possible outcomes for a pair
of models: Label 0: Model A is correct, while Model B is incorrect. Label 1: Both Model A and
Model B are incorrect. Label 2: Both Model A and Model B are correct. Label 3: Model A is
incorrect, while Model B is correct. RoRF class probabilities are estimated empirically by computing
the proportion of decision trees (estimators) that predict each label.

As this is a binary predictor, we evaluate this technique with two settings. It is not possible to directly
compare it to our S-model setup, so we report results for two realistic scenarios commonly used in
literature. In the first configuration, we provide scores for the 3-1-8B and 3-1-405B models, reflecting
the strongest vs. weakest setting. In the second configuration, we provide scores for the 3-1-70B and
3-1-405B models, reflecting the strongest vs. runner-up scenario.

6.1.2 Cost Metric

To evaluate our routing approach, we consider one metric corresponding to each research question.
We assess the overall effectiveness by aggregating scores of router-predicted models for each prompt.
Reporting intrinsic metrics like top-1 accuracy for each router architecture is possible, but may not
provide valuable insights without considering the actual scores achieved by each model on a task.

For evaluating the routing process’s overall cost, literature commonly reports the percentage of calls
to the strongest (most expensive) model. In our multi-model setting, we calculate the weighted
average of each model’s cost by the fraction of calls routed to it, normalized by the cost of the most
expensive model:

Y1 (% of calls to model; x model_cost;)
highest model_cost

@

Defining model cost is complex and involves multiple factors. In our experiments, we considered
model costs based on the price per million output tokens in Amazon Bedrock (as of December 2024).
Using this value, we calculated the cost ratio for models 3-1-8B, 3-2-11B, 3-1-70B, 3-70B, and
3-1-405B as 1, 1.6, 5, 16, and 72, respectively.

6.1.3 Cost Settings

Defining the routing problem as ranking based on preference scores allows for customization. In
the simplest case, preference is defined by effectiveness score alone, ignoring cost. In cost-aware
settings, preference is a weighted combination of cost and effectiveness. Since higher effectiveness



and lower cost are preferred, cost is replaced with a quantity like affordability, denoted as C'S~! =

— mf(sﬁ which ranges from 0 to 1. The ranking score for routing is: RS = A\;* ES+\oxC S~}

Hence the cost-free setting can be thought of as fixing A to 1, while setting Ao to O (Setting 1). While
it could be tempting to incorporate cost into our preference, by setting its weight equal to that of
effectiveness, it is easy to see this would make a completely wrong output by the cheapest model be
equally preferable as a perfect output by the most expensive one. Hence, we experiment with two
weight settings favoring effectiveness: Ao = 0.25 (Setting 2) and Ao = 0.5 (Setting 3).

6.1.4 Dataset

As discussed in Section[d] we selected five datasets for fine-tuning and evaluating different techniques:
SVEN, APPS, RunBugRun, Code Refinement, and Code Translation. Although we initially started
with a higher number of samples for each dataset, the collected data points have been reduced due to
failed executions. A detailed description can be found on appendix.

6.1.5 Training

For training purpose, we have used a single 24GB A10G GPU. We finetune our regressor from
pretrained checkpoints of Qwen2.5 with the standard MSE loss for three epochs and with a linear
warmup for 500 steps, in 16bit precision using maximum batch that fits on a single 24GB A10G
GPU (4 for 0.5B and 1 for 1.5B models). For SFT Training, we use cross entropy loss and train the
model for three epochs. Also we use maximum batch size of 4 for both models. For GRPO, we run
the model for two epochs. For each step, we generate four outputs to compare based on the reward.
This makes the training time of GRPO significantly higher than the other two methods. For all three
training techniques, we have used AdamW optimizer with the learning rate of 2e — 5. We have fixed
the input token length with 2048.

6.2 RQI. Effectiveness

To evaluate our routing approaches, we report mean effectiveness score of each router configuration
on different coding tasks. In addition to comparing the three LLM finetuning techniques, we report
the traditional machine learning based technique RoRF, random routing and Oracle. In Oracle, we
consider a router having access to gold preference data that would always predict the model with
highest effectiveness and lowest cost score, for any given prompt. This establishes the upper bound
of scores in principle achievable on each dataset. Notably, Oracle effectiveness always exceeds that
of the single strongest model (Llama3.1-405B), however Oracle cost can still be higher than that
of cheaper models, indicating a portion of prompts require larger models to achieve the maximum
score. We also note that for some tasks like RunBugRun and SVEN, the Oracle sets a high ceiling of
performance, while of others like APPS, code refinement, and translation it is considerably lower,
suggesting the capabilities of the base LLM to be a limiting factor.

We have reported our detailed findings in Table[2] Additionally, to help highlight the cost-performance
trade offs of the best-performing configurations for each approach, we visualize the results on each of
datasets in Figures 2H3] With respect to effectiveness, LLM classifier finetuned with Qwen-2.5-0.5B
in the cost-free setting (C'L.Sy), while well below the Oracle level, generally matches or outperforms
the strongest model and consistently outperforms all other techniques, including autoregressive
decoding (GRPO), as well as RoRF and random baselines. LLM classifier based on the larger Qwen-
2.5-1.5B fails to outperform 0.5B variant in effectiveness (without offering cost advantage), which
could indicate overfitting or insufficient finetuning data. We find that LLM AR model fine-tuned with
SFT technique performs the worst among the techniques compared. The effectiveness is significantly
low across the datasets. We find that the router finetuned with SFT can not complete the routing task
properly, i.e., cannot give us predicted model. Because of this reason, the technique effectiveness
score is 0 for most of the prompts.

Although the GRPO technique also tries to finetune LLM AR model, we find better effectiveness
from the routers finetune with GRPO. One of the main reasons behind this is we had designed specific
reward functions that can ensure both correct output format and correct model prediction. However,
the effectiveness of these models is lower than LLM Classifier models. Specifically, we find that for
SVEN dataset, the effectiveness of the AR models finetuned with Qwen-2.5-0.5B is significantly



lower. Also, for Setting 2 and Setting 3, we can’t find the pattern of lower effectiveness in these
router models.

For RoRF technique, we can find similar effectiveness scores for both configurations. While the
technique is effective on selecting models for Code Refinement and Code Translation, the overall
effectiveness of this technique is limited. Also, for understanding coding tasks, the effectiveness of
traditional models like random forest can be limited.

RQ1 Summary. 0.5B LLM Classifier outperforms other routing techniques, consistently
matching or surpassing the strongest single model.

6.3 RQ2. Efficiency

We measure the cost efficiency of the different techniques in accordance with Eq. [2] mentioned in
Subsection relative to the most expensive model. Similarly to RQ1, the cost measurement has
been reported in Table [2]and visualized for select configurations in Figures 2H3]

In the cost-free setting, the 0.5B LLM Classifier’s cost averages 43% of the largest model’s cost,
which still represents considerable savings. By increasing the weight of the cost component, we
observe drastic reductions in cost — matching the Oracle level, at the expense of moderate reduction
in effectiveness, still on par with autoregressive decoding and RoRF approaches. By contrast, 1.5B
LLM Classifier does not exhibit consistent cost scaling with varying cost settings.

For the SFT technique, we can notice lower

cost, but because of the poor effectiveness, cost 0.91 : —
savings from this technique are not meaningful. [ ____ T I A
For the GRPO technique in setting 1, we find 0.8 1 N
generally lower routing cost on RunBugRun | CLSo.25 'y
and APPS, and higher on code refinement and = | \ CLSoq

. . ® 0.7 CLSos
translation. When it comes to cost-aware set- 2 " @GRPO'**
tings 2 and 3, GRPO-trained router does not & 061 GP}PO”” |
exhibit predictable cost savings, in fact for the ' ° ! :Ra“dom
0.5B model the cost is nearly doubled in four 05| ® | RoRF |
out of five datasets. This could be a side effect ‘

of partial rewards assigned for the target model | | | | |
to be ranked at 2nd and 3rd positions, as indi- 04 0 02 04 06 08 1
cated in Algorithm 1. For both configuration of
RoRF, we find that for APPS and RBR datasets
the cost of the first configuration is significantly ~ Figure 2: Cost-performance trade-off of different
low. As the first configuration is between the  routing approaches on RunBugRun. Unlabeled
lowest cost and highest cost models, it can be  blue circles represent the 5 Llama3 LLMs of dif-
assumed that maximum number of times 8B is  ferent sizes, while labeled circles correspond to
picked for these two datasets. each routing approach. Subscript under CLS in-

Additionally, we find that for three datasets: dGlggeOS .C(zis.t weight 1215?(1’. and\;he.sulla ers((j:rlilpt over
SVEN, Code Translation and Code Refinement, indicates model size. Vertical and horizon-

tal dashed lines represent oracle’s cost and perfor-
mance, respectively.

Cost (% of strongest model)

router costs are comparatively high on average.

RQ2 Summary. We can tune the cost of model with different training strategies using LLM
Classifier router with average savings of 43% and predictably scaling down with increasing
cost weight.

7 Conclusion

This work focuses on optimizing the cost-performance trade-off of LLMs for diverse coding tasks
using predictive routing. We create a finetuning-size preference dataset from code generative and
discriminative tasks sourced from standalone datasets and CodeXGLUE. Preference scores are
generated by running tasks on five Llama3 family LLMs, evaluating responses with execution-based,



reference-based, and classification metrics. For a subset of tasks, we train router models using
three finetuning approaches: LLM-based score regression, autoregressive decoding with supervised
finetuning, and GRPO, combined with two base model sizes and three cost sensitivity settings.
Our best routing configurations generally outperform baselines, with preference-regression routing
matching or exceeding the strongest single model, offering 43% average cost savings and greater
savings with varied cost settings for a moderate effectiveness hit. Further analysis shows our models
make diverse routing choices rather than biasing towards a particular model.

Disclaimer. This paper was prepared for informational purposes by the Artificial Intelligence
Research group of JPMorgan Chase & Co. and its affiliates (“JP Morgan™) and is not a product
of the Research Department of JP Morgan. JP Morgan makes no representation and warranty
whatsoever and disclaims all liability, for the completeness, accuracy, or reliability of the information
contained herein. This document is not intended as investment research or investment advice, or a
recommendation, offer or solicitation for the purchase or sale of any security, financial instrument,
financial product, or service, or to be used in any way for evaluating the merits of participating in
any transaction, and shall not constitute a solicitation under any jurisdiction or to any person, if such
solicitation under such jurisdiction or to such person would be unlawful.
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A Appendix

A.1 Threats to Validity

We recognize that our results may not generalize to all software development uses of LLMs. However,
to mitigate the external validity of the study we, have included five different software engineering
tasks in our experiments, all representative of common tasks that LLMs are frequently used for in
software development projects. The datasets we used in this study come from popular archives used
in several software engineering studies. Also, we conducted an evaluation of several Code to Text
examples using different LLMs. Upon manual assessment, we found that the output quality was
consistently similar across all five LLMs.

Another valid limitation to this study is the generalizability of the router models to task types not
presented in the training data. This is a common limitation for router models, but since we have
experimented with multiple task types we argue that retraining the model with new data should
perform similarly, although this needs future experiments to validate. We also based our cost model
fixed-per-model for a relative order. One might argue that different models may produce different
number of output tokens, thus, the actual cost might be different. Note that this information is not
known prior to running the new task through the router model, but it could be estimated based on the
previous behavior of each model. It is also possible to include such fine-grained cost information in
training the router model and evaluate the outcome in the future work.

We haven’t added router cost in the total-cost calculation, which might be considered as threat to
validity. But, router models used are orders of magnitude smaller than the smallest of the evaluated
standalone LLMs and can be deployed on low spec AWS instances or even locally. If we deploy a
0.5B model in EC2 g5.2x server, the system would process approximately 400 tokens/s. Given the
input length is 2048 tokens, per prompt would take 5 seconds to process. If we consider the cost of
renting g5.2x server per hour, the cost per prompt would be 0.0016 USD, which is significantly less
than making the LLM calls. Hence, this cost is not added for calculation.

All our LLMs to route are coming form the same family (i.e., Llama) which may introduce a threat to
external validity. In this study, this choice helps us to examine a spectrum of model sizes while fixing
the model family, which allows for a more nuanced analysis of the cost-performance tradeoff while
minimizes confounding effects of due to model family differences. On a more practical level, model
routing requires inference from the selected models, which is later used for training model router.
Llama license (specially 3.1) is friendly for using derivative data, while licenses of other models like
recent GPT models and Gemini models are not clear about it. Hence, we chose to use Llama family
of models.

To mitigate threats to internal validity of the study, we carefully selected appropriate metrics to
measure the effectiveness of different LLMs on each task type. These metrics are relevant and
valid to measure the quality of response for each task and at the same time reliably distinguish high
performing models from low performing ones, which is crucial in training an effective router model.
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A.2 Cost-Performance Trade-off For Each Dataset
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Figure 3: Cost-performance trade-off of various models and routing approaches on generative
tasks. Unlabeled blue circles represent the 5 Llama3 LLMs of different sizes, while labeled circles
correspond to each routing approach. Subscript under CLS indicates cost weight used, and the
superscript over GRPO indicates model size. Vertical and horizontal dashed lines represents oracle’s
cost and performance, respectively.
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A.3 RQa3. Diversity
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Figure 4: Distributions of the model selections on LLM-GRPO and LLM classifier routers. The Blue,
Green, and Orange bars represent setting 1, setting 2 and setting 3 respectively.

In this research question, we explore whether a model router can diversify model selections instead of
consistently choosing a single model. While evaluating effectiveness and cost provides insights into a
router model, it does not fully capture the router model’s capabilities. For instance, a router might
consistently select a model with lower cost than the highest-cost model, which is also effective across
various tasks. This approach can lead to impressive effectiveness scores and cost values. However,
the router may not excel in making optimal model selections.

For this research question, we primarily compare two techniques: the LLM Classifier and the LLM
AR Model with GRPO. As we have observed that the LLM AR Model trained with SFT struggles
to complete responses accurately, we have excluded these models from this evaluation. Figure [
illustrates the percentage of calls made to different models using both routing techniques under
various settings.

The figure reveals that LLM Classifiers fine-tuned with both Qwen-2.5-0.5B and Qwen-2.5-1.5B
architectures do not consistently select specific models for all prompts. However, the diversity of
the model fine-tuned on Qwen-2.5-0.5B is superior. For both models under Setting 1 (with zero
cost), the majority (37-38%) of prompts predict the 3-1-405B model. For Qwen-2.5-0.5B, the lowest
percentage of selections is for 3-1-8B (9.8%), confirming that the prediction is unbiased. Conversely,
for Qwen-2.5-1.5B, the 3-1-8B model is predicted for only 1.7% of the total prompts.

The LLM Classifier with Qwen-2.5-1.5B demonstrates improved diversity in Settings 2 and 3. In
these settings, the classifier selects three models with more than 10% of the selection percentage. For
the LLM Classifier with Qwen-2.5-0.5B, all four models other than 3-1-405B achieve higher than
10% of selections in these settings.

In Settings 2 and 3, we anticipate the router to predict models with lower costs. Therefore, we
incorporated the cost component (0.25 and 0.5, respectively) into the training. In these settings, the
LLM Classifier with Qwen-2.5-0.5B significantly reduces the selection of 3-1-405B models (8.8%
and 0.7%, respectively, for Settings 2 and 3) while maintaining diversity. For the LLM Classifier
with Qwen-2.5-1.5B, there is a notable reduction in predictions of the 3-1-405B model for Setting 3.
However, for Setting 3, this pattern is not consistently observed.
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For the LLM AR Model fine-tuned with GRPO, there is a discernible bias against certain models. The
results indicate that two models, 3-1-405B and 3-1-70B, are predominantly selected. Additionally,
we observed that in cost-sensitive settings, the selection of the 3-1-405B model slightly decreases for
the Qwen-2.5-1.5B architecture. Conversely, for the Qwen-2.5-0.5B architecture, the selection of the
3-1-405B model increases instead of decreasing in cost-sensitive settings. This suggests that altering
cost settings may not be effective for the LLM AR Model fine-tuned with GRPO.

A.4 Overview of Finetuning Techniques Used
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Figure 5: Different Finetuning Techniques Used

A.5 GRPO Reward Formulation

Algorithm 1 GRPO Reward Function

Require: LLM outputs Outputs, ground-truth answers Answers
Ensure: Rewards list

1: Define regex pattern for comma-separated model names
2: for each (response, target) in Outputs, Answers do
3:  if response matches pattern then

4: pred = first token in response split by comma
5: target_list = labels from target split by comma
6: Assign reward r based on pred position in target_1ist: 1.0, 0.5, 0.25, or 0.0
7:  else
8: Assign reward r = —5.0
9: endif

10:  Append r to rewards

11: end for

12: return rewards
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A.6 Additional Details on Dataset and Normalization

As discussed in Section[d] we selected five datasets for fine-tuning and evaluating different techniques:
SVEN, APPS, RunBugRun, Code Refinement, and Code Translation. Although we initially started
with a higher number of samples for each dataset, the collected data points have been reduced due
to failed executions. Table|3|presents the breakdown of training and test data sizes for each dataset.
Although we initially started with a higher number of samples for each dataset, the collected data
points have been reduced due to failed executions.

Given the significant differences in datasets in terms of value ranges and sample numbers, we apply
the following transformations before training. We use standard scaling by subtracting the mean and
dividing by the standard deviation to center samples around the mean and normalize their range to
(-1.0, 1.0).

For binary tasks like SVEN, we add an additional penalty score for fine-tuning. While generating
binary labels through LLMs can be straightforward, the biased behavior of an LLM can make
effectiveness calculation error-prone. For instance, in a dataset with 50% positive and 50% negative
true values, if an LLM classifies every example as positive, it would be correct 50% of the time
despite being incapable. To address this, we use a penalty term for calculating effectiveness. The
penalty P can be calculated as P = IN“"Ni”“ where, IV, is the number of true positive examples,
N, is the number of predicted postive examples and [V, is the total number of examples. Usage of
absolute values makes sure that if the model is biased towards the negative examples, the penalty
would still be high. This penalty term is added on each effectiveness score for this task where the
penalty value would be different for different models.

Table 3: Number of training and test data from each dataset
#Samples RBUGR APPS REFI TRANS SVEN
Train 1145 2824 3750 1125 483
Test 381 941 1250 375 161

A.7 Prompt Types and Structures
A.7.1 SVEN

Tell me if the following python code has vulnerability or not.
Use only Yes or No.

# Code
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A.7.2 RunBugRun

Provide a fix for the buggy function.
Buggy Function:

# Code

Assertion Error:

# Assertion Error

A.7.3 APPS

Given the below programming question and example inputs/outputs
, write Python code that solves it. Your program should be
runnable inline and accept arguments via standard input and

print back the result to standard output.

Question:

# Question

A.7.4 Code Translation

Task: Translate the following code from Java to C#.
# Code

Translate this code to C#, maintaining the same functionality
and following C#’s best practices.

Code Refinement

Task: Remove the bugs in the following code.

Original Code (All the function and variable names are
normalized):

# Code

Provide a refined bug-free version.

A.7.5 System Prompt for Routing (w Autoregressive Models)

Given a task and code snippet, return the model ranking based
on the expected effectiveness to execute the prompt.

There are five models and each model represented by a number
from O to 4. The numbers must be distinct and sorted in any
order. Example valid outputs include: "0,1,2,3,4",
"4,0,1,3,2", or "2,3,1,0,4". Do not include any extra text,
explanation, or punctuation beyond the numbers and commas.
The output must always contain exactly five numbers.
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