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Abstract
Federated learning (FL) enables decentralized
clients to train a model collaboratively without
sharing local data. A key distinction between
FL and centralized learning is that clients’ data
are non-independent and identically distributed,
which poses significant challenges in training a
global model that generalizes well across hetero-
geneous local data distributions. In this paper, we
analyze the convergence of overparameterized Fe-
dAvg with gradient descent (GD). We prove that
the impact of data heterogeneity diminishes as
the width of neural networks increases, ultimately
vanishing when the width approaches infinity. In
the infinite-width regime, we further prove that
both the global and local models in FedAvg be-
have as linear models, and that FedAvg achieves
the same generalization performance as central-
ized learning with the same number of GD itera-
tions. Extensive experiments validate our theoret-
ical findings across various network architectures,
loss functions, and optimization methods.

1. Introduction
Federated Learning (FL) is a distributed machine learning
paradigm that enables collaborative model training across
distributed clients while preserving data locality (McMa-
han et al., 2017), a critical feature for privacy-sensitive
domains such as healthcare, finance, and mobile computing,
where regulatory or infrastructural constraints prohibit data
centralization. However, a fundamental challenge in FL
arises from the intrinsic non-independent and identically
distributed (non-IID) nature of client data (Li et al., 2021b),
where local datasets exhibit significant distributional shifts
due to user-specific behaviors, geographic variations, or
device-specific usage patterns. Such statistical heterogene-
ity leads to divergent local optimizations, degrading model
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convergence and generalization (Li et al., 2019; Zhao et al.,
2018).

To address the challenges posed by non-IID data in FL,
numerous research efforts have emerged, including client
regularization (Li et al., 2020), adaptive optimization frame-
works (Karimireddy et al., 2020; Reddi et al., 2021), person-
alized model architectures (Jeong & Hwang, 2022; T Dinh
et al., 2020), and etc. While these approaches have demon-
strated empirical success, they often require intricate hyper-
parameter tuning or restrictive assumptions about convexity,
data similarity, or gradient boundedness, limiting their ap-
plicability in practical highly heterogeneous environments.

In parallel, overparameterized neural networks have gar-
nered prominence in centralized learning for their remark-
able ability to achieve strong generalization despite non-
convex optimization landscapes, underpinned by theoretical
frameworks such as the neural tangent kernel (NTK) (Jacot
et al., 2018). These networks exhibit implicit regularization
properties, enabling interpolation of complex data distribu-
tions while maintaining robust generalization (Neyshabur
et al., 2015; 2019a;b; Lee et al., 2018), motivating a piv-
otal question: Can increasing the network width inherently
mitigate the effects of data heterogeneity in FL?

In this work, we analyze the convergence of FedAvg with
gradient descent (GD) for multi-layer overparameterized
neural networks and establish that the impact of data het-
erogeneity can indeed be reduced by widening the network.
Further, we prove that as the network width approaches in-
finity, both global and local models behave as linear models.
Strikingly, in this regime, FedAvg and centralized GD yield
identical model parameters and outputs under matched iter-
ations, achieving equivalent generalization performance. To
the best of our knowledge, this is the first work to provide a
quantitative analysis explicitly linking the width of neural
networks to the impact of data heterogeneity on both FL
training and generalization. Our key contributions are:

• Theoretical guarantees for heterogeneity reduction:
We prove that the model divergence is bounded and
decreases inversely proportional to the square root of
the network width asymptotically, without relying on
restrictive assumptions on convexity or gradient simi-
larity/boundedness. This bound is vital in the conver-
gence analysis of FedAvg, revealing that the impact
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of data heterogeneity slows the convergence rate, but
vanishes when the width approaches infinity, allowing
the convergence rate to recover linearity.

• Bridging federated and centralized learning: We
extend the NTK theory from centralized learning to FL
with multi-layer networks, showing that infinite net-
work width induces constant global and local NTKs,
further linearizes both global and local models. No-
tably, we prove the equivalence between infinite-width
FedAvg and centralized GD, thereby achieving the
same generalization performance, bridging decentral-
ized and centralized learning paradigms.

• Empirical validation: We conducted numerous exper-
iments on MINST and CIFAR-10 datasets, spanning
diverse network structures, loss functions, and optimiz-
ers to validate our theoretical analysis.

2. Related Work
Data Heterogeneity. While prior works have provided
convergence analyses of federated learning with non-IID
data, many rely on restrictive assumptions. For example,
some studies assume convex loss functions (Cho et al., 2020;
Khaled et al., 2019; Li et al., 2019), others require bounded
gradient dissimilarity (Li et al., 2020; Zhang et al., 2023;
Wang et al., 2020b), and some assume bounded gradients
(Li et al., 2019; Cho et al., 2020). These conditions are often
difficult to satisfy in practice. In this paper, we analyze the
convergence of FedAvg via NTK without imposing convex-
ity, bounded gradients, or bounded gradient dissimilarity.

To address data heterogeneity, various techniques have been
proposed. Regularization-based methods (Li et al., 2020;
Durmus et al., 2021) introduce a regularization term dur-
ing local updates to mitigate client drift. Client selection
approaches (Cho et al., 2020; Goetz et al., 2019; Zhang
et al., 2023) choose a subset of clients whose aggregated
updates approximate those of all clients. Personalized fed-
erated learning (Jeong & Hwang, 2022; Jiang et al., 2024)
allows clients to leverage aggregated knowledge while fine-
tuning on their local data. Other methods, such as SCAF-
FOLD (Karimireddy et al., 2020) and FedNova (Wang et al.,
2020b), correct optimization bias between clients and the
global model to improve convergence. FedMA (Wang et al.,
2020a) constructs the global model layer by layer to dimin-
ish the impact of heterogeneous data, and MOON (Li et al.,
2021a) compares local and global models to correct client
drift.

Overparameterized FL. Recent works have made sub-
stantial progress in overparameterized federated learning.
For instance, Li et al. (2021b) proposed FedBN, which ap-
plies local batch normalization to mitigate heterogeneity,

and analyzed its convergence using NTK. However, their
analysis is limited to two-layer networks, limiting the model
capacity. Under the same two-layer assumption, Jiang et al.
(2024) proposed a local-global update mixing method and
analyzed its convergence via NTK, while Huang et al. (2021)
showed that overparameterized FedAvg converges to the
global optimal solution with linear convergence rate.

Moving beyond the depth constraint on networks, Deng
et al. (2022) proved that overparameterized FedAvg with
ReLU activation converges in polynomial time with stochas-
tic gradient descent (SGD). Fed-ensemble (Shi et al., 2024)
employs model ensembling to enhance the generalization of
FL, supported by an NTK-based convergence analysis. Yet,
data heterogeneity is not considered. To address data het-
erogeneity, Yue et al. (2022) proposed to let clients transmit
Jacobian matrices rather than weights or gradients, provid-
ing a more expressive data representation. Yu et al. (2022)
observed that the learning of final layers in FL is strongly in-
fluenced by non-convexity and propose the train-convexify-
train (TCT) method to alleviate these issues.

Among the most relevant works, Song et al. (2023) estab-
lished that overparameterized FedAvg achieves linear con-
vergence to zero training loss, and empirically observed
that wide neural networks achieve better and more stable
performance in FL. By contrast, we theoretically prove that
the model divergence in FL caused by data heterogeneity is
bounded byO(n− 1

2 ), where n is the network width, thereby
establishing the first quantitative relationship between net-
work width and the mitigation of heterogeneity. Beyond
this, we unveil the generalization performance of overpa-
rameterized FL by proving that infinite-width FedAvg and
centralized learning yield identical model outputs under
matched training iterations, while the theoretical analysis in
(Song et al., 2023) solely focused on training loss.

3. Notations and Problem Formulation
In this section, we establish the basic notations, formulate
the FL problem, and introduce the metric quantifying the
impact of data heterogeneity.

We consider a standard FL setup consisting of a server and
M clients. The local training dataset of client i is denoted by
Di with Xi = {x|(x, y) ∈ Di} and Yi = {y|(x, y) ∈ Di}
representing the set of inputs and labels of client i, respec-
tively, where x ∈ Rn0 and y ∈ Rk. The global dataset is
defined as the union of all clients dataset, i.e., D = ∪Mi=1Di

with X = ∪Mi=1Xi and Y = ∪Mi=1Yi.
Suppose that each client trains a L-layer fully-connected
neural network (FNN), where the width of the l-th layer is
denoted by nl. Then, the output of the l-th layer of client i’s
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model can be expressed as

fi,l(x) =





x, l = 0

σ (Wi,lfi,l−1(x) + bi,l) , 0 < l < L

Wi,Lfi,L−1(x) + bi,L, l = L

(1)

where Wi,l ∈ Rnl×nl−1 and bi,l ∈ Rnl are the weight and
bias of the l-th layer of client i, respectively, and σ(·) is the
activation function.

We define θi = vec
(
{Wi,l, bi,l}Ll=1

)
∈ Rw as the vector

of all trainable parameters of client i’s model. Then, the
model output of a single input sample x can be expressed as
fi(x, θi) and the concatenated output of all samples in Xi

is denoted by fi(Xi, θi) = vec
(
{f(x, θi)}x∈Xi

)
∈ Rk|Di|.

Similarly, we further define the global model f having the
same structure as fi but with parameter θ ∈ Rw. Analo-
gously, its concatenated output of all samples in X is de-
noted by f(X , θ) = vec

(
{f(x, θ)}x∈X

)
∈ Rk|D|. To sim-

plify the notations, we use the short hand fi(θi) ≜ fi(Xi, θi)
and f(θ) ≜ f(X , θ) in the following.

We consider the mean square error (MSE) loss function, and
hence the loss function of client i is expressed as

Φi =
1

2|Di|
∑

(x,y)∈Di

∥fi (x, θi)− y∥22 , (2)

The goal is to minimize the global loss function defined by
Φ =

∑M
i=1 piΦi, where pi =

|Di|
|D| .

At initialization, each client’s model parameters are sampled
from the Gaussian distribution as follows

W 0
1,l = · · · =W 0

M,l ∼ N
(
0,

σ2
Wl

nl

)
, (3)

b01,l = · · · = b0M,l ∼ N
(
0, σ2

b

)
. (4)

Upon initialization, each client updates its local model min-
imizing the loss function by GD for τ iterations. For every
τ local iterations, each client uploads its local model to the
server for model aggregation, and then the server broadcasts
the aggregated model to each client for the next round. Let
t denote the number of global rounds. Then, the model pa-
rameters of client i after the r-th (1 ≤ r ≤ τ ) local iteration
in the t-th global round can be denoted by θtτ+r

i .

Specifically, during the t-th and (t+1)-th global round, say
in the (tτ + r + 1)-th total iteration, the model parameters
are updated by GD as

θtτ+r+1
i ← θtτ+r

i − η

|Di|
Ji
(
θtτ+r
i

)
gi
(
θtτ+r
i

)
(5)

where η is the learning rate and

Ji (θi) = ∇θifi (θi) ∈ Rw×k|Di|, (6)
gi (θi) = fi (θi)− vec(Yi) (7)

are the local Jacobian matrix and error vector, respectively.
Similarly, we define the global Jacobian matrix and error
vector respectively, as

J (θ) ≜ ∇θf (θ) ∈ Rw×k|D|, (8)

g (θ) ≜ f (θ)− vec(Y). (9)

In the (t+ 1)-th global round, the model is aggregated by
FedAvg, i.e.,

θ(t+1)τ =

M∑

i=1

piθ
tτ+τ
i , (10)

where we let tτ + τ and (t + 1)τ to denote the time in-
stants before and after the (t + 1)-th global aggregation,
respectively. Then, the aggregated parameters θ(t+1)τ are
broadcast to all clients, which yields θ(t+1)τ

i = θ(t+1)τ ,∀i.
Consequently, the relation between the global and local Ja-
cobian and error at the t-th global round can be described
by

gi
(
θtτi
)
= Pig

(
θtτ
)
, (11)

J
(
θtτ
)
=

M∑

i=1

Ji
(
θtτi
)
Pi, (12)

where Pi ∈ Rk|Di|×k|D| is a projection matrix defined as

Pi =




0 · · · 0 1 0 · · · 0 0 · · · 0
0 · · · 0 0 1 · · · 0 0 · · · 0
...

...
...

...
...

. . .
...

...
...

...
0 · · · 0 0 0 · · · 1 0 · · · 0




︸ ︷︷ ︸
k|Di|×∑i−1

j=1k|Dj |
︸ ︷︷ ︸

k|Di| × k|Di|
︸ ︷︷ ︸
k|Di|×

∑M
j=i+1k|Dj |

, (13)

whose operator norm ∥Pi∥op = 1.

To facilitate convergence analysis, the following notations
are also introduced:

f
(
θtτ+r
i

)
= f

(
X , θtτ+r

i

)
, (14)

J
(
θtτ+r
i

)
= ∇θtτ+r

i
f
(
θtτ+r
i

)
, (15)

g
(
θtτ+r
i

)
= f

(
θtτ+r
i

)
− vec(Y), (16)

where f
(
θtτ+r
i

)
denotes the output of the global model

when its parameters are replaced with client i’s parameters
in round tτ + r.

In the (t+ 1)-th global round, the degree to which client i’s
model deviates from the global model is characterized by

∥∥∥∆θ(t+1)τ
i

∥∥∥
2
=
∥∥∥θtτ+τ

i − θ(t+1)τ
∥∥∥
2

(17)

Therefore, we use
∑M

i=1 pi
∥∥∆θ(t+1)τ

i

∥∥
2

to quantify the de-
gree of data heterogeneity and term it as model divergence.
Apparently, when the data is IID,

∑M
i=1 pi

∥∥∆θ(t+1)τ
i

∥∥
2

ap-
proaches zero as the number of local data increases. By
contrast, when the data is non-IID,

∑M
i=1 pi

∥∥∆θ(t+1)τ
i

∥∥
2

remains non-zero and increases with the degree of data het-
erogeneity.
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4. Convergence Analysis
In this section, we analyze the convergence of overparame-
terized FedAvg. We derive the bound on the model diver-
gence explicitly and analyze how it influences the conver-
gence rate and error.

We first introduce several notations regarding overparam-
eterized neural networks. Let n = min{n1, n2, · · · , nL}
and define the global NTK matrix (Lee et al., 2019) in the
t-th global round as

Θtτ =
1

n
J
(
θtτ
)T
J
(
θtτ
)
. (18)

Meanwhile, the analytic NTK matrix is defined as

Θ = lim
n→∞

Θ0. (19)

Analogously, the local NTK matrix of the standard parame-
terization in the (tτ + r)-th iteration is defined as

Θtτ+r
i =

1

n
J
(
θtτ+r
i

)T
Ji
(
θtτ+r
i

)
Pi. (20)

The following assumptions are made to facilitate the conver-
gence analysis.

Assumption 1. The minimum width among all hidden
layers n is sufficiently large such that the terms of order
O(n−1) and higher are omitted.

Assumption 2. The analytic NTK Θ is full rank, i.e., the
minimum eigenvalue λm of Θ satisfies λm > 0.

Assumption 3. The norm of every input data is bounded,
i.e., ∥x∥2 ≤ 1.

Assumption 4. The activation function σ satisfies

|σ(0)|, ∥σ′∥∞, sup
x ̸=x′

|σ(x)− σ(x′)|
|x− x′| <∞

Assumptions 1 ∼ 4 are common in analyzing the overpa-
rameterized neural network (Lee et al., 2019; Shi et al.,
2024).

The learning rate is set to η = η0

n and η0 is a constant inde-
pendent of n, which results in infinitesimally updates during
each gradient descent step when n is sufficiently large. Con-
sequently, we adopt gradient flow as an approximation of
gradient descent, which can be expressed as

dθtτ+r
i

dr
= − η

|Di|
Ji
(
θtτ+r
i

)
gi
(
θtτ+r
i

)
. (21)

Next, we present the main theorem regarding the bound of
model divergence and the convergence of overparameterized
FedAvg.

Theorem 1. Under Assumptions 1 to 4, for any small
δ0 > 0, there exist R0 > 0, N > 0, η0 > 0, C > 0
and C1 > 0, such that for any n ≥ N , the following holds
with probability at least (1− δ0) over random initialization:

M∑

i=1

pi

∥∥∥∆θ(t+1)τ
i

∥∥∥
2
≤ ζ ≜

2η0τCR0√
n (1− q) , (22)

∥∥g(θtτ )
∥∥
2
≤ qtR0 +

2η0τCC1R0ζ (1− qt)
(1− q)2

, (23)

∥∥θtτ − θ0
∥∥
2
≤ η0τCR0 (1− qt)√

n (1− q) , (24)

∥∥Θtτ −Θ0
∥∥
F
≤ 2η0τC

3R0 (1− qt)√
n (1− q) , (25)

∥∥Θtτ+r
i −Θ0

i

∥∥
F

≤ 2η0rq
tC3R0

√
k√

n|Di|
+

2η0τC
3R0 (1− qt)

√
k|Di|

(1− q)√n (26)

where q = 1− η0τλm

3|D| +
η2
0τ

2C4

2 eη0τC
2

.

The detailed proof is provided in appendix B and we present
the proof sketch in the following.

Proof Sketch. We use mathematical induction to prove
Theorem 1 and the induction hypotheses are (23) and (24).
It is trivial that (23) and (24) hold when t = 0, and our aim
is to prove (23) and (24) for t+ 1.

[Step 1] We first present several essential lemmas in Ap-
pendix A, including proving the Lipschitz continuity of the
global and local Jacobians and some properties regarding
the Taylor series expansion.

[Step 2] Prove induction hypothesis (24) holds for t + 1.
Due to the small learning rate η = η0

n for large n, we treat
time as continuous and use gradient flow to approximate
GD, which yields

dg
(
θtτ+r
i

)

dr
= −η0Θ

tτ+r
i

|Di|
g
(
θtτ+r
i

)
. (27)

Applying the mean value theorem of integral, we can obtain

g
(
θtτ+τ
i

)
= e

− η0τ

|Di|
Θ

tτ+r̄i
i g

(
θtτi
)
, r̄i ∈ (0, τ) . (28)

Based on (28) and the induction hypotheses, the local model
parameters variation can be bounded by:

∥∥θtτ+τ
i − θ0i

∥∥
2
≤ η0τC ∥g (θtτ )∥2√

n|Di|
+
∥∥θtτ − θ0

∥∥
2
. (29)

Notably, (29) captures the relationship between the dynam-
ics of local model and global model, based on which we can
obtain the recursive relationship between ∥θtτ − θ0∥2 and
∥θ(t+1)τ − θ0∥2 from
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∥∥θ(t+1)τ − θ0
∥∥
2
≤

M∑

i=1

pi
∥∥θtτ+τ

i − θ0
∥∥
2

≤
M∑

i=1

η0τC ∥g (θtτ )∥2√
n

+
∥∥θtτ − θ0

∥∥
2

(30)

Using (30), we can prove (24) holds for t+ 1.

[Step 3] Based on the inductions hypotheses and a variation
of (29), we are able to obtain (22).

[Step 4] Prove induction hypothesis (23) holds for t+1. By
taking the Taylor series expansion of

∑M
i=1 pig

(
θtτ+τ
i

)
at

θ(t+1)τ , we are able to derive

∥∥∥g
(
θ(t+1)τ

)∥∥∥
2
≤
∥∥∥∥∥

M∑

i=1

pig
(
θtτ+τ
i

)
∥∥∥∥∥
2

+

∥∥∥∥∥
M∑

i=1

piΩi

∥∥∥∥∥
2

, (31)

where Ωi represents the remainder terms. Based on the
results of [Step 1] ∼ [Step 3], we can further bound
∥∑M

i=1 pig(θ
tτ+τ
i )∥2 and ∥∑M

i=1 piΩi∥, respectively, as
∥∥∥∥∥

M∑

i=1

pig
(
θtτ+τ
i

)
∥∥∥∥∥
2

≤ q
∥∥g
(
θtτi
)∥∥

2
(32)

∥∥∥∥∥
M∑

i=1

piΩi

∥∥∥∥∥
2

≤ 2η0τCC1R0ζ

(1− q) (33)

Plugging (32) and (33) into (31), (23) holds for t+ 1.

[Step 5] Based on the Lipschitzness of the global and local
jacobians as well as the results in [Step 2]∼[Step 4], we
prove (25) and (26).

Remark 1 (Bound on the model divergence). Inequa-
tion (22) establishes an upper bound ζ on the model diver-
gence caused by data heterogeneity. Since ζ = O(n− 1

2 ),
increasing the network width can reduce the effect of data
heterogeneity. Note that we do not impose any strict as-
sumptions on the convexity of the loss function (Cho et al.,
2020; Khaled et al., 2019; Li et al., 2019), the bound of
local gradients (Li et al., 2019; Cho et al., 2020) or the di-
vergence between local and global gradient (Li et al., 2020;
Zhang et al., 2023; Wang et al., 2020b). Instead, we prove
that model the divergence is indeed bounded as long as the
network is sufficiently wide.

Remark 2 (Impact of data heterogeneity on the conver-
gence rate). Inequation (23) characterizes the evolution of
training error across the global aggregation rounds. Differ-
ent from Song et al. (2023); Huang et al. (2021), the pres-
ence of ζ > 0 here slows down the convergence, making
the convergence rate no longer linear and the convergence
error no longer zero. Recalling that ζ = O(n− 1

2 ), widening
the network enhances the convergence rate by mitigating
the model divergence. When n→∞, we have ζ → 0 and
the impact of data heterogeneity vanishes, resulting in a

linear convergence rate and zero training error as shown in
(23).

Remark 3 (Lazy training). Inequality (24) shows that as
the network width increases, each global update in overpa-
rameterized FedAvg remains confined within an increasingly
smaller neighborhood of size O(n− 1

2 ) around its initial-
ization, thereby extending the lazy-training phenomenon
observed in centralized settings (Chizat et al., 2019) to FL
settings.

Remark 4 (Constant global and local NTKs). Inequation
(25) shows that as the network width increases, the global
and local NTK experiences less variation during training.
When the width approaches infinity, the both the global
and local NTKs are constant, which extends the findings in
centralized learning (Jacot et al., 2018) to FL settings.

Next, we will investigate the training dynamics of FedAvg
in the infinite-width regime and compare it with central-
ized learning to further investigate the generalization perfor-
mance of overparameterized FedAvg.

5. Generalization Performance
In this section, we analyze the training dynamics and gener-
alization performance of overparameterized FedAvg as the
network width n→∞. First, we prove that both the global
and local models behave as linear models during the train-
ing process. Then, we derive the closed-form expression of
those linear models and establish the equivalence between
infinite-width FedAvg and centralized GD.

We define the linear models f lin (θtτ ) and f lini

(
θtτ+r
i

)
as

the first-order Taylor expansion of the global model f (θtτ )
and local model fi

(
θtτ+r
i

)
, respectively:

f lin
(
θtτ
)
= f

(
θ0
)
+ J

(
θ0
)T (

θtτ − θ0
)

(34)

f lini

(
θtτ+r
i

)
= fi

(
θ0
)
+ Ji

(
θ0
)T (

θtτ+r
i − θ0

)
(35)

Our main results are as follows.

Theorem 2. Under Assumptions 2 to 4, when n→∞, we
have

sup
t≥0

∥∥f lin(θtτ )− f(θtτ )
∥∥
2
= O

(
n−

1
2

)
, (36)

sup
t≥0,

1≤r≤τ

∥∥f lini

(
θtτ+r
i

)
− fi

(
θtτ+r
i

)∥∥
2
= O

(
n−

1
2

)
,∀i (37)

The detailed proof is provided in appendix C.

Remark 5 (Infinite-width FedAvg induces linearized
global/local models ). Theorem 2 suggests that as the net-
work width approaches infinity, the global and local models
become linear models. This extends the findings of Shi et al.
(2024), which demonstrated that the global model can be
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approximated by a linear model, to show that both local and
global models can be well approximated by linear models.

Therefore, we can analyze the training dynamic of those
linear models instead. The main theorem describing their
training dynamics is presented as follows.

Theorem 3. Under Assumptions 2 to 4, when n→∞ and
η0τ is sufficiently small such that the terms ofO

(
η20τ

2
)

and
higher are neglected, the linear model has closed-form ex-
pressions for the global parameters and outputs throughout
the training process:

θtτ =− 1

n
J(θ0)(Θ0)−1

(
I − e−

η0tτ

|D| Θ0
)
g(θ0) + θ0, (38)

f lin(x, θtτ ) = f(x, θ0)

−Θ0(x)(Θ0)−1
(
I − e−

η0tτ

|D| Θ0
)
g(θ0), (39)

where Θ0(x) ≜ 1
nJ(x, θ

0)TJ(θ0).

The detailed proof is provided in appendix D.

Suppose there is a model having the same structure that
trains on the global dataset D via centralized GD, whose
model parameters at the t′-th GD iteration is denoted by θt

′

cen

and the model output is f(x, θt
′

cen). When the initialization
of θcen and θ are the same, i.e., θ0cen = θ0, the following
can be obtained according to Lee et al. (2019, Equations (8),
(10), (11)):

θt
′

cen = − 1

n
J(θ0)(Θ0)−1

(
I − e−

η0Θ0t′
|D|

)
g(θ0) + θ0,

(40)

fcen
(
x, θt

′

cen

)
= f

(
x, θ0

)

−Θ0(x)
(
Θ0
)−1

(
I − e−

η0Θ0t′
|D|

)
g(θ0). (41)

When t′ = tτ , by comparing (38), (39) with (40), (41) and
employing Theorem 2, we can obtain

θt
′

cen = θtτ , f(x, θt
′

cen) = f(x, θtτ ) (42)

Remark 6 (Infinite-width FedAvg generalizes the same
as centralized GD). Equations (42) suggest that when the
total number iterations of centralized GD and FedAvg are
the same, both models share the same model parameters
in the infinite-width regime, thereby producing the same
output for an arbitrary test input and achieving the same
generalization performance. This means that the impacts
of data heterogeneity on the generalization performance
vanishes.

6. Numerical Experiments
In this section, we verify our theoretical findings by numer-
ical experiments spanning various network architectures,

loss functions, and optimization methods. Specifically, we
evaluate the impact of data heterogeneity under different
network widths, verify that both the local and global models
of overparameterized FedAvg can be well approximated
by linear models, and demonstrate that overparameterized
FedAvg generalizes the same as centralized learning. The
number of clients in our experiments are set to M = 10,
and the dataset as well as the model settings are provided as
follows.1

Non-IID Data Generation. 1) Standard dataset: We con-
duct experiments on two widely used image classifica-
tion datasets: MNIST (LeCun et al., 1998) and CIFAR-10
(Krizhevsky et al.). To partition the datasets among different
clients and generate non-IID data, we follow the approach
proposed by Hsu et al. (2019), which employs the Dirichlet
distribution with a concentration parameter α controlling
data heterogeneity. Specifically, a smaller value of α in-
dicates a higher degree of data heterogeneity and we set
α = 0.1 throughout our experiments.

2) Small dataset: To facilitate MSE loss minimization using
gradient descent (GD) as required by our theoretical deriva-
tions, we also use the mini-MNIST and mini-CIFAR-10
datasets for binary image classification tasks. The mini-
MNIST dataset is created by randomly selecting two classes
from the MNIST dataset, followed by randomly sampling
50 images from each class for the training set and 10 im-
ages from each class for the test set. A similar approach is
used to generate the mini-CIFAR-10 dataset, which contains
500 training images and 100 test images. To generate non-
IID data, inspired by McMahan et al. (2017); Zhang et al.
(2021), we assign each class exclusively to specific clients:
half of the clients receive all images from one class, while
the remaining clients receive all images from the others.

Experimental Models. We employ three types of models:
FNN, convolutional neural networks (CNNs), and residual
networks (ResNets).

1) FNN: The structure of FNNs is detailed in Table 1 of
Appendix E, where a width factor k is introduced to adjust
the network width. By setting k = 1, 2, 4, 16, we construct
networks of varying widths, named FNN1, FNN2, FNN4,
and FNN16.

2) CNN: We adopt the approach described by Park et al.
(2019) to obtain CNNs with varying widths having the base
architecture in (LeCun et al., 1998, Figure 2). The details
of the architecture are presented in Table 2 of Appendix E,
where the width factor k is used to scale the channel size. By
setting k = 1, 2, 8, 32, we generate CNN1, CNN2, CNN8,
and CNN32.

1Codes to reproduce the main results are available at https:
//github.com/kkhuge/ICML2025.
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Figure 1. Test accuracy of different network families. Each global round consists of τ = 5 local SGD iterations. The left figure shows the
test accuracy of FNNs on both IID and non-IID MNIST datasets. The middle and the right figures show the test accuracy of CNNs and
ResNets, respectively, on both IID and non-IID CIFAR-10 datasets.
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Figure 2. Test accuracy of large networks. Each global round consists of τ = 5 local SGD iterations, σW = 1, σb = 0.1. The left figure
shows the test accuracy of the FNN32 and FNN1 on both IID and non-IID MNIST datasets. The right figure shows the test accuracy of
the CNN32 and CNN1 on both IID and non-IID CIFAR-10 datasets.

3) ResNet: The network architecture is based on the work of
Zagoruyko (2016), as shown in Table 3 of Appendix E. The
parameter ψ represents the number of blocks in each group,
which is set to ψ = 1 in our experiments. The channel size
is fixed at 16, and we vary the width factor k = 1, 2, 4, 16
to obtain ResNet1, ResNet2, ResNet4, and ResNet16.

6.1. Impact of Non-IID Versus Network Width

Although our theoretical analysis is based on GD with
learning rate η = O(n−1), to show our conclusions can
be extended to more practical settings, we use SGD with
batch size 64 and set a common learning rate η = 0.1
with a weight decay of 0.0005. Moreover, for MNIST
and CIFAR-10, we use the practical cross-entropy loss in-
stead of the MSE loss required in the theoretical analy-
sis. As shown in Figure 1, in the non-IID cases, the test
accuracy of FNN1, FNN2, FNN4, and FNN16 decreases
by 17.4%, 9.5%, 6.3%, and 2.0%, respectively, compared
to the IID cases. Similarly, the test accuracy of CNN1,
CNN2, CNN8, and CNN32 drops by 44.9%, 26.7%, 5.1%,
and 2.4%, while the test accuracy of ResNet1, ResNet2,
ResNet4, and ResNet16 decreases by 44.6%, 29.1%, 18.7%,
and 14.8%, respectively. These results verify that the im-

pact of data heterogeneity diminishes as the network width
increases.

To further verify that the impact of data heterogeneity van-
ishes as the network width approaches infinity, we set the
learning rate with η = η0

n in line with our theoretical anal-
ysis. As shown in Figure 2, the convergence rate and final
accuracy of FNN32 are nearly identical for both IID and
non-IID data, and a similar trend is observed for CNN32. In
contrast, a noticeable gap exists in FNN1 between IID and
non-IID data, which is also evident in CNN1.

Additionally, to monitor the evolution of model parameters
and the global/local NTKs during training, we train FNNs
on the non-IID mini-MNIST dataset using GD for binary
classification with MSE loss. As shown in Figure 3, in-
creasing the network width diminishes the variations in both
the global/local NTKs and the model parameters. For suffi-
ciently wide networks, the global and local NTKs as well as
the model parameters remain nearly constant, exhibiting a
lazy training behavior.
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Figure 3. Training dynamic of NTK and model parameters. Each global round consists of τ = 5 local GD iterations, η0 = 1, σW = 1.5,
σb = 0.1. The left figure shows the variation in the global NTK, the middle figure show the variation in a randomly chosen local NTK,
while the right figure shows the model parameters’ update during the training process.
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Figure 4. Output difference between FedAvg and linear model.
Each global round consists of τ = 5 local GD iterations, η0 = 1,
σW = 1.5, σb = 0.1.

6.2. Linear Approximation of FedAvg

To show that overparameterized FedAvg can be well ap-
proximated by linear models, we train FNN16 and FNN512
on the non-IID mini-MNIST dataset with MSE loss for bi-
nary image classification using GD. In Figure 4, we analyze
the difference in the outputs between the global model f
in FedAvg and the global linear model f lin throughout the
training process. Additionally, a randomly selected local
model is examined by comparing its outputs with those of
the corresponding linear model f lini .

As shown in Figure 4, we can observe that, for FNN512,
the outputs of the global model f and the linear model f lin

remain nearly identical throughout training. By contrast, the
narrower FNN16 exhibits noticeable difference between f
and f lin. A similar trend is observed for the local models
fi and f lini . These findings confirm Theorem 2 that wider
networks enable linear approximations to align more closely
with the dynamics of FedAvg.

6.3. Comparison of FedAvg with Centralized Learning

To compare overparameterized FedAvg with centralized
learning, in Figure 5 we evaluate the loss of fcen(x, θt

′
) and
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Figure 5. Training and testing loss of FedAvg and centralized learn-
ing. η0 = 0.1, σW = 1.5, σb = 0.1. The global round of FedAvg
consists of τ = 2 and τ = 5 local GD iterations in the left and
right figures, respectively.

f(x, θtτ ) on both the training and testing dataset of mini-
CIFAR-10, by ensuring t′ = tτ for a fair comparison. It
can be observed that the outputs of FedAvg and centralized
learning are almost identical under the same number of GD
iterations, empirically confirming Theorem 3 that overpa-
rameterized FedAvg generalized the same as centralized
learning.

7. Conclusion and Future Directions
In this work, we established a quantitative relationship be-
tween neural network width and the impact of data het-
erogeneity in FedAvg. We proved that the impact of data
heterogeneity on the convergence of FedAvg diminishes
at a rate of O(n− 1

2 ) with increasing network width n and
vanishes entirely in the infinite-width limit. In that regime,
we extended NTK theory from centralized learning to FL,
showing that both the global and local models in FedAvg are
linear and have constant NTKs. Furthermore, we derived
closed-form expressions for the model outputs of FedAvg,
revealing the equivalence between infinite-width FedAvg
and centralized GD in both training dynamics and gener-
alization performance, under matched training iterations.
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Extensive experiments on MINST and CIFAR-10 datasets
validated our conclusions across different network architec-
tures, loss functions, and optimization methods.

These theoretical findings provide valuable insights for prac-
tical federated learning. Notably, the linear dependence
between model outputs and parameters suggests a potential
communication-efficient FL strategy: clients may transmit
only the model outputs instead of the complete model pa-
rameters for aggregation. This approach may significantly
reduce the communication overhead of FL and deserves
further investigation. Another essential direction for future
research involves extending these analyses to more realistic
FL settings by relaxing the idealized assumptions, such as
infinite network width and continuous-time gradient flow.
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A. Essential Lemmas
In this section, we introduce the necessary lemmas used in deriving Theorems 1 ∼ 3.

Lemma 1 (Local Lipschitzness of the Jacobian). There exists a constant C > 0, such that for any C ′ > 0, with high
probability over random initialization the following holds:





1√
n
∥J(θ)− J(θ′)∥F ≤ C ∥θ − θ′∥2 ,

1√
n
∥J(θ)∥F ≤ C,

∀θ, θ′ ∈ B(θ0, C
′n−

1
2 ) (43)

where B(θ0, R) ≜ {θ : ∥θ − θ0∥2 < R}.

Lemma 1 has been proved by Lee et al. (2019, Lemma 1) and we will apply it directly.

Lemma 2 (Local Lipschitzness of the Local Jacobian). There exists a constant C > 0, such that for any C ′ > 0, with
high probability over random initialization the following holds:





1√
n
∥Ji(θ)− Ji(θ′)∥F ≤ C ∥θ − θ′∥2 ,

1√
n
∥Ji(θ)∥F ≤ C,

∀θ, θ′ ∈ B(θ0, C
′n−

1
2 ) (44)

where B(θ0, R) ≜ {θ : ∥θ − θ0∥2 < R}.

Proof. Since J(θ)− J(θ′) is the concatenation of all Ji(θ)− Ji(θ′) for i = 1, · · · ,M , we have

1√
n
||Ji(θ)− Ji(θ′)||F ≤

1√
n
||J(θ)− J(θ′)||F ≤ C||θ − θ′||2, (45)

where the last step applies Lemma 1. Similarly, since J(θ) is the concatenation of all Ji(θ), we have

1√
n
||Ji(θ)||F ≤

1√
n
||J(θ)||F ≤ C. (46)

Lemma 3. For a square matrix A whose norm satisfies ||A|| ≤ ρA, the remainder term Ω(e−A) ≜
∑∞

k=2(−1)k Ak

k! , i.e., the
sum of second-order and higher terms in the Taylor series expansion of e−A, satisfies

Ω
(
e−A

)
≤ ρ2A

2
eρA . (47)

Proof. By taking the norm on both sides of Ω(e−A) =
∑∞

k=2(−1)k Ak

k! , we can readily obtain

∥∥Ω
(
e−A

)∥∥ ≤
∞∑

k=2

∥A∥k
k!
≤ ∥A∥

2

2

∞∑

k=2

∥A∥k−2

(k − 2)!
≤ ρ2A

2
e∥A∥ ≤ ρ2A

2
eρA . (48)

Lemma 4. For any non-negative aggregation weights combination {pi}i=1,··· ,M , if η0τ is sufficiently small such that the
terms of O(η20τ2) and higher are neglected, the following equation holds:

M∑

i=1

pie
−η0τΘi = e−η0τ

∑M
i=1 piΘi . (49)
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Proof. Employing the Taylor series expansion on both sides of (49) yields

M∑

i=1

pie
−η0τΘi =

M∑

i=1

pi
[
I − η0τΘi +O

(
η20τ

2
)]

= I − η0τ
M∑

i=1

piΘi, (50)

and

e−η0τ
∑M

i=1 piΘi = I − η0τ
M∑

i=1

piΘi +O
(
η20τ

2
)
= I − η0τ

M∑

i=1

piΘi, (51)

respectively. Comparing (50) with (51), we can obtain

M∑

i=1

pie
−η0τΘi = e−η0τ

∑M
i=1 piΘi . (52)

B. Proof of Theorem 1
Since the width of network is large, with the initialization described in Section 3, the output f(θ0) converges to Gaussian
process N (0,K(X ,X )) according to the central limit theorem, where K(X ,X ) = lim

n→∞
E
[
f(θ0)f(θ0)T

]
. Therefore, for

arbitrarily small δ0 > 0, there exist constants R0 > 0 and n′ such that for any n ≥ n′, with probability at least 1− δ0 over
random initialization, we have ∥∥g

(
θ0
)∥∥

2
≤ R0. (53)

In the following, we prove Theorem 1 by mathematical induction, where the induction hypotheses are

∥∥g(θtτ )
∥∥
2
≤ qtR0 +

2η0τCC1R0ζ (1− qt)
(1− q)2

, (54)

∥∥θtτ − θ0
∥∥
2
≤ η0τCR0 (1− qt)√

n (1− q) . (55)

When t = 0, (54) and (55) trivially hold. Then, we aim to prove the hypotheses hold in the (t+ 1)-th global round, i.e.,

∥∥∥g(θ(t+1)τ )
∥∥∥
2
≤ qt+1R0 +

2η0τCC1R0ζ
(
1− qt+1

)

(1− q)2
, (56)

∥∥∥θ(t+1)τ − θ0
∥∥∥
2
≤ η0τCR0

(
1− qt+1

)
√
n (1− q) . (57)

Referring to (5), the local update step of client i in the (tτ + r + 1)-th iteration is

θtτ+r+1
i = θtτ+r

i − η

|Di|
Ji
(
θtτ+r
i

)
gi
(
θtτ+r
i

)
. (58)

Since η = η0

n is small, we can approximate the local update with gradient flow by making time continuous, yielding

dθtτ+r
i

dr
= − η

|Di|
Ji
(
θtτ+r
i

)
gi
(
θtτ+r
i

)
. (59)

Further applying the chain rule, we can obtain

dg
(
θtτ+r
i

)

dr
= J

(
θtτ+r
i

)T dθtτ+r
i

dr

= − η

|Di|
J
(
θtτ+r
i

)T
Ji
(
θtτ+r
i

)
gi
(
θtτ+r
i

)

= − η0
n|Di|

J
(
θtτ+r
i

)T
Ji
(
θtτ+r
i

)
Pig

(
θtτ+r
i

)

12
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= −η0Θ
tτ+r
i

|Di|
g
(
θtτ+r
i

)
, (60)

where the last step follows from the definition of the local NTK in (20). By integrating both sides of (60) from 0 to r and
applying the mean value theorem for integrals, we have

g
(
θtτ+r
i

)
= e

− η0τ

|Di|
Θ

tτ+r̂i
i g

(
θtτi
)
, r̂i ∈ (0, r) (61)

Replacing r with τ yields

g
(
θtτ+τ
i

)
= e

− η0τ

|Di|
Θ

tτ+r̄i
i g

(
θtτi
)
, r̄i ∈ (0, τ) (62)

B.1. Proof of (57)

We first prove (57). To bound
∥∥θ(t+1)τ − θ0

∥∥
2
, we proceed the following derivations.

d
∥∥θtτ+r

i − θ0i
∥∥
2

dr
≤
∥∥∥∥
dθtτ+r

i

dr

∥∥∥∥
2

=
η

|Di|
∥∥Ji

(
θtτ+r
i

)
gi
(
θtτ+r
i

)∥∥
2

=
η

|Di|
∥∥Ji

(
θtτ+r
i

)
Pig

(
θtτ+r
i

)∥∥
2

≤ η

|Di|
∥∥Ji

(
θtτ+r
i

)∥∥
F
∥Pi∥op

∥∥g
(
θtτ+r
i

)∥∥
2

(a)

≤ ηC
√
n

|Di|
∥∥g
(
θtτ+r
i

)∥∥
2

=
η0C√
n|Di|

∥∥∥∥e
− η0τ

|Di|
Θ

tτ+r̂i
i g

(
θtτ
)∥∥∥∥

2

≤ η0C√
n|Di|

∥∥∥∥e
− η0τ

|Di|
Θ

tτ+r̂i
i

∥∥∥∥
op

∥∥g
(
θtτ
)∥∥

2

≤ η0C√
n|Di|

∥∥g
(
θtτ
)∥∥

2
, (63)

where the first step is obtained by applying the chain rule and Cauchy-Schwarz inequality, step (a) holds because of
Lemma 2 and ∥Pi∥op = 1, and the last step holds because Θtτ+r̂i

i is not full rank from its definition (20), yielding
∥∥e−

η0τ

|Di|
Θ

tτ+r̂i
i

∥∥
op
≤ e−

η0τ

|Di|
λmin(Θ

tτ+r̂i
i )

= 1. Integrating from 0 to r on both sides of (63) yields

∥∥θtτ+r
i − θ0i

∥∥
2
≤ η0rC√

n|Di|
∥∥g
(
θtτ
)∥∥

2
+
∥∥θtτ − θ0

∥∥
2
. (64)

Further replacing r with τ yields

∥∥θtτ+τ
i − θ0i

∥∥
2
≤ η0τC√

n|Di|
∥∥g
(
θtτ
)∥∥

2
+
∥∥θtτ − θ0

∥∥
2
. (65)

According to (10), we can obtain

∥∥∥θ(t+1)τ − θ0
∥∥∥
2
=

∥∥∥∥∥
M∑

i=1

pi
(
θtτ+τ
i − θ0

)
∥∥∥∥∥
2

≤
M∑

i=1

pi
∥∥θtτ+τ

i − θ0
∥∥
2

(a)

≤
M∑

i=1

pi

[
η0τC√
n|Di|

∥∥g
(
θtτ
)∥∥

2
+
∥∥θtτ − θ0

∥∥
2

]

13
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=
Mη0τC√
n|D|

∥∥g
(
θtτ
)∥∥

2
+
∥∥θtτ − θ0

∥∥
2

(b)

≤ η0τC√
n

∥∥g
(
θtτ
)∥∥

2
+
∥∥θtτ − θ0

∥∥
2

(c)

≤ η0τC√
n

[
qt

(
R0 −

2η0τCC1R0ζ

(1− q)2

)
+

2η0τCC1R0ζ

(1− q)2

]
+
η0τCR0 (1− qt)√

n (1− q)

=
η0τCR0

(
1− qt+1

)
√
n (1− q) , (66)

where step (a) comes from (65), step (b) holds because |D| ≥M , step (c) applies the induction hypothesis (54) and (55),
and the last step omits ζ√

n
= O(n−1) according to Assumption 1. Therefore, (57) is proved.

B.2. Bounding the Model Divergence

To prove (56), we first bound
∥∥∆θ(t+1)τ

i

∥∥
2
. According to (64), we have:

∥∥θtτ+r
i − θ0i

∥∥
2
≤ η0rC√

n|Di|
∥∥g
(
θtτ
)∥∥

2
+
∥∥θtτ − θ0

∥∥
2

≤ η0rC√
n|Di|

[
qt

(
R0 −

2η0τCC1R0ζ

(1− q)2

)
+

2η0τCC1R0ζ

(1− q)2

]
+
η0τCR0 (1− qt)√

n (1− q)

=
η0rCq

tR0√
n|Di|

+
η0τCR0 (1− qt)√

n (1− q) , (67)

where the second step employs the induction hypotheses (54) and (55), and the last step omits ζ√
n
= O(n−1). Referring to

(17), we have

∥∥∥∆θ(t+1)τ
i

∥∥∥
2
=
∥∥∥θtτ+τ

i − θ(t+1)τ
∥∥∥
2

=
∥∥∥
(
θtτ+τ
i − θ0

)
−
(
θ(t+1)τ − θ0

)∥∥∥
2

=

∥∥∥∥∥
(
θtτ+τ
i − θ0

)
−

M∑

i=1

pi
(
θtτ+τ
i − θ0

)
∥∥∥∥∥
2

≤
∥∥(θtτ+τ

i − θ0
)∥∥

2
+

M∑

i=1

pi
∥∥(θtτ+τ

i − θ0
)∥∥

2

(a)

≤ η0τCq
tR0√

n|Di|
+
η0τCR0 (1− qt)√

n (1− q) +

M∑

i=1

pi

[
η0τCq

tR0√
n|Di|

+
η0τCR0 (1− qt)√

n (1− q)

]

=
η0τCq

tR0√
n|Di|

+
η0τCR0 (1− qt)√

n (1− q) +
Mη0τCq

tR0√
n|D| +

η0τCR0 (1− qt)√
n (1− q)

(b)

≤ η0τCq
tR0√
n

+
η0τCR0 (1− qt)√

n (1− q) +
η0τCq

tR0√
n

+
η0τCR0 (1− qt)√

n (1− q)

=
2η0τCR0√

n

(
qt +

1− qt
1− q

)

=
2η0τCR0

(
1− qt+1

)
√
n (1− q)

≤ 2η0τCR0√
n (1− q) , (68)
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where the step (a) is from (67), step (b) holds because |Di| ≥ 1 and |D| ≥M , and the last step hold because we require
0 ≤ q < 1.2 Therefore, the data heterogeneity term can be bounded by

M∑

i=1

pi

∥∥∥∆θ(t+1)τ
i

∥∥∥
2
≤

M∑

i=1

pi
2η0τCR0√
n (1− q) =

2η0τCR0√
n (1− q) = ζ. (69)

Notably, we have proven (22).

B.3. Proof of (56)

Finally, we prove (56) to finish the induction. Taking the Taylor series expansion of g
(
θtτ+τ
i

)
at θ(t+1)τ yields

g
(
θtτ+τ
i

)
= g

(
θ(t+1)τ

)
+ J

(
θ(t+1)τ

)T
∆θ

(t+1)τ
i +Ωi, (70)

where Ωi represents the remainder terms of order two and above. Taking the sum of both sides yields

M∑

i=1

pig
(
θtτ+τ
i

)
=

M∑

i=1

pig
(
θ(t+1)τ

)
+

M∑

i=1

piJ
(
θ(t+1)τ

)T
∆θ

(t+1)τ
i +

M∑

i=1

piΩi

=

M∑

i=1

pig
(
θ(t+1)τ

)
+

M∑

i=1

piΩi

= g
(
θ(t+1)τ

)
+

M∑

i=1

piΩi, (71)

where the second step holds because
∑M

i=1 piJ
(
θ(t+1)τ

)T
∆θ

(t+1)τ
i = 0 according to the model aggregation (10). Rewrit-

ing (71), we have

g
(
θ(t+1)τ

)
=

M∑

i=1

pig
(
θtτ+τ
i

)
−

M∑

i=1

piΩi. (72)

Taking the norm of both sides yields

∥∥∥g
(
θ(t+1)τ

)∥∥∥
2
≤
∥∥∥∥∥

M∑

i=1

pig
(
θtτ+τ
i

)
∥∥∥∥∥
2

+

∥∥∥∥∥
M∑

i=1

piΩi

∥∥∥∥∥
2

. (73)

In the following, we bound
∥∥∥
∑M

i=1 pig
(
θtτ+τ
i

)∥∥∥
2

and
∥∥∥
∑M

i=1 piΩi

∥∥∥
2
, respectively.

1) Bounding
∥∥∥
∑M

i=1 pig
(
θtτ+τ
i

)∥∥∥
2
: According to (62), we have

∥∥∥∥∥
M∑

i=1

pig
(
θtτ+τ
i

)
∥∥∥∥∥
2

=

∥∥∥∥∥
M∑

i=1

pie
− η0τ

|Di|
Θ

tτ+r̄i
i g

(
θtτi
)
∥∥∥∥∥
2

=

∥∥∥∥∥
M∑

i=1

pi

[
I − η0τ

|Di|
Θtτ+r̄i

i +Ω

(
e
− η0τ

|Di|
Θ

tτ+r̄i
i

)]
g
(
θtτi
)
∥∥∥∥∥
2

≤
∥∥∥∥∥

M∑

i=1

pi

[
I − η0τ

|Di|
Θtτ+r̄i

i +Ω

(
e
− η0τ

|Di|
Θ

tτ+r̄i
i

)]∥∥∥∥∥
op

∥∥g
(
θtτi
)∥∥

2

≤
∥∥∥∥∥

M∑

i=1

pi

(
I − η0τ

|Di|
Θtτ+r̄i

i

)∥∥∥∥∥
op

∥∥g
(
θtτi
)∥∥

2
+

M∑

i=1

pi

∥∥∥∥Ω
(
e
− η0τ

|Di|
Θ

tτ+r̄i
i

)∥∥∥∥
op

∥∥g
(
θtτi
)∥∥

2

2We prove that there exists η0 > 0 such that 0 ≤ q < 1 at the end of Section B.3.
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=

∥∥∥∥∥I −
η0τ

|D|
M∑

i=1

Θtτ+r̄i
i

∥∥∥∥∥
op

∥∥g
(
θtτi
)∥∥

2
+

M∑

i=1

pi

∥∥∥∥Ω
(
e
− η0τ

|Di|
Θ

tτ+r̄i
i

)∥∥∥∥
op

∥∥g
(
θtτi
)∥∥

2
, (74)

where the second step is obtained by employing the Taylor series expansion and Ω(e−A) =
∑∞

k=2
(−1)k

k! Ak. Then, we

bound
∥∥∥I − η0τ

|D|
∑M

i=1 Θ
tτ+r̄i
i

∥∥∥
op

and
∑M

i=1 pi

∥∥∥∥Ω
(
e
− η0τ

|Di|
Θ

tτ+r̄i
i

)∥∥∥∥
op

, respectively.

∥∥I − η0τ
|D|
∑M

i=1 Θ
tτ+r̄i
i

∥∥
op

can be rewritten as

∥∥∥∥∥I −
η0τ

|D|
M∑

i=1

Θtτ+r̄i
i

∥∥∥∥∥
op

=

∥∥∥∥∥I −
η0τΘ

|D| +
η0τΘ

|D| −
η0τΘ

0

|D| +
η0τΘ

0

|D| −
η0τ

|D|
M∑

i=1

Θtτ+r̄i
i

∥∥∥∥∥
op

≤
∥∥∥∥I −

η0τΘ

|D|

∥∥∥∥
op

+

∥∥∥∥
η0τΘ

|D| −
η0τΘ

0

|D|

∥∥∥∥
op

+

∥∥∥∥∥
η0τΘ

0

|D| −
η0τ

|D|
M∑

i=1

Θtτ+r̄i
i

∥∥∥∥∥
op

=

(
1− η0τλm

|D|

)
+
η0τ

|D|
∥∥Θ−Θ0

∥∥
op

+
η0τ

|D|

∥∥∥∥∥Θ
0 −

M∑

i=1

Θtτ+r̄i
i

∥∥∥∥∥
op

≤
(
1− η0τλm

|D|

)
+
η0τ

|D|
∥∥Θ−Θ0

∥∥
F
+
η0τ

|D|

∥∥∥∥∥Θ
0 −

M∑

i=1

Θtτ+r̄i
i

∥∥∥∥∥
op

. (75)

According to Lee et al. (2019, Section G.1), there exists n′′, such that the following event

∥∥Θ0 −Θ
∥∥
F
≤ λm

3
(76)

with probability at least 1− δ0
5 hold for any n ≥ n′′. As for

∥∥∥
∑M

i=1 Θ
tτ+r̄i
i −Θ0

∥∥∥
op

, according to the definition of local

NTK (20), we can obtain
∥∥∥∥∥

M∑

i=1

Θtτ+r̄i
i −Θ0

∥∥∥∥∥
op

=
1

n

∥∥∥∥∥
M∑

i=1

J
(
θtτ+r̄i
i

)T
Ji
(
θtτ+r̄i
i

)
Pi −

M∑

i=1

J
(
θ0
)T
Ji
(
θ0i
)
Pi

∥∥∥∥∥
op

=
1

n

∥∥∥∥∥
M∑

i=1

[
J
(
θtτ+r̄i
i

)T
Ji
(
θtτ+r̄i
i

)
Pi − J

(
θ0
)T
Ji
(
θ0i
)
Pi

]∥∥∥∥∥
op

≤ 1

n

M∑

i=1

∥∥∥J
(
θtτ+r̄i
i

)T
Ji
(
θtτ+r̄i
i

)
− J

(
θ0
)T
Ji
(
θ0i
)∥∥∥

op
∥Pi∥op

=
1

n

M∑

i=1

∥∥∥J
(
θtτ+r̄i
i

)T
Ji
(
θtτ+r̄i
i

)
− J

(
θ0i
)T
Ji
(
θ0i
)∥∥∥

op

=
1

n

M∑

i=1

∥∥∥J
(
θtτ+r̄i
i

)T [
Ji
(
θtτ+r̄i
i

)
− Ji

(
θ0i
)]

+
[
J
(
θtτ+r̄i
i

)T − J
(
θ0i
)T ]

Ji
(
θ0i
)∥∥∥

op

≤ 1

n

M∑

i=1

[∥∥J
(
θtτ+r̄i
i

)∥∥
op

∥∥Ji
(
θtτ+r̄i
i

)
− Ji

(
θ0i
)∥∥

op
+
∥∥∥J
(
θtτ+r̄i
i

)T − J
(
θ0i
)T∥∥∥

op

∥∥Ji
(
θ0i
)∥∥

op

]

≤ 1

n

M∑

i=1

[∥∥J
(
θtτ+r̄i
i

)∥∥
F

∥∥Ji
(
θtτ+r̄i
i

)
− Ji

(
θ0i
)∥∥

F
+
∥∥∥J
(
θtτ+r̄i
i

)T − J
(
θ0i
)T∥∥∥

F

∥∥Ji
(
θ0i
)∥∥

F

]

≤ 2C2
M∑

i=1

∥∥θtτ+r̄i
i − θ0i

∥∥
2
, (77)
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where the last step holds because of Lemma 1 and Lemma 2. Plugging (67) into (77) yields
∥∥∥∥∥

M∑

i=1

Θtτ+r̄i
i −Θ0

∥∥∥∥∥
op

≤ 2η0r̄iC
3qtR0√

n|Di|
+

2η0τC
3R0 (1− qt)√
n (1− q)

≤ 2η0τC
3R0√
n

+
2η0τC

3R0√
n (1− q)

=
4η0τC

3R0 (2− q)√
n (1− q)

≤ λm
3
, (78)

where the second step holds because r̄i ≤ τ , |Di| ≥ 1 and 0 ≤ q < 1, and the last step holds when n ≥ n′′′ with
n′′′ =

144η2
0τ

2C6R2
0(2−q)2

λ2
m(1−q)2

. Then, plugging (76) and (78) into (75), we can obtain

∥∥∥∥∥I −
η0τ

|D|
M∑

i=1

Θtτ+r̄i
i

∥∥∥∥∥
op

≤ 1− η0τλm
3|D| . (79)

To bound
∑M

i=1 pi
∥∥Ω
(
e
− η0τ

|Di|
Θ

tτ+r̄i
i

)∥∥
op

, we first bound
∥∥Θtτ+r̄i

i

∥∥
op

. According to (20), we have

∥∥Θtτ+r̄i
i

∥∥
op

=
1

n

∥∥∥J
(
θtτ+r̄i
i

)T
Ji
(
θtτ+r̄i
i

)
Pi

∥∥∥
op

≤ 1

n

∥∥J
(
θtτ+r̄i
i

)∥∥
F

∥∥Ji
(
θtτ+r̄i
i

)∥∥
F
∥Pi∥op

=
1

n

∥∥J
(
θtτ+r̄i
i

)∥∥
F

∥∥Ji
(
θtτ+r̄i
i

)∥∥
F

≤ C2, (80)

where the last step holds beacuse of Lemma 1 and Lemma 2. Then, according to Lemma 3, we can obtain

M∑

i=1

pi

∥∥∥∥Ω
(
e
− η0τ

|Di|
Θ

tτ+r̄i
i

)∥∥∥∥
op

≤
M∑

i=1

pi
2

(
η0τC

2

|Di|

)2

e
η0τC2

|Di|

=

M∑

i=1

η20τ
2C4

2|Di||D|
e

η0τC2

|Di|

≤
M∑

i=1

η20τ
2C4

2|D| eη0τC
2

=
Mη20τ

2C4

2|D| eη0τC
2

≤ η20τ
2C4

2
eη0τC

2

. (81)

Further plugging (79) and (81) to (74), we have
∥∥∥∥∥

M∑

i=1

pig
(
θtτ+τ
i

)
∥∥∥∥∥
2

≤
(
1− η0τλm

3|D| +
η20τ

2C4

2
eη0τC

2

)∥∥g
(
θtτi
)∥∥

2
≜ q

∥∥g
(
θtτi
)∥∥

2
(82)

2) Bounding
∥∥∑M

i=1 piΩi

∥∥
2
: By defining Γ (β) = g

(
θ(t+1)τ + β∆θ

(t+1)τ
i

)
, β ∈ [0, 1], we can obtain

Γ (0) = g
(
θ(t+1)τ

)
, Γ′ (0) = ∇g

(
θ(t+1)τ

)
∆θ

(t+1)τ
i , Γ (1) = g

(
θtτ+τ
i

)
. (83)
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We further define

u (β) = Γ (β) + (1− β) Γ′ (β) . (84)

Then, we can obtain

∥u (1)− u (0)∥2 = ∥Γ (1)− Γ (0)− Γ′ (0)∥2
=
∥∥∥g
(
θtτ+τ
i

)
− g

(
θ(t+1)τ

)
−∇g

(
θ(t+1)τ

)
∆θ

(t+1)τ
i

∥∥∥
2

= ∥Ωi∥2 . (85)

According to mean value inequality, we have

∥u (1)− u (0)∥2 ≤ sup
0≤β≤1

∥u′ (β)∥2 (1− 0) . (86)

Combining (85) and (86) yields

∥Ωi∥2 ≤ sup
0≤β≤1

∥u′ (β)∥2 . (87)

Taking the derivative on both side of (84) yields

u′ (β) = Γ′ (β)− Γ′ (β) + (1− β) Γ′′ (β)

= (1− β) Γ′′ (β)

= (1− β)
(
∆θ

(t+1)τ
i

)T
∇2g

(
θ(t+1)τ + β∆θ

(t+1)τ
i

)
∆θ

(t+1)τ
i . (88)

By plugging (88) into (87), and then (87) into
∥∥∑M

i=1 piΩi

∥∥
2
, we can obtain

∥∥∥∥∥
M∑

i=1

piΩi

∥∥∥∥∥
2

≤
M∑

i=1

pi ∥Ωi∥2

≤
M∑

i=1

pi sup
0≤β≤1

∥u′ (β)∥2

=

M∑

i=1

pi (1− β) sup
0≤β≤1

∥∥∥∥
(
∆θ

(t+1)τ
i

)T
∇2g

(
θ(t+1)τ + β∆θ

(t+1)τ
i

)
∆θ

(t+1)τ
i

∥∥∥∥
2

≤
M∑

i=1

pi (1− β)
∥∥∥∆θ(t+1)τ

i

∥∥∥
2

sup
0≤β≤1

∥∥∥∇2g
(
θ(t+1)τ + β∆θ

(t+1)τ
i

)∥∥∥
op

∥∥∥∆θ(t+1)τ
i

∥∥∥
2

(a)

≤
M∑

i=1

pi (1− β)
∥∥∥∆θ(t+1)τ

i

∥∥∥
2
C1

√
n
∥∥∥∆θ(t+1)τ

i

∥∥∥
2

(b)

≤
M∑

i=1

pi (1− β)
2η0τCR0√
n (1− q) · C1

√
n · 2η0τCR0√

n (1− q)
(c)

≤ 4η20τ
2C2R2

0C1√
n (1− q)2

=
2η0τCC1R0ζ

(1− q) . (89)

where step (a) applies 1√
n

∥∥∇2g (θ)
∥∥
op
≤ C1, which is proved by Jacot et al. (2020, Lemma 1) under Assumption 4, step

(b) comes from (68), step (c) holds because β ∈ [0, 1], and the last step comes from (69). Plugging (82) and (89) into (73):
∥∥∥g
(
θ(t+1)τ

)∥∥∥
2
≤ q

∥∥g
(
θtτ
)∥∥

2
+

2η0τCC1R0ζ

(1− q)
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(a)
= q

[
qt

(
R0 −

2η0τCC1R0ζ

(1− q)2

)
+

2η0τCC1R0ζ

(1− q)2

]
+ (1− q) 2η0τCC1R0ζ

(1− q)2

= qt+1

(
R0 −

2η0τCC1R0ζ

(1− q)2

)
+

2η0τCC1R0ζ

(1− q)2
, (90)

where step (a) applies induction hypothesis (54). At this point, we have proven (56). Recall that (57) have also been
proven and we require n ≥ n′, n′′, n′′′ during the derivations, and hence the induction hypotheses (54) and (55) hold for
n ≥ N ≜ max{n′, n′′, n′′′}.
Noting that we also require 0 ≤ q < 1 to complete the proof, we prove there exists η0 > 0 such that 0 ≤ q < 1 in the
following. Referring to (82), we rewrite q as a function of η0 as

q (η0) = 1− η0τλm
3|D| +

η20τ
2C4

2
eη0τC

2

. (91)

Taking the derivative of q (η0) with respect to η0, we obtain

q′ (η0) = −
τλm
3|D| + η0τ

2C4eη0τC
2

+
η20τ

3C6

2
eη0τC

2

. (92)

Further taking the second derivative, we have

q′′ (η0) = τ2C4eη0τC
2

+ η0τ
3C6eη0τC

2

+
η20τ

4C8

2
eη0τC

2

> 0. (93)

Therefore, q′ (η0) is monotonically increasing. According to Assumption 2, we have λm > 0 and hence it obvious that
q′ (0) < 0 and lim

η0→∞
q′ (η0) > 0, and hence there exists η′0 > 0 such that q′ (η′0) = 0 holds. Consequently, q (η0)

is monotonically decreasing on (0, η′0], and monotonically increasing on (η′0,∞). Additionally, from (91), we have
lim
η0→0

q (η0) = 1. Consequently, if q (η′0) ≥ 0, 0 ≤ q (η0) < 1 holds for 0 < η0 ≤ η′0. Otherwise, if q (η′0) < 0, there

exists η′′0 ∈ (0, η′0) such that q (η′′0 ) = 0 holds. Then, 0 ≤ q (η0) < 1 holds for 0 < η0 ≤ η′′0 . To sum up, as long as
0 < η0 ≤ min{η′0, η′′0}, 0 ≤ q (η0) < 1 holds.

B.4. Bounding the Variation on Global and Local NTKs

We continue to prove (25) and (26) in Theorem 1. Referring to (18), we have

∥∥Θtτ −Θ0
∥∥
F
=

1

n

∥∥∥J
(
θtτ
)T
J
(
θtτ
)
− J

(
θ0
)T
J
(
θ0
)∥∥∥

F

=
1

n

∥∥∥
[
J
(
θtτ
)T − J

(
θ0
)T ]

J
(
θtτ
)
− J

(
θ0
)T [

J
(
θtτ
)
− J

(
θ0
)]∥∥∥

F

≤ 1

n

∥∥J
(
θtτ
)
− J

(
θ0
)∥∥

F

∥∥J
(
θtτ
)∥∥

F
+

1

n

∥∥J
(
θ0
)∥∥

F

∥∥J
(
θtτ
)
− J

(
θ0
)∥∥

F

≤ 2C2
∥∥θtτ − θ0

∥∥
2

≤ 2η0τC
3R0 (1− qt)√
n (1− q) . (94)

where the fourth step holds because of Lemma 1 and the last step holds because of (55).

Referring to (20), we have

∥∥Θtτ+r
i −Θ0

i

∥∥
F
=

1

n

∥∥∥J
(
θtτ+r
i

)T
Ji
(
θtτ+r
i

)
Pi − J

(
θ0i
)T
Ji
(
θ0i
)
Pi

∥∥∥
F

≤ 1

n

∥∥∥J
(
θtτ+r
i

)T
Ji
(
θtτ+r
i

)
− J

(
θ0i
)T
Ji
(
θ0i
)∥∥∥

F
∥Pi∥F

≤
√
k|Di|
n

∥∥∥J
(
θtτ+r
i

)T
Ji
(
θtτ+r
i

)
− J

(
θ0i
)T
Ji
(
θ0i
)∥∥∥

F
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=

√
k|Di|
n

∥∥∥
[
J
(
θtτ+r
i

)T − J
(
θ0i
)T ]

Ji
(
θtτ+r
i

)
+ J

(
θ0i
)T [

Ji
(
θtτ+r
i

)
− Ji

(
θ0i
)]∥∥∥

F

≤
√
k|Di|
n

∥∥J
(
θtτ+r
i

)
− J

(
θ0i
)∥∥

F

∥∥Ji
(
θtτ+r
i

)∥∥
F
+

√
k|Di|
n

∥∥J
(
θ0i
)∥∥

F

∥∥Ji
(
θtτ+r
i

)
− Ji

(
θ0i
)∥∥

F

(a)

≤ 2C2
√
k|Di|

∥∥θtτ+r
i − θ0i

∥∥
2

≤ 2η0rq
tC3R0

√
k√

n|Di|
+

2η0τC
3R0 (1− qt)

√
k|Di|

(1− q)√n , (95)

where step (a) employs Lemma 1 and Lemma 2, and the last step holds because of (67). We have now completed the proof
of Theorem 1.

C. Proof of Theorem 2
To prove Theorem 2, we first bound

∥∥glin
(
θ(t+1)τ

)
− g

(
θ(t+1)τ

)∥∥
2
. According to (34), we have

glin
(
θtτ+r
i

)
= g

(
θ0
)
+ J

(
θ0
)T (

θtτ+r
i − θ0

)
. (96)

Taking the derivative with respect to θtτ+r
i on both sides yields

J lin
(
θtτ+r
i

)
= J

(
θ0
)
. (97)

Then, we consider

d

dr

(
e

η0r

|Di|
Θ0

i
[
glin

(
θtτ+r
i

)
− g

(
θtτ+r
i

)])

=
η0Θ

0
i

|Di|
e

η0r

|Di|
Θ0

i
[
glin

(
θtτ+r
i

)
− g

(
θtτ+r
i

)]

+
η0
|Di|

e
η0r

|Di|
Θ0

i

[
− 1

n
J(θ0)TJi

(
θ0i
)
glini

(
θtτ+r
i

)
+

1

n
J
(
θtτ+r
i

)T
Ji
(
θtτ+r
i

)
gi
(
θtτ+r
i

)]

=
η0Θ

0
i

|Di|
e

η0r

|Di|
Θ0

i
(
glin

(
θtτ+r
i

)
− g

(
θtτ+r
i

))

+
η0
|Di|

e
η0r

|Di|
Θ0

i

[
− 1

n
J(θ0)TJi

(
θ0i
)
Pig

lin
(
θtτ+r
i

)
+

1

n
J
(
θtτ+r
i

)T
Ji
(
θtτ+r
i

)
Pig

(
θtτ+r
i

)]

=
η0Θ

0
i

|Di|
e

η0r

|Di|
Θ0

i
[
glin

(
θtτ+r
i

)
− g

(
θtτ+r
i

)]
+

η0
|Di|

e
η0r

|Di|
Θ0

i
[
−Θ0

i g
lin
(
θtτ+r
i

)
+Θtτ+r

i g
(
θtτ+r
i

)]

=
η0
|Di|

e
η0r

|Di|
Θ0

i
(
Θtτ+r

i −Θ0
i

)
g
(
θtτ+r
i

)
. (98)

By integrating both sides from 0 to τ , we obtain

glin
(
θtτ+τ
i

)
− g

(
θtτ+τ
i

)
= e

− η0τ

|Di|
Θ0

i
[
glin

(
θtτ
)
− g

(
θtτ
)]

+
η0
|Di|

e
− η0τ

|Di|
Θ0

i

∫ τ

0

e
η0r

|Di|
Θ0

i
(
Θtτ+r

i −Θ0
i

)
g
(
θtτ+r
i

)
dr.

(99)
The aggregation of linear local models yields

glin
(
θ(t+1)τ

)
=

M∑

i=1

pig
lin
(
θtτ+τ
i

)
. (100)

Further considering equation (72), we have

glin
(
θ(t+1)τ

)
− g

(
θ(t+1)τ

)
=

M∑

i=1

pi
[
glin

(
θtτ+τ
i

)
− g

(
θtτ+τ
i

)]
+

M∑

i=1

piΩi. (101)
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By taking the norm on both sides, we obtain
∥∥∥glin

(
θ(t+1)τ

)
− g

(
θ(t+1)τ

)∥∥∥
2

=

∥∥∥∥∥
M∑

i=1

pi
[
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(
θtτ+τ
i

)
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(
θtτ+τ
i

)]
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piΩi

∥∥∥∥∥
2

≤
∥∥∥∥∥

M∑
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pi
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(
θtτ+τ
i

)
− g

(
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i

)]
∥∥∥∥∥
2

+

∥∥∥∥∥
M∑
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M∑

i=1

pie
− η0τ

|Di|
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[
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|Di|
Θ0

i
(
Θtτ+r

i −Θ0
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(
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+
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piΩi

∥∥∥∥∥
2

, (102)

where the last step is obtained by substituting (99), and
∥∥∑M

i=1 piΩi

∥∥
2

is bounded in (89). In the following, we bound
∥∥∑M

i=1 pie
− η0τ

|Di|
Θ0

i
(
glin (θtτ )− g (θtτ )

) ∥∥
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and
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i −Θ0
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)
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(
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i

)
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∥∥
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, re-
spectively, and finally bound

∥∥f lin (θtτ+r)− f (θtτ+r)
∥∥
2

as well as
∥∥f lini

(
θtτ+r
i

)
− fi

(
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2
.

C.1. Bounding
∥∥∑M

i=1 pie
− η0τ

|Di|
Θ0

i
(
glin (θtτ )− g (θtτ )

) ∥∥
2

By taking the Taylor series expansion of e−
η0τ

|Di|
Θ0

i , we obtain
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Next, we bound
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where step (a) applies (76). To bound
∑M

i=1 pi
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, we first bound
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where the last step applies Lemmas 1 and 2. Then, we have
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where the first step employs Lemma 3. Further, plugging (104) and (106) into (103) yields
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C.2. Bounding
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, (108)

where step (a) holds according to the mean value theorem of integrals and r̃i ∈ (0, τ), step (b) holds because Θ0
i is not full

rank according to the definition of local NTK (20) and hence
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∥∥
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i ) = 1, step (c) comes

from (61) and r′i ∈ (0, r̃i), the last step holds because Θtτ+r′i
i is not full rank. Then, we proceed to bound
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where step (a) comes from (67) and the last step holds because r̃i ≤ τ and |Di| ≥ 1. Plugging (109) into (108) yields
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where step (a) comes from (23) in Theorem 1 and step (b) omits ζ√
n
= O(n−1).

C.3. Bounding
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Plugging (110) and (107) into (102) yields
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where the last step comes from (89). By recursively employing (111) and considering the fact
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= 0,

we obtain
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Considering ζ = 2η0τCR0√
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and replacing t+ 1 with t, we have
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Finally, we bound
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(114)

where step (a) holds because of (99), (107) and (110). The third inequation holds because of (112). Further considering
ζ = 2η0τCR0√

n(1−q)
, we have
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Thus, Theorem 2 is proved.

D. Proof of Theorem 3
The Jacobians of the linear global and local models are

J lin
(
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)
= J

(
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)
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)
= Ji
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The local update process of the linear model can be expressed as
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)
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Via continuous time gradient flow, we obtain
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Employing the chain rule yields
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Integrating from 0 to r on both sides yields
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Plugging (120) into (118) yields
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Integrating from 0 to τ on both sides yields
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where
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Plugging (123) into (122) yields
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Considering the model aggregation process, we have
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where step (a) employs Lemma 4. Considering the aggregation process of the linear model, we have
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where step (a) employs Lemma 4. By cursively employing (126), we can obtain
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Replace t+ 1 with t yields glin (θtτ ) = e−
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Employing (128) iteratively yields
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Replacing t+ 1 with t yields
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Therefore, for an arbitrary input x, we can obtain the closed form of glin (x, θtτ ) and f lin (x, θtτ ) as
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and

f lin
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x, θtτ
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= f
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respectively.
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E. Network Details

Table 1. Fully-Connected Network

KAYER INPUT IUTPUT

FC1 INPUT SIZE 8× k
FC2 8× k 8× k
FC3 8× k OUTPUT SIZE

Table 2. Convolution Network

LAYER CHANNEL KERNEL OUTPUT STRIDE

CONV1 6× k 5× 5 28× 28 1
POOLING 6× k 2× 2 14× 14 2
CONV2 16× k 5× 5 10× 10 1
POOLING 16× k 2× 2 5× 5 2
FC1 − − 120× k −
FC2 − − 84× k −
FC3 − − 10 −

Table 3. Residual Network
LAYER OUTPUT BLOCK TYPE

CONV1 32× 32 [3× 3, CHANNEL SIZE × k]

CONV2 32× 32

[
3× 3, CHANNEL SIZE × k
3× 3, CHANNEL SIZE × k

]
× ψ

CONV3 16× 16

[
3× 3, CHANNEL SIZE × k
3× 3, CHANNEL SIZE × k

]
× ψ

CONV4 8× 8

[
3× 3, CHANNEL SIZE × k
3× 3, CHANNEL SIZE × k

]
× ψ

AVG-POOL 1× 1 [8× 8]
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