
RTaC: A Generalized Framework
for Tooling

Nisarg Bhavsar(B) , Abhinav Thakur , Amrit Lal Singh ,
and Ashish Patwa

Indian Institute of Technology Kharagpur, Kharagpur 721302, India
nisargbhavsar25@kgpian.iitkgp.ac.in

https://www.iitkgp.ac.in

Abstract. In the rapidly evolving domain of Large Language Models
(LLMs), integrating tool usage remains a formidable challenge, particu-
larly when it comes to the dynamic selection and sequencing of tools in
response to complex queries. Addressing this, we introduce Reimagining
Tooling as Coding (RTaC), a groundbreaking framework that transforms
tool usage into a coding paradigm. Inspired by recent advancements [18],
RTaC conceptualizes tools as Python functions within a dual-agent sys-
tem [2], significantly enhancing LLMs’ tool usage efficiency. Our compre-
hensive experiments reveal that RTaC enables coding-based LLMs, such
as DeepSeek and CodeLlama, to achieve and surpass GPT-4 benchmarks
in cost-effectiveness and latency without compromising on handling intri-
cate tool sequencing with conditional and iterative logic. This research
not only sets a new benchmark for tooling efficiency in LLMs but also
opens new avenues for the application of LLMs in complex problem-
solving scenarios, heralding a significant leap forward in the functionality
and versatility of LLMs across diverse domains.

Keywords: Large Language Models (LLMs) · Dual Agent System ·
Python Functions for Tool Integration · Automated Tool Sequencing ·
Advanced LLM Applications · RTaC Framework

1 Introduction

In the evolving landscape of LLMs, their use as reasoning and tooling agents has
garnered substantial attention. LLMs demonstrate the capacity to interpret and
respond to queries by calling tools [11,12], a testament to their advanced lan-
guage comprehension. This capability to integrate tool usage represents a sig-
nificant stride in enhancing the scope and accuracy of LLMs in various applica-
tions. Current state-of-the-art approaches to the tool-usage problem, which uti-
lize GPT-4 (OpenAI) and Claude-2 (Anthropic), demonstrate impressive results
but are closed-source and computationally expensive. Researchers have attempted
to solve this problem by fine-tuning smaller language models [11,12,15]. How-
ever, these models are ineffective at generalizing to new tools when provided in a
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zero-shot manner, referred to as ’dynamic tooling’ from here onwards. The dis-
crepancy between the generalized tool-use capabilities of large models and the
more restricted capabilities of compact models presents the motivation behind our
work - Can we exploit the nature of this task to train small open-source LLMs to
generalize their tool-use abilities while keeping the latency minimal? (Fig. 1).

Fig. 1. Overview of “Reimagining Tooling as Coding” (RTaC)

Addressing these challenges, we propose Reimagining Tooling as Coding
(RTaC), which reconceptualizes tooling as a code-generation task to exploit
the powerful code-comprehension capabilities of LLMs. RTaC provides tools to
be used, in docstring format, to instruct fine-tuned coding-base LLMs. It then
extracts the output in Python-inspired code format and deterministically converts
it to JSON. RTaC promotes docstring reading capability in the LLMs, supporting
tool modification, addition, and deletion. We use RTaC to achieve GPT-4 bench-
mark performance while employing smaller models, such as DeepSeek 1.3B and
CodeLlama 7B LLMs, despite a drastic (300x) reduction in parameter count, as
shown in Sect. 5. We simultaneously achieve significant (5x) cost reduction per
query while matching GPT-4’s latency. Moreover, RTaC supports processing com-
plex conditional and iterative logic, surpassing GPT-4’s capabilities.

2 Related Works

2.1 Dataset and Tooling Benchmarks

Various domain-specific tooling datasets have been proposed like API-Bank
[7], ToolEyes [20], RoT-Bench [21], EasyTool [22] and MetaTool [5]. These are
domain-specific and assess LLMs’ tool usage and tool-identifying abilities.

– API-Bank: Developed from interviews with over 500 users, this benchmark
includes a training set created through a multi-agent approach and a diverse
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set of manually annotated dialogues to assess LLMs’ API usage across various
domains and complexities.

– ToolEyes: Features a comprehensive evaluation system with 600+ tools
across 7 scenarios, assessing LLMs on five critical dimensions to expose capa-
bility gaps and generate research insights.

– RoT-Bench: Evaluates LLMs’ ability to accurately select tools, identify
parameters, and fill content in environments ranging from noise-free to highly
variable real-world conditions.

– EasyTool: Addresses issues from inconsistent documentation by creating
standardized tool instructions to improve LLMs’ tool usage proficiency.

– MetaTool: Assesses LLMs’ tool selection awareness and suitability across
various tasks and scenarios, highlighting biases and current limitations.

These benchmarks are domain-specific and unrelated to tool usage as a
function-calling approach. We thereby went on to build our dataset for the task
using a dual agent system and test our approach on it.

2.2 Tooling LLMs

The application of LLMs for tooling is a profound task, and various research,
as mentioned in TALM [10], which uses tools in context to solve different tasks;
LATM [2] showed that LLMs can be used to create and reuse different tools
created by them in order to act as intelligent Agents. Various tooling LLMs
like Tool LLaMA, ToolAlpaca [15], and Gorilla [11] are available and suitable
for use as domain-specific agents. However, they are captivated by the out-of-
domain tool usage capabilities, identifying the correct set of tools and assigning
appropriate arguments to them. Tool Llama is a fine-tuned version of Llama-70B
on the ToolBench Dataset, as mentioned in the paper [12]. The model works well
on general domain tools but fails in context-dependent scenarios that use tools.
ToolAlpaca is a generalized tool LLM that adapts off-domain tools for usage. It
is still hard for the LLM to reason on complex tool ordering scenarios.

Recent approaches have aimed to augment LLMs with the ability to utilize
tools and resources. TALM [10] introduces a framework for integrating tools
with LLMs like T5 via a text-to-text API, enabling generalization to out-of-
distribution inputs solvable with access to tools. It employs a policy-gradient
reinforcement learning algorithm to fine-tune the LLM for tool usage. The
Hugging-GPT system [14] leverages the Hugging Face API to solve AI tasks
using LLMs. Toolformer [13] is an LLM pre-trained on an annotated dataset,
exhibiting prowess in solving complex problems by leveraging external APIs.
However, it is constrained by a fixed set of available tools and the inability to
chain tool usage. Toolformer also implements novel self-supervised augmentation
during training. These approaches demonstrate the potential of enhancing LLMs
with tool utilization capabilities while highlighting challenges such as general-
ization, tool chaining, and scalability to new tools.

Gorilla [11] stands out as a pivotal work that uses the LLAMA-7B model
to accurately extract APIs from repositories like TensorHub, HuggingFace, and
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TorchHub. It significantly outperforms GPT-4 in API functionality accuracy
and reduces hallucination errors, emphasizing enhancing LLMs’ practical utility
over conversational skills. Evaluated on an extensive dataset of 11,000 API pairs,
Gorilla demonstrates commendable retrieval capabilities. However, Its reliance
on machine learning datasets and the necessity for fine-tuning raise questions
about generalizability and adaptability to custom APIs. Complementing Gorilla,
ToolBench [12] is a large-scale benchmark containing over 16,000 high-quality
APIs across 3,451 tools, facilitating robust evaluation of LLMs’ API usage skills.
It employs a 3-stage-construction process, comprehensive API metadata, and
diverse instruction generation. GPT-3.5 searches for valid action sequences using
accurate API responses through multi-round conversations, leveraging a Depth-
First Search Decision Tree (DFSDT) to expand the search space. With its scale,
diversity, realism, and expanded search methodology, ToolBench enables a thor-
ough assessment of LLMs’ capabilities in utilizing APIs to accomplish tasks.

Ultimately, we look at Tool Alpaca, a framework to improve compact lan-
guage models’ generalized tool usage skills. It first constructs a diverse corpus
spanning 50 categories and 426 tools with 3938 usage instances generated via
multi-agent simulation. This corpus is then used to fine-tune compact Vicuna
models, creating ToolAlpaca-7B and 13B. Experiments on unseen simulated and
real-world tools demonstrate that ToolAlpaca models achieve strong general-
ization comparable to large models like GPT-3.5. Tool diversity is shown to
be critical, with performance improving as the variety of tools in the corpus
increases. Overall, ToolAlpaca provides an automated approach using simula-
tion and diversity to instill generalized tool usage abilities in compact models,
enabling them to adapt to new tools.

All these approaches work well, but they depend on the core tools on which
they are trained and fine-tuned. Out-of-domain tool usage is a difficult task for
all of these models.

2.3 Prompting Methods

Prompting is also a significant method to improve the LLM context adherence
capability and can also be used in the region of agentic LLMs. Various prompt-
ing methods, such as Chain-of-Thought [17], Tree-of-Thoughts [19], Graph-of-
Thought [1], Skeleton-of-Thought [9], and Knowledge Graph [3] addition, can
increase a LLM’s overall context understanding capability. One more technique
to look at is multi-tool COT Prompting,

Recent research has proposed several innovative frameworks to improve the
multi-step reasoning capabilities of LLMs by combining chain-of-thought (CoT)
prompting techniques with external tool integration. The “Tree of Thoughts”
(ToT) [19] approach frames problem-solving as a search through a tree struc-
ture, where each node represents a coherent “thought” or intermediate reason-
ing step. ToT allows LLMs to explore multiple reasoning paths, generate and
evaluate candidate thoughts, and direct the exploration using classical search
algorithms like breadth-first and depth-first search. The “Graph of Thoughts”
(GoT) [1] framework represents information as an interconnected graph, with
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vertices denoting individual pieces of information and connections signifying
dependencies between them. This flexible structure enables GoT to integrate
outputs from various reasoning paths, analyze complex thought networks, and
incorporate feedback loops for iterative improvement of LLM outputs.

Furthermore, the MultiTool-CoT [6] framework facilitates LLMs like GPT-
3.5 to leverage multiple tools, such as calculators and knowledge retrievers, by
inserting triggers for tool invocation at appropriate steps within the CoT rea-
soning process. Experiments on numerical and knowledge reasoning datasets
demonstrate that MultiTool-CoT significantly outperforms baselines, achieving
state-of-the-art accuracy by addressing different error types with different tools,
with gains from combining tools exceeding individual tool gains.

These approaches have significantly improved over standard prompting tech-
niques across various tasks, including mathematical reasoning, creative writing,
and knowledge-based problems. However, challenges persist, such as token lim-
itations for CoT prompting and potential errors in LLM-generated reasoning
processes, highlighting the need for further research in this area to unlock the
potential of LLMs in complex problem-solving scenarios fully.

3 Method

3.1 RTaC (Reimagining Tooling as Coding)

RTaC is a novel framework that proposes the conversion of tools into Python
functions with proper arguments and tool descriptions in the form of a Pythonic
tool docstring, which can be appended to the context of the prompt in order
to select and sequence the correct tools, with proper arguments. The paper [18]
inspires the technique, which discusses how we can empower the capabilities of
an LLM using code. The framework involves the creation of the dataset using a
dual agent system that generates query output pairs. These pairs are used for
instruction fine-tuning various Coding base LLMs, which act as tooling agents.
The application of coding-based LLMs helps adhere to various complex condi-
tional and iterative logics in tooling. Our experiments prove that open-source
coding base LLMs are better regarding latency and cost per query than bench-
mark GPT-4. Coding base LLMs concerning normal LLMs perform better due
to their fewer hallucinations and higher context adherence ability.

Dataset Generation. The papers above incorporate data generation as their
primary approach for adapting base LLMs for tool usage. Gorilla introduces
a comprehensive dataset called APIBench by utilizing Self-Instruct [16], which
proposes an automated pipeline to generate large-scale instruction datasets from
a small set of seed tasks. First, human experts provide sample instructions and
API documentation as context. A language model generates new instructions
that plausibly use the APIs, creating instruction-API pairs. A vital benefit of
this approach is that it does not require manual effort to label training data.
Gorilla uses GPT-4 for this data generation.
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The RTaC framework employs distinct datasets to rigorously evaluate its per-
formance. Specifically, the datasets are structured as follows: the Static ToolSet
comprises 800 query-output pairs, the Dynamic ToolSet includes 700 pairs, and
the Conditional/Iterative ToolSet consists of 300 pairs. Additionally, 200 unan-
swerable philosophical queries are incorporated to test the model’s robustness
in handling queries beyond its configured capabilities (Fig. 2).

Fig. 2. Dual agent dataset generation

Although APIBench is built over massive APIs, it does not have multi-tool
scenarios. ToolLLM proposes an innovative data generation strategy supporting
multi-tool interplay-the paper samples API combinations by iterating through
tools and sampling intra-category and intra-collection combinations. GPT-3.5 is
leveraged to generate instructions involving the sampled APIs, and its behavior
is regulated by prompting with documentation, task descriptions, and examples.
Generated APIs are validated against the original sample to filter out hallucina-
tions.

Static ToolSet. The Generation of the static toolset was done using a set of initial
pre-defined tools as shown in AppendixA.3. As shown in the figure, the query
output pairs are generated using an agent fed with different tools. As shown
below, query templates are generated, which are then randomly filled by GPT-
4, and the solution APIs for those are also generated using the GPT-4 Model.
Then, the dataset underwent a thorough human evaluation process, which we
used for instruction fine-tuning.

Dynamic ToolSet. The Dynamic toolset, as the name Dynamic suggests, is not
pre-defined, and they are generated in the correct format using a different agent.
The Dynamic toolset is generated using a procedure when the tools are gener-
ated using one agent. Then, we again used GPT-4 as the agent to generate
query templates, fill those query templates, and get the relevant set of tool APIs
for those queries. These queries then undergo a rigorous human evaluation for
syntactic and logical correctness.

Conditional and Iterative ToolSet. Utilizing various tools with conditional and
iterative logic requires the creation of particular query output pairs where we use
conditional logic like if-else and iterative logic like loops. These kinds of queries
are complex to handle by normal LLMs, and they require fine-tuning and an
innate logic formation ability present in a coding-based LLM. The query output
pair was again generated through GPT-4, and the query templates were filled
out using the agent by random values, and then the response was generated.
Again, these queries went through a robust human evaluation.
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A dataset containing 1800 Query Output pairs was generated with static and
dynamic toolsets, and 200 unanswerable philosophical queries were generated; a
total of 2000 Query Output pairs were named Stage 1 Dataset. Additionally, 100
query output pairs were generated with conditional and iterative logic, and this
was combined with Stage 1 datasets, which were randomly selected to be 500
pool. This dataset was named Stage 2 Dataset. This Whole Dataset was used to
do instruction fine-tuning on various LLMs.

Design Framework. Reimagining tooling as a form of coding in the context
of LLMs forms the cornerstone of our pipeline design. This approach stems
from the observation that tool utilization in LLMs essentially involves execut-
ing function calls, assigning values to arguments, and efficiently linking these
outputs, mirroring the core elements of coding. This conceptual overlap extends
beyond mere theory, as evidenced by the proficiency of Copilot and CodeGen.
Grounded in this insight, we adopt a training strategy that treats the tooling
challenge within the framework of a coding paradigm. Accordingly, we prioritize
fine-tuning LLMs with a foundational background in coding (such as DeepSeek-
1.3B Code-Instruct) instead of those exclusively trained on natural language
processing tasks.

In our paradigm, tool descriptions are conveyed to LLMs in a docstring for-
mat during training, as shown in Fig. 3 (left), emulating standard coding prac-
tices. The expected output format is structured as variable assignments from
API calls (e.g., var x = api call (arguments)), as shown in Fig. 3 (right). This
format offers advantages over direct training on JSON outputs by reducing the
number of output tokens required and circumventing the need for additional
training to correct JSON errors, an issue prevalent in other methods [11,12].

Fig. 3. Sample of tool docstring (left) and output in code format (right)

Conditional and iterative logic is handled by allowing the LLM to generate
outputs in the format of var x = api calls () and incorporate if-else statements
and for-loop constructs. In the parsed JSON object, we introduce a specialized
magic tools - conditional magic with the capability for ’JSON in JSON’ style
argument values, as shown in Fig. 4. Such a format is crucial for managing mul-
tiple chain tools dependent on specific conditions or requiring iterative processes.
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Fig. 4. Sample code output and conversion using ’JSON in JSON’ methodology

Fine Tuning Methods. We propose fine-tuning our LLM using the data gen-
erated by the earlier methodology to achieve both input format comprehension
and output format adherence. This fine-tuning utilizes Stage 1 and 2 datasets
to instill in the LLM docstring comprehension and adherence to our Python-
inspired output format.

Training Pipeline: We follow an instruction fine-tuning-based training approach
wherein we first prepare our dataset in a structure where an “Allowed tools”:
token is introduced, followed by the docstrings for the tools to be used as shown
in Appendix A.2. We train the model on the LORA [4] framework using the
PEFT library under a 4-bit quantization setting through the Bits and Bytes
framework. Training is done in two stages. During the first stage, the model is
trained for five epochs on queries from the Stage 1 Dataset and the docstrings
for the tools in the Problem Statement. The model is further trained for five
epochs using the Stage 2 Dataset, where it sees the docstrings for the tools
in the Problem Statement and the five new tools described above. This short
instruction fine-tuning instills docstring reading capabilities in the LLM and
adherence to our Python-inspired code output format.

Inference: RTaC allows the user to add their own set of dynamic tools. These
tools are appended to the static tools in the prompt under the “Allowed Tools”:
token and then passed to the LLM. Similarly, updating docstrings are passed
under the “Allowed Tools”: token in modifying and deleting already added tools.

3.2 Evaluation Metrics

BLEU score focuses solely on n-gram precision and may not accurately reflect
semantic similarity; hence, it is not an optimal metric for evaluating the



RTaC: A Generalized Framework for Tooling 69

Fig. 5. RTaC Training Pipeline

performance of our approach. Other metrics, such as the JSON Similarity Score
and the F1-Score, were used to evaluate the final approach (Fig. 5).

JSON Similarity Score: The JSON Similarity Score is a metric used to quan-
tify the degree of similarity between two JSON objects. It measures how closely
the structure and content of two JSON objects align, aiding in data compar-
ison, deduplication, and schema matching. Analyzing key-value pairs, arrays,
and nested structures provides insights into the level of resemblance between
datasets. This score is precious in data integration processes, ensuring consis-
tency and accuracy across disparate sources. Its ability to assess JSON efficiently
facilitates seamless data exchange and interoperability in diverse applications.
We use this to assess the correctness of our generated tool structure.

F1-Score: In our evaluation framework, the F1-Score is calculated based on the
precision (the proportion of relevant instances among the retrieved instances)
and recall (the proportion of relevant instances that were retrieved). The true
positives are defined as the set of tools correctly identified and utilized by the
LLM, while false positives are those incorrectly predicted tools, and false neg-
atives are correct tools that the model failed to identify. This metric is partic-
ularly suited for assessing the accuracy of tool selection and usage in complex
LLM operations.

4 Experiments

We have conducted various experiments on open-source coding base, normal, and
Closed Source LLMs. The experiments ranged from using retrievers to various
prompting methods and fine-tuning approaches on different stage datasets. The
Experiments were done on Google colab, where fine-tuning was done on A-100
GPUs, and inference was done on T4 and A100 GPUs. Within the Regime
of open source LLMs, we experimented with Llama-7b, Zephyr-7b, Codellama-
7b, Codellama-13B, Deepseek-6.7b, Deepseek-1.3B, Toollama, ToolAlpaca. We
also explored closed-source LLMs like GPT-4 and GPT-3.5 for closed-source
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benchmarking. We also compare the approach with a retriever to reduce the
tool selection set.

4.1 Retrievers

Our static API toolset consists of only 9 APIs. Tool retrievers can help decrease
the tool descriptions that need to be passed to the LLM, thereby decreasing
context length and latency. We compare various retrievers like BM25, FAISS,
Ensemble, and DPR. Further, tool retrievers become essential for stability when
our pipeline is applied to bigger toolsets. We experiment with multiple tool
retrievers, considering each API-argument name pair as a new tool.

Table 1. Retriever Results

Method Recall F1-Score Time (ms)

Top-10 Top-15 Top-10 Top-15 Top-10 Top-15

BM25 0.73 0.83 0.41 0.35 47.8 71.8

FAISS 0.83 0.90 0.46 0.37 758 983

Ensemble (BM25 + FAISS) 0.92 0.95 0.41 0.34 954 1110

Dense Passage Retriever 0.70 0.78 0.40 0.32 – –

As shown in Table 1, retrievers do not work very well in identifying the correct
set of tools, and they also fail to identify the appropriate set of arguments for
the tools.

4.2 Closed Source LLMs

Prompting Methods. We experimented with various prompting meth-
ods, which include zero-shot prompting, few-shot prompting, chain-of-thought
prompting, graph-of-thought prompting, tree-of-thought prompting, and knowl-
edge graph-infused prompting and RTaC prompting, which is our flagship
method, in which tools are presented in the form of functions and converted
into docstring to be added in the final prompt for solving the query.

Our Experiments on prompting with open-source LLMs like llama2-7b and
zephyr-7b-beta showed that both the models hallucinate and perform poorly
on our metrics and human evaluation. The JSON similarity score between the
actual output and the predicted output was less than 0.1, and the F1-score was
less than 0.5 in both cases of zero-shot prompting and few-shot prompting for
both the models, which showed that it is not the correct way to evaluate open
source models with closed source models.

4.3 Open Source LLMs

We have performed various experiments on tooling LLMs like Toollama, Tool-
paca, Codellama, Codegen, and Deepseek. Our Experiments range from few-shot
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Table 2. Results - Closed-Source LLMs

Model JSON Similarity Precision Recall F1-Score

GPT-3.5 67.23 82.34 87.32 84.76

GPT-4 Turbo 74.88 88.23 85.45 86.82

GPT-4 Turbo + SoT 75.23 84.52 89.43 86.91

GPT-4 Turbo + GoT 82.32 87.69 90.16 88.91

GPT-4 Turbo + CoT 79.11 88.12 85.84 86.97

GPT-4 Turbo + ToT 80.69 86.52 88.62 87.56

GPT-4 Turbo + KG 80.62 84.32 90.97 87.52

GPT-4 Turbo + RTaC 87.79 92.12 95.81 93.93

prompting to fine-tuning. We present three pipelines for our Problem Statement
that utilize open-source LLMs, incrementally building upon our hypothesis of
“Reimagining Tooling as Coding”. This experimentation helps us arrive at our
proposed pipeline, RTaC and also serves as an ablation study (Table 2).

Few-Shot prompting of Coding-Base LLMs. Using this pipeline, we investigate
our hypothesis around the efficiency of Coding-Base LLMs over normal LLMs.
The LLMs are provided with a prompt similar to that referred to in Sect. 4.1 with
few-shot examples involving both static tool usage (5 examples) and conditional,
iterative tool (3 examples) (Table 3)

Table 3. Results - Few-Shot prompting of Coding-Base LLMs

Dataset Model JSON Similarity Precision Recall F1-Score

Static CodeLlama 7B 68.78 81.25 77.85 79.51

CodeLlama 13B 73.47 82.80 85.45 86.82

DeepSeek 1.3B 60.28 73.33 63.00 67.77

DeepSeek 6.7B 62.02 90.72 61.48 73.29

Dynamic CodeLlama 7B 67.94 78.24 74.97 76.57

CodeLlama 13B 71.12 79.84 85.41 82.53

DeepSeek 1.3B 60.82 65.29 66.53 65.90

DeepSeek 6.7B 63.96 92.10 57.53 70.82

Bonus CodeLlama 7B 56.28 76.43 74.17 75.28

CodeLlama 13B 59.22 78.13 83.91 80.87

DeepSeek 1.3B 47.32 63.49 62.18 62.83

DeepSeek 6.7B 54.87 87.56 59.25 70.68

Discussion: Few-shot prompting on pre-trained LLMs like Llama-2 7B and
Zephyr 7B (results provided in Table 4) is substantially surpassed by CodeLlama
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and DeepSeek, proving our choice for Coding-Base LLMs. However, this pipeline
is plagued by a high context length needed to explain the output formats and
chatbot behavior, which further leads to higher latencies. Output inspection
reveals that while models correctly tend to solve the query, the format is non-
convertible, which is necessary for evaluation.

Table 4. Results - Few-Shot prompting of Llama-2 7B and Zephyr 7B

Dataset Model JSON Similarity Precision Recall F1-Score

Static Llama-2 7B Chat 44.57 40.80 41.95 41.37

Zephyr 7B Chat 50.74 61.58 79.74 69.49

Dynamic Llama-2 7B Chat 37.94 35.18 38.17 36.61

Zephyr 7B Chat 41.12 55.39 47.67 51.24

Tool Memorization with “Add Tool” Token. We build upon ToolLlama style fine-
tuning of LLMs, which fine-tunes LLMs using query-output pairs to include sup-
port for dynamic tooling. To achieve we use the “Added Tools”: token. Dynamic
tools provided at runtime are appended in docstring format after this token, while
the query follows the “Query”: token in the input prompt. To instill an under-
standing of our added tokens, we first generate 50 dynamic tools and queries that
interface with them using the Self-Instruct [16] methodology. As described above,
three hundred such queries-output-toolset tuples, the 100 bonus query-output
pairs, and the Stage 1 Dataset are used for instruction fine-tuning over ten epochs.

Table 5. Results - Tool Memorization with “Add Tool” token

Dataset Model JSON Similarity Precision Recall F1-Score

Static CodeLlama 7B 85.89 92.36 94.31 93.32

ToolApaca 68.45 81.51 73.85 77.49

ToolLlama 69.57 86.22 78.13 81.98

DeepSeek 1.3B 84.68 91.94 94.63 93.27

Dynamic CodeLlama 7B 75.51 85.45 87.51 86.47

ToolApaca 63.47 75.93 72.27 74.05

ToolLlama 66.62 78.24 75.11 76.64

DeepSeek 1.3B 75.83 82.12 81.85 81.98

Bonus CodeLlama 7B 83.91 87.67 91.12 89.36

ToolApaca 67.22 80.33 72.91 76.44

ToolLlama 68.34 84.96 76.19 80.34

DeepSeek 1.3B 81.35 89.11 90.71 89.90

Discussion: As shown in Table 5, Experimentations with this pipeline reveal
training instability. While more extended training makes the model excel in the
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static setting, dynamic tool comprehension and usage take a hit. On the other
hand, enabling dynamic tooling with controlled training length leads to param-
eter and data type hallucinations for the memorized static tools. Memorization
further limits this pipeline’s ability to modify and delete tools. All this motivates
moving to a pipeline with the least tool memorization. Instruction fine-tuning
shows promising adherence to a code output format that is convertible to JSON.

RTaC (Our Proposed Pipeline). Here, we build upon the previous pipeline by
replacing the “Added Tools”: token with the “Allowed Tools”: token and append-
ing docstrings for all tools, both static and those added dynamically at runtime,
after the token. This pipeline avoids tool memorization and instead promotes
docstring comprehension.

In the RTaC framework, the “Allowed Tools”: token is used to specify the
complete set of tools (static, dynamic, and conditional/iterative) that the LLM
can utilize dynamically across different queries. This inclusive approach enables
the model to adapt its tool usage flexibly depending on the query context,
enhancing its applicability and efficiency. Conversely, the “Added Tools”: token
implies a more constrained approach where only dynamic and conditional/itera-
tive tools are specified at runtime, and the static tools are expected to be memo-
rized by the LLM. This distinction between “Allowed” and “Added” fundamen-
tally impacts the model’s performance, with the “Allowed” approach providing
a broader, more versatile toolset that does not require the LLM to memorize
tools, thereby reducing cognitive load and potentially increasing accuracy.

Table 6. Results - RTaC

Dataset Model JSON Similarity Precision Recall F1-Score

Static DeepSeek 1.3B 87.73 94.38 93.28 93.82

CodeGen 2B 87.23 81.33 78.43 78.35

DeepSeek 6.7B 87.79 93.01 95.05 94.01

CodeLlama 7B 89.91 94.19 94.59 94.38

Dynamic DeepSeek 1.3B 81.47 90.67 88.88 89.76

CodeGen 2B 67.43 65.58 65.01 65.29

DeepSeek 6.7B 82.17 92.03 92.16 92.09

CodeLlama 7B 85.57 91.11 93.37 92.22

Modified DeepSeek 1.3B 82.98 91.49 90.14 90.80

CodeGen 2B 63.84 69.79 60.91 65.04

DeepSeek 6.7B 87.61 91.18 91.13 91.15

CodeLlama 7B 86.34 92.77 93.23 92.99

Bonus DeepSeek 1.3B 83.96 91.47 92.01 91.73

CodeGen 2B 55.37 69.79 60.91 65.04

DeepSeek 6.7B 83.17 91.66 93.12 92.38

CodeLlama 7B 86.92 92.22 94.91 93.54
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Discussion: Table 6, shows commendable results on static and dynamic tool-
ing scenarios for RTaC. Further, models under this pipeline gracefully handle
the modification and deletion of static tools. This showcases the models’ ability
to comprehend the given docstrings. While the context length increases over the
previous pipeline due to adding static tool docstring in each prompt, even small
models such as DeepSeek 1.3B perform well under this pipeline, leading to min-
imal latencies. It must also be noted that CodeGen 2B is not a code instruct
model, which explains its poor performance.

5 Results

Our experiments show that RTaC is comparable to GPT-4, not only in terms of
accuracy but also in terms of cost/query and latency. This shows that tooling can
be compared to function calls, which coding-based LLMs can efficiently handle
(Table 7).

Table 7. Final Result and Comparison with GPT-4

Metric GPT-4 RTaC

GPT-4 CodeLlama 7B DeepSeek 1.3B

F-1 Score 86.82 93.93 93.22 93.28

JSON Similarity 74.88 87.79 87.42 85.73

Cost/Query ($) 0.0341 0.0312 0.0086 0.0060

Latency (s) 7.32 6.88 7.56 5.25

# of Parameters 170B 1760B 7B 1.3B

6 Conclusion

This paper introduces the concept of Reimagining Tooling as Coding (RTaC), a
novel approach that reframes tool usage as a coding-related task. Our method
involves fine-tuning LLMs on tool descriptions presented in docstring format.
The desired output is formatted as variable assignments derived from API calls
during training. To achieve this, we employ a unique dual-agent dataset gen-
eration method encompassing tool usage in various scenarios, including static,
dynamic iterative, and conditional settings. By leveraging Coding-Base LLMs,
which are inherently adept at comprehending coding elements, we perform
instruction fine-tuning using this specially curated RTaC dataset. This inno-
vative strategy empowers smaller, open-source Coding-Base LLMs, such as
DeepSeek 1.3B and CodeLlama 7B, to achieve performance comparable to lead-
ing models like GPT-4. This is achieved with significantly reduced computational
requirements and faster response times. RTaC presents a groundbreaking app-
roach to tackling tool-usage challenges with LLMs, paving the way for significant
advancements in LLM applications.
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7 Future Scope

While RTaC demonstrates promising accuracy, there are two critical areas for
improvement: mitigating hallucinations and achieving scalability. This section
highlights potential avenues for future research that could significantly enhance
the framework’s performance.

Query Reformulation Modules: Prior research [8] has established a strong cor-
relation between query quality and model accuracy. This finding aligns with our
observations, where queries formulated to reflect the execution sequence achieve
near-perfect accuracy precisely. This underscores the need for further exploration
into query-optimizing modules. These modules would be designed to reformulate
user queries into a format that the model can process efficiently and accurately.

Tool Retrievers: While docstring comprehension leads to high accuracy on a
limited set of tools, scalability motivates the addition of tool retrievers to the
pipeline. This will empower RTaC to be scaled to massive API sets and outper-
form current state-of-the-art methods like Gorilla and ToolLLaMA, which rely
on tool memorization.

Improvements in Evaluation: The current evaluation metrics in this research
domain, such as JSON Similarity and F1-score, fail to evaluate critical aspects
such as correctness and optimality reliably. We find that string and AST-based
evaluation is not fit for the task of tooling. The same query can often be answered
via multiple sequences of tools, yet they are not scored as such during evaluation.
To overcome this, we have been working on a bash-based toolset that can act as a
deterministic evaluation benchmark for tooling LLMs. Our methodology involves
creating an API set that can be mapped to bash operations on directories and
files. Models’ outputs can now be deterministically evaluated by state-matching
after API call execution (Fig. 6).

Fig. 6. Design for a bash-based deterministic evaluation benchmark
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A Appendix

A.1 JSON Converter

This method is integral to the pipeline, functioning like a compiler. It is designed
to transform model-generated code into a specific JSON format. The script cate-
gorizes the model’s output into two primary types. The first is the General Case,
which adheres to a standard variable assignment format using tool names and
arguments. The second type is the conditional and iterative case, encompass-
ing additional code structures like conditional statements and for-loops. These
structures are used for temporary variable assignments, further expanding the
script’s capability to handle diverse output formats. In processing these outputs,
the script employs several functions. The process tool function is used for the
general case, while iterative and conditional cases are managed by specialized
bonus handlers that also leverage process tool but with modified parameters.
The make tool function checks for the validity of tool and argument names,
ignoring invalid entries. The update arg val function then processes valid argu-
ments. This function is responsible for determining if argument values are lists,
handling them recursively if so, and assessing the validity of each value, includ-
ing scenarios where values are function calls or reference outputs from previous
calls, ensuring comprehensive and accurate JSON conversion (Fig. 7).

Fig. 7. JSON Conversion Pipeline

A.2 Prompt for Section 4.3

Here are the prompts for Sect. 4.3, testing closed and open-source LLMs for tool
usage.
The only code you know to write is of type "var_i = function_call (
function_argument)", where i is the ith variable in use. You never output
anything else other than this format. You follow the sequence of completing
the query religiously. You have a given set of functions and you must use
them to answer the query. You are not allowed to use any other functions.

Here are the allowed functions -
{docstring of the functions}

Here are some sample queries and their respective responses:
{sample_python}

Answer very strictly in the same format shown above. Make sure to mention
type argument wherever relevant when calling works_list. Any missing type
arguments is not acceptable. Don ’t make unnecessary calls to any functions.
When given names , make sure to call search_object_by_name() to get work_ids.
Ensure logical continuity at each step. Ensure that the query is answered
fully. You are not allowed to nest function calls. You are not allowed to
output "python" or any other statement apart from the given format.



RTaC: A Generalized Framework for Tooling 77

Do not use any other format for output than the one given above. Do not put
any comment in your answer. Anything else other than the format specified is
not acceptable.
Do not define any new helper functions or any other python functions apart
from the ones provided. Do not output any text apart from the final output
code. If you are unable to answer a query , you can output "
Unanswerable_query_error ".

Answer the query: {user query}

Listing 1.1. Few Shot Prompting

Added Tools: {list of all the dynamic tools}

Query: {user query}

Listing 1.2. Tool Memorization Prompting

Allowed Tools: {list of all the tools}

Query: {user query}

Listing 1.3. RTaC Prompting

A.3 Default Tools Used to Generate New Tools

(See Table 8).

Table 8. Default Tools

Tool Description Functionality

works list Returns a list of work items matching the request

summarize objects Summarizes a list of objects. The logic of how to
summarize a particular object type is an internal
implementation detail

prioritize objects Returns a list of objects sorted by priority. The logic of
what constitutes priority for a given object is an internal
implementation detail

add work items to sprint Adds the given work items to the sprint

get sprint id Returns the ID of the current sprint

get similar work items Returns a list of work items that are similar to the given
work item

search object by name Given a search string, returns the id of a matching
object in the system of record. If multiple matches are
found, it returns the one where the confidence is highest

create actionable tasks
from text

Given a text, extracts actionable insights, and creates
tasks for them, which are kind of a work item

who am i Returns the string ID of the current user
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