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ABSTRACT

This paper focuses on a challenging setting of simultaneously modeling geome-
try and appearance of hand-object interaction scenes without any object priors.
We follow the trend of dynamic 3D Gaussian Splatting based methods, and ad-
dress several significant challenges. To model complex hand-object interaction
with mutual occlusion and edge blur, we present interaction-aware hand-object
Gaussians with newly introduced optimizable parameters aiming to adopt piece-
wise linear hypothesis for clearer structural representation. Moreover, consid-
ering the complementarity and tightness of hand shape and object shape during
interaction dynamics, we incorporate hand information into object deformation
field, constructing interaction-aware dynamic fields to model flexible motions. To
further address difficulties in the optimization process, we propose a progressive
strategy that handles dynamic regions and static background step by step. Corre-
spondingly, explicit 3D regularizations are designed to stabilize the hand-object
representations for smooth motion transition, physical interaction reality, and co-
herent lighting. Experiments show that our approach surpasses existing dynamic
3D-GS-based methods and achieves state-of-the-art performance in reconstructing
dynamic hand-object interaction.

1 INTRODUCTION

Accurate hand–object interaction (HOI) reconstruction is vital for VR and robotics Handa et al.
(2020), requiring precise shape modeling and interaction capture. Despite the apparent simplicity of
daily actions like grasping or drinking, they involve complex contact dynamics and severe occlusions
that remain challenging to model.

Fig. 1. Differences between traditional 3D Gaussian-based hand-object reconstruction and our
interaction-aware modeling. Prior methods predominantly rely on 2D supervision and employ a single im-
plicit field for dynamic estimation, frequently failing to capture fine-grained interaction details. (e.g., the exact
clearance between the toy car and hand). In contrast, our interaction-aware approach simultaneously constructs
the hand field and interaction-aware object field, applying 2D&3D losses to accurately model the details of
hand-object interaction.
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Previous works Rong et al. (2020); Taheri et al. (2020) reconstruct HOI scenes by treating interactive
objects as known, relying on specific object poses or templates. However, acquiring such poses or
templates is costly, limiting their industrial applicability. Existing methods try to reduce the reliance
on precise pose estimation and templates by several routes. Qi et al. (2024); Wen et al. (2023)
employs SDF-based approaches, integrating SDF to reconstruct dynamic hand-object scenes using
neural networks, without the need for specific object priors. However, these methods focus primarily
on geometry reconstruction without appearance. With the advent of NeRF Mildenhall et al. (2021),
some researchers Liu et al. (2023); Zhang et al. (2023) explore HOI scene reconstruction with both
geometry and appearance by training implicit fields. However, due to the inefficiency of backward
mapping-based ray-rendering algorithms Mildenhall et al. (2021), these methods require significant
time and computational resources. Recently, 3D Gaussian Splatting (3D-GS) Kerbl et al. (2023)
has demonstrated superior fidelity and speed in static scene reconstruction. Some works Wu et al.
(2024); Huang et al. (2024); Yang et al. (2024) attempt dynamic reconstruction using 3D-GS, but
they struggle with complex HOI scenarios involving heavy occlusion and irregular rotations, failing
to capture accurate interaction dynamics. Although EgoGaussian Zhang et al. (2024) targets HOI
reconstruction, it requires object pose estimation and only presents results for interactive objects
without effective hand representation. In this work, we address the limitations of 3D-GS-based
methods by proposing a model to simultaneously reconstruct the entire HOI scene without requiring
any object priors.

To successfully handle such a practical setting presents significant challenges. First, drastic mo-
tions, mutual occlusion and blur during interaction cause misalignment and excessive overlap among
Gaussians. To address this, we model the interaction as a piecewise linear process and present a
novel representation termed interaction-aware hand-object Gaussians. It introduces two parameters
over the traditional 3D-GS representation: weight w and radius o. The weight w balances motion
smoothness and noise reduction, with smaller values indicating weak structural information or oc-
clusion. The radius o controls edge sharpness, where smaller values produce clearer contours. The
combination of w and o effectively models the complex dynamic interaction, reducing blurring at
interaction boundaries and enhancing visual quality. Second, previous methods Huang et al. (2024);
Yang et al. (2024) use a single field to model Gaussian transformations, which is insufficient for cap-
turing drastic motions in HOI scenes, leading to loss of motion details. On the other hand, simply
using separate fields for hand and object deformation overlooks their mutual interaction. To ad-
dress this, we incorporate key-frame hand positions into the object field, enabling interaction-aware
transformations that capture dynamic changes caused by hand grasping. Third, considering flexi-
ble motions and irregular rotations in HOI scenes, it is difficult to directly utilize traditional 3DGS
optimization Kerbl et al. (2023); Wu et al. (2024); Yang et al. (2024) to achieve decent rendering
quality. To address this, we design 3D regularizations to explicitly stabilize the position and rota-
tion of hand-object Gaussians. Furthermore, we propose a progressive optimization mechianism to
achieve physically reality of hand-object interaction, smooth edge transitions and enhance lighting
coherence in HOI scenes.

Our contributions are summarized as follows:

1. We propose a novel interaction-aware hand-object Gaussian representation to model HOI scenes
without any object priors, effectively addressing mutual occlusion and edge blur during interactions.
2. To accurately model interaction changes on the hand-held object, we incorporate hand informa-
tion to enhance the object field to represent relevant deformation.
3. We employ a progressive optimization strategy with explicit 3D losses to benefit the fitting of the
interaction-aware Gaussians during dynamic reconstruction.
4. Experiments show that our approach surpasses existing dynamic 3D-GS-based methods Yang
et al. (2024); Wu et al. (2024); Huang et al. (2024), achieving state-of-the-art performance in recon-
structing dynamic HOI scenes.

2 RELATED WORKS

Hand Representation. Early approaches Mueller et al. (2018; 2019) focused on estimating 2D
or 3D keypoints from images. The introduction of statistical hand models like MANO Romero
et al. (2022) revolutionized parametric hand representation by jointly encoding pose, shape, and
3D vertices. Recent methods Baek et al. (2019) typically employ regression networks to predict
MANO parameters directly from images and optimize shape parameters for alignment. However,
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these methods suffer from error propagation: initial MANO inaccuracies accumulate downstream,
causing cascading reconstruction errors. To mitigate this, we propose a lightweight hand field to
decouple hand representation from strict MANO parameter dependencies.

Hand-Object Reconstruction. Reconstructing hand-object interaction from video remains a sig-
nificant challenge in computer vision and graphics. Previous works fall into two categories. The
first Hampali et al. (2020); Moon et al. (2020) reconstructs hand-object interactions from multiview
sources by fitting objects into 2D images using 3D object priors. However, these methods heav-
ily rely on accurate 3D priors, which are costly to obtain. The second stream Rong et al. (2020);
Fan et al. (2023); Hasson et al. (2019) pre-learns object templates to reduce reliance on priors. For
example, the MANO model Romero et al. (2022) represents the canonical hand space, with linear
blending skinning driving the hand template. EgoGaussian Zhang et al. (2024) reconstructs egocen-
tric interaction scenes using 3D Gaussian Splatting by separating dynamic objects from the static
background. However, it is sensitive to object pose, probably failing under inaccurate poses, and
excludes interacting hands from reconstruction. As a result, it misses the complete hand–object
interaction context. Recent work BIGS On et al. (2025) uses 3DGS and a pre-trained diffusion
model for bimanual HOI from monocular video but assumes known object mesh and focuses on
two-handed interactions, our method is category-agnostic and requires no object priors.

Dynamic Scene Reconstruction. With the advent of NeRF Mildenhall et al. (2021), many works
Pumarola et al. (2021); Guo et al. (2023); Li et al. (2021); Park et al. (2021) use MLPs to represent
implicit spaces as deformation fields with temporal information. However, their extensive training
time limits practical applicability. 3D Gaussian Splatting (3D-GS) Kerbl et al. (2023) emerges as a
promising alternative for scene reconstruction. Methods like Wu et al. (2024); Yang et al. (2024);
Huang et al. (2024) explore dynamic reconstruction using 3D-GS. For instance, Yang et al. (2024)
uses MLPs to learn Gaussian position offsets per timestamp, which increases training time. Huang
et al. (2024) introduces sparse control points to deform Gaussians, but in hand-object interaction
(HOI) scenes, redundant points lead to inaccuracies and image tearing, failing to capture intricate
interactions. These methods Wu et al. (2024); Yang et al. (2024); Huang et al. (2024) input all Gaus-
sians into a single MLP, which struggles to accurately model complex interactive motions. To over-
come significant challenges posed by HOI scenes, our method introduces a novel interaction-aware
hand-object Gaussian representation, with adaptive losses and a progressive optimization strategy.

3 METHOD

Our goal is to reconstruct dynamic hand-object interaction (HOI) scenes from RGB egocentric
videos at arbitrary timestamps without relying on any object shape priors. We utilize three implicit
fields to model the dynamic HOI scenes: the hand field FH and object field Fobject to approximate the
shape of the dynamic HOI region, as well as the background field Fθ to create a clean background
and facilitate subsequent joint optimization. Separate modeling allows capturing clear hand-object
appearance and stable background scene in drastically changing dynamic scenarios. First, by treat-
ing hand and object modeling differently, significant occlusions could be solved via more detailed
supervision. Second, backgrounds require low-frequency updates, while hand-object interactions
demand high-frequency modeling. Meanwhile, collaborating with such dynamic implicit fields, we
adaptively improve the Gaussian Splatting representation for HOI scenarios, addressing occlusion
and contour clarity issues during the interaction. In optimization, we utilize explicit 3D information
provided by MANO parameters Romero et al. (2022) and the 3D object bounding boxes, facilitating
significantly faster and more stable convergence. Moreover, we employ an interaction loss to en-
sure the physical reality of the interaction. A progressive and collaborative optimization framework
is devised to achieve high quality HOI scene reconstruction with such 3D explicit supervision and
elaborated interaction-aware representation.

3.1 PRELIMINARIES: DEFORMABLE GAUSSIAN SPLATTING

3D Gaussian Splatting (3D-GS) Kerbl et al. (2023) represents 3D scene features using five parame-
ters: position, transparency, spherical harmonic coefficients, rotation, and scaling. 3D-GS explicitly
defines each 3D Gaussian ellipsoid in space using a covariance matrix Σ and the position vector ρ,
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Fig. 2. Overview of interaction-aware hand-object Gaussians. We propose a novel framework for recon-
structing dynamic HOI scenes from RGB videos without object shape priors. The framework consists of three
components: (1) Specialized Implicit Fields: separate hand, object, and background fields disentangle dynamic
interactions, with hand/object fields capturing high-frequency deformations and occlusions (leveraging hand
information for object’s interaction-aware deformation) while the background field maintains low-frequency
stability; (2) Interaction-aware Gaussian Splatting: enhances representation with adaptive weights w and ra-
dius o to address contour ambiguity and occlusions; (3) Progressive Optimization: combines explicit 3D super-
vision with physical interaction constraints for efficient convergence.

as shown in the following equation:

G(x) = 1

(2π)
3
2 |Σ| 12

exp(−1

2
(x− ρ)⊤Σ−1(x− ρ)), (1)

here the Σ matrix can be decomposed into a rotation R and a scaling S by Σ = RSS⊤R⊤.

Recent works Yang et al. (2024); Wu et al. (2024); Huang et al. (2024) combine 3D-GS with defor-
mation fields for dynamic scenes, using an MLP to warp points from canonical to target space:

Fθ(x, t) = (δxt, δrt, δst),

xt = x+ δxt.
(2)

Each SfM-initialized 3D Gaussian’s center x is input to deformation field Fθ, which outputs time-
dependent offsets (δxt, δrt, δst) to wrap canonical Gaussians to target space.

3.2 INTERACTION-AWARE HAND-OBJECT GAUSSIANS

To effectively capture the complex spatiotemporal motion in the Hand-Object Interaction (HOI)
scene, we propose to decompose the dynamic HOI scene into three sets of Gaussians and model
each part individually. Moreover, we improve traditional 4D Gaussian representations to overcome
the issues representing complex HOI motions in dynamic scenarios. Traditional 4D Gaussians Wu
et al. (2024); Yang et al. (2024); Huang et al. (2024) tend to neglect mutual influences between
different interacted Gaussians. Moreover, it is hard to depict contour edges in interaction process,
leading to texture drift and edge blur. Inspired by Huang et al. (2024), we introduce two additional
learnable parameters weight w ∈ R+ and radius o ∈ R+, forming a novel representation termed the
Interaction-Aware Hand-Object Gaussian GHO. GHO focuses on interaction-aware modeling via: (1)
Weight w smooths the motion and reduces noise, it models mutual occlusion during interactions,
where a small weight w indicates weak structural information and occlusion; (2) Radius o captures
edge details, where a small radius o corresponds to sharper geometric contours near edges; (3) Since
w is larger near the current Gaussian and smaller farther from the edge, the combination of weight w
and radius o effectively handles edge blurring between hand-object interactions and the background.
GHO is expressed as follows:

GHO = {xiyizi,Ri,Ti,Si,αi, ci,wi,oi} . (3)

Due to different characteristics of hand motions, object motions and background scenes, we sepa-
rately introduce modeling of the dynamics of each component below.

Hand Gaussians. Hand Gaussians GH has the same optimizable parameters with GHO, and is mod-
eled with a hand-implicit field FH to capture the time-varying transformation of hand motion. This
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field FH takes the timestamp t and the canonical position (xiyizi) of the i-th hand Gaussian as
inputs. Since our setting requires modeling dynamic HOI scenes at any time from any view pose,
we use t as the input and construct the following formula (details provided in the appendix):

∆GH = FH {γ (xiyizi) , γ (t)} , (4)

γ(·) is positional encoding Bhatnagar et al. (2020); Yang et al. (2024). Adding noisesmooth Yang
et al. (2024) to γ(t) prevents oversmoothing and retains hand details while fitting coarse geometry.

Object Gaussians. Hand-object interactions often cause deformations (e.g., squeezing) or occlu-
sions (e.g., holding). To enhance the ability of the object field FO to capture interaction-aware
deformations, we introduce hand position as an additional input to the object field. This overcomes
the limitation of implicit methods Wu et al. (2024); Yang et al. (2024), which generate global offsets
without explicit hand-object interaction modeling. The object field FO takes both hand and object
positions as inputs, formulated as follows (details in appendix):

∆GO = FO
{
γ
((
xk
i y

k
i z

k
i

)
⊕

(
xk
jy

k
j z

k
j

))
, γ (t)

}
. (5)

Here, ⊕ concatenates hand (xk
i ,y

k
i , z

k
i ) and object (xk

j ,y
k
j , z

k
j ) positions with the canonical

Gaussian position at key-frame k—the moment just before hand-object interaction. The object-
implicit field FO predicts time-varying offsets ∆GO at timestamp t, and uses linear annealing of
noisesmooth Yang et al. (2024) to stabilize training.

Background Gaussians. We construct background Gaussians to better capture the smoothness and
static nature of the background and avoid the unstable dynamic changes of the background Gaussian
distribution caused by the interaction of foreground hand-object, which will affect the rendering
quality of the background Huang et al. (2024); Wu et al. (2024). Background Gaussians GBG are
based on the Deformable-3DGS model Yang et al. (2024). Their positions change over time, as
formulated in Eq. equation 2, using the background-implicit field FBG with timestamps t.

3.3 EXPLICIT 3D-2D REGULARIZATIONS

2D regularization is to constrain pixel errors in image space. However, this is insufficient due to
significant occlusion and drastic motion for hand-object interaction scenes. To enable Gaussians
to accurately and efficiently model complex hand-object interactions, besides 2D supervision, we
introduce explicit 3D regularizations. These include object, hand and interaction loss to stabilize the
rotation and transformation of interaction-aware hand-object Gaussians.

Object Loss. By feeding hand position into the object field, object translation aligns naturally
with hand motion. Translation is easily constrained via hand pose, but rotation remains difficult.
Passive object rotation in interactions often causes distortion or flipping, making rotation constraints
essential. We introduce a rotation consistency constraint to ensure that the motion of interaction
Gaussians locally adheres to physically plausible rigid transformations. Let R0 ∈ SO(3)N denote
the rotation of N Gaussians at the initial time t0, and Rt ∈ SO(3)N denote their predicted rotations
at a target time t. Concurrently, from the positional trajectories of the Gaussians, we compute a
geometry-induced rigid rotation field Rarap ∈ SO(3)N via local neighborhood rigid alignment
(solved in closed form using SVD), defined as the solution to:

Rarap,i = argmin
R∈SO(3)

∑
j∈N (i)

wspatial
ij

∥∥p′
j −Rpj

∥∥2 , (6)

where pj and p′
j are the relative displacements of neighbor j (w.r.t. Gaussian i) in source and target

positions, wspatial
ij is a spatial-distance weight ((Eq. 10)), and N (i) is the K-NN set of Gaussian i.

The rotation Rarap,i is computed via SVD in closed form, with sign correction if det(Rarap,i) ≤ 0
to enforce Rarap,i ∈ SO(3). The rotation consistency loss is then defined as:

LO
rot = Et∼U [0,1]

[
1

N

N∑
i=1

∥Rarap,i R0,i −Rt,i∥2F

]
, (7)

where ∥ · ∥F denotes the Frobenius norm, and the expectation is approximated by uniform sampling
over multiple time instances t. This loss enforces consistency between the field-predicted explicit
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rotation Rt and the geometrically derived rigid rotation RarapR0, thereby suppressing non-physical
local shearing or twisting and enhancing structural fidelity of the dynamic deformation.

Hand Loss. Hand movement in HOI scenes is fast, making dynamic Gaussian fitting much slower
and more challenging. Since MANO vertices explicitly represent the position of each point, we
design a hand loss to optimize the translation of hand Gaussians. To track their translation, we use
a single Chamfer Distance (CHD) to supervise Gaussian translation in 3D space, we compute its
distance to the nearest vertex on the MANO Vh. This loss measures the distance from each hand
Gaussian to its closest point on the MANO vertices, encouraging the Gaussians to populate the hand
surface, formulated as follows:

LH
trans =

1

N

N∑
i=1

min
v∈Vh

∥(xiyizi)− (xvyvzv)∥22 , (8)

where (xiyizi) denotes the i-th Gaussian position, and (xvyvzv) represents the filtered points
within MANO vertices’ range (addressing arm-hand discrepancies).

Interaction Loss. Reconstruction of grasping interactions often suffers from edge blurring and
mutual occlusion of Gaussians. To regularize the physical reality, we introduce the self-supervised
Chamfer distance between hand and object Gaussians. Our approach models the hand and object
separately, explicitly defining their positions. This allows us to introduce an interaction loss to
ensure proper grasping, formulated as follows:

Linteraction =
1

max(|CH |, ϵ)
∑
i∈CH

min
j∈CO

∥pi − pj∥22 +
1

max(|CO|, ϵ)
∑
j∈CO

min
i∈CH

∥pi − pj∥22, (9)

where ϵ = 10−6 avoids division by zero when no contacts are detected. While this loss promotes
hand–object proximity, it does not prevent interpenetration. We therefore use a separate penetration
loss (supplementary material) that penalizes overlapping or overly close Gaussians from the hand
and object. This loss ensures the physical reality of the interaction and enhances the visual quality by
reducing the distance between the hand Gaussians and object Gaussians while preventing overlap.

3.4 PROGRESSIVE OPTIMIZATION

In the Hand-Object Interaction (HOI) scene, complex rotations, translations, and occlusions are
common. Directly optimizing all Gaussians leads to slow convergence and positional misalignment.
To address these issues, we propose a progressive optimization strategy for learning individual im-
plicit fields, which operates in five phases as below: initialization, warm-up, HOI refinement, back-
ground optimization, and collaborative reconstruction.

Initialization. The MANO vertices Romero et al. (2022) offer a strong prior for hand shape, while
the 3D bounding box of object is an effective model-agnostic prior for hinting both hand’s and
object’s initial shapes. To leverage these cues, we initialize GH by the derived MANO vertices and
initialize GO by uniformly sampling within the object’s 3D bounding box. For background, we
initialize background Gaussians GBG from SfM-based points.

Warm-up. During the warm-up phase, we use the proposed 3D losses besides the fundamental 2D
losses. For the hand field, we employ LH

trans to guide the deformation of hand Gaussians GH, ensuring
alignment with the target pose. For the object field, to stabilize interaction-aware transformations,
we use LO

rot. During the warm-up phase, we periodically apply gradient-based density adjustments
Kerbl et al. (2023) to optimize the initial Gaussian distribution.

HOI Refinement. We adaptively refine Gaussians by assigning each Gaussian i a learnable weight
wi and radius oi, where oi controls its local influence range. The final refinement weight ŵi is
obtained by: (1) computing spatial proximity weights wspatial

ik for the K nearest neighbors via a
Gaussian RBF kernel on distance dik and oi (Eq. 10), (2) normalizing these weights to sum to one
(Eq. 11), and (3) modulating them with a global importance weight σ(wi) (Eq. 12). This allows
joint learning of global importance wi and local context ŵspatial

ik .

wspatial
ik = exp

(
− d2

ik

2o2
i

)
, k ∈ NK(i). (10)
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Let NK(i) denote the set of K nearest neighbor Gaussians for the i-th Gaussian, where dik is the
Euclidean distance between the centers of Gaussians i and k, and oi is the learnable radius parameter
associated with Gaussian i.

ŵspatial
ik =

wspatial
ik∑

j∈NK(i) w
spatial
ij

. (11)

Finally, the overall refinement weight for Gaussian i is obtained by gating the normalized spatial
weight with a learned per-Gaussian parameter wi:

ŵi = σ(wi) · ŵspatial
ik , for k ∈ NK(i), (12)

where σ(·) is the sigmoid function ensuring wi ∈ (0, 1). This formulation allows the model to learn
a global importance weight wi for each Gaussian while adapting locally based on spatial proximity
via ŵspatial

ik . Additionally, we query the hand implicit field FH and the object implicit field FO to
obtain their respective rotation matrices

(
∆R6D ∈ R6

)
→

(
∆R ∈ R3×3

)
(see Appendix.) and

translation offset ∆(xt
ky

t
kz

t
k). Using LBS Sumner et al. (2007), we refine the pose of the hand-

object Gaussians as follows:

T t
k = (xt

ky
t
kz

t
k) + ∆(xt

ky
t
kz

t
k),

ρt
i =

3∑
k=1

ŵk
i

(
∆Rt

k((xiyizi)− (xt
ky

t
kz

t
k)) + T t

k

)
.

(13)

Here, k denotes the k-th nearest Gaussian to the canonical Gaussian (xiyizi), and ρt
i represents the

position of the final Gaussian at timestamp t.

Background Optimization. We pretrain GBG for a fixed number of iterations, performing periodic
density control Kerbl et al. (2023) on the background Gaussians to ensure a clean initialization.

Collaborative Reconstruction. In the final stage, FH, FO, and FBG independently deform their
Gaussians into a shared target space, enabling full HOI scene reconstruction at any timestamp t.
Both hand and object Gaussians employ HOI refinement (Eq. equation 13) to update their param-
eters. The optimization is supervised by interaction constraints Linteraction (Eq. equation 9) and 2D
regularization terms. This stage ensures physically plausible occlusion relationships, smooth edge
transitions, and lighting coherence, improving both the geometric fidelity of reconstructed shapes
and the temporal smoothness of their motion dynamics.

4 EXPERIMENTS

To validate our approach, we conduct comprehensive comparisons with state-of-the-art baselines
Wu et al. (2024); Yang et al. (2024); Huang et al. (2024) for dynamic scene reconstruction on both
HOI4D Liu et al. (2022) and HO3D Hampali et al. (2020) datasets. Additionally, we compare with
HOLD Fan et al. (2024), a specialized method for hand-object interaction reconstruction, on the
HO3D dataset. Following Zhang et al. (2024), we evaluate pure translation and translation-rotation
using alternate-frame testing to assess extrapolation to novel interactions. Metrics include PSNR,
SSIM Wang et al. (2004), and LPIPS Zhang et al. (2018). We further perform full-frame evaluation
for completeness (Table 4, appendix). All experiments run on an NVIDIA RTX 3090, achieving
optimal performance in 21,000 iterations (1h20m training time).

Implementation Details. We employ K = 3 nearest neighbors for refinement and deformation,
with the key-frame k set to the timestamp just before hand–object contact. Both Gaussians and
the deformation model are optimized using Adam. Hyperparameters, schedules, and auxiliary
losses (ARAP, elastic, penetration, momentum, 2D) are provided in the supplementary material.
HOI4D Liu et al. (2022) provides RGB-D videos with frame-level hand–object poses and masks;
we evaluate on two purely translational and two translation–rotation scenes. HO3D Hampali et al.
(2020) offers real-world 3D pose annotations for actions like pickup and rotation. We use cam-
era 4 from HO3D and select four translation–rotation sequences for egocentric reconstruction. Both
datasets include 3D bounding boxes and MANO hand models.

7
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Tab. 1. Comparison on HOI4D dataset. Best and second best
are bolded and italicized respectively.

Method Translation Translation&Rotation
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

4DGS 24.86 0.80 0.47 23.68 0.85 0.39
Deform3DGS 26.33 0.87 0.29 23.57 0.89 0.25

SC-GS 25.08 0.84 0.46 17.32 0.71 0.48
Ours 30.32 0.93 0.29 24.16 0.86 0.37

Tab. 2. Comparison on HO3D dataset. Best
and second best are bolded and italicized.

Method PSNR↑ SSIM↑ LPIPS↓

4DGS 19.44 0.82 0.25
Deform3DGS 9.68 0.36 0.65

SC-GS 20.37 0.80 0.26
HOLD 18.03 0.84 0.26
Ours 25.19 0.89 0.15

Fig. 3. Qualitative comparison of our approach and the baseline methods. We present reconstructions from
our model and SOTA baselines (4DGS Wu et al. (2024), Deform3DGS Yang et al. (2024), SC-GS Huang et al.
(2024)) on HOI4D and HO3D datasets.

Fig. 4. Novel view synthesis of our approach and
SC-GS. Our method produces cleaner renderings from
novel viewpoints, whereas SC-GS outputs suffer from
noticeable noise.

Fig. 5. Qualitative comparison of our method
and HOLD Fan et al. (2024). Our method
achieves complete HOI reconstructions.

4.1 QUANTITATIVE COMPARISONS

HOI4D Dataset. We compare against 4DGS Wu et al. (2024), Deform3DGS Yang et al. (2024), and
SC-GS Huang et al. (2024) using official code and original HOI4D resolution (Table 1). 4DGS is
sensitive to initialization and underperforms in HOI settings. Deform3DGS and SC-GS, relying on a
single deformation field, fail under occlusion and fast motion. Our interaction-aware, progressively
optimized model overcomes these issues, reducing occlusion artifacts and blur while preserving
hand-object geometry. We achieve a +9% PSNR gain in translation scenes and improve rotation-
heavy scene PSNR from 23.57 dB (Deform3DGS) to 24.16 dB.
HO3D Datasets. We downsample all frames to half resolution for efficient processing of large-
scale sequences. Despite provided camera and pose estimates, residual calibration errors degrade
all methods’ metrics. 4DGS is highly sensitive to input noise; SC-GS’s sparse control points fail
to model background–foreground interactions; and Deform3DGS suffers most due to HO3D’s pose
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errors (Appendix D of Yang et al. (2024)), causing non-convergence. HOLD Fan et al. (2024),
designed for geometry rather than view synthesis, lags behind 3DGS-based methods. Our approach
outperforms all baselines via interaction-aware Gaussians and dynamic 3D regularization.

4.2 QUALITATIVE COMPARISONS

As shown in Fig. 3 and Fig. 5, our approach surpasses 4DGS Wu et al. (2024), Deform3DGS Yang
et al. (2024), SC-GS Huang et al. (2024) and HOLD Fan et al. (2024) in both appearance and shape.
In HOI4D-Scene 2, baselines fail to handle Gaussian offsets under dynamic lighting, while our
interaction-aware representation preserves shadows and reflections. Isolated background Gaussians
improve contrast and dark details. For HOI4D-Scene 1, separate hand-object modeling and 3D
losses constrain deformations, with collaborative reconstruction smoothing motion and occlusion.
In HO3D-Scene 1 and 2—featuring irregular flipping, rotation, and finger flexibility—4DGS falters
under noisy or sparse data and complex motion. SC-GS loses fine details in interaction zones due
to sparse control points and handles occlusions poorly. Deformable3DGS, sensitive to pose errors
(Appendix D of Yang et al. (2024)), fails to converge on HO3D as errors amplify. HOLD recon-
structs hand and object geometry but produces low-quality full-scene renderings. Our method uses
w and o to reduce occlusion and blur, achieving superior rendering quality on HO3D.

4.3 ABLATION STUDY

Fig. 6. Our model maintains consistently high render-
ing quality across different noise levels, with perfor-
mance nearly matching that of the noise-free setting,
showing strong robustness to initialization errors.

Tab. 3. Ablation studies on HOI4D.

Methods PSNR↑ SSIM↑ LPIPS↓

w/o HOI Refinement 32.23 0.94 0.39
w/o Object Loss 31.45 0.94 0.38
w/o Hand Loss 32.45 0.95 0.37
w/o Interaction Loss 31.79 0.94 0.40
w/o Interaction-Aware 28.76 0.91 0.40
w/ noise σ = 0.01 32.80 0.95 0.35
w/ noise σ = 0.05 32.72 0.95 0.35
Full Model 32.96 0.95 0.35

Table 3 reports ablation studies on HOI4D-Scene 1, evaluating the removal of HOI refinement, 3D
losses, and the interaction-aware module. We also evaluate robustness to imperfect initialization
(e.g., pose or bounding box errors) by adding Gaussian noise N (0, σ2) to the object’s 3D bounding
box vertices before point cloud generation, with σ = 0.01 and 0.05 in normalized object space.
Table 3 and Fig. 6, our full model achieves near noise-free rendering quality under different noise
levels. Removing HOI refinement degrades PSNR/SSIM/LPIPS by 2.2%/1.1%/+11.4%; ablating
object, hand, or interaction losses causes drops of (4.6%, 1.1%, +8.6%), (1.5%, —, +5.7%), and
(3.5%, 1.1%, +14.3%), respectively. Ablating the interaction-aware module—by removing its field
parameters and training scheme—leads to a significant performance drop, validating its role in mod-
eling hand–object dynamics.

5 CONCLUSION

In this paper, we propose interaction-aware hand-object Gaussians with novel optimizable param-
eters, adopting piecewise linear hypothesis for a clearer structural representation. This approach
effectively captures complex hand-object interactions, including mutual occlusion and edge blur.
Leveraging the complementarity and tight coupling of hand and object shapes, we integrate hand
information into the object deformation field, constructing interaction-aware dynamic fields for
flexible motion modeling. To improve optimization, we propose a progressive strategy that sepa-
rately handles dynamic regions and static backgrounds. Additionally, explicit 3D regularizations
enhance motion smoothness, physical plausibility, and lighting coherence. Experiments show that
our approach outperforms the baseline methods, achieving state-of-the-art results in reconstructing
dynamic hand-object interactions.

Limitations. As designed for interaction modeling, the workflow consists of progressive optimiza-
tion stages, which could be unified upon emergence of new stronger optimizer. Our method struggles
with extreme cases (exceedingly rapid motion/complex trajectories, see Supplement), potentially ad-
dressable by integrating more interaction priors.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on 3D reconstruction of human-object interactions (HOI) from publicly avail-
able datasets. The research is conducted for academic purposes and aims to advance fundamental
understanding in 3D scene understanding and representation learning.

• Human Subjects and Privacy: Our method does not involve the collection of new hu-
man data. All experiments use existing public datasets (e.g., HOI4D Liu et al. (2022) and
HO3D Hampali et al. (2020)), which contain 3D scans or motion-captured sequences of
human bodies interacting with objects. Critically, these datasets either exclude facial ge-
ometry or have been anonymized (e.g., faces are removed, smoothed, or represented as
generic meshes). No personally identifiable information (PII), biometric data, or sensitive
attributes are used or reconstructed in this work.

• Potential Harm: The proposed approach is a general-purpose 3D reconstruction technique
and is not intended for deployment in high-stakes applications such as surveillance, behav-
ioral profiling, or autonomous decision-making. While any 3D human modeling technol-
ogy could theoretically be misused, our method operates under controlled, indoor settings
with coarse body representations and does not recover identity-revealing features.

• Environmental Impact: Training and inference were conducted on standard GPU hard-
ware with energy consumption comparable to typical 3D deep learning pipelines. We have
made efforts to limit redundant computation through efficient implementation.

• Dual Use: We recognize the dual-use nature of human-centric 3D reconstruction. However,
since our method does not reconstruct faces, textures, or fine-grained identity cues, the risk
of privacy violation or malicious re-identification is minimal.

• Compliance: This work complies with the ICLR Code of Ethics. No data was collected
unethically, and all third-party datasets are used in accordance with their original licenses
and intended research purposes.

We welcome feedback from reviewers regarding any ethical considerations that may have been
overlooked.

REPRODUCIBILITY STATEMENT

We aim to support reproducibility through transparent reporting and planned code release:

• Code Release: We intend to release our full codebase—including data loading, training,
rendering, and evaluation scripts—along with trained model checkpoints on GitHub. The
release will follow a short period for code cleanup and documentation. While it may take
a few weeks after the review process, we expect the repository to be publicly available in a
timely manner.

• Datasets: Experiments are conducted on HOI4D Liu et al. (2022) and HO3D Hampali et al.
(2020), using the official data splits and preprocessing protocols. Instructions for data setup
will be included in the code repository.

• Evaluation Metrics: We report standard image-quality metrics—PSNR, SSIM, and
LPIPS—on rendered outputs where ground-truth images are available (e.g., from the same
egocentric viewpoint under different conditions or time steps). As is common in egocentric
reconstruction, quantitative metrics serve as a proxy for fidelity, while qualitative assess-
ment remains essential.

• Visual Results: The main paper includes rendered images of novel view synthesis (NVS)
to demonstrate the quality and consistency of our 3D reconstructions. Additional visual-
izations are provided in the supplementary material.

• Training: Trained on a single RTX 3090 (24GB) for 80k iterations ( 3 hours); best results
typically appear around 1.5 hours. Implementation uses PyTorch 2.3 with CUDA 11.8.
Random seeds are fixed; minor GPU non-determinism may remain.

We believe these details, together with our planned code release, will enable independent reproduc-
tion of our work.
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A APPENDIX

The deformation fields FH and FO predict the following per-Gaussian parameters for their respective
sets:

• ∆(xiyizi) ∈ R3: Translation offset.
• ∆Ri ∈ R6: 6D rotation representation, which is converted to a 3 × 3 rotation matrix Ri

using the method described in supply material.
• ∆si ∈ R3: Scale offset (applied multiplicatively or additively to the base scale).
• wi ∈ R: Learnable weight parameter (as used in Eq. 12).
• oi ∈ R+: Learnable radius parameter (as used in Eq. 10).

The learnable radius parameter oi is distinct from the Gaussian’s scale parameters si. While si
controls the overall size and anisotropy of the Gaussian splat for rendering, oi is used solely within
the refinement process (Eq. 10) to determine the spatial extent of local neighborhood interactions.
The learnable weight wi modulates the overall influence of a Gaussian during refinement (Eq. 12)
and potentially during rendering or density control, but does not directly alter its geometric scale si.

The deformation model is trained using the Adam optimizer with per-parameter learning rates
adapted to the geometric scale of the scene. Specifically, for the node-based deformation repre-
sentation, all trainable parameters (including node positions, radii, weights, and optional rotation
parameters) are grouped and assigned an initial learning rate of η0 = α ·β ·γ, where α = 0.00016 is
the base position learning rate, β = 5 is the spatial scale factor (empirically set to the approximate
scene extent), and γ = 1 is the deformation-specific scaling factor. where in practice we use the
exponential decay function implemented as:

η(t) =

{
η0 · lr delay mult, t < twarm

ηfinal + (η0 − ηfinal) ·
(
1− t−twarm

T−twarm

)p
, t ≥ twarm

(14)

with ηfinal = 0.0000016, lr delay mult = 0.01, and T = 40,000 maximum steps for defor-
mation parameters. This schedule ensures stable convergence while allowing sufficient exploration
during early iterations.

Full-frame Evaluation. To evaluate our method more completely, we perform full-frame evaluation
(vs. alternate-frame testing in Tab. 4) and introduce two additional metrics: MS-SSIM for structural
similarity and ALEX-LPIPS for learned perceptual similarity.

Metric PSNR ↑ SSIM ↑ MS-SSIM ↑ LPIPS ↓ ALEX-LPIPS ↓
transl 33.03 0.95 0.95 0.27 0.17
r&t 24.02 0.85 0.87 0.39 0.32

Tab. 4. Full-frame evaluation on HOI4D, considering both translation (transl) and combined rotation & trans-
lation (r&t) tasks.

Tab. 4 shows a complete-frame assessment that provides a more thorough validation of our method’s
consistency across all temporal frames.
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Gaussian noise in the 3D bounding box. To evaluate the robustness of our method to imperfect
initialization—such as errors in object pose or 3D bounding box estimation—we conduct an abla-
tion study where Gaussian noise N (0, σ2) is added to the object’s 3D bounding box vertices before
point cloud generation. Specifically, we perturb the box with σ = 0.01 and σ = 0.05 (in normalized
object space), simulating realistic inaccuracies in initial object localization. As shown in Table 5

Tab. 5. Experiment on HOI4D-Scene 1.

Methods PSNR↑ SSIM↑ LPIPS↓
w/ noise σ = 0.01 32.8019 0.9478 0.3531
w/ noise σ = 0.05 32.7174 0.9477 0.3474
Full Model 32.9579 0.9490 0.3574

Tab. 6. Experiment on HOI4D-Scene 2.

Methods PSNR↑ SSIM↑ LPIPS↓
w/ noise σ = 0.01 27.6378 0.9029 0.2203
w/ noise σ = 0.05 27.4764 0.8998 0.2369
Full Model 27.6724 0.9049 0.2181

Fig. 7. Decomposed rendering of object, hand, and background. We demonstrate the disentangled re-
construction capability of our model by separately rendering the object (left), hand (right), and background
(bottom) in both canonical and target spaces. The top row shows ground-truth views for reference. Our method
accurately reconstructs each component with consistent geometry and appearance across poses, while preserv-
ing scene context in the background.

and Table 6, our method exhibits strong robustness to noisy initial object poses. When Gaussian
noise with σ = 0.01 and σ = 0.05 is added to the 3D bounding box vertices, the performance de-
grades only marginally across both scenes. In Scene 1, PSNR drops by merely 0.16 dB (from 32.96
to 32.80) under σ = 0.01 and by 0.24 dB under σ = 0.05, while SSIM and LPIPS remain nearly
unchanged. Similarly, in Scene 2, the PSNR decreases by only 0.03 dB (σ = 0.01) and 0.20 dB
(σ = 0.05) relative to the noise-free full model, with consistent trends in SSIM and LPIPS. These
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results indicate that our approach is highly insensitive to moderate initialization errors in object
localization. We attribute this stability to two key design elements: (1) the interaction-aware opti-
mization that jointly refines hand and object geometry using physical and semantic priors, and (2)
the 3D deformation regularizers—specifically the ARAP energy and rotation consistency loss—that
constrain the deformation toward physically plausible configurations, effectively suppressing the
influence of initialization noise during optimization.

Separate Presentation of HOI Scenes. Separate Presentation of HOI Scenes. To demonstrate
the disentangled representation learned by our model, we visualize the individual rendering com-
ponents—object, hand, and background—in both canonical and target views (see Figure 7). Our
approach effectively isolates each semantic entity while preserving geometric fidelity and appear-
ance consistency. Notably, the background reconstruction exhibits minimal interference from hand
or object motion, suggesting that our model largely succeeds in separating dynamic foreground ele-
ments from the static scene context—a desirable property for robust egocentric 3D understanding.

LLM USAGE STATEMENT

We used a large language model (LLM) solely for proofreading and language refinement, such as
correcting grammar, improving phrasing, and enhancing clarity of the manuscript. The LLM was
not involved in any aspect of research conception, method design, result interpretation, or content
generation. All scientific ideas, technical contributions, and experimental analysis presented in this
work are entirely the authors’ own.
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