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Abstract

Bayesian optimization has attracted huge atten-
tion from diverse research areas in science and
engineering, since it is capable of efficiently find-
ing a global optimum of an expensive-to-evaluate
black-box function. In general, a probabilistic re-
gression model is widely used as a surrogate func-
tion to model an explicit distribution over function
evaluations given an input to estimate and a train-
ing dataset. Beyond the probabilistic regression-
based methods, density ratio estimation-based
Bayesian optimization has been suggested in or-
der to estimate a density ratio of the groups rel-
atively close and relatively far to a global opti-
mum. Developing this line of research further,
supervised classifiers are employed to estimate a
class probability for the two groups instead of a
density ratio. However, the supervised classifiers
used in this strategy are prone to be overconfident
for known knowledge on global solution candi-
dates. Supposing that we have access to unlabeled
points, e.g., predefined fixed-size pools, we pro-
pose density ratio estimation-based Bayesian op-
timization with semi-supervised learning to solve
this challenge. Finally, we show the empirical
results of our methods and several baseline meth-
ods in two distinct scenarios with unlabeled point
sampling and a fixed-size pool, and analyze the
validity of our methods in diverse experiments.

1. Introduction

Bayesian optimization (Brochu et al., 2010; Garnett, 2023)
has attracted immense attention from various research areas
such as hyperparameter optimization (Bergstra et al., 2011),
battery lifetime optimization (Attia et al., 2020), chemical
reaction optimization (Shields et al., 2021), nanophotonic
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structure optimization (Kim et al., 2024), and language
model fine-tuning (Jang et al., 2024), since it is capable
of efficiently finding a global optimum of an expensive-to-
evaluate black-box function. As studied in previous litera-
ture on Bayesian optimization (Snoek et al., 2012; Martinez-
Cantin et al., 2018; Springenberg et al., 2016; Hutter et al.,
2011), a probabilistic regression model, which can estimate
a distribution of function evaluations over inputs, is widely
used as a surrogate function; A Gaussian process (Ras-
mussen & Williams, 2006) is a predominant choice for the
surrogate function. An analogy between probabilistic regres-
sion models in Bayesian optimization is that they rely on an
explicit function over function evaluations p(y | x, D) given
an input to estimate, denoted as x, and a training dataset D.

Beyond the probabilistic regression-based Bayesian opti-
mization, density ratio estimation (DRE)-based Bayesian
optimization has been studied recently (Bergstra et al., 2011;
Tiao et al., 2021). Furthermore, likelihood-free Bayesian
optimization, which is equivalent to DRE-based Bayesian
optimization with a particular utility function, has been pro-
posed by Song et al. (2022). Bergstra et al. (2011) attempt to
model two densities p(x | y < y', D) and p(x | y > y', D),
where y' is a threshold for dividing inputs to two groups that
are relatively close and relatively far to a global solution,
in order to estimate (-relative density ratio (Yamada et al.,
2011). On the other hand, instead of modeling two densities
separately, Tiao et al. (2021); Song et al. (2022) estimate a
density ratio using class-probability estimation (Qin, 1998).
As discussed in the previous work, this line of research pro-
vides a new understanding of Bayesian optimization, which
allows us to solve Bayesian optimization using binary classi-
fication. Moreover, it can reduce the amount of computation
required for building surrogate functions.

However, the supervised classifiers utilized in the DRE-
based Bayesian optimization are prone to be overconfi-
dent for known knowledge on global solution candidates
or a region that have been already exploited. In this pa-
per, supposing that we have access to unlabeled points, we
propose a novel DRE-based method with semi-supervised
learning, which is named DRE-BO-SSL, to solve this over-
exploitation problem. Although our direct competitors, i.e.,
BORE (Tiao et al., 2021) and LFBO (Song et al., 2022),
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Figure 1. Comparisons of BORE and LFBO by multi-layer perceptrons, and DRE-BO-SSL with label propagation and label spreading
for the Branin function. Each row shows Iterations 1 to 5 with five initial points. + (blue), x (red), and * (green) indicate data points
of y < T, data points of y > 4, and query points, respectively. Moreover, o (olive) stands for unlabeled points and its transparency
represents the class probability predicted by a semi-supervised classifier. A query point is chosen by maximizing the output of the

classifier. More results are shown in Figure 8.

show their strengths through theoretical and empirical anal-
yses, our algorithm betters an ability to consider a wider
region that satisfies p(x | y < y', D) > p(x | y > ¢!, D),
than the competitors, as shown in Figure 1. By this in-
tuitive example in Figure 1, we presume that DRE-BO-
SSL appropriately balances exploration and exploitation
rather than the existing methods. Compared to a supervised
classifier, e.g., random forests (Breiman, 2001), gradient
boosting (Friedman, 2001), and multi-layer perceptrons, our
semi-supervised classifiers, i.e., label propagation (Zhu &
Ghahramani, 2002) and label spreading (Zhou et al., 2003),
are less confident in terms of the regions of global solution
candidates using unlabeled data points; see Figures 1 and 8
and Sections 1.1 and 3 for detailed examples and analyses.

To make use of semi-supervised classifiers, we take into

account two distinct scenarios with unlabeled point sam-
pling and with a predefined fixed-size pool. For the first
scenario, we randomly sample unlabeled data points from
the truncated multivariate normal distribution using a mini-
max tilting method (Botev, 2017), to allow for the possibility
of adopting a cluster assumption (Seeger, 2000). Finally, we
demonstrate that our method shows superior performance
compared to the exiting methods in diverse experiments in-
cluding synthetic benchmarks, Tabular Benchmarks (Klein
& Hutter, 2019), NATS-Bench (Dong et al., 2021), and 64D
minimum multi-digit MNIST search. Note that Tabular
Benchmarks, NATS-Bench, and 64D minimum multi-digit
MNIST search have access to fixed-size pools. To validate
our methods, we provide thorough analyses on the compo-
nents of DRE-BO-SSL in Section 6 and the appendices.
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To sum up, our contributions are itemized as follows:

* we identify the over-exploitation problem of supervised
classifiers in DRE-based Bayesian optimization;

» we propose DRE-based Bayesian optimization with
semi-supervised learning, named DRE-BO-SSL for
two distinct scenarios with unlabeled point sampling
and a predefined fixed-size pool;

* we demonstrate the effectiveness of our method in
various experiments including NATS-Bench and 64D
minimum multi-digit MNIST search.

1.1. Over-Exploitation Problem

As illustrated in Figures 1 and 8, the supervised classifiers
used in DRE-based Bayesian optimization suffer from the
over-exploitation problem. Interestingly, many deep learn-
ing models also share a similar problem, which is called
an overconfidence problem (Guo et al., 2017; Miiller et al.,
2019), due to various reasons, but primarily due to overpa-
rameterization. It is noteworthy that the definition of the
over-exploitation problem in DRE-based Bayesian optimiza-
tion is different from the overconfidence problem in general
classification. The definition in DRE-based Bayesian op-
timization does not imply that a single data point has a
high probability for a particular class, but it implies that a
few data points have high probabilities for a class of inter-
est. More precisely, our definition indicates the problem of
overconfidence over known knowledge on global solution
candidates. For example, the definition in general classifi-
cation includes a case that 50% of data points are biased to
one class and the remainder is biased to another class. On
the contrary, this definition does not include such a case and
it only includes a case that a small number of data points
or the small region of a search space, which is colored in
yellow in Figures 1 and 8, are biased to some particular
class, i.e., Class 1 in DRE-based Bayesian optimization.

By the aforementioned definition, at early iterations of
Bayesian optimization, a supervised classifier tends to over-
fit to a small size of D, due to a relatively large model
capacity. This consequence makes a Bayesian optimization
algorithm highly focus on exploitation. Similar to our ob-
servation, the imbalance of exploration and exploitation in
the DRE-based approaches is also discussed in the recent
work by Oliveira et al. (2022); Pan et al. (2024). Moreover,
the consequence mentioned above is different from the char-
acteristics of probabilistic regression-based Bayesian opti-
mization because the regression-based methods are capable
of exploring unseen regions by dealing with uncertainties.
Besides, even though a threshold ratio ¢ might be able to
mitigate this problem, an overconfident supervised classi-
fier is likely to keep getting stuck in a local optimum as 3

cannot change dramatically; more detailed analysis on ( is
provided in Sections 6 and 1.

2. Background and Related Work

Bayesian Optimization. It is a principled and efficient ap-
proach to finding a global solution of a challenging objective,
e.g., expensive-to-evaluate black-box functions (Brochu
et al., 2010; Garnett, 2023). To focus on a probabilistic
regression model as a surrogate function, we omit the details
of Bayesian optimization here; see the references by Brochu
et al. (2010); Garnett (2023) for details. In Bayesian
optimization, Gaussian process regression (Rasmussen &
Williams, 2006) is widely used as a surrogate function (Srini-
vas et al., 2010; Snoek et al., 2012) because of its flexibil-
ity with minimum assumptions on model and smoothness.
While a Gaussian process is a probable choice, Bayesian
optimization with diverse surrogates such as Student-¢ pro-
cess regression (Martinez-Cantin et al., 2018), Bayesian
neural networks (Springenberg et al., 2016), and tree-based
models (Hutter et al., 2011; Kim & Choi, 2022) has been
proposed. An analogy between such models is that they
model p(y | x, D) explicitly, so that it can be used to define
an acquisition function with the statistics of p(y | x,D).
Note that we solve the problem of minimizing the objective
functions in this work.

Density-Ratio Estimation. Whereas knowing a data dis-
tribution p(x) is important, it is difficult to directly estimate
p(x) (Sugiyama et al., 2012). For specific machine learning
problems such as importance sampling (Kloek & van Dijk,
1978) and mutual information estimation (Bishop, 2006), we
can bypass direct density estimation and estimate a density
ratio. More recently, Rhodes et al. (2020) tackle a density-
chasm problem using telescopic density-ratio estimation,
which replaces an original problem with a set of logistic
regression problems. Since the work by Rhodes et al. (2020)
suffers from the issue on distribution shift, the recent work
by Srivastava et al. (2023) proposes a density ratio estima-
tion method with multinomial logistic regression, which
is capable of mitigating the distribution shift using multi-
class classification. In Bayesian optimization, Bergstra et al.
(2011) have proposed a strategy with tree-structured Parzen
estimators to estimate a density ratio as an alternative to
probabilistic regression-based acquisition functions. In ad-
dition, the existing work by Tiao et al. (2021); Song et al.
(2022) suggests methods with binary classifiers in order to
estimate class probabilities as a density ratio; see Section 3
for the details of this literature.

Semi-Supervised Learning. It is a learning scheme with
both labeled and unlabeled data (Zhu, 2005; Chapelle et al.,
2006; Bengio et al., 2006). To cooperate with labeled and
unlabeled data, this strategy generally utilizes geometry



Density Ratio Estimation-based Bayesian Optimization with Semi-Supervised Learning

of data points or connectivity between points, and assigns
pseudo-labels to unlabeled data points, which referred to as
transductive learning (Gammerman et al., 1998). As a semi-
supervised learning method on a similarity graph, Zhu &
Ghahramani (2002) propose a label propagation algorithm
which iteratively propagates the labels of unlabeled data
points using labeled data. Zhou et al. (2003) compute the
labels of labeled and unlabeled data points by a weighted
iterative algorithm with initial labels. Belkin & Niyogi
(2002) predict pseudo-labels by finding a linear combination
of a few smallest eigenvectors of the graph Laplacian.

3. DRE-based Bayesian Optimization

Unlike probabilistic regression-based Bayesian optimiza-
tion, DRE-based Bayesian optimization employs a den-
sity ratio-based acquisition function, defined with a den-
sity p(x | y < yf,D;), where x is a d-dimensional vec-
tor, y is its function evaluation, yT is a threshold, and
Dy = {(xi,yi) }i_, is a dataset of ¢ + 1 pairs of data point
and evaluation. In particular, the work by Bergstra et al.
(2011) defines an acquisition function based on (-relative
density ratio (Yamada et al., 2011):

A(x ¢, D)

_ p(x|y <y D) n
x|y <yh, D)+ (1 —-Qpx|y >yl D)

where ¢ = p(y < y') € [0,1) is a threshold ratio. We
need to find a maximizer of (1), by optimizing the fol-
lowing composite function: h(p(x | v < y',D;)/p(x |
y >y, Dy)), where h(z) = (¢ + (1 — )z~ !)~L. Since
h is a strictly increasing function, we can directly maxi-
mize p(x | y <y, Dy)/p(x | y > y', Dy). In the pre-
vious work by Bergstra et al. (2011), two tree-structured
Parzen estimators are used to estimate the respective densi-
ties, p(x | y < y',Dy) and p(x | y > o', Dy).

While the work by Bergstra et al. (2011) utilizes two distinct
tree-structured Parzen estimators, Tiao et al. (2021) propose
a method to directly estimate (1) using class-probability
estimation (Qin, 1998; Sugiyama et al., 2012), which is
called BORE. Since it can be formulated as a problem of
binary classification in which Class 1 is a group of the top
¢ of Dy and Class 0 is a group of the bottom 1 — ¢ of Dy
in terms of function evaluations, the acquisition function
defined in (1) induces the following:

A D) plx|z=1) |
(16D == 1)+ (0= Oplx =07
By the Bayes’ theorem, (2) becomes the following:
Ax| ¢,Dy) = ¢ ———PE= 11X 3)

plz=1]x)+p(z=0]x)

Therefore, a class probability over x for Class 1 is consid-
ered as an acquisition function; it is simply derived by Tiao
et al. (2021) as the following:

Ax | ¢, Dy) = ¢ r(x). )

Eventually, the class probability is estimated by various off-
the-shelf classifiers such as random forests and multi-layer
perceptrons.

Song et al. (2022) have suggested a general framework of
likelihood-free Bayesian optimization, called LFBO:

A(X ‘ C?Dt)
= argmax Ep, [u(y; y') f'(S(x)) = £*(f'(Sx)))], (5

S:X—R

which is versatile for any non-negative utility function
u(y;y'), where f is a strictly convex function, f’ is the
derivative of f, and f* is the convex conjugate of f. By
the properties of LFBO, it is equivalent to an expected
utility-based acquisition function. Along with the general
framework, Song et al. (2022) prove that BORE is equiv-
alent to the probability of improvement (Kushner, 1964)
and LFBO with u(y; y') = I(y < y') is also equivalent
to the probability of improvement, where I is an indica-
tor function. Moreover, they show that their method with
u(y;y') = max(y" — y,0), which can be implemented as
weighted binary classification, is equivalent to the expected
improvement (Jones et al., 1998).

4. DRE-based Bayesian Optimization with
Semi-Supervised Learning

We introduce DRE-based Bayesian optimization with semi-
supervised learning, named DRE-BO-SSL, by following the
previous studies in DRE-based and likelihood-free Bayesian
optimization (Bergstra et al., 2011; Tiao et al., 2021; Song
et al., 2022), which were discussed in Section 3.

Similar to the standard Bayesian optimization and exist-
ing DRE-based Bayesian optimization, DRE-BO-SSL iter-
ates the undermentioned steps as presented in Algorithm 1.
Firstly, a threshold y;r is calculated by considering y;.; with
. Secondly, labels C, of data points in D; are assigned to
one of two classes; a group of y < y;r is assigned to Class 1
and a group of y > y;r is assigned to Class 0. If we are given
unlabeled data points X, the corresponding points X,, are
used, but if not available it samples n,, unlabeled data points
X, from X by utilizing a strategy described in Section 4.2.
Then, it estimates pseudo-labels C; of a semi-supervised
learning model by following the procedure presented in Sec-
tion 4.1 and Algorithm 2. Using C,, it chooses the next
query point Xy 1:

X¢1 = argmax g (X3, Dt, Xy), (6)
XEX )
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Algorithm 1 DRE-BO-SSL
Input: Iteration budget 7', a search space X, a black-box
objective f, a threshold ratio ¢, a semi-supervised clas-
sifier 7, and unlabeled data points X, if available and
the number of unlabeled data points n,,, otherwise.
Output: Best candidate x .
1: Initialize Dy = {(x0,¥o)} by randomly selecting xg
from X" and evaluating x by f.
2. fort =0toT — 1do
Calculate a threshold yz using (.
Assign labels C; of data points in D; with y;r .
if X, are not available then
Sample n,, unlabeled data points X,, from X.
end if R
Estimate pseudo-labels C; by following the proce-
dure in Algorithm 2.
9:  Choose the next query point X;1 by maximizing
g, (x;¢, D¢, X,,) forx € X.
10:  Evaluate x4, 1 by f and update Dy .
11: end for
12: Determine the best candidate x™, considering yo.7.

X RDIN AW

where mg (x; (, Dy, X,,) predicts a class probability over x
for Class 1; see (14).

We adopt a multi-started local optimization technique, e.g.,
L-BFGS-B (Byrd et al., 1995), to solve (6). However, a
flat landscape of 7g (x;(, Dy, X,,) over x may occur, so
that optimization performance can be degraded. To tackle
this issue, a simple heuristic of randomly selecting a query
point among points with identical highest class probabilities
complements our method. Since the multi-started technique
is utilized and the output of 7 is bounded in [0, 1], a flat
landscape is easily recognized by comparing the outcomes
of the multi-started strategy.

4.1. Label Propagation and Label Spreading

Here we describe semi-supervised learning techniques (Zhu,
2005; Chapelle et al., 2006; Bengio et al., 2006) to
build DRE-BO-SSL. We cover a transductive setting (Gam-
merman et al., 1998), which is to label unlabeled data by
utilizing given labeled data, and then an inductive setting,
which is to predict any point using pseudo-labels of unla-
beled and labeled data.

Suppose that each data point is defined on a d-dimensional
compact space X C R? We consider n; labeled points
X; € R™*? their corresponding labels C; € R™*¢,
and n, unlabeled points X,, € R™*d where ¢ is the
number of classes. X; and C; are query points that have
already been evaluated and their class labels; we define
X; = [X0,..,Xn, 1] for Dy = {(xi,yi)}gal. For the
sake of brevity, the concatenated data points of X; and X,,

are defined as X = [X;; X,,] € R +mw)xd Note that in
our problem ¢ = 2, because we address the problem with
two classes.

As shown in Algorithm 2, we first initialize labels to propa-
gate C € R(mi+nu) %2 jt g initialized as the following:

.. acnl-‘rnu—l]—ra (7)

~

C = [COvcla .. 'acnl—17cnlacnl+17 .

where cg,c1,...,Cp,—1 are one-hot representations
[Ci]1:, [Cil2:, - -+, [Cilny:s and €y, Coytts - - -5 Crytng —1
are zero vectors. Denote that [C];. is ith row of C. Then, we
compute a similarity between two data points x;,x; € X,
so that we compare all pairs in X. For example, one of pop-
ular similarity functions, i.e., a radial basis function kernel,
can be used:

wij = exp (—Blx; — x;3), (®)

where [ is a free parameter given. As discussed in the work
by Zhu & Ghahramani (2002), we can leanl B in (8) by
minimizing an entropy for propagated labels C:

ny+ny

H(C) =~ > [C] log[Cls.. )

i=1

See Figure 4 for the results of learning /5 and Section F for
analysis on the effects of 5. By (8), we compute a transition
probability from x; to x; by pi; = w;;/ S p " wy,;. Note
that similarities W € R(u+mu)x(m+nu) and transition
probabilities P € R(+7uw)x(m+nu) are defined, where
[W];; = w;; and [P];; = p;;. Moreover, by the definition
of p;;, P = D—'W, where D is a degree matrix whose
diagonal entry is defined as the following:

ni+ny

[Dlii = Z [W]i;. (10

=1

With initial C and P, we repeat the following steps: (i)
computing th/q next C; (ii) normalizing C row-wise, until
a change of C converges to a tolerance € or the number
of iterations propagated reaches to maximum iterations 7.
In particular, label propagation (Zhu & Ghahramani, 2002)
updates C and constrains the labels of labeled data to C;:

Ci1 + P'Cy, (11)
[Cis1li: + [Cili, (12)

for i € [ny] at Iteration ¢. On the other hand, label spread-
ing (Zhou et al., 2003) propagates C by allowing a change of
the labels of labeled data with a clamping factor a € (0, 1):

Cii1 ¢ aD V2WDV2C, + (1 - a)Co,  (13)

where 60 is initial propagated labels, which are defined
in Line 1 of Algorithm 2. Note that D~*/2WD~!/2 can
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be pre-computed before the loop defined from Lines 4 to 7
of Algorithm 2.

By the nature of transductive setting, it only predicts the
labels of particular data using the known data (Gammerman
et al., 1998), which implies that it cannot estimate a categor-
ical distribution of unseen data. To enable it, given unseen
x, we define an inductive model with C:

T,
a=—§LE@f3 (14)
Zj:l w'[C];

for i € [2], where w € R™ " s similarities of x and X
by (8). [6] .; denotes ith column of C. This inductive model
is better than or equivalent to other classifiers without unla-
beled data in certain circumstances; its analysis is provided
in Section D.

4.2. Unlabeled Point Sampling

As described above, if unlabeled points are not available, we
need to generate unlabeled points under a transductive learn-
ing scheme. However, it is a challenging problem unless we
know a landscape of w¢ adequately. Many studies by Seeger
(2000); Rigollet (2007); Singh et al. (2008); Ben-David et al.
(2008); Carmon et al. (2019); Wei et al. (2020); Zhang et al.
(2022) investigate how unlabeled data can affect a model
and whether unlabeled data helps improve the model or not.

In order to make use of the theoretical findings of previous
literature, we define a cluster assumption:

Assumption 4.1 (Cluster assumption in the work by Seeger
(2000)). Two points x;,x; € & should belong to the same
label if there is a path between x; and x; which passes
only through regions of relatively high P(X), where P is a
distribution over a random variable X € X.

By Assumption 4.1, the idea of clustering on the Euclidean
space or spectral clustering on a graph can be naturally ap-
plied in semi-supervised learning (Seeger, 2000; Joachims,
2003), which is not the scope of this work.

To build DRE-BO-SSL associated with Assumption 4.1, we
sample unlabeled data points from the truncated multivariate
normal distribution so that each sample is in a compact X:

exp(—3z"2z)[(1 < Az < u)
PAI<AZ<nu) ’

f(z) = (15)

where 1,u € R? are lower and upper bounds, ¥ = AAT
is a covariance matrix, I is an indicator function, and Z ~
N(0,1,) is a random variable. It is challenging to calculate
a denominator of (15), P(1 < ATZ < u), and simulate
from f(z) because an integration of the denominator and an
accept-reject sampling strategy from f(z) are cumbersome
in this multi-dimensional case. To effectively sample from

the truncated multivariate normal distribution, we adopt the
minimax tilting method (Botev, 2017). Compared to the
method by Genz (1992), it yields a high acceptance rate
and accurate sampling. In this paper 3 is set as an identity
matrix, and 1 and u are determined by a search space. We
will provide more detailed discussion on point sampling
in Sections 6 and G.

5. Experiments

We compare baseline methods with DRE-BO-SSL in the fol-
lowing optimization problems: synthetic benchmarks for a
scenario with unlabeled point sampling, and synthetic bench-
marks, Tabular Benchmarks (Klein & Hutter, 2019), NATS-
Bench (Dong et al., 2021), and minimum multi-digit MNIST
search for a scenario with a fixed-size pool. Note that Tab-
ular Benchmarks, NATS-Bench, and minimum multi-digit
MNIST search are defined with a fixed number of possible
solution candidates, which implies that they are considered
as combinatorial optimization problems. By following the
previous work by Tiao et al. (2021); Song et al. (2022), we
set a threshold ratio as ¢ = 0.33 for all experiments; the
effects of a threshold ratio ¢ are analyzed in Sections 6 and I.
To solve (6), we use L-BFGS-B (Byrd et al., 1995) with
1,000 different initializations. All experiments are repeated
20 times with 20 fixed random seeds, where 5 initial points
are given to each experiment. The sample mean and the
standard error of the sample mean are reported. Other miss-
ing details including the details of the competitors of our
methods are presented in Section E.

As the competitors of our method, we test the following
baseline methods:

e Gaussian process, EI and UCB: It is a Bayesian op-
timization strategy, which is defined with Gaussian
process regression with the Matérn 5/2 kernel (Ras-
mussen & Williams, 2006), where expected improve-
ment (Jones et al., 1998) or Gaussian process upper
confidence bound (Srinivas et al., 2010) is used as an
acquisition function;

¢ Random forest, BORE and LFBO: These are BORE
and LFBO that employ random forests (Breiman, 2001)
with 1,000 decision trees, where minimum samples to
split are set to 2 for these baselines;

 Gradient boosting, BORE and LFBO: These methods
are BORE and LFBO with gradient boosting classi-
fiers (Friedman, 2001) with 100 decision trees, where
a learning rate for the classifier is set to 0.3;

* XGBoost, BORE and LFBO: Similar to gradient
boosting, BORE and LFBO with XGBoost (Chen &
Guestrin, 2016) have 100 decision trees as base learn-
ers with a learning rate of 0.3;
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Figure 2. Results with 20 repeated experiments on synthetic benchmark functions for a scenario with unlabeled point sampling. LP and

LS stand for label propagation and label spreading, respectively.
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Figure 3. Results with 20 repeated experiments on synthetic benchmark functions for a scenario with fixed-size pools. LP and LS stand

for label propagation and label spreading, respectively.
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Figure 4. Results with 20 repeated experiments on learning 3 for label propagation, which is denoted as LP, and label spreading, which is
denoted as LS. Sampling and pool indicate the experiments in Sections 5.1 and 5.2, respectively.

e MLP, BORE and LFBO: These methods are built with
two-layer fully-connected networks; the detail of the
multi-layer perceptron is described as follows.

The architecture of the multi-layer perceptron is set as the
following: (i) first layer: fully-connected, input dimension-
ality d, output dimensionality 32, ReLU; (ii) second layer:
fully-connected, input dimensionality 32, output dimen-
sionality 1, Logistic, where d is the dimensionality of the
problem we solve.

Note that most configurations for the baselines follow the
configurations described in the work by Song et al. (2022).

5.1. A Scenario with Unlabeled Point Sampling

Synthetic Benchmarks. We run several synthetic func-
tions for our methods and the baseline methods. For
unlabeled point sampling, we sample 100 points from
N(x1,14), N (x2,14), ..., N(xpn,,14), where |n,/n;| or
[ny/ni] + 1 points are sampled from each truncated dis-
tribution, so that n,, points are sampled in total. As shown
in Figure 2, our methods outperform the baseline methods
incorporating labeled data with unlabeled points. Interest-
ingly, out methods beat Gaussian process-based Bayesian
optimization. It implies that ours can fairly balance explo-
ration and exploitation. Furthermore, we present the results
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propagation and label spreading, respectively.
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Figure 6. Results with 20 repeated experiments on NATS-Bench for a scenario with fixed-size pools.

of learning [ in Figure 4, where (8 is adaptively selected
by (9) every iteration.

5.2. Scenarios with Fixed-Size Pools

Synthetic Benchmarks. Several synthetic benchmark
functions are tested for our methods and the baseline meth-
ods. To generate a fixed-size pool for each benchmark, we
uniformly sample 1000 points from a bounded search space
before an optimization round is started. As presented in Fig-
ure 3, our methods perform better than the baseline methods.
It implies that the use of unlabeled data helps improve op-
timization performance. Also, the results of learning 3 are
demonstrated in Figure 4. Learned f is likely to converge
to some value as iterations proceed according to the results.

Tabular Benchmarks. Comparisons of our methods and
the existing methods are carried out in these hyperparameter
optimization benchmarks (Klein & Hutter, 2019), as in Fig-
ure 5. We can benchmark a variety of machine learning
models, which are defined with specific hyperparameters
and trained on one of four datasets: naval propulsion, protein
structure, Parkinson’s telemonitoring, and slice localization.
There exist 62,208 models, which are used as a pool in

this paper, for each dataset. Our algorithms show superior
performance compared to other approaches. Similar to the
synthetic functions, we argue that the adoption of a prede-
fined pool leverages its performance. In some cases, the
Gaussian process-based strategy is better than our methods.

NATS-Bench. NATS-Bench (Dong et al., 2021), which is
the up-to-date version of NAS-Bench-201 (Dong & Yang,
2019), is used to test our methods and the baseline meth-
ods. NATS-Bench is a neural architecture search benchmark
with three popular datasets: CIFAR-10, CIFAR-100, and
ImageNet-16-120, and it has 32,768 architectures, i.e., a
fixed-size pool in this paper, for each dataset. Similar to
the experiments mentioned above, our methods work well
in three datasets, compared to the existing methods; see
Figure 6 for the results.

64D Minimum Multi-Digit MNIST Search. This task,
which is proposed in this work, is to find a minimum multi-
digit number, where a fixed number of multi-digit MNIST
images are given. As visualized in Figure 10, three random
images in the MNIST dataset (LeCun et al., 1998) are con-
catenated. Eventually, “000” and “999” are global minimum
and global maximum, respectively. Since inputs are images
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and each concatenated image consists of three different digit
images, this high-dimensional optimization problem is chal-
lenging. The size of a fixed-size pool is 80,000. As shown
in Figure 7, our methods show satisfactory performance
compared to other baseline methods.

Missing details of these experiments are shown in Section E.

6. Discussion

We discuss interesting topics on our methods and the proper-
ties of DRE-BO-SSL. Moreover, we provide more thorough
discussion and limitations in the appendices.

Effects of the Number of Points and Sampling Distri-
butions for Unlabeled Points. We choose a distribution
for unlabeled point sampling as the truncated multivariate
normal distribution in order to satisfy the cluster assumption.
To analyze our algorithm thoroughly, we demonstrate the ef-
fects of the number of sampled points and sampling distribu-
tions for unlabeled points in Section G, varying the number
of unlabeled points and utilizing diverse sampling distribu-
tions, i.e., uniform distributions, Halton sequences (Halton,
1960), and Sobol’ sequences (Sobol’, 1967).

Effects of Pool Sampling. Because the computational
complexity of label propagation and label spreading de-
pends on a pool size, we need to reduce a pool size appro-
priately in order to speed up the algorithms. Therefore, we
uniformly sample a subset of the fixed-size set, which is
used as unlabeled points. Figure 14 reports elapsed times
over subset sizes for pool sampling. Larger subsets make the
framework slower as expected. More detailed analysis on
the effects of pool sampling is demonstrated in Section H.

Effects of Threshold Ratios. We study the effects of a
threshold ratio ¢ in order to understand how we can choose
(. As shown in Figure 16, both small ¢ and large ¢ gen-
erally represent worse performance; see the results with

¢ = 0.01 and ¢ = 0.8. While it has to depend on opti-
mization problems, ¢ = 0.33 and ¢ = 0.5 are generally
appropriate choices according to this analysis. The details
of this study can be found in Section I and Figure 16.

Flat Landscape of Class Probabilities over Inputs. Re-
gardless of the use of either supervised or semi-supervised
classifier, a flat landscape of class probabilities can occur
in the framework of DRE-based Bayesian optimization. To
overcome the issue of optimizing a flat landscape, we add
a simple heuristic of selecting a random query point from
points with identical highest class probabilities if the land-
scape is flat, as described in Section 4. Since off-the-shelf
local optimization methods struggle to optimize a flat land-
scape, this simple heuristic is effective.

General Framework of DRE-BO-SSL. As a future di-
rection, we expect that a general framework of DRE-BO-
SSL can be defined, which is similar to a likelihood-free
approach by Song et al. (2022). However, it is difficult
to define an utility function involved in both labeled and
unlabeled data. For example, if we assume that an utility
function is u(y; y') = max(y! — y,0), y for an unlabeled
data point is unknown. Although it depends on the form
of utility function, we need to define y of an unlabeled
data point by utilizing the information we have if the utility
function is related to y.

7. Conclusion

In this paper we have proposed a DRE-based Bayesian
optimization framework with semi-supervised learning,
named DRE-BO-SSL. Unlike the existing work such
as BORE and LFBO, our methods make use of semi-
supervised classifiers where unlabeled data points are sam-
pled or given. The superior results by our methods and
the thorough analyses on the characteristics of DRE-BO-
SSL exhibit the validity of our proposed algorithms.
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A. Additional Comparisons of BORE and LFBO
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(f) XGBoost, LFBO, Iterations 1 to 5

Figure 8. Comparisons of BORE and LFBO by random forests, gradient boosting, and XGBoost for the Branin function. It follows the
configurations described in Figure 1.

In addition to Figure 1, we include additional comparisons of BORE and LFBO by random forests (Breiman, 2001), gradient
boosting (Friedman, 2001), and XGBoost (Chen & Guestrin, 2016) for the Branin function. For Figures 1 and 8, we use
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¢(=0.33and 5 = 0.5.

B. Additional Related Work

Although many recent Bayesian optimization methods using regression models (Eriksson et al., 2019; Balandat et al., 2020;
Cowen-Rivers et al., 2022; Ament et al., 2023) show strong performance on various benchmark functions, we do not compare
our methods to them, as such comparisons are beyond the scope of this work. The goal of this work is to demonstrate the
effectiveness of DRE-based Bayesian optimization with semi-supervised learning in the settings of DRE-based Bayesian
optimization. Picheny et al. (2019) propose a novel Bayesian optimization framework that relies on variable ordering in a
latent space to handle ill-conditioned or discontinuous objectives. Regarding the choice of the truncated multivariate normal
distribution, it may be related to the boundary issue of Bayesian optimization; see the Ph.D. thesis of Swersky (2017).
Such a similar issue is discussed in the existing work by Oh et al. (2018); it proposes a Bayesian optimization approach
with cylindrical kernels concentrating on a region proximal to the center of the search space. Moreover, the prior work
by Hvarfner et al. (2024) also reports the similar consequence in Bayesian optimization. From the perspective of DRE-based
Bayesian optimization, Gaussian process classification (Rasmussen & Williams, 2006) might be applicable for defining
binary classifiers; it is left for future work.

C. Details of DRE-BO-SSL

Algorithm 2 Labeling Unlabeled Data
Input: Labeled data points X;, their labels C;, unlabeled data points X,,, maximum iterations 7, and a tolerance «.
Additionally, a clamping factor « for label spreading.

Output Propagated labels C.

. Initialize propagated labels Cof X.

Compute similarities W and a degree matrix D.

Compute transition probabilities P with W and D.

repeat R R
Propagate C with P and the previous C, and additionally « for label spreading.
Normalize C row-wise.

until a change of C converging to ¢ or reaching 7.

AN AN R ey

Algorithm 2 describes a procedure to label unlabeled data points; see the main article for the details of DRE-BO-SSL.

D. Analysis of DRE-BO-SSL

Under the cluster assumption, i.e., Assumption 4.1, a margin ~y is defined as a minimum distance between two decision
boundaries.

Definition D.1. Let a compact connected decision set be C; C X for¢ € {0, 1} and a boundary subset, i.e., a set of boundary
points, of a compact connected set S be 9S. A margin +y is defined as

=2I(C1NC;=0) -1 i — . 16
@UCNC =0) )xleacl\ar/?,lxriea@\axnxl xall2 (16)

Using Definition D.1, we claim that a semi-supervised classifier in DRE-BO-SSL can mitigate the over-exploitation problem
presented in Section 1.1, because it can expand a decision set C; for Class 1 by reducing y with unlabeled data. However, we
need to verify if a large decision set is derived from the characteristics of non-parametric classifiers, since a semi-supervised
classifier we use is converted to the Nadaraya-Watson non-parametric model (Nadaraya, 1964; Watson, 1964) without
unlabeled data. As shown in Figure 12, there is no strong relationship between the performance of semi-supervised classifiers
without unlabeled data, i.e., the Nadaraya-Watson estimator, and one of semi-supervised classifiers with unlabeled data. It
implies that configuration selection for a semi-supervised classifier is dependent on a class of objective function, and the
presence of unlabeled data is likely to be effective for alleviating the over-exploitation problem.

Singh et al. (2008) provide a sample error bound of supervised and semi-supervised learners, related to -y, n;, n,, and d.
This work proves that a semi-supervised learner can be better than any supervised learners, by assuming that n,, > n;
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and access to perfect knowledge of decision sets. However, these theoretical results cannot be directly applied in our
sequential problem because this work assumes that both labeled and unlabeled data points are independent and identically
distributed. Nevertheless, these results can hint a theoretical guarantee on better performance of semi-supervised classifiers
with unlabeled data points. Further analysis for the circumstances of Bayesian optimization is left for future work.

E. Experimental Details

Here we present the missing details of the experiments shown in the main part.

To carry out the experiments in our work, we use dozens of commercial Intel and AMD CPUs such as Intel Xeon Gold 6126
and AMD EPYC 7302. For the experiments on minimum multi-digit MNIST search, the NVIDIA GeForce RTX 3090 GPU
is used.

To minimize (9) for finding an adequate 5 of label propagation and label spreading, we use L-BFGS-B with a single
initialization, which is implemented in SciPy (Virtanen et al., 2020), for all the experiments in Figures 2, 3, 5, 6, and 7. For
the other empirical analyses, we set /3 as a specific fixed value; see the corresponding sections for the details.

To reduce the computational complexity of DRE-BO-SSL for a scenario with a fixed-size pool, we randomly sample 2,000
unlabeled points from the predefined pool for all experiments excluding synthetic benchmark functions. More thorough
analysis can be found in Section H.

To compare baseline methods with our methods, we assess optimization algorithms using a simple regret:

simple regret(f(x1),..., f(x:), f(x*)) = I}l:tulaf(xl) — f(x"), (17

where x* is a global optimum.

Our proposed methods and baseline methods are implemented with scikit-learn (Pedregosa et al., 2011), PyTorch (Paszke
etal., 2019), NumPy (Harris et al., 2020), SciPy (Virtanen et al., 2020), XGBoost (Chen & Guestrin, 2016), and BayesO (Kim
& Choi, 2023). Scikit-learn and SciPy are under the BSD 3-Clause license, NumPy is under the modified BSD license,
XGBoost is under the Apache 2.0 license, and BayesO is under the MIT license. On the other hand, PyTorch is under its
own license; refer to its repository for the license.

E.1. Details of Synthetic Benchmarks

Here we describe the details of synthetic benchmarks.

Beale Function. This function is defined as follows:
fx)=(1.5—z1 + xlxg)z +(2.25 — a1 + xlxg)Q +(2.625 — 1 + wlx‘;)z, (18)

where x = [11, 23] € [—4.5,4.5]%.

Branin Function. It is defined as follows:
F(x) = (22 — (5.1/47%)27 + (5/m)z1 — 6)° + 10 (1 — (1/87)) cos(x1) + 10, (19)
where x = [21, z2] € [[-5, 10], [0, 15]].

Bukin6 Function. This benchmark is given by the following:

f(x) =100y/|z2 — 0.0123] + 0.01]z1 + 10|, (20)

where x = [z1, z2] € [[-15, —5],[-3, 3]].

Six-Hump Camel Function. It is given by the following:
f(x) = (4= 2127 + 21/3) af + w102 + (—4 + 4a3)a3, 1)
where x = [z1, z2] € [[-3,3],[—2,2]].
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E.2. Details of Tabular Benchmarks

Table 1. Search space for Tabular Benchmarks. “tanh” and “relu” represent hyperbolic tangent and ReL U, respectively.

Hyperparameter Possible Values

The number of units for 1st layer {16, 32, 64, 128, 256, 512}

The number of units for 2nd layer {16, 32, 64, 128, 256, 512}

Dropout rate for 1st layer {0.0, 0.3, 0.6}

Dropout rate for 2nd layer {0.0, 0.3, 0.6}

Activation function for 1st layer {“tanh”, “relu”}

Activation function for 2nd layer “tanh”, “relu”}

Initial learning rate {5x107%,1x1073,5x 1073, 1 x 1072,5 x 1072,1 x 107"}
Learning rate scheduling “cosine”, “constant”}

Batch size {8, 16, 32, 64}

The search space of Tabular Benchmarks (Klein & Hutter, 2019) is described in Table 1. To handle categorical and discrete
variables, we treat them as integer variables by following the previous literature by Garrido-Merchan & Herndndez-Lobato
(2020). More precisely, the value of each integer variable corresponds to the index of the original categorical or discrete
variable. When evaluating the variables, the integer variables are transformed into the original variables.

E.3. Details of NATS-Bench

Input image —» Conv. - XN - xN - xN

Figure 9. Neural network architecture in NATS-Bench. Orange blocks are optimized.

Global avg.

Residual block pooling

- —> |Residual block e — Output

Table 2. Search space for NATS-Bench. There exist 8° = 32,768 models.

Hyperparameter Possible Values

Output channels of 1st convolutional layer {8, 16, 24, 32, 40, 48, 56, 64}
Output channels of 1st cell stage {8, 16, 24, 32, 40, 48, 56, 64}
Output channels of 1st residual block {8, 16, 24, 32, 40, 48, 56, 64}
Output channels of 2nd cell stage {8, 16, 24, 32, 40, 48, 56, 64}
Output channels of 2nd residual block {8, 16, 24, 32, 40, 48, 56, 64}

We describe the search space for NATS-Bench (Dong et al., 2021) in Figure 9 and Table 2.

E.4. Details of Minimum Multi-Digit MNIST Search

Since multi-digit MNIST, which is composed of images of size (28, 84) and shown in Figure 10, is high-dimensional, some
of the methods used in this work, e.g., methods with random forests, gradient boosting, and XGBoost, struggle to process
such data. Therefore, we embed an original image to a lower-dimensional vector using an auxiliary convolutional neural
network. The convolutional neural network is trained to classify a three-digit image to one of labels from “000” to ““999,”
with the following architecture:

First layer: convolutional, input channel 1, output channel 8, kernel size 3 x 3, padding 1, ReL.U, max-pooling 2 x 2;

Second layer: convolutional, input channel 8, output channel 16, kernel size 3 x 3, padding 1, ReLU, max-pooling
2 X 2;

Third layer: convolutional, input channel 16, output channel 32, kernel size 3 x 3, padding 1, ReLU, max-pooling
2 X 2;

Fourth layer: fully-connected, input dimensionality 960, output dimensionality 128, ReLU;
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Figure 10. Examples on 64D minimum multi-digit MNIST search.

Fifth layer: fully-connected, input dimensionality 128, output dimensionality 64, ReL.U;

Sixth layer: fully-connected, input dimensionality 64, output dimensionality 1000, Softmax.

The Adam optimizer (Kingma & Ba, 2015) with learning rate 1 x 1073 is used to train the network for 100 epochs. To train
and test the model fairly, we create a training dataset of 440,000 three-digit images, a validation dataset of 40,000 three-digit
images, and a test dataset of 80,000 three-digit images using a training dataset of 55,000 single-digit images, a validation
dataset of 5,000 single-digit images, and a test dataset of 10,000 single-digit images in the original MNIST dataset (LeCun
et al., 1998). For example, supposing that a test dataset has 1,000 single-digit images per class—it is not true for the MNIST
dataset, but it is assumed for explanation—and we would like to generate a three-digit image “753,” 10° combinations for
“753” can be created. We therefore randomly sample a fixed number of three-digit images from a vast number of possible
combinations. In addition, an early stopping technique is utilized by comparing the current validation loss to the average of
validation losses for the recent five epochs. Eventually, our network achieves 99.6% in the training dataset, 97.0% in the
validation dataset, and 96.9% in the test dataset.

To construct a fixed-size pool, we use 80,000 embeddings of dimensionality 64, which are derived from the outputs of the
fifth layer without ReLU, by passing the test dataset of three-digit images through the network.
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F. Discussion on a Free Parameter in Label Propagation and Label Spreading
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Figure 11. Effects of a free parameter /3 in label propagation, denoted as LP, and label spreading, denoted as LS. All experiments are

repeated 20 times.

In the Bayesian optimization process of DRE-BO-SSL, a free parameter 3 in label propagation and label spreading is
learned every iteration by minimizing (9); see Figure 4 for the results on learned /3. Furthermore, to show the effects of
[, we empirically analyze 3 as depicted in Figure 11. We sample 1,000 unlabeled points and use all of them as unlabeled
points without pool sampling. For the cases of four benchmark functions, higher 3 tends to show better performance than
lower 3. These results considerably correspond with the results in Figure 4.
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G. Discussion on Unlabeled Point Sampling
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Figure 12. Effects of the number of unlabeled points for unlabeled point sampling. LP and LS stand for label propagation and label
spreading, respectively. We repeat all experiments 20 times.
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Figure 13. Effects of sampling strategies for unlabeled point sampling. LP and LS stand for label propagation and label spreading,
respectively. We repeat all experiments 20 times.

We design two studies to analyze the effects of the number of unlabeled points n,, and sampling strategies in a process of
unlabeled point sampling, where unlabeled points are not provided and S = 0.5 is given.

For the first study, we conduct five settings, no unlabeled data, which implies that transductive learning is not used,
and n,, = 10,100, 1000, 10000. Interestingly, the tendency of the number of unlabeled points are unclear as presented
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in Figure 12. It implies that a setting for the number of unlabeled data points depend on the characteristics of benchmark
functions, which is common in Bayesian optimization and black-box optimization. Besides, + is different across benchmarks
and iterations and it lets optimization results sensitive to n,,. Therefore, we cannot determine a suitable setting without
access to a black-box function of interest.

As another elaborate study, we test the effects of sampling strategies. Four strategies, the truncated multivariate normal
distributions, uniform distributions, Halton sequences (Halton, 1960), and Sobol” sequences (Sobol’, 1967), are compared.
As depicted in Figure 13, the normal distribution is better than the other sampling methods in four cases and shows robust
performance in most of the cases, but it is not always the best. Similar to the previous study on the effects of n,,, we presume
that it is also affected by ~, which is hard to define in practice.
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H. Discussion on Pool Sampling
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Figure 14. Results with 20 repeated experiments on elapsed times varying subset sizes via pool sampling. LP and LS stand for label
propagation and label spreading, respectively.
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Figure 15. Effects of pool sampling for a case with fixed-size pools. We repeat all experiments 20 times, and LP and LS stand for label
propagation and label spreading, respectively.

To see the impact of an additional hyperparameter, i.e., the size of a subset of the original pool, which is introduced to speed
up semi-supervised learning algorithms, we demonstrate numerical analysis on pool sampling where the size of a predefined

pool is 4,000 and S = 0.5 is given. Based on Figures 14 and 15, we can accelerate our framework without significant
performance loss.
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I. Discussion on a Threshold Ratio
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Figure 16. Effects of a threshold ratio ¢ with 8 = 0.5. We repeat all experiments 20 times, and LP and LS stand for label propagation and
label spreading, respectively.

Figure 16 demonstrates the effects of a threshold ratio ¢, where we use 3 = 0.5. It follows the setting described in Section F.
As presented in Figure 16, a smaller ¢, for example, ( = 0.01 or ¢ = 0.1 tends to show worse performance than a larger ¢,
which implies that the over-exploitation is not due to conservative y. Interestingly, the results with ¢ = 0.8 also generally
under-perform. We presume that it is basically due to over-exploration.

J. Limitations

As discussed above, our algorithms slow down if a pool size is significantly large. As presented in Figure 14, elapsed times
are certainly dependent on subset sizes. To tackle this issue, we suggest a method to randomly select a subset of the pool,
but a more sophisticated subsampling method can be devised for our framework. In particular, we can leverage the impacts
of the subset of the pool by utilizing the geometric information of unlabeled data points.
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