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Abstract

We have reached a critical roadblock in the development and enhancement of long-
horizon, multi-component LLM agentic systems: it is incredibly tricky to identify
where these systems break down and why. Evaluation capabilities that currently
exist today (e.g., single pass LLM-as-a-judge) are limited in that they often focus on
individual metrics or capabilities, end-to-end outcomes, and are narrowly grounded
on the preferences of humans. We argue that to match the agentic capabilities,
evaluation frameworks must also be able to reason, probe, iterate, and understand
the complex logic passing through these systems over long horizons. In this paper,
we present RAFFLES - an evaluation architecture that incorporates reasoning
and iterative refinement. Specifically, RAFFLES operates as an iterative, multi-
component pipeline, using a central Judge to systematically investigate faults and
a set of specialized Evaluators to assess not only the system’s components but
also the quality of the reasoning by the Judge itself, thereby building a history of
hypotheses. We tested RAFFLES against several baselines on the Who&When
dataset, a benchmark designed to diagnose the "who" (agent) and "when" (step)
of a system’s failure. RAFFLES outperforms these baselines, achieving an agent-
step fault pair accuracy of over 43% on the Algorithmically-Generated dataset (a
substantial increase from the previously published best of 16.6%) and over 20%
on the Hand-Crafted dataset (surpassing the previously published best of 8.8%).
These results demonstrate a key step towards introducing automated fault detection
for autonomous systems over labor-intensive manual human review.

1 Introduction

As large language models (LLMs) evolve into complex, multi-component systems, a critical gap
has emerged between what they can do and how we can effectively evaluate them. The rise of
language-conditioned agentic architectures such as ReAct [1], Toolformer [2], and Reflexion [3]
allows systems to plan, reason, and act over long time horizons. However, these new architectures
also introduce novel failure modes that current evaluation strategies are not equipped to detect. Most
current strategies are confined to isolated metrics that focus on overall outcomes and they struggle
with longer contexts [4–6]. This leaves manual "detective work" as the only way to identify root cause
errors. In long-horizon agentic systems, a single, subtle error can quickly cascade, creating a ripple
effect of unexpected behaviors. Finding these root cause errors is a true "needle in the haystack"
problem. To date, when such step-level evaluation is done manually, it takes on the order of many
minutes to tens of minutes per data instance [4, 7, 8]. Such manual debugging is too costly and can
become a bottleneck. Instead, automatic evaluations of multi-turn, multi-component systems must
shift focus from end performance to better understanding where failures originate and how they form.



Figure 1: Our proposed RAFFLES framework for multi-turn agentic evaluation by reasoning-
based fault attribution. Evaluating new LLM systems requires a new generation of evaluators that
integrate multi-dimensional metrics, explainable judgments, and iterative refinement. RAFFLES
leverages specialized Evaluators designed to assess candidate faults based on the criteria of a decisive
fault. Each Evaluator takes in the full log τ and intermediate reasoning, which are passed to
subsequent iterations until a decisive fault is determined. The presented evolution of LLM systems
(orange) is inspired by a tutorial by Hassani, Karbasi, and Robey [13].

Automatic failure attribution within LLM multi-component agentic systems is an emerging area
of focus for the evaluation community [7–10]. However, preliminary results have demonstrated
limited success due to the challenges imposed by detecting faults in complex agentic systems. For
example, the LLM-as-a-judge has become a cornerstone of automated evaluation due to its flexibility
in approximating human evaluators [11, 12], and yet single-pass LLM evaluators struggle to detect
faults within the long trajectories of agentic systems [7, 8]. Effective evaluation by which one can
pinpoint faulty planning, logic, tool calls, calculations, code, etc. within multi-component systems
requires its own set of capabilities (e.g., reasoning, planning, tool calling, iterating). At a recent
ICML tutorial, a framework was introduced describing the progression from simple Chat-LLM,
to Routers, Tool-Caller, Iterators, and, finally, Fully Autonomous systems [13]. We believe that
evaluation systems must likewise evolve in a parallel manner: from single judgment Chat-LLMs, to
aspect-specific evaluator routing, deciding with tools, iterators that loop and refine, and eventually,
fully autonomous evaluators. We present this evolution of evaluators in Figure 1.

The need to evolve evaluation strategies to meet the demands of multi-component LLM systems can
be demonstrated via a simple example of implementing Retrieval-Augmented Generation (RAG).
RAG systems are conventionally judged by the final summary’s fidelity to an ideal summary [14,
15]. A more insightful evaluation, however, would be to determine the point of failure (e.g., retrieval
vs. generation) and characterize its nature (e.g., irrelevant retrieval vs. incoherent retrieved sets), to
provide a more accurate depiction of the system’s capabilities and shortcomings. Now, suppose we
also extend this system to include different tools for retrieval and a reflection loop to self-correct
those retrieved documents (i.e. [16]); every additional component that gets added increases the scope
of agent activity, the interaction effects, and the multitude of decisions that need to be understood and
evaluated.

In this paper, we attempt to realize this evolution in evaluation capabilities. We compare different
classes of evaluation architectures (Figure 1) with the explicit goal of detecting decisive, trajectory-
altering faults in multi-component systems. First, we extend and structure the reasoning capabilities
of our LLM-as-a-judge by introducing Evaluators. Second, we introduce iterative loops by which our
Judge can reflect on the confidence scores of the Evaluators and adjust its own assessments. We test
these capabilities on the Who&When benchmark [7], which consists of agentic logs and agent-step
fault pairs for a set of queries from GAIA [17] and AssistantBench [18]. Our experiments demonstrate
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that structured iterative reasoning provides a significant and robust performance advantage over
existing methods, consistently across diverse model families. Using Llama 3.3 70b model, RAFFLES
improved the step-level accuracy on fault attribution from a previously published best of 16.6% to
43.6% on the Algorithmically-Generated dataset, and from a previously published best of 8.8% to
20.7% on the Hand-Crafted dataset.

2 Related Work

Reasoning and automated evaluators. The automated evaluation of LLMs (and agentic systems)
has been enabled by (a) the extensive work done by researchers to introduce the LLM-as-a-judge [11,
12, 19, 20], and (b) recent advances in the reasoning capabilities of LLMs [21–24]. Enhancements
of the LLM-as-a-judge include new methods that incorporate planning within the prompt [25], self-
check reasoning [26], debate [27], and juries as judges [28]. Our contribution introduces a unique
evaluation architecture that incorporates numerous reasoning advances; we introduce a Judge and a
set of Evaluators that incorporate structured reasoning via problem decomposition [29, 30], natural
language confidence estimation [31–33], as well as iterative refinement [3, 34].

Fault attribution in agentic systems. Numerous evaluation frameworks [7, 8, 35–38] have shown
preliminary success evaluating agentic benchmark datasets like GAIA, SWEbench, and Assistant-
Bench[17, 18, 39]. Frameworks that detect trajectory-breaking faults include (a) a multi-agent debug-
ging tool [4], (b) a prompt-customized LLM-as-a-judge implementation [8], and (c) a comparison of
methods including the LLM-as-a-judge as well as binary search and Step by Step implementations
- the latter two allowing for multiple passes to isolate the step-level failure [7]. In our work, we
specifically focus on step-level fault detection and explore the benefits of fault detection within a
multi-step tolerance, given the interaction effects that occur between agent steps. Furthermore, we
introduce iterative refinement as a means to better detect faults within long-context traces, especially
for those that are more likely to get "lost in the middle" [5].

3 Background

Following Zhang et al. [7], we denote M =
〈
N , S, A, φ

〉
as a turn-based multi-agent system. Here,

S is the set of possible states s. A is the global action space of action a. Each agent i ∈ N can
perform actions from some subset Ai ⊆ A. φ(t) is a function that indicates which agent is active at
time t, ensuring that only one agent is active at time t.

A full trajectory τ can be written as τ = (s0, a0, s1, a1, . . . , sT ) where T is a terminal time step or
when the system enters a terminating state. The success or failure of a trajectory is determined by a
binary outcome function Z(τ):

Z(τ) =

{
1 if τ succeeds,
0 if τ results in failure.

In practice, Z usually represents an external evaluator, such as an LLM-based judge, that evaluates
the output of the pipeline τ , assessing whether the final outcome meets the desired objective [17, 40].
Given the dataset, we assume that there exists one or more τ∗ such that Z(τ∗) = 1. When a system
fails (Z(τ) = 0), we seek to understand where and when the failure occurs within the trajectory. This
requires a causal analysis to determine which action, if altered, would have changed the outcome.

To this end, we establish a precise hierarchy of faults to progress from local, procedural errors to the
single, causally significant event that led to the system’s failure.
Definition 3.1 (Step-Level Fault). A step-level fault occurs at time t if the action at is deemed
incorrect for a given state st by a local judge function f that takes in (at, st). Specifically, f produces
a probability c ∈ [0, 1] representing the likelihood of error. A fault exists if c = f(at, st) > ε.

The function f is usually a case-by-case LLM-judge that follows a certain taxonomy, most commonly
hallucination or execution error (e.g. [8, 10]). However, a step-level error may not be causally
responsible for the final failure. To establish causality, we must determine if a step-level fault had a
tangible impact on the trajectory’s result. To this end, we define two mutually exclusive fault concept.
Definition 3.2 (Causal Fault). Let τ be a trajectory with a failed trajectory (Z(τ) = 0) containing
a step-level fault at (f(st, at) > ε) such that an intervention that replaces at with ãt results in a
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successful trajectory. Formally, at is a causal fault if

Z(τ) = 0 ∧ ∃ãt s.t. Z(τ |do(at := ãt)) = 1

Here τ |do(at := ãt) denotes the counterfactual trajectory that unfolds after the intervention at time t,
borrowing notation from causal inference literature [41]. This definition isolates actions that were
causally responsible for the failure. Our definition of causal fault is similar to the definition of decisive
fault in Who&When [7]. However, a trajectory may contain step-level faults that are not causally
responsible for the final outcome, which we define as a trivial fault.
Definition 3.3 (Trivial Fault). Let τ be a trajectory with a failed trajectory (Z(τ) = 0) containing
a step-level fault at (f(st, at) > ε) such that no intervention replacing at with ãt can result in a
successful trajectory. Formally, at is a trivial fault if

Z(τ) = 0 ∧ ∀ãt s.t. Z(τ |do(at := ãt)) = 0

This occurs if a fault was minor, corrected later, or if a subsequent, unavoidable fault later in the
trajectory would have caused a failure regardless.

Finally, we define the decisive fault as the first causal fault in the trajectory. It is the earliest point at
which an intervention would have salvaged the outcome, making it the primary origin of the failure.
In the annotation guide in Who&When benchmark [7], annotators were asked to first think of the
most serious mistaken agent, implicitly considering the fault’s severity. However, prior definitions
of fault attribution have not formally accounted for this concept. To address this gap, we extend the
definition of fault attribution by incorporating a step-level function, f , to quantify the severity of a
fault.
Definition 3.4 (Decisive Fault Attribution). The decisive fault is the first causal fault to occur in a
trajectory. The process of identifying it can be formulated as a constrained optimization problem:

t∗ = argmin
t

t

subject to (a) f(st, at) > ε

(b) Z(τ |do(at := ãt)) = 1, for some ãt ∈ A

Definition 3.4 refines the theoretical construct of a decisive fault from Who&When by stipulating that
it must be a non-trivial, high-severity error. This revised definition not only aligns more closely with
the annotation guidelines for Who&When but also motivates the design of our RAFFLES framework.

4 RAFFLES

Given a system trajectory τ , we designed RAFFLES (Algorithm 1) as a Judge-Evaluator iterative
LLM system to attribute fault based on Definition 3.4, which we distill into 3 necessary criteria.

1. Primacy. The action of agent i at step t must be the earliest causal fault, satisfying the goal
of finding the min of t.

2. Fault Condition. The action of agent i at step t must constitute a step-level fault, satisfying
constraint (a).

3. Causality. The agent i’s mistake must be a causal fault and not a trivial fault, satisfying
constraint (b).

The design of the Judge and Evaluators is specifically tailored to facilitate structured reasoning of
these three criteria with confidence.

Judge: Judge J receives relevant execution logs τ and proposes the most likely candidate for the
decisive fault, consisting of the agent-step pair (i, t) and 3 criteria-driven rationales Rj = {r1j , r2j , r3j}
for its candidate selection. To enable structured reasoning, Judge provides rationales separately for
the three criteria of decisive faults. Judge is also asked to reference the log as needed for clarity, so as
to improve the faithfulness of the rationale. See details of the Judge prompt in Appendix F.3.

Evaluator: Each Evaluator Ep, for p ∈ {1, 2, 3} evaluates one of the three criteria for decisive faults
given the proposed agent-step pair (i, t), τ , and the rationale rpj from the Judge. Each Ep returns a
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rationale rpe assessing the criterion-specific soundness of the Judge’s rationale rpj and a confidence
score cpe between 0 and 100. We also designed an additional rule-based Evaluator p = 4 to validate
whether the proposed agent-step (i, t) pair is consistent with the log τ . The sum of confidences are
denoted as C =

∑
p c

p
e and the rationales are denoted as Re = {rpe ; p = {1, 2, 3, 4}}. See details of

the Evaluator prompt in Appendix F.3.

To facilitate the iterative reasoning, the output of the Evaluators is appended to a memory component
H. H is then fed back to the Judge in the subsequent iteration, enabling it to refine its candidate
agent-step pair (i, t) selection strategy.

The iteration concludes (TERMINATE) and the proposed agent-step pair (i, t) is considered the
decisive fault given the log τ and the evidence inH when either (a) C is greater than a threshold of
350, or (b) when a predefined maximum number of iterations K is reached and we take the candidate
with the highest confidence inH. We set K = 2 following the results of an ablation study in Figure
2b. An illustrative example of the iterative process can be found in Appendix A.

Overall, RAFFLES relies on the iterative and explicit reasoning process between the Judge and the
Evaluators, tailored to solve the constraint optimization problem defined in 3.4. Given the challenges
imposed by long-horizon, multi-component systems, we equip RAFFLES with more capabilities
to increase overall evaluation accuracy. We introduce a Judge that uses structured reasoning to
predict decisive faults, while a set of Evaluators check those predictions against unique criteria and
report their agreement using natural language confidence estimates. The Judge then incorporates
this feedback to iteratively refine decisive fault predictions to enable more accurate and reliable fault
detection.

Algorithm 1 RAFFLES: Iterative Reasoning-based Fault Attribution

Require: Trajectory τ , max iterations K
1: H ← ∅ {Initiate memory component for history}
2: k ← 0
3: while not TERMINATE(H) and k < K do
4: (i, t), Rj ← Judge(τ,H) {Propose agent-step pair and rationale from τ}
5: C,Re ← Evaluator(i, t, Rj , τ) {Invoke Evaluator Ep}
6: H ← H∪ {(C,Re)} {Update history}
7: k ← k + 1
8: end while
9: if TERMINATE(H) then

10: return (i∗, t∗), the decisive fault identified fromH
11: else
12: return None {No decisive fault found}
13: end if

5 Experiments

5.1 Baseline methods

We perform comprehensive experiments on RAFFLES with Llama-3.3-70B-Instruct1, Llama-3.1-8B-
Instruct 2, Mixtral-8x22B-Instruct-v0.1 3, and gpt-oss-20b model 4. All of the models are deployed
on NVIDIA A100 nodes using vLLM for inference optimization without quantization. For all
experiments except Mixtral, a greedy search is used with a maximum context length of 128k tokens;
Mixtral uses a maximum context length of 64k tokens. We include the GPT-4o results from Zhang et
al. [7] in our experiment result table as a comparison. For gpt-oss-20b, we set reasoning mode as low.
We empirically find that other modes of reasoning creates long, incoherent outputs, leading to context
limit errors. This finding aligns with the non-scaling trends documented in recent literature [42], and
we are now actively investigating this phenomenon in the context of long-horizon evaluations.

1https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
2https://huggingface.co/meta-llama/Llama-3.1-8B
3https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
4https://huggingface.co/openai/gpt-oss-20b
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In addition to RAFFLES, we implement four baselines categorized by the evaluation system hierarchy
shown in Figure 1, covering prior work and a strong Tool-Caller baseline proposed by us. The first is
a one-shot LLM-as-a-judge from [7], which directly evaluates the entire log and problem statement
to find the faulty step. The second class of evaluators is LLM routers proposed in Who&When
[7], including a Step by Step method that examines the log sequentially, stopping when an error
is detected and a binary search method that iteratively determines if an error lies in the upper or
lower half of the log to narrow the search. Finally, we propose a strong baseline Tool-Caller that
uses a planner to decide which step to investigate, calling an LLM judge with the log index (e.g.,
<tool>judge(id=1)</tool>) up to three times. The prompts used for these baselines are available
in Appendix F.

5.2 Dataset

Our experiments are conducted on the Who&When dataset [7], a benchmark specifically created
for fault attribution in multi-agent systems. The dataset is composed of two distinct subsets: (a)
an Algorithmically-Generated dataset, which has 191 unique agents across 126 logs, and (b) a
Hand-Crafted dataset with 5 unique agents across 58 logs. On average, Algorithmically-Generated
task logs have 8.6 steps while Hand-Crafted logs have 50 steps (see Appendix B Table 4). The
Hand-Crafted dataset was specifically designed to be more challenging and reflect realistic system
failures. Each log in the dataset includes the initial problem statement, a complete trace of agent-
to-agent communications, the ground truth answer of the initial problem, and an annotated label
pinpointing the erroneous agent and the specific step number of the failure. All of our experimental
results attribute faults without any access to the ground-truth information.

5.3 Evaluation Metrics

We propose two metrics for fault attribution. (1) Strict Step-Level Accuracy (or simply Step-Level
Accuracy): This is the primary metric, the proportion of test cases where the system correctly predicts
the exact step number t of the fault within the trajectory τ . This serves as our most stringent measure of
performance, requiring precise identification of the failure point. (2) Tolerant Step-Level Accuracy:
This secondary metric measures accuracy within a tolerance window of k steps. A prediction t̂ is
considered correct if it falls within k steps of the ground-truth fault step (i.e. |t̂ − tgt| ≤ k). This
metric, known as step-level accuracy with tolerance ±k steps, is a good indicator of practical utility,
as pinpointing a fault to a small window (e.g., k ≤ 2) is often sufficient to guide efficient manual
inspection and debugging of interacting components.

Prior work has also reported an agent-level accuracy metric [7]. However, in our analysis, we found
significant label imbalance at the agent-level: 97% of all agent events are the WebSurfer and the
Orchestrator, and, in 57% of all cases, the WebSurfer agent is the ground truth cause of failure. Thus,
a trivial baseline could achieve an agent-level accuracy of 57%, making agent-level accuracy less
meaningful. Hence, our experiments primarily focus on step-level metrics described above. We
discuss these findings in more detail in Appendix B. We present agent-level comparisons in Appendix
C for completeness.

6 Results

Tables 1 and 2 detail the step-level accuracy on the Algorithmically-Generated and Hand-Crafted
datasets, respectively, using a maximum of K = 2 iterations. To validate our setup, we confirmed that
our baseline performance is comparable to the original results published in Who&When [7], except
for the Step by Step method, for which we consistently got 0 step level accuracy on the Hand-Crafted
dataset. We included results from the original Who&When paper in the Zhang et al. [7] column for
reference.

RAFFLES detects decisive faults better than existing methods across diverse model families. On
the Algorithmically-Generated dataset, RAFFLES outperforms our strongest baseline, Tool-Caller,
by 31% with Llama 3.3 70B and 51% with gpt-oss-20b. The performance superiority is further
validated on the more challenging Hand-Crafted dataset, where RAFFLES surpasses Tool-Caller by
53% (Llama 3.3 70B) and 30% (gpt-oss-20b). These results collectively show that our framework’s
iterative approach provides a universal performance lift across all benchmark models, from large-scale
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Table 1: Step-level accuracy on Who&When Algorithmically-Generated dataset
Method Llama 3.1 8B Llama 3.3 70B Mixtral-8x22b gpt-oss-20b Zhang et al. [7]

Chat-LLM 15.08 19.05 20.63 14.29 13.53

Routers
Step by Step 5.56 6.35 10.32 11.90 15.31
Binary Search 0.79 4.76 0.79 23.81 16.59

Tool-Caller 19.05 33.33 17.46 29.37 -
RAFFLES 34.92 43.65 29.37 44.44 -

Table 2: Step-level accuracy on Who&When Hand-Crafted dataset
Method Llama 3.1 8B Llama 3.3 70B Mixtral-8x22b gpt-oss-20b Zhang et al. [7]

Chat-LLM 6.90 6.90 1.75 3.45 3.51

Routers
Step by Step 0.00 0.00 0.00 0.00 8.77
Binary Search 5.17 10.34 10.34 13.79 6.90

Tool-Caller 18.97 13.56 7.02 17.24 -
RAFFLES 25.86 20.69 15.79 22.41 -

Mixture-of-Experts (MoE) models with pre-trained reasoning capabilities to smaller models with
limited pre-trained reasoning. Furthermore, as shown in Table 3, RAFFLES consistently outperforms
our Chat-LLM baseline across nearly all tolerance thresholds in both datasets.

Methods using only partial trajectories as input context underperform. We find that methods
with access to the end-to-end trajectories are more successful in fault attribution. The Step by Step
approach, which only retains context of prior steps, struggles significantly on longer trajectories like
those in the Hand-Crafted dataset where it consistently underperforms compared to the Chat-LLM
baseline across nearly all model families. Similarly, the binary search method is moderately effective
at localizing faults within long contexts but proves ineffective on shorter trajectories where its
narrowing function may be unnecessary and negatively impactful. These results not only underscore
the importance of maintaining a global, end-to-end view of the trajectory, but also the flexibility for
focused, localized analysis. RAFFLES outperforms these baselines by utilizing the design where the
Judge operates on the global context to form hypotheses and the Evaluators concentrate the reasoning
process on the hypothesized agent-step fault candidate.

Performance degrades for longer trajectories. While a global context is necessary for robust
fault attribution, our analysis reveals a central dichotomy: the effectiveness of these methods is
negatively impacted by increasing trajectory length. As our experiments in Figure 2a reveal, a
clear pattern emerges where step-level fault detection accuracy decreases as trajectories increase
in context token length. This observation is directly attributable to the inherent challenge models
face in accurately pinpointing a decisive fault within long, complex trajectories. However, the
results in Figure 2a demonstrate that RAFFLES consistently outperforms the Chat-LLM baseline, a
performance advantage that holds even for longer contexts.

Structured reasoning outperforms flexible tool calling. While the Tool-Caller baseline introduces
an improvement over the Router and Chat-LLM baselines, it is still consistently outperformed by
RAFFLES. We attribute this performance gap to the lack of procedural reliability and robust reasoning
within the Tool-Caller’s Planner. Although designed for flexible and efficient decision-making, the
Planner frequently fails to generate high-quality candidates for the Judge component to evaluate.
A key advantage of RAFFLES is structured reasoning. As shown in Figure 2b, even with a single
iteration K = 1, which constitutes a single-pass with a structured LLM judge, RAFFLES achieves a
step-level accuracy of 27.59% on Hand-Crafted and 42.85% on Algorithmically-Generated dataset,
outperforming all of our baselines using Llama 3.3 70b. This demonstrates that structured reasoning
itself is inherently more effective than the flexible tool-calling implementation.
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(a) Step-level accuracy and trajectory token length (b) Step-level accuracy per reasoning iterations

Figure 2: (a) Performance degrades with increased trajectory length. Quartile of token length is
with respect to the corresponding dataset. (b) The effect of reasoning iteration on tolerant step-level
accuracy ±5. All figures are using Llama 3.3 70b model.

Table 3: Tolerant step-level accuracy with ±t steps error tolerance using Llama 3.3 70b model
Dataset Method Acc. ±1 ±2 ±3 ±4 ±5
Algorithmically- Chat-LLM (One Shot) 19.05 49.21 64.49 75.40 86.51 90.48
Generated RAFFLES (Iterator) 43.65 58.73 73.81 82.54 91.27 92.86

Hand-Crafted Chat-LLM (One Shot) 6.90 12.07 20.69 31.03 32.76 44.83
RAFFLES (Iterator) 20.69 25.86 27.59 29.31 46.55 48.28

Iterative improvement is not monotonic, necessitating an early stopping mechanism. Our results
show that iterative reasoning does not monotonically improve accuracy, a finding consistent with
Self-Refine [34], where they find performance improve for up to 3 iterations, suggesting diminishing
returns with the number of iterations. We observe a similar, complex pattern in our experiments, as
illustrated for the Llama 3.3 70B model in Figure 2b. On the Algorithmically-Generated dataset, the
accuracy steadily improves from 70.35% to 75.40% with ±2 tolerance by the fourth iteration. However,
on the more challenging Hand-Crafted dataset, accuracy initially decreases before recovering and
stabilizing at an equilibrium. This is likely caused by the Hand-Crafted dataset’s larger and more
complex search space, which impedes convergence, as we detail in Appendix D. These findings
collectively highlight the necessity of an early stopping mechanism, such as a maximum iteration
count K, to cap the reasoning process.

7 Conclusion

The increasing complexity of agentic systems has revealed a significant methodological gap, where
existing evaluation frameworks are insufficient for diagnosing system failures. Current approaches,
like single-pass LLM-as-a-judge, often fall short because they focus on end-to-end outcomes, making
them unable to pinpoint the origin of errors within complex trajectories. This exposes a central
challenge for accurate, step-level fault attribution: identifying decisive faults requires the full context
of a multi-component LLM system’s trajectory, yet LLMs struggle to reason effectively over long
contexts.

To address this, we introduced RAFFLES, a novel iterative evaluation architecture designed to
systematically identify these decisive faults. Our Judge-Evaluator iterative architecture builds a
history of hypotheses and iteratively refines its reasoning, not only evaluating a candidate fault but
also critiquing the reasoning behind its selection. By allowing error correction and iterative structured
reasoning, which are central for problems that cannot be resolved in a single step, our results show
a step-level accuracy of over 43% on the Algorithmically-Generated dataset (a substantial increase
from the previously published best of 16.6%) and over 20% on the Hand-Crafted dataset (surpassing
the previously published best of 8.8%). These results lays the foundation towards automated fault
detection for LLM systems over time-consuming manual human review.
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Appendix

A Example of RAFFLES reasoning process

An example RAFFLES reasoning process can be found in the Figure below.

Figure 3: Example log from Who&When dataset, and how RAFFLES iterative reasoning process
achieves the correct decisive fault.
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Figure 4: Continued example of RAFFLES’s iterative reasoning process between Judge and Evaluator.
Each reasoning block from the Judge, showcased in different colors, will be sent to different Evaluators
specifically. We instruct the Evaluators to not only focus on whether the reasoning given by the Judge
is sound, and give a confidence score of the soundness of each rationale.

B Discussion on Who&When dataset

The Who&When dataset is one of the first open-source datasets to address the issue of fault attribution.
It advances the field by giving a new perspective on evaluating language-conditioned agentic systems.
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Table 4: Basic statistics of the Who&When dataset.
Who&When

Statistic Algorithmically-Generated Hand-Crafted

Number of Samples 126 58

Avg. Steps 8.72 50.60

Avg. Log Token Size 3.24K 18.68K

Table 5: Agents with the most frequent faults in the Who&When dataset.
Algorithmically-Generated Hand-Crafted

Mistake Agent Count Mistake Agent Count
Verification_Expert 18 WebSurfer 33
PythonDebugging_Expert 7 Orchestrator 18
DataAnalysis_Expert 6 Assistant 4
Validation_Expert 5 FileSurfer 3
DataVerification_Expert 5

Table 6: Top-5 steps where the most mistakes occur in the Who&When dataset
Algorithmically-Generated Hand-Crafted
Step Count Step Count
1 34 8 9
0 20 4 9
5 14 12 8
3 13 9 3
8 12 16 3

We show some high-level statistics for this dataset in Table 4, as well as the most frequent step-level
and faults in Table 5 and Table 6, respectively.

While the Hand-Crafted dataset has more steps on average (55 steps when compared to the
Algorithmically-Generated average of 8 steps), there are only 5 possible agents across all steps
and logs. Specifically, the WebSurfer agent is the decisive fault in 33 out of 58 instances. A trivial sys-
tem that always guesses the WebSurfer can achieve at least 57% accuracy. Another factor impacting
agent-level detection in the Hand-Crafted dataset is that 97% of the agent events are the WebSurfer
and the Orchesterator. Epperson et al [4] found that there’s some nuance to detecting decisive faults
at an agent-level, given that on some occasions, they could only correct a faulty WebSurfer instance
by fixing the preceding planning step by the Orchestrator. This interactive nature between agents
indicates that there is some subjectivity in assigning faults between planning and executing agents,
and therefore, there may be some benefit to detecting agent- and step-level faults at some level of
coarseness, or tolerance, rather than precisely at one step.

In addition, we’ve also found that 3 cases out of 126 in the Algorithmically-Generated dataset and
3 cases out of 58 in the Hand-Crafted dataset have inconsistencies where the agent-step pair in the
ground truth does not correspond to the actual agent-step pair in the log. Either the agent name in
the ground truth is erroneous, or the step number is incorrect. The specific instances are 59.json,
15.json, 14.json in Algorithmically-Generated dataset, and 22.json, 20.json, 49.json in
Hand-Crafted dataset. Fixing these erroneous cases is outside of the scope of this paper, but we
advise future researchers to take notice that these erroneous cases exist.
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C Full Results on Who&When Dataset

In this section, we show both agent-level and step-level results on Who&When dataset with different
model families of Llama 3.3 70b (Table 7), Llama 3.1 8b (Table 8), Mixtral-8x22b (Table 9) and
GPT-oss-20b (Table 10).

RAFFLES consistently ranks first or second across model families on both the Algorithmically-
Generated and Hand-Crafted datasets for both step-level and agent-level detection.

Table 7: Results of Llama 3.3 70b model on Who&When dataset
Algorithmically-Generated (126) Hand-Crafted (58)

Method Step-level Agent-level Step-level Agent-level

Chat-LLM (One Shot) 19.05 55.56 6.90 63.79 (37/58)

Routers
Step by Step 6.35 23.02 0.00 13.56
Binary Search 4.76 32.54 10.34 53.45

Tool-Caller 33.33 46.03 13.56 50.85
RAFFLES (Iterators) 43.65 61.90 20.69 60.34 (35/58)

Table 8: Results of Llama 3.1 8b model on Who&When dataset
Algorithmically-Generated (126) Hand-Crafted (58)

Method Step-level Agent-level Step-level Agent-level

Chat-LLM (One Shot) 15.08 53.97 (68/126) 6.90 62.07 (36/58)

Routers
Step by Step 5.56 20.63 0.00 5.17
Binary Search 0.79 35.71 5.17 50.00

Tool-Caller 19.05 45.24 18.97 53.45
RAFFLES (Iterators) 34.92 50.00 (63/126) 25.86 58.62 (34/58)

Table 9: Results of Mixtral-8x22b model on Who&When dataset
Algorithmically-Generated (126) Hand-Crafted (58)

Method Step-level Agent-level Step-level Agent-level

Chat-LLM (One Shot) 20.63 35.71 1.75 52.63

Routers
Step by Step 10.32 28.57 0.00 3.45
Binary Search 0.79 33.33 10.34 53.45

Tool-Caller 17.46 31.75 7.02 38.60
RAFFLES (Iterators) 29.37 47.62 15.79 38.60

D Extended Analysis

This section provides a detailed analysis of the convergence of RAFFLES over multiple iterations.
Figure 5 illustrates the model’s convergence from iteration 1 to 3 on the Who&When dataset using
Llama 3.3 70B. At an aggregate level, the predicted steps for both the Algorithmically-Generated and
Hand-Crafted datasets converge toward the ground truth distribution. Focusing on the Hand-Crafted
dataset in Figure 5b, the model initially tends to predict the decisive fault at an early step (t̂ ≤ 5),
resulting in a prominent spike in the first iteration’s distribution. Over subsequent iterations, this
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Table 10: Results of gpt-oss-20b model on Who&When dataset
Algorithmically-Generated (126) Hand-Crafted (58)

Method Step-level Agent-level Step-level Agent-level

Chat-LLM (One Shot) 14.29 63.49 3.45 25.86

Routers
Step by Step 11.90 30.16 0.00 34.48
Binary Search 23.81 46.83 13.79 55.17

Tool-Caller 29.37 41.27 17.24 39.66
RAFFLES (Iterators) 44.44 58.73 22.41 53.45

(a) Histogram of predicted and ground truth step for Algorithmically-Generated dataset, from iteration 1 to 3.

(b) Histogram of predicted and ground truth step for Hand-Crafted dataset, from iteration 1 to 3.

Figure 5: Histogram of predicted and ground truth step for Who&When dataset, from iteration 1 to 3
for Llama 3.3 70b model. Notice that, for a given iteration k, we do not show the data points where
convergence already happened in prior steps k′ < k, hence the difference in ground truth histogram.

distribution converges towards that of the ground truth, showcasing the efficacy of the iterative
process.

The primary distinction between the Algorithmically-Generated (Figure 5a) and Hand-Crafted (Figure
5b) datasets lies in their ground truth distributions. Most ground truth steps in the Algorithmically-
Generated dataset are within the first four steps, while the Hand-Crafted dataset has a more distributed
range of steps. The LLM’s initial predictions often favor these early steps, a bias evident in Figure
5b. We hypothesize this is analogous to the "lost in the middle" phenomenon reported for LLMs in
long-context scenarios [5]. Furthermore, the "first mistake" framing in the prompt may predispose the
model to focus on the initial part of the trajectory, further necessitating an iterative process with the
"correction prompt" within the 3rd Evaluator’s instructions. Beginning in iterations 2 and 3, critiques
from this Evaluator prompt the Judge to reason more deeply and select candidates in later steps,
thereby refining the prediction distribution to more closely match the ground truth.
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Table 11: Percentage of changed agent-step pair (i, t) between current and prior iterations
Iteration 1→2 Iteration 2→3 Iteration 3→4 Iteration 4→5

Algorithmically-Generated 25.40% 14.29% 3.97% 5.56%
Hand-Crafted 37.93% 8.62% 3.45% 5.17%

This initial prediction bias, combined with the inherently larger search space of the Hand-Crafted
problems, increases the reasoning difficulty. This confluence of factors contributes to the accuracy
degradation observed in Figure 2b. Furthermore, we analyze the rate of convergence by computing
the percentage of changed steps between consecutive iterations, presented in Table 11. While more
than a quarter of the steps are revised between the first and second iterations, the rate of change
decreases substantially by iteration 4. This pattern indicates diminishing returns, a characteristic also
observed in prior research on self-refinement methods [34].

E Limitations and Next Step

A significant constraint of this study was the limitation on available computational resources. This
precluded the use of more powerful, state-of-the-art large language models, such as those in the
GPT and Claude series, for our experiments. These models often demonstrate enhanced capabilities
in complex reasoning and generation tasks. Despite this, it is noteworthy that our findings are
comparable to the benchmark results reported in the Who&When paper [7], suggesting the robustness
of our approach even with more modest computational architectures. Future work would benefit from
validating these results on larger-scale models to explore the upper bounds of performance.

A broader, systemic challenge confronting this domain is the pronounced scarcity of large-scale,
high-quality data. In our experiments, we tested the publicly available Who&When dataset. The
current fault attribution data landscape is insufficient for the comprehensive validation of the methods
proposed in the fault attribution field. For future work, it’s important to curate larger, more diverse
public datasets that can support more rigorous and generalizable model evaluation and training.
Additionally, the development of reliable methods for generating synthetic data specifically tailored
for fault attribution tasks would also be of great interest for the future.

Our work is also limited by the token context length budget. While adequate for the Who&When
dataset, this is insufficient for more complex benchmarks like TRAIL [8], which features average
context lengths of 300k to 700k tokens. Such extremely long contexts pose significant challenges
for both the long-horizon reasoning capabilities of language models and the efficiency of model
inference, demanding future innovations in model architecture and computational optimization.

F Prompt

F.1 Baseline prompt

We took the one-shot prompt in [7] and slightly modified the prompt to the Llama model chat template
format.

Chat-LLM Prompt

You are an AI assistant tasked with analyzing a multi-agent
conversation history when solving a real world problem.
The problem is: {problem}.
Identify which agent made an error, at which step, and explain the
reason for the error.
Here’s the conversation: {failure_log}
Based on this conversation, please predict the following:
1. The name of the agent who made a mistake that should be directly
responsible for the wrong solution to the real
world problem. If there are no agents that make obvious mistakes,
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decide one single agent in your mind. Directly
output the name of the Expert.
2. In which step the mistake agent first made mistake. For example,
in a conversation structured as follows:
{{
”agent a”: ”xx”,
”agent b”: ”xxxx”,
”agent c”: ”xxxxx”,
”agent a”: ”xxxxxxx”
}},
each entry represents a ’step’ where an agent provides input.
The ’x’ symbolizes the speech of each agent. If the
mistake is in agent c’s speech, the step number is 2. If the second
speech by ’agent a’ contains the mistake, the step
number is 3, and so on. Please determine the step number where the
first mistake occurred.
3. The reason for your prediction. Please answer in the format.
Notice that you can *ONLY* output the json.
‘‘‘json
{{

"agent_name": "",
"step_number": 0,
"reason_for_mistake": ""

}}
‘‘‘

For both the Step by Step baseline and binary search baseline, we use the following prompt template.
We then use the specific task description to describe the required logic for Step by Step. These
prompts are taken mostly from the Who&When paper with slight modification [7].

Prompt Template

You are an intelligent assistant that takes in a task
description, and task output and complete based on
requirements.

Task Description
{task_description}

Input Metadata
{input_metadata}

Task Output
{task_output}

Remember, that your output should only be a json and nothing else.

Step by Step instruction

You are an AI assistant tasked with evaluating the correctness of
each step in an ongoing multi-agent conversation aimed at solving
a real-world problem. Based on the conversation history in
"history_up_to_step" up to the current step.
Your task is to **determine whether the most recent agent’s action
contains an error that could hinder the problemsolving process**.
Please respond with ’Yes’ or ’No’ and provide a clear explanation for
your judgment.
Note: Please avoid being overly critical in your evaluation.
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Attention: Respond in the format:
1. Yes/No. Yes being that the pipeline failure is because of this
latest step and No being that the pipeline failure is not because of
this step.
2. Reason for the judgment.
Remember that you are not trying to answer the question based on the
question given. Your job is to **determine whether the most recent
agent’s action contains an error that could hinder the problemsolving
process**.

Step by Step task output

Please answer in the format:
‘‘‘json
{

"judgement": "upper half" or "lower half",
"reason": ""

}
‘‘‘

Binary Search instruction

You are an AI assistant tasked with analyzing a segment of a multi-agent
conversation. Multiple agents are collaborating to address a user query,
with the goal of resolving the query through their collective dialogue.
Your primary task is to identify location of the most critical mistake,
and determine the single step in the conversation
where this error occurs, ultimately leading to the failure in resolving
the user’s query.
Based on your analysis, predict whether the error is more likely to be
located in the upper or lower half of the segment.
lower half is defined as the range lower half range and upper half is
defined as the range upper half range.
Please simply output either ’upper half’ or ’lower half’.
You should not output anything else.

Binary Search task output

Please answer in the format:
‘‘‘json
{

"judgement": "upper half" or "lower half",
"reason": ""

}
‘‘‘

F.2 Tool-Caller prompt

Our Tool-Caller mechanism is implemented using LangChain 5 and is designed to improve upon
traditional Step by Step methods. It features a Planner that leverages global access to the entire log
to intelligently select a specific step to inspect via its id. A Judge, similar to the one in the Step by
Step approach, then evaluates the process up to the step designated by the Planner.

This architecture allows the Tool-Caller to dynamically select the most relevant point for evaluation,
breaking free from a predefined, rigid iterative sequence. Because the Planner has a global view of
the process, its selection of the next candidate to inspect is significantly more efficient and intelligent.

5https://www.langchain.com/
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Despite having a planner and judge like RAFFLES, the Tool-Caller method does not necessarily have
a structured and iterative reasoning process. The planner does not reason explicitly before giving
out the next candidate to check. There is only one judge, which is insufficient to provide enough
reasoning to support the complexity of the fault attribution task.

Tool-Caller Prompt

You are an expert in planning
and calling agents to evaluate the input.
You are given a system log and a set of possible agents.
Based on the log, you will need to make one or more agent calls to
achieve the purpose.
If none of the agents can be used, point it out. If the given question
lacks the parameters required by the function, also point it out.
If you decide to invoke any of the function(s), you MUST put it in the
format of <agent>agent_name(args, kwargs)</agent>
You SHOULD NOT include any other text in the response. You should only
call each agent ONCE.
Here is a list of agents in JSON format that you can invoke.
1. You don’t have to look over the entire conversation history one
after another, it is okay to choose the most important one first.
2. There is only one mistake in each conversation history, so you only
need to find one agent and one step.
3. Your goal is to find the agent at fault with the least number of agent
calls. So choose the agent to inspect wisely based on which agent looks
like that it has fault.
4. User cannot make a mistake, so there’s no need to consider user input.
5. If you cannot find any mistake, you can output "no mistake" as the
agent name and -1 as the step number.
6. You should limit your tool calling to less than 3 times.
<|eot_id|><|start_header_id|>user<|end_header_id|>

Your job is to use agents to give a assessment score on each of the
following components of the complex system,
‘‘‘
Evaluate based on the following log of the pipeline:
{input_data[’metadata’]}
Now, start your evaluation. Your generation can only be of 2 of these
options.
Option A, if you want to call an agent,
1. **ONLY** output the tool calling and nothing else, such as
<agent>agent_name(args, kwargs)</agent>.
2. You can only call one agent at a time.
Option B, if you feel confident about the tools already used and is
ready to
give the overall score, provide the following information in json
Please answer in the format:
‘‘‘json
{{

"agent_name": "",
"step_number": 0,
"reason_for_mistake": ""

}}
‘‘‘
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Tool-Caller Judge Prompt

You are an AI assistant tasked with evaluating the correctness of each
step in an ongoing multi-agent conversation aimed at solving a
real-world problem.
Based on the conversation history in "history_up_to_step" up to the
current step.
Your task is to **determine whether the most recent agent’s action
contains an error that could hinder the problemsolving process**.
Please respond with ’Yes’ or ’No’ and provide a clear explanation
for your judgment.
Note: Please avoid being overly critical in your evaluation.
Attention: Respond in the format:
1. Yes/No. Yes being that the pipeline failure is because of this
latest step and No being that the pipeline failure is not because of
this step.
2. Reason for the judgment.
Remember that you are not trying to answer the question based on the
question given. Your job is to **determine whether the most recent
agent’s action contains an error that could hinder the problemsolving
process**.
Please answer in the format:
‘‘‘json
{{

"judgement": "yes" or "no",
"reason": ""

}}
‘‘‘
conversation history:
{prompt_history}

F.3 RAFFLES Prompt

RAFFLES’s judge prompt uses the same prompt template as the Step by Step prompt template.

Judge Prompt

You are an AI assistant tasked with analyzing a multi-agent conversation
history when solving a real world problem. Identify which agent made an
error, at which step, and explain the reason for the error.
Based on this conversation, please predict the following:
1. The name of the agent who made a mistake that should be directly
responsible for the wrong solution to the real world problem. If there
are no agents that make obvious mistakes, decide one single agent in
your mind. Directly output the name of the Expert.
2. In which step the mistake agent first made mistake.
**You must always output an agent name and a step number.** Null, None,
or empty values are strictly forbidden for the "agent_name" and
"step_number" fields.
Notice that you should point out the agent and the step such that
all three of the following criteria are satisfied:
1. The agent made a mistake at that step.
2. It is the first mistake step that relates to the final wrong outcome.
3. The mistake was not corrected by or correctable by later agents.
## Handling Ambiguity (Fallback Procedure)
In cases where no single agent or step perfectly meets all three
criteria (for example, if the error was collaborative or no obvious
mistake exists), **you must apply the following logic to make a
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determination:**
Identify the agent whose contribution was the **most pivotal in setting
the final, incorrect direction.** This could be the agent who introduced
the flawed method, provided the key piece of wrong information, or
signed off on the solution without a final critical review. Select the
corresponding step. This ensures you always provide a "best guess" even
in unclear situations.

task output format

Please answer in the format:
‘‘‘json
{{

"agent_name": "The name of the faulty agent you identified,
satisfying all the three criteria.",
"step_number": "The step number where the chosen agent made
the mistake, satisfying all the three criteria.",
"mistake_reason": "Briefly explain **why the agent made a
mistake at that step.**. Reference the log as needed for clarity.",
"first_mistake": "Briefly explain **why it is the first mistake
step that relates to the final wrong outcome.** Reference the
log as needed for clarity.",
"mistake_not_corrected": "Briefly explain **how the mistake was
not corrected by or correctable by later agents.** Reference the
log as needed for clarity."

}}
‘‘‘

Evaluator 1: Mistake Prompt

You are a rigorous and meticulous logic verifier, serving as a critical
component within a reasoning system dedicated to fault attribution in
complex system logs. Your specific assigned task is to verify the
reasoning logic provided by your partner. Your sole purpose is to
identify flaws, inconsistencies, and leaps in logic, and you must not be
swayed by your partner’s conclusion, but only by the soundness of their
argument. Your partner will identify the agent and the step such that all
three of the following criteria are satisfied:
1. The agent made a mistake at that step.
2. It is the first mistake step that relates to the final wrong outcome.
3. The mistake was not corrected by or correctable by later agents.
Hence, you are provided with the following inputs:
- Task Log: A multi-agent conversation log
- Error Step: Output from your partner with candidate point of fault and
their associated reasoning.
Your task is **ONLY** to think whether the argument provided by your
partner for ’correctly pointing out a faulty agent and step number’ is
logical. You will try to verify the argument from the task log and
give your reasons about whether this argument is logical or not. Then,
you will give a confidence score between 0 to 100 indicating your
confidence in the soundness of your partner’s argument.
For example, general or non-specific reasoning that cannot be verified by
a non-expert is less logical than specific reasoning that can be easily
verified. Further, if you are unable to verify the correctness of the
argument from the task log, you should give a low confidence score.
## Task Log ##
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{task_log}
## Error Step ##
{error_step}
## Your output format ##
You should directly output a json in the following format:
‘‘‘json
{{

"reason": "Briefly explain why the given argument for ’correctly
pointing out a faulty agent and step number’ is sound or unsound.
If unsound, identify the specific flaw.",
"confidence": "Assign an integer score between 0 to 100 indicating
your confidence in the **soundness and logical consistency of the
partner’s argument**. 100 means the argument is logical, specific,
and fully supported by the log. 0 means the argument is illogical,
non-specific, or contradicts the log."

}}
‘‘‘

Evaluator 2: First Mistake Prompt

You are a rigorous and meticulous logic verifier, serving as a critical
component within a reasoning system dedicated to fault attribution in
complex system logs. Your specific assigned task is to verify the
reasoning logic provided by your partner. Your sole purpose is to
identify flaws, inconsistencies, and leaps in logic, and you must not
be swayed by your partner’s conclusion, but only by the soundness of
their argument.
Your partner will identify the agent and the step such that all three
of the following criteria are satisfied:
1. The agent made a mistake at that step.
2. It is the first mistake step that relates to the final wrong outcome.
3. The mistake was not corrected by or correctable by later agents.
Hence, you are provided with the following inputs:
- Task Log: A multi-agent conversation log
- Error Step: Output from your partner with candidate point of fault
and their associated reasoning.
Your task is **ONLY** to think whether the argument provided by your
partner for ’finding the first mistake in the pipeline’ is logical.
You will try to verify the argument from the task log and give your
reasons about whether this argument is logical or not. Then, you will
give a confidence score between 0 to 100 indicating your confidence
in the soundness of your partner’s argument.
For example, general or non-specific reasoning that cannot be verified
by a non-expert is less logical than specific reasoning that can be
easily verified. Further, if you are unable to verify the correctness
of the argument from the task log, you should give a low confidence
score.
## Task Log ##
{task_log}
## Error Step ##
{error_step}
## Your output format ##
You should directly output a json in the following format:
‘‘‘json
{{

"reason": "Briefly explain why the given argument for ’finding the
first mistake in the pipeline’ is sound or unsound. If unsound,
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identify the specific flaw.",
"confidence": "Assign an integer score between 0 to 100 indicating
your confidence in the **soundness and logical consistency of the
partner’s argument**. 100 means the argument is logical, specific,
and fully supported by the log. 0 means the argument is illogical,
non-specific, or contradicts the log."

}}
‘‘‘

Evaluator 3: Correction Prompt

You are a rigorous and meticulous logic verifier, serving as a critical
component within a reasoning system dedicated to fault attribution in
complex system logs. Your specific assigned task is to verify the
reasoning logic provided by your partner. Your sole purpose is to
identify flaws, inconsistencies, and leaps in logic, and you must not
be swayed by your partner’s conclusion, but only by the soundness of
their argument.
Your partner will identify the agent and the step such that all three
of the following criteria are satisfied:
1. The agent made a mistake at that step.
2. It is the first mistake step that relates to the final wrong outcome.
3. The mistake was not corrected by or correctable by later agents.
Hence, you are provided with the following inputs:
- Task Log: A multi-agent conversation log
- Error Step: Output from your partner with candidate point of fault and
their associated reasoning.
Your task is **ONLY** to think whether the argument provided by your
partner for ’how this mistake was never corrected afterwards’ is logical.
You will try to verify the argument from the task log and give your
reasons about whether this argument is logical or not. Then, you will
give a confidence score between 0 to 100 indicating your confidence
in the soundness of your partner’s argument.
For example, general or non-specific reasoning that cannot be verified
by a non-expert is less logical than specific reasoning that can be
easily verified. Further, if you are unable to verify the correctness
of the argument from the task log, you should give a low confidence
score.
## Task Log ##
{task_log}
## Error Step ##
{error_step}
## Your output format ##
You should directly output a json in the following format:
‘‘‘json
{{

"reason": "Briefly explain why the given argument for ’how this
mistake was never corrected afterwards’ is sound or unsound. If
unsound, identify the specific flaw.",
"confidence": "Assign an integer score between 0 to 100 indicating
your confidence in the **soundness and logical consistency of the
partner’s argument**. 100 means the argument is logical, specific,
and fully supported by the log. 0 means the argument is illogical,
non-specific, or contradicts the log."

}}
‘‘‘
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