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Abstract
Federated Parameter-Efficient Fine-Tuning aims
to adapt Vision-Language Models for downstream
tasks in distributed environments. However, data
heterogeneity across participants hinders collab-
orative effectiveness, necessitating personalized
adaptation to cover distinct data distributions.
Current personalized methods suffer from two
limitations. 1) Textual Property Loss: Exist-
ing methods facilitate the collaboration between
decoupled prompts at the feature level, which
potentially undermines the textual properties of
the prompts. 2) Visual Feature Diversity: The
diversity of visual features makes it challeng-
ing to leverage naive image features directly for
image-text alignment in downstream tasks. In
this work, we propose Federated Disentangled
Tuning with Textual Prior Decoupling and Vi-
sual Dynamic Adaptation (FedDDA) to overcome
the above limitations. Specifically, we encour-
age decoupling prompts in a way that maximizes
the efficacy of prior knowledge, which is essen-
tial for maintaining a coherent linguistic con-
text. Furthermore, we design a visual adaption
model to reshape visual space to optimally align
with the textual space. Extensive experiments
on various image classification tasks show the
effectiveness of our work in addressing data het-
erogeneity. The codes are released at https:
//github.com/MoratalYang/FedDDA.

1. Introduction
Federated learning is a distributed paradigm (McMahan
et al., 2017; Konečnỳ et al., 2016a;b; Mohassel & Zhang,
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Figure 1. Background and motivation. The top row outlines the
framework for existing decoupled methods. The bottom row illus-
trates our motivation in both modalities. (a) In popular decoupled
methods, the collaboration between generalized and personalized
prompts relies on newly loss signals at the feature level, which
undermines the textual properties of the prompts. (b) The diversity
of visual features, stemming from the complex information within
images, makes direct image-text alignment challenging.

2017; Yang et al., 2019), allowing collaborative model train-
ing across decentralized clients without exposing their lo-
cal data. Recently, pre-trained Vision-Language Models
(VLMs), e.g., CLIP (Radford et al., 2021) and ALIGN
(Jia et al., 2021), have demonstrated exceptional versatil-
ity across a wide range of downstream tasks. Meanwhile,
Parameter-Efficient Fine-Tuning (PEFT) (Xu et al., 2023;
Luo et al., 2023) acts as a promising solution to adapt
to the VLM, which updates a limited number of param-
eters while keeping the remaining ones frozen. Leveraging
its lightweight nature, Federated Parameter-Efficient Fine-
Tuning (FedPEFT) has emerged as a privacy-friendly col-
laboration paradigm, enabling distributed data sources to
jointly fine-tune VLMs. Several studies (Guo et al., 2023b;
Lu et al., 2023; Qiu et al., 2024; Feng et al., 2023) follow
the FedAvg paradigm (McMahan et al., 2017) to aggregate
selected candidate parameters.

However, similar to conventional FL, FedPEFT faces chal-
lenges posed by data heterogeneity (Zhao et al., 2018;
Kairouz et al., 2021; Li et al., 2021a; 2020a), which is inher-
ent in distributed environments. Specifically, data from mul-
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tiple clients typically presents Non-IID (non-independent
and identically distributed) distributions. Therefore, solely
learning the shared parameters brings the restricted repre-
sentations to cover distinct distributions. Personalized Fed-
PEFT (Su et al., 2024; Guo et al., 2023a) acts as a crucial
role to benefit the multiple collaboration under data het-
erogeneity. For personalized adaptation, decoupling is key
to achieving fine-grained representations. Recent methods
(Bai et al., 2024; Cui et al., 2024; Li et al., 2024) follow the
decoupling strategy by constructing independent prompts
with specific properties, e.g., generalization and personaliza-
tion, and designing external signals to guide optimization.

However, as illustrated in Fig. 1, these decoupled researches
are baffled by two certain limitations stemming from their
paradigm. I) Textual Property Loss: With respect to
textual modality, these methods rely on newly designed
loss signals to facilitate collaboration among independent
prompts at the feature level. However, this collaborative
mode does not explicitly decouple prompts at the seman-
tic level, potentially undermining the textual properties of
the prompts. Specifically, the textual properties are shaped
by prior knowledge acquired through extensive image-text
alignments, which plays a vital role in constructing a co-
herent semantic. Yet, independent prompts derive minimal
benefits from prior knowledge, as they are fed into models
separately, while prior knowledge is typically built upon
a single input. Thus, our goal is to achieve better textual
decoupling in a manner that maximizes the efficacy of prior
knowledge. II) Visual Feature Diversity: Towards the vi-
sual modality, a crucial issue is the diversity of vision, which
is overlooked by previous personalized methods. Unlike
uniform labels, images within the same category often ex-
hibit varied styles, leading to a diverse visual feature space.
Additionally, the mode of image-text alignment depends on
the distribution of both visual and textual latent spaces (Cho
et al., 2023a). While the textual space can be optimized
by textual prompts, the diverse visual space makes it chal-
lenging to leverage fixed features directly for image-text
alignments. Hence, it’s crucial to optimize visual space that
is optimally aligned with the textual space.

To address these issues, we propose a simple yet effective al-
gorithm, Federated Disentangled Tuning with Textual Prior
Decoupling and Visual Dynamic Adaptation (FedDDA). For
I), we introduce Textual Prior Decoupling (TPD) to decou-
ple generalized and personalized prompts. Specifically, we
rethink the utilization of hand-crafted prompts. As high-
lighted in (Cho et al., 2023b; Gal et al., 2023), hand-crafted
prompts with domain-specific labels provide greater dis-
crimination across multi-domain scenarios by leveraging
abundant prior knowledge. This motivates us to integrate
generalized representations with personalized ones within a
robust linguistic context. Specifically, we explicitly decou-
ple the prompts into global and local components connected

by guidance words, with each responsible for extracting
consensus and style knowledge, respectively. In this way,
the semantic fusion of consensus and style knowledge draws
support from prior knowledge without additional signals.
In response to II), we propose Visual Dynamic Adaptation
(VDA) to reshape the visual space in a dynamic manner.
Specifically, we introduce a dual adapter architecture to
decouple consensus and style features from naive visual
features and subsequently construct an adaptive visual rep-
resentation. Given the federated setting, one adapter is
shared while the other is private. The shared adapter extracts
client-invariant visual information, i.e., consensus knowl-
edge, while the private adapter captures client-specific visual
information, i.e., style knowledge. Inspired by Mixture-of-
Experts (MoE) (Shazeer et al., 2017; Masoudnia & Ebrahim-
pour, 2014; Cai et al., 2024; Chen et al., 2023), we further
implement a gating mechanism to dynamically harmonize
visual representations. Based on the consensus and style
knowledge, this visual adaptation module can adaptively
learn the optimal visual space that aligns with textual space.

In this paper, our work combines Textual Prior Decoupling
with Visual Dynamic Adaptation to achieve decoupling from
both textual and visual modalities. Textual Prior Decoupling
learns fine-grained representations for robust language su-
pervision, while Visual Dynamic Adaptation (VDA) adjusts
visual features to optimally align with the textual space. In
a nutshell, the main contributions are as follows:
• We focus on Personalized Federated Parameter-Efficient

Fine-Tuning, highlighting two limitations of existing
works from both textual and visual modality.

• We propose a simple yet effective method FedDDA.
Through Textual Prior Decoupling and Visual Dynamic
Adaptation, FedDDA obtains effective personalized
vision-language models.

• We conduct extensive experiments on four datasets: Of-
fice31, PACS, OfficeHome, and DomainNet. Through a
set of ablation studies, we validate the efficacy of FedDDA
and the indispensability of each module.

2. Related Work
2.1. Parameter-Efficient Fine-Tuning

As model parameter counts increase, fine-tuning the en-
tire model becomes prohibitively expensive and impractical.
Parameter-Efficient Fine-Tuning (PEFT) (Xu et al., 2023;
Luo et al., 2023; Huang et al., 2025b;a) has been introduced
to address this challenge by reducing the number of ac-
tive parameters while maintaining comparable capability to
the full fine-tuning. Specifically, PEFT involves updating
only a limited number of additional parameters or selec-
tively optimizing a subset of the original parameters for effi-
cient adaptation. Instead of selecting a subset, adding new
parameters adopts a plug-and-play approach, keeping the
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original model parameters frozen, such as reparameterized
fine-tuning (Valipour et al., 2023; Xu et al., 2024) and addi-
tive fine-tuning (Zhou et al., 2022b; Gao et al., 2024). For
instance, Low-Rank Adaptation (Hu et al., 2021) (LoRA) is
the foundational work of reparameterized fine-tuning, where
trainable low-rank decomposition matrices are injected into
the network. Additive fine-tuning encompasses two primary
techniques: prompt-based tuning and adapter-based tuning.
Prompt-based tuning (Zhou et al., 2022a; Sun et al., 2022;
Khattak et al., 2023; Yao et al., 2023; Zhang et al., 2024b;
Fang et al., 2025) employs a set of contextual vectors that
are inserted either into the input embeddings alone or across
all intermediate layers, to stimulate task-specific knowledge.
Adapter (Gao et al., 2024; Zhang et al., 2024a; 2022), actu-
ally a lightweight adaptation model at the end of the encoder,
reshapes generated features into a new space, which can also
be inserted into each layer. In this paper, we focus on PEFT
based on VLMs and integrate textual prompts with visual
adapters to establish a complementary relationship between
language and vision.

2.2. Data Heterogeneous Federated Learning

With growing privacy concerns, Federated Learning (FL)
(McMahan et al., 2017; Konečnỳ et al., 2016a;b; Mohas-
sel & Zhang, 2017; Yang et al., 2019; Ye et al., 2025) has
been proposed as a framework for collaboratively training
models across decentralized clients without leaking sensi-
tive data. As a milestone, FedAvg (McMahan et al., 2017)
updates a global model by aggregating local parameters
from multiple clients and subsequently sends the updated
model back for further training. However, FedAvg strug-
gles with challenges posed by Non-IID data distributions
(Zhao et al., 2018; Kairouz et al., 2021; Li et al., 2021a;
2020a; Ma et al., 2025) (i.e. data heterogeneity), which can
negatively impair model performance. A common form of
heterogeneity is label shifts, arising from imbalanced sam-
pling. Several methods (Li et al., 2020b; Acar et al., 2021;
Li et al., 2021b; Tan et al., 2022; Hu et al., 2024; Karim-
ireddy et al., 2020) leverage global penalty term to address
this challenge. However, these methods focus on single
domain performance and overlook domain shift, where data
from diverse sources inevitably falls into distinct feature
distributions. This discrepancy leads to optimization in-
consistencies between clients and the central server. Some
efforts (Li et al., 2021c; Liu et al., 2021; Wu & Gong, 2021;
Ye et al., 2023; Huang et al., 2023; 2022) attempt to de-
velop personalized models for these multi-domain scenarios.
However, the above methods mainly target conventional net-
works. In this paper, we explore a novel federated paradigm
based on the vision-language model, e.g., CLIP, which lever-
ages contrastive learning to construct image-text alignment.
This paradigm does not require training from scratch on
closed datasets, enabling rapid adaptation.

2.3. Personalized Federated Parameter-Efficient
Fine-Tuning

Federated Parameter-Efficient Fine-Tuning integrates PEFT
techniques into federated learning to reduce communica-
tion and computational burdens. Some efforts (Guo et al.,
2023b; Lu et al., 2023; Qiu et al., 2024; Feng et al., 2023)
focus on shared parameters across different PEFT architec-
tures to achieve generalized capability, similar to FedAvg
(McMahan et al., 2017). For instance, PromptFL (Guo
et al., 2023b) extends prompt tuning (Zhou et al., 2022b)
to the federated setting by utilizing a set of shared learn-
able context vectors to activate prior knowledge. Similarly,
FedCLIP (Lu et al., 2023) adopts a shared attention-based
adapter within the visual branch to identify task-specific
features. However, direct aggregation in these methods
encounters the same impediments as conventional FL due
to data heterogeneity. To address this issue, Personalized
Federated Parameter-Efficient Fine-Tuning has been pro-
posed to accommodate diverse distributions. Some methods
introduce private parameters tailored to individual clients
while maintaining shared prompts to foster global knowl-
edge, such as pFedPrompt (Guo et al., 2023a) and FedAPT
(Su et al., 2024). Moreover, approaches like FedOTP (Li
et al., 2024), FedPGP (Cui et al., 2024), and DiPrompT (Bai
et al., 2024) decouple prompts into independent components
with distinct properties. These properties are typically de-
rived from global or local federated setups and are further
enhanced through external loss signals or multi-stage train-
ing. In this paper, we analyze the limitations of existing
decoupled works from both modalities and further explore
the decoupling strategy.

3. Methodology
In this section, we present the details of our proposed Fed-
DDA, as depicted in Fig. 2. We leverage Textual Prior
Decoupling (Sec. 3.2) to learn fine-grained representations
that effectively capture both consensus and style knowledge,
and employ Visual Dynamic Adaptation (Sec. 3.3) to re-
shape visual features in a dynamic manner. After these
improvements, we follow the standard CLIP loss to achieve
language-vision collaboration (Sec. 3.4).

3.1. Preliminary

CLIP and Parameter-Efficient Fine-Tuning. By align-
ing 400 million image-text pairs, CLIP obtains remarkable
zero-shot capabilities, enabling generalized performance
across diverse tasks. However, this generalized performance
falls short for specific tasks. To enhance adaptability to
downstream tasks, researchers have introduced Parameter-
Efficient Fine-Tuning (PEFT), which fine-tunes the decision
boundaries of VLMs at minimal cost by updating only a lim-
ited set of parameters. In this paper, we employ two typical
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Figure 2. Architecture Illustration of the FedDDA. In Textual Prior Decoupling (Sec. 3.2), we explicitly decouple the prompts into global
and local components connected by guidance words, with each responsible for extracting consensus and style knowledge, respectively. In
Visual Dynamic Adaptation (Sec. 3.3), dual adapters with gate deconstruct visual features and subsequently construct an adaptive visual
representation in a dynamic manner.

PEFT techniques: prompt and adapter, which incorporate
additional parameters into the models. For clarity, we use
prompt tuning to illustrate the workflow of PEFT in this
section, while details regarding the adapter can be viewed
in Sec. 3.3.

Prompt tuning learns a set of vectors p, denoted as
{p1, . . . , pL}. Specifically, the learnable vectors are com-
bined with class token embedding c. The input tokens of
k-th class Pk can be formulated as {p1, . . . , pL, ck}. Let
I(·) denote the image encoder and T (·) denote the text en-
coder. Given an image sample x with label k, the prediction
probabilities can be calculated as:

q(k|x) = exp(sim(I(x), T (Pk))/τ)∑K
c=1 exp(sim(I(x), T (Pc))/τ)

, (1)

where sim(·, ·) denotes cosine similarity, τ is the temper-
ature of Softmax and K is the number of class. After cal-
culating the probability, additional parameters θ (i.e. p in
prompt tuning) are optimized through contrastive learning
while freezing the original ones:

Lce(x, y) = −
K∑

k=1

y log q(k|x), (2)

where y is a one-hot label vector and Lce represents the
cross-entropy loss.

Personalized Federated PEFT. Considering a federated
scenario with M clients and a central server, each client
i is equipped with a CLIP model and holds a local
dataset Di = {(xj , yj)}mi

j=1 with mi scale. Denote D =
{D1, D2, · · · , DM} as the entire collection of datasets from
diverse domain and Ct as the set of active clients. During
local training, the optimization objective is to minimize the
cross-entropy loss in Eq. (2):

argmin
θi

E(x,y)∼Di
Lce(x, y), (3)

To minimize the prejudice of aggregated parameters on per-
sonalization, private parameters are introduced. Specifically,
the updated parameters θi consist of global and local com-
ponents, denoted as {θg,i, θl,i}. During the collaborative
phase, each client transmits the generalized parameters θt−1

g,i

to the server, where they are aggregated with weights pro-
portional to the scale of the client’s data. The updated global
parameters for communication round t is:

θtg =
∑
i∈Ct

mi∑
j∈Ct

mj
θt−1
g,i . (4)

Subsequently, the server distributes the aggregated parame-
ters back to the clients for further training.

3.2. Textual Prior Decoupling

Motivation. Driven by the decoupling strategy, we tend to
separate the prompts for fine-grained representation. Specif-

4



Federated Disentangled Tuning with Textual Prior Decoupling and Visual Dynamic Adaptation

ically, we seek to integrate consensus and style without com-
promising semantic integrity. This fusion can be effectively
achieved by prior knowledge, which facilitates the nuanced
understanding of the relationships between input tokens.
A hand-crafted prompt that combines consensus and style,
e.g. ”a dog with a style of cartoon”, is the most straightfor-
ward way to establish the cooperation between consensus
and style representations, with the aid of prior knowledge.
Consequently, we aim to decouple generalized and personal-
ized prompts as consensus-and-style texts, leveraging prior
knowledge to create a robust linguistic context.

Decoupled Textual Prompts. Specifically, we explicitly
decouple the prompt into a global generalized prompt Pg

and a local personalized prompt Pl, both of which consist of
a set of continuous vectors {p1, ..., pL}. To preserve textual
semantics, these two prompts are combined into a single
prompt, denoted as Pi. With respect to the text modality,
the text encoder has the ability to embed the textual style
guidance, due to its exposure to a broad range of styles
when pre-training. Building on this insight, we introduce
guidance words, ”with a style of”, between two prompts to
evoke stylistic semantics. Hereby, we define Pi as:

Pg [class] with a style of Pl , (5)

where Pg is sent to the server for aggregation, capturing
consensus knowledge from other clients, while Pl remains
in the local update to extract individual characteristics. In
this way, we can obtain the text feature fused with consen-
sus knowledge and style knowledge through the attention
mechanism in the encoder.

3.3. Visual Dynamic Adaptation

Motivation. Existing researches on decoupling primarily
focus on different prompt settings while neglecting the di-
versity of vision. Unlike uniform labels, images within
the same category often exhibit varied styles, leading to a
diverse visual feature space. Furthermore, the alignment
between image and text is influenced by the distribution
of both visual and textual latent spaces. While textual
prompts can optimize the textual space, the varied visual
space presents difficulties in directly utilizing fixed visual
features for image-text alignment. Therefore, it is essential
to optimize the visual space. A straightforward way is to
introduce the adapter architecture after the image encoder
to reshape visual features into a new visual space.

Dual Visual Adapters with Gate. The adapter we employ
is a compact and scalable network composed of two linear
layers. Denote Wdown ∈ Rd×r as the down projection and
Wup ∈ Rr×d as the up projection, where d is the dimension
of encoder output and r is the dimension of the hidden layer.
Each linear layer is followed by a nonlinear activation layer

ϕ(·), like RELU. Thus, an adapter can be formulated as:

A(x,W ) = ϕ(Wup · ϕ(Wdown · x)), (6)

where W is the parameter collection {Wup,Wdown}. Con-
cretely, we propose dual adapters: the general adapter Ag

and the specific adapter As, to reshape visual features in co-
operation. Similar to decoupled prompts, the parameters of
the general adapter are shared across clients to aggregate the
consensus information and those of the specific adapter are
updated locally to handle diverse style knowledge. Given
the naive visual feature Zn, the general and specific features
are generated as:

Zg = Ag(Zn,Wg), (7)

Zs = As(Zn,Ws). (8)

For precise adaptation, we advocate for a dynamic combina-
tion of visual components. Driven by the Mixture of Experts
(MoE) (Shazeer et al., 2017; Masoudnia & Ebrahimpour,
2014; Cai et al., 2024; Chen et al., 2023), we design a gating
mechanism G(·) to generate weights for the feature sums.
This generator is implemented by a linear layer Wgate that
maps naive visual features into weighted vectors p ∈ R3.
The generated weights are calculated as follows:

gx = G(Zn,Wgate),

pi(x) =
exp(gxi)∑3

j=1 exp
(
gxj

) , (9)

where pi(x) represents the softmax-normalized weight of
the i-th dimension of gx. Specifically, pi(x) (i ∈ {1, 2, 3})
respectively correspond to the weights for the naive, gen-
eral, and specific features, denoted as pn, pg and ps. After
calculating the weight of each sample, the final weighted
visual feature Zw is given by:

Zw = pn · Zn + pg · Zg + ps · Zs. (10)

3.4. Language-vision Collaboration

During image-text alignment, the text encoder generates
features of decoupled prompts, while dual adapters with
gate reshape naive visual features produced by the image
encoder. The local update follows the standard CLIP loss
as Eq. (2), without any additional loss signals. The final
prediction probabilities in the loss can be formulated as:

q(k|x) = exp(sim(Zw, T (Pi,k))/τ)∑K
c=1 exp(sim(Zw, T (Pi,c))/τ)

. (11)

After local training, the server shares the global parameters,
consisting of P t

g and W t
g in our method:

P t
g =

∑
i∈Ct

mi∑
j∈Ct

mj
P t−1
g,i , (12)
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Algorithm 1 FedDDA
Input: Communication rounds T , participant set M , i-th client’s

private dataset Di and parameter collections θi =
{Pg,i, Pl,i,Wg,i,Ws,i,Wgate,i}, learning rate η and to-
kenized embedding of guidance words GW.

for t = 1, 2, ..., T do
Participant Side
for i = 1, 2, ...,M in parallel do

P t
g,i,W

t
g,i ← Local Update(P t−1

g ,W t−1
g )

end
Server Side
P t
g =

∑
i∈Ct

mi∑
j∈Ct

mj
P t−1
g,i

W t
g =

∑
i∈Ct

mi∑
j∈Ct

mj
W t−1

g,i

end
Local Update(Pg ,Wg):
Pg,i = Pg

Wg,i = Wg

for (x, y)∈Di do
/* Textual Prior Decoupling */
Pi = [Pg,i,CLASS,GW,Pl,i]

/* Visual Dynamic Adaptation */
Zn = I(x)
Zg = Ag(Zn,Wg,i), Zs = As(Zn,Ws,i)
pn, pg, ps ← (Zn,Wgate,i) in Eq. (9)
Zw = pn · Zn + pg · Zg + ps · Zs

/* Language-vision Collaboration */

Lce = −
∑K

k=1 y log
exp(sim(Zw,T (Pi,k))/τ)∑K

c=1 exp(sim(Zw,T (Pi,c))/τ)

θi = θi − η∇Lce

end
Return Pg,i and Wg,i to Server

W t
g =

∑
i∈Ct

mi∑
j∈Ct

mj
W t−1

g,i . (13)

Through these fine-grained designs, our method implements
a system of functional separation within visual-language
space. In the text branch, decoupled prompts concentrate
solely on textual semantics. In the visual branch, dual
adapters serve as feature extractors to capture complex vi-
sual information from the naive visual features, with the
proportion of generated features determined by the gate.
Through this separation of functions, the components pay
attention to their own roles, thereby enhancing the overall
ability. The overall federated learning algorithm is shown
in Algorithm 1.

Discussion and Limitation. Existing methods predom-
inantly achieve decoupling through collaboration among
independent prompts. However, these approaches not only
compromise the semantic knowledge of the textual prompt
but also overlook visual diversity. In our FedDDA, we
construct prompts as Eq. (5) to fully leverage prior knowl-
edge for effective decoupling. Additionally, unlike previous
personalized methods, which restrict additional parameters
exclusively to the text branch, our method introduces a vi-

sual adaptation module that dynamically adjusts the visual
space for each client. The visual components inevitably
introduce more training parameters, leading to increased
computational and communication burden. It should be
noted that this limitation is not unique to our approach but
is an inherent aspect of PEFT shared across many methods.
Through fine-grained design, we maximize the utility of
these parameters to achieve better performances.

4. Experiment
4.1. Experimental Setup

Datasets. We extensively evaluate our method on the fol-
lowing four multi-domain classification tasks:
• Office31 (Saenko et al., 2010) contains 31 classes of com-

mon objects in office scenarios across 3 domains: Amazon
(A), Webcam (W), and DSLR (D).

• PACS (Li et al., 2017) includes 4 domains: Art-painting
(A), Cartoon (C), Photo (P), and Sketch (S), with 7 classes.

• OfficeHome (Venkateswara et al., 2017) consists of 4
domains: Art (A), Clipart (C), Product (P), and Real
world (R), each with 65 categories.

• DomainNet (Peng et al., 2019) includes 6 domains: Cli-
part (C), Infograph (I), Painting (P), Quickdraw (Q), Real
(R), and Sketch (S), each with 345 categories. To enhance
evaluation efficiency, we choose the first 100 categories
of every domain as the overall dataset.

Data Heterogeneity. To simulate domain shifts, we evenly
assign each client a distinct domain from the dataset. We
consider two client configurations: ① the client size equals
that of domains; ② the client size is twice that of domains.
To further evaluate performance under data heterogeneity,
we take label shifts into consideration. Specifically, we
partition the data within each domain based on a Dirichlet
distribution (Lin et al., 2020; Kotz et al., 2004) under ②
client setting, and adjust the β parameter to model varying
degrees of unbalanced label sampling.

Counterparts. We compare our FedDDA against two gen-
eralized approaches (Guo et al., 2023b; Li et al., 2020b) as
well as two popular solutions for personalized performance
(Li et al., 2024; Cui et al., 2024):
• PromptFL [TMC’23] (Guo et al., 2023b): The first to

integrate prompt tuning into federated setting by learning
a unified textual prompt.

• PromptFL+Prox [MLSys’20] (Li et al., 2020b): Restrict
updated prompts by proximal term instead of aggregation.

• FedOTP [CVPR’24] (Li et al., 2024): Employ unbalanced
optimal transport to align local visual features with global
and local prompts.

• FedPGP [ICML’24] (Cui et al., 2024): Incorporate a low-
rank adaptation term with an additional contrastive loss
to balance generalization and personalization.
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Table 1. Comparison with the state-of-the-art solutions on Office31, PACS, OfficeHome, and DomainNet tasks with domain shifts
under ① and ② client settings. AVG denotes average accuracy calculated on all domains and best in bold. Please see details in Sec. 4.3.

Office31 PACS OfficeHome DomainNet
Methods

A W D AVG A C P S AVG A C P R AVG C I P Q R S AVG

① One domain for one client
Zero-shot 81.14 72.45 74.05 75.88 97.22 99.06 99.86 88.16 96.08 84.30 66.28 89.06 89.66 82.33 71.93 53.30 65.73 13.57 83.49 66.46 59.08
PromptFL 88.90 87.55 94.30 90.25 ↑14.37 98.72 99.23 99.88 94.81 98.16 ↑2.08 86.94 75.76 94.32 93.59 87.65 ↑5.32 86.55 70.29 79.89 34.31 91.54 79.97 73.76 ↑14.68

PromptFL+Prox 89.22 89.80 93.04 90.68 ↑14.80 98.76 99.19 99.88 94.24 98.02 ↑1.94 86.16 76.28 94.25 93.59 87.57 ↑5.24 87.47 71.25 82.15 32.63 91.79 81.20 74.41 ↑15.33

FedOTP 85.73 94.69 94.94 91.79 ↑15.91 98.74 99.43 99.77 95.55 98.37 ↑2.29 79.71 76.24 92.18 87.10 83.81 ↑1.48 86.73 69.80 82.05 50.37 90.75 82.69 77.06 ↑17.98

FedPGP 89.04 95.10 96.96 93.70 ↑17.82 99.16 99.59 99.87 95.65 98.57 ↑2.49 88.55 77.20 95.06 93.77 88.65 ↑6.32 89.79 77.68 87.91 53.08 93.92 86.50 81.48 ↑22.40

FedDDA 89.32 97.14 98.23 94.90↑19.02 99.34 99.74 99.88 96.65 98.90↑2.82 87.07 78.67 96.32 93.52 88.89↑6.56 89.74 77.34 88.46 63.67 94.14 88.06 83.57↑24.49

② One domain for two clients
Zero-shot 81.14 72.66 73.99 75.93 97.22 99.06 99.86 88.16 96.08 84.33 66.28 89.07 89.69 82.34 71.94 53.31 65.73 13.57 83.49 66.46 59.08
PromptFL 89.89 84.89 92.19 88.99 ↑13.06 98.69 99.22 99.88 94.86 98.17 ↑2.09 86.65 75.38 94.51 93.49 87.51 ↑5.17 86.57 71.29 81.90 35.34 92.40 80.3 74.63 ↑15.55

PromptFL+Prox 89.25 86.85 91.80 89.30 ↑13.37 98.47 99.16 99.83 94.55 98.00 ↑1.92 86.13 74.60 94.40 93.44 87.15 ↑4.81 86.48 72.63 81.72 34.43 92.31 80.85 74.73 ↑15.65

FedOTP 84.73 89.16 95.94 89.94 ↑14.01 98.43 99.39 99.75 94.91 98.12 ↑2.04 77.96 73.96 91.20 87.10 82.56 ↑0.22 85.73 69.50 81.45 48.49 90.38 82.11 76.27 ↑17.19

FedPGP 89.24 91.66 95.18 92.03 ↑16.10 98.96 99.60 99.94 95.39 98.47 ↑2.39 87.92 77.01 94.96 92.71 88.15 ↑5.81 88.89 77.37 87.08 51.14 93.70 86.07 80.71 ↑21.63

FedDDA 88.39 95.06 98.10 93.85 ↑17.92 99.13 99.77 99.89 95.96 98.69 ↑2.61 86.69 77.98 95.27 92.96 88.22 ↑5.88 88.65 76.07 86.67 61.76 93.47 86.80 82.24 ↑23.16

Table 2. Comparison with the state-of-the-art solutions on Office31, PACS, OfficeHome, and DomainNet with domain shifts and label
shifts under ② client setting. Refer to Sec. 4.3.

Office31 PACS OfficeHome DomainNet
Methods

β = 0.1 β = 0.3 β = 0.5 β = 0.1 β = 0.3 β = 0.5 β = 0.1 β = 0.3 β = 0.5 β = 0.1 β = 0.3 β = 0.5

Zero-shot 75.36 75.01 75.49 95.97 96.01 95.98 82.27 82.39 82.30 59.07 59.24 59.11
PromptFL 89.01 ↑13.65 90.44 ↑15.43 88.40 ↑12.91 97.57 ↑1.60 98.02 ↑2.01 97.98 ↑2.00 87.35 ↑5.08 87.23 ↑4.84 87.01 ↑4.71 73.14 ↑14.07 73.88 ↑14.64 74.23 ↑15.12

PromptFL+Prox 89.27 ↑13.91 89.66 ↑14.65 88.11 ↑12.62 97.94 ↑1.97 98.01 ↑2.00 98.05 ↑2.07 87.46 ↑5.19 87.32 ↑4.93 87.36 ↑5.06 73.41 ↑14.34 73.66 ↑14.42 74.07 ↑14.96

FedOTP 90.78 ↑15.42 90.54 ↑15.53 88.75 ↑13.26 98.87 ↑2.90 98.62 ↑2.61 98.49 ↑2.51 84.81 ↑2.54 85.66 ↑3.27 84.28 ↑1.98 77.52 ↑18.45 77.70 ↑18.46 76.94 ↑17.83

FedPGP 91.78 ↑16.42 90.88 ↑15.87 91.68 ↑16.19 99.10 ↑3.13 98.82 ↑2.81 98.72 ↑2.74 89.49 ↑7.22 89.63 ↑7.24 88.78 ↑6.48 80.72 ↑21.65 82.46 ↑23.22 82.12 ↑23.01

FedDDA 94.68 ↑19.32 94.34 ↑19.33 94.73 ↑19.24 99.39 ↑3.42 99.06 ↑3.05 99.10 ↑3.12 89.85 ↑7.58 90.25 ↑7.86 89.24 ↑6.94 82.98 ↑23.91 83.24 ↑24.00 82.82 ↑23.71
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Figure 3. Comparison of convergence of average accuracy with the SOTA methods on Office31, PACS, OfficeHome, and DomainNet
tasks with domain shifts under ① client setting. Refer to Sec. 4.3.

Implementation Details. For a fair comparison, follow-
ing (Guo et al., 2023b; Li et al., 2024; Zhang et al., 2023;
Huang et al., 2023), we use the same settings across all
experiments. We use the publicly available CLIP (Radford
et al., 2021) model with the ViT-B/16 as the backbone model.
The prompt length is set to 16 and the prompts are randomly
initialized with the normal distribution. We utilize SGD
optimizer (Robbins & Monro, 1951) to optimize selected
candidate parameters for 50 communication rounds with
1 local epoch. The learning rate lr is 0.001 and the train
batch size of images is 32. We fixed the random seed at 1 to
ensure reproduction.

4.2. Ablation Study

For thorough assessment, we perform a set of ablation stud-
ies to investigate the efficacy of each component under multi-
domain scenarios. To improve the efficiency of comparison,
the experiments are set up on two datasets, Office31 and
PACS, under ② client setting.

Efficacy of Textual Prior Decoupling. To further explore
the impact of different prompt settings, we conduct experi-
ments without visual adaptation module, as shown in Fig. 4.
Notably, the case with a single global prompt has 32 to-
kens to eliminate the difference that comes from the number
of updated parameters. The results indicate that a global
prompt is insufficient to match diverse distributions across
clients, resulting in a lower performance compared to decou-
pled prompts consisting of global and local parts. Further-
more, with the help of guidance words, textual decoupling
achieves higher accuracy, manifesting that leveraging prior
knowledge can channel more stylized information. Notably,
we observe that the benefits of guidance words are smaller
than those gained from the decoupled prompts. The reason
is that visual diversity hinders prompts from focusing on
semantic decoupling so that guidance words only capture
weak semantic knowledge.

Efficacy of Visual Dynamic Adaptation. Through detailed
experiments, we investigate the capabilities of three visual
components: the general adapter, the specific adapter, and
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Figure 4. Comparison of different prompt designs in Office31
and PACS tasks. We present the change of accuracy from only
global prompts (GP) to the decoupled prompts (GP+LP), and
finally to the decoupled prompts connected by guidance words
(GP+GW+LP) as shown in Eq. (5). See details in Sec. 4.2.

Baseline Ag As Ag+As Ag+As+G

Figure 5. Analysis of visual components in Office31 and PACS
tasks, including general adapter (Ag in Eq. (7)), specific adapter
(As in Eq. (8)) and gate (G in Eq. (9)). See details in Sec. 4.2.

the gate mechanism. To ensure a fair comparison, we set
the prompt as shared vectors. We consider five cases for
the final visual feature: (1) naive visual feature (Zn); (2)
the average of naive and general features (Zn+Zg

2 ); (3) the
average of naive and specific features (Zn+Zs

2 ); (4) the av-
erage of naive, general and specific features (Zn+Zg+Zs

3 );
(5) the weighted sum of naive, general and specific features
(Eq. (10)). As seen in Fig. 5, the incorporation of general
or specific adapters achieves better performance than naive
learning, validating the efficacy of the adapter architecture.
This also evidences that both consensus and style knowl-
edge contribute to the adaptation of visual space. Moreover,
we explore the combination of general and specific adapters,
which obtains greater discernment than using either adapter
alone. Furthermore, the inclusion of the gate mechanism sig-
nificantly increases performance, supporting our motivation
for dynamic adaptability on multiple domains.

Efficacy of Collaboration. Note that the textual decou-
pled prompts learn fine-grained representations, and that
dual visual adapters with gate reshape visual features based
on client specifics. We present the ablation study of two
modules in Tab. 3. The final results illustrate that both
Textual Prior Decoupling and Visual Dynamic Adaptation
contribute significantly to the performance of the model.
The combination of two modules yields the best results,
underscoring the effectiveness of our work.

Table 3. Ablation study of Textual Prior Decoupling (TPD in
Sec. 3.2) and Visual Dynamic Adaptation (VDA in Sec. 3.3) in
Office31 and PACS tasks. Please see details in Sec. 4.2.

Office31 PACSTPD VDA
AVG ∆ AVG ∆

89.53 - 97.97 -
✓ 93.24 +3.71 98.62 +0.65

✓ 92.03 +2.50 98.51 +0.54
✓ ✓ 93.85 +4.32 98.69 +0.72

(a) Zero-shot (b) FedDDA (c) Zero-shot (d) FedDDA

Figure 6. t-SNE Visualization of Visual Space on participants
from Office31 (a) (b) and OfficeHome (c) (d). Refer to Sec. 4.3.

4.3. Comparison to State-of-the-Arts

The results in Tab. 1 plot the final accuracy against state-of-
the-art (SOTA) methods on Office31, PACS, OfficeHome,
and DomainNet with domain shifts under two types of
client settings. Among most domains, our work achieves the
highest accuracy, confirming that FedDDA can effectively
boost performance across different domains. As shown in
Fig. 3, the accuracy curve reveals our method’s high ac-
curacy and fast convergence across the four datasets. We
visualize the t-SNE visualization analysis of visual space
in Fig. 6. We further conduct the experiments on datasets
with domain shifts and label shifts in Tab. 2. Specifically,
the division of domains among clients remains unchanged
as ②, while clients within the same domain are assigned
data partitioned by Dirichlet strategy. We set the parame-
ter β in {0.1, 0.3, 0.5} to simulate varying levels of label
shifts. FedDDA achieves the highest accuracy across all set-
tings, ensuring the robustness and compatibility of our work.
These comprehensive experiments illustrate that our method
significantly outperforms its counterparts, highlighting the
effectiveness of our design under data heterogeneity.

5. Conclusion
In this paper, we explore the data heterogeneity problem
in FedPEFT. Our work introduces a simple yet effective
algorithm, FedDDA. We leverage Textual Prior Decoupling
to learn fine-grained representations for robust language
supervision and introduce Visual Dynamic Adaptation to
reshape visual feature space dynamically. The effectiveness
of FedDDA has been thoroughly validated with popular
counterparts over various classification tasks. We wish this
work to pave the way for future research on FedPEFT.
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