Under review as a conference paper at ICLR 2025

SANDBOX-RL: SCALABLE MULTI-LLMS OPTIMIZA-
TION THROUGH SANDBOX-BASED REINFORCEMENT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce Sandbox-RL, a framework for scalable multi-LLMs optimization
that enables heterogeneous language models to efficiently co-train within shared
sandbox environments. Unlike traditional multi-agent systems that rely on inter-
agent communication, Sandbox-RL orchestrates multiple LLMs with different ar-
chitectures and specializations (Qwen2.5-7B, Llama 3.1-7B/8B, Llama 3.2-3B)
as a learnable population within structured workflow graphs composed of modu-
lar sandbox environments with strong isolation properties. Each sandbox provides
computational isolation with standardized interfaces, enabling precise reward at-
tribution and reusable learning signals across diverse model architectures. The
framework introduces temperature-regularized population-level optimization that
adapts to heterogeneous model capabilities through competence matrices and co-
operation temperature parameters. Our system features a KVCache-centric opti-
mization architecture with distributed memory pools, intelligent prefill-decoding
scheduling, and RDMA-based inter-node transfer protocols. Comprehensive eval-
uation across Qwen and Llama model families demonstrates that Sandbox-RL
achieves superior performance-efficiency trade-offs: Llama 3.1-8B attains highest
performance (0.978 score) with fastest convergence (38 epochs) in OASIS infor-
mation spread, while Llama 3.2-3B provides optimal efficiency (0.952 memory
efficiency, 120.3ms latency), validating the effectiveness of our scalable multi-
LLMs optimization approach.

INTRODUCTION

The landscape of large language model (LLM) reinforcement learning frameworks is rapidly evolv-
ing, with new approaches emerging to enhance LLM capabilities through experience-driven adap-
tation. However, a fundamental limitation persists: most existing RL frameworks focus on optimiz-
ing single LLMs, despite the natural advantages that multiple LLMs working together can provide.
Multiple LLMs simultaneous optimization offers several compelling benefits: it aligns with natu-
ral selection principles, enabling more valuable feedback signals through competitive dynamics; it
naturally fits multi-actor tasks like software engineering where parallel solvers can exchange in-
sights and exploit complementary strengths; and it provides built-in diversity and specialization that
single-model approaches cannot achieve.

In this paper, we propose Sandbox-RL, a new framework that fundamentally advances multi-LLMs
reinforcement learning for LLMs through structured workflow execution. Unlike existing MARL
approaches that rely on complex reward engineering or centralized critics, Sandbox-RL introduces
a novel paradigm where multiple LLMs co-evolve as a learnable population under shared work-
flow graphs. The framework constructs workflow graphs composed of modular sandbox environ-
ments and LLM action nodes, organized as a directed acyclic graph (DAG). Each sandbox encapsu-
lates its own case generator, prompt function, and scoring mechanism, enabling reproducible tasks
and fine-grained reward supervision. By decoupling environment simulation from policy execution,
Sandbox-RL supports clear evaluation signals, dynamic task composition, and parallel execution
while maintaining the efficiency and scalability needed for large-scale multi-LLMs training.

Under review as a conference paper at ICLR 2025

Multi-LLMs Co-Optimization. Sandbox-RL treats multiple LLMs as a learnable population that
co-evolves under shared workflow graphs. Unlike single-model optimization, this approach enables
richer feedback through competitive dynamics and supports multi-actor real-world workloads. The
framework maintains system-level optimization through DAG execution and replay buffers, preserv-
ing reproducible reward attributions while allowing multiple policies to learn from compositional
traces.

Main Contributions. Our work makes the following key contributions:

¢ Novel Multi-LLMs RL Co-Optimization Framework: We introduce Sandbox-RL, the
first system-level framework for co-optimization of multiple LLMs through structured
workflow execution, moving beyond interface-level multi-agent integration to provide prin-
cipled optimization methods.

¢ Structured Sandbox Environment Design: We propose modular sandbox environments
with strong isolation properties and standardized interfaces, enabling precise reward attri-
bution, reproducible tasks, and fine-grained supervision across heterogeneous model archi-
tectures. Experimental validation shows 15% improvement in reward attribution accuracy
and 3x faster task reproducibility compared to baseline approaches.

* Temperature-Regularized Cooperation Mechanisms: We introduce competence-aware
specialization and temperature-controlled cooperation-competition dynamics that provide
principled control over multi-LLMs interactions without complex reward engineering. Ab-
lation studies demonstrate up to 50% improvement in cooperation effectiveness and 38%
faster convergence through these mechanisms.

* KVCache-Centric System Optimization: We design a distributed memory manage-
ment architecture with intelligent prefill-decoding scheduling and RDMA-based inter-
node transfer protocols, achieving superior performance-efficiency trade-offs for large-
scale multi-LLMs training. System benchmarks show 3.4x faster convergence and 40%
lower memory usage compared to existing approaches (see Appendix for detailed system
architecture and Appendix for theoretical analysis).

RELATED WORK

Multi-agent frameworks have demonstrated that role conditioning and conversational coordination
can improve LLM problem solving. However, most such systems stop at the interface boundary:
agents converse, exchange messages, and call tools, while optimization remains either single-model
or decoupled from the execution substrate. Sandbox-RL takes the opposite stance by optimizing
multiple LLMs inside the workflow runtime, where eligibility, selection, and credit assignment are
governed by the DAG and its sandbox verifiers.

Recent work includes AReaL |Tian et al.|(2024) exploring decentralized Al societies, MARTIZhang
et al.|(2025) emphasizing centralized multi-agent training via structured DAG workflows, and frame-
works like CAMEL |Li et al.|(2023)), AutoGen|Wu et al.|(2023)), and GAIA Mialon et al.[(2023)) show-
ing collaborative reasoning capabilities. However, most such systems stop at the interface boundary:
agents converse, exchange messages, and call tools, while optimization remains either single-model
or decoupled from the execution substrate.

Additionally, recent advances in single-agent RL frameworks demonstrate the growing interest
in RL-enhanced LLM systems, but all remain confined to single-agent paradigms. AgentGym-
RL [Team| (2025) proposes a framework for training LLM agents for long-horizon decision making
through multi-turn reinforcement learning, while Agent Lightning [Team| (2024b)) focuses on effi-
cient agent training acceleration. The rLLM framework |Li et al.[(2024)) introduces innovations for
relational table learning with LLMs, and ROLL [Wang et al.| (2025) provides a large-scale RL op-
timization library emphasizing efficiency and scalability. Structured reasoning approaches include
Tree-of-Thought |Yao et al.| (2023), MCTS Prompting Zheng et al.| (2025)), and tool-augmented sys-
tems like ProgPrompt |Singh et al. (2023) and Toolformer |Schick et al.| (2023)). RL frameworks
such as RLHF |Ouyang et al.| (2022), RLAIF Bai et al.| (2022), and ReFT [Luong et al.| (2024) inte-
grate reward models into training loops. However, these approaches all operate within single-agent

Under review as a conference paper at ICLR 2025

Table 1: Comparison of Sandbox-RL with Prior Multi-Agent and Tool-Augmented LLM Systems

LLMs

Framework Multi-Agent Structured Tasks Replayable RL Co-Optimization
AReal [Tian et al.| (2024) Ve

MARTI|Zhang et al.[(2025) v Ve v

CAMEL L1 et al.[(2023) v

AutoGen |Wu et al.| (2023) Ve Ve

Sandbox-RL (Ours) v v v v

Table 2: Architectural Comparison of Multi-Agent LLM Training Approaches
Feature MARL-AFL MAGRPO Sandbox-RL

Environment Model Auction FL Dec-POMDP DAG G = (V, E)
Structured Workflow

Modular Sandboxes

Temperature Control v

Competence Evolution

Scalable Architecture

On-Policy Learning v
Dynamic Specialization

System-Level Optimization

SNSNSANNAN

constraints, missing the potential benefits of multi-LLMs collaborative optimization that our work
addresses.

Sandbox-RL generalizes these trends by treating workflows as DAGs over sandbox environments,
each capable of generation, scoring, and feedback. This enables multi-stage rollouts with consistent
semantics while leveraging local scoring logic built into sandbox environments for modular and
interpretable credit assignment.

COMPARISON WITH EXISTING MULTI-AGENT APPROACHES

We position Sandbox-RL within the multi-agent RL landscape by comparing with MARL-AFL Tang
& Yu|(2023) and MAGRPO [Liu et al.|(2025). Let A = { AmaRrL-AFL; AMAGRPO, Asandbox-RL } denote
the approach set.

THEORETICAL FRAMEWORK COMPARISON

Let M; = {Wéj) }jvzll denote the model population for approach i, and &; the environment formula-
tion. The key differences are:

While MARL-AFL models collaboration as auction mechanism Ayyeion : MapL X B — R with
complex reward engineering RarL (Toar, Bemp) requiring careful tuning and suffering from auction
complexity O(N?log V) that doesn’t support workflow dependencies, and MAGRPO uses central-
ized group-relative advantages A, = E[}_, . Ai] — E[A_] but faces centralized critic bottleneck
with computational complexity O(N - |S| - |A|) and limited cooperation control through fixed group
Monte Carlo estimates, Sandbox-RL employs structured DAG G = (V, E) with modular sand-
boxes S, = (case,, prompt,, verify,) to provide principled reward attribution through temperature-
regularized cooperation R;(7) = «;(7) - U where «;(7) = softmax;(g;/7), competence-aware
specialization via bounded states ¢; € [0, ¢max), and DAG-aware mean-group policies scaling to
large populations with complexity O(|V| + | E|).

Detailed related work analysis is provided in Appendix .

Under review as a conference paper at ICLR 2025

METHOD

Sandbox-RL is a framework for scalable multi-model optimization over structured task graphs com-
posed of modular sandbox environments. The framework enables multiple LLMs to co-evolve as a
learnable population through temperature-regularized cooperation and competence-aware special-
ization. The system consists of four key modules: (1) Sandbox Manager and LLM Interface for
modular task specification, (2) Workflow Graph Executor for DAG-based execution, (3) RL Engine
with DAG Replay Buffer for policy updates, and (4) Multi-LLM Joint Optimization for population-
level learning.

Sandbox Environment Formalism. Each task node v; in the DAG is formalized as a sandbox
S; = (case,prompt,verify), where:

x; < case_generator() (D
8; + prompt_func(z;) 2)
yi < mo(s4) 3)
r; + verify_score(y;, ;) 4

The LLM 7y serves as a shared policy across nodes, conditioned on prompt s; and trained with re-
wards r;. Each sandbox enables localized supervision and plug-and-play task specification. Detailed
system architecture and implementation specifics are provided in Appendix .

CORE MULTI-LLM JOINT OPTIMIZATION

Sandbox-RL implements temperature-regularized cooperation and competence-aware specialization
for multi-LLM optimization. Let {mg, ¢, }~¥; denote N LLMs that share an optional backbone g
and carry per-model parameters ¢;. During execution, the DAG frontier presents a set of eligible
nodes; for each node, the runtime may assign one or several models to act.

Temperature-Regularized Cooperation. Cooperation is controlled by temperature parameter 7
through soft weights that transform raw contributions into mixed-mode returns:

a(7) = softmax;(gi/T) 5)
Ri(1) = (1)U (6)

where g; are contribution signals (e.g., advantages, shaped utilities), and U =)", u; is the team
utility. As 7 — 0, credit collapses to competitive winner-takes-most; as 7 — 0o, credit approaches
uniform team sharing.

Competence-Aware Specialization. Competence is modeled as bounded latent states ¢; €
[0, ¢**¥] that evolve with informative feedback:

ci < clip (¢; + mih(us, U, A;) — Nid;, 0, ¢") (7
where h(+) is a monotone shaping function, A; is the advantage used by PPO, and d; is a decay term

for stability.

On-Policy Multi-Agent Objective. The policy update retains standard on-policy form with
competence-aware baselines:

méix]E [min (riAET’C), clip(r;, 1+ e)AET’C)) + ﬁ?‘[(ﬂe)] (8)
where AZ(-T’C) uses R;(7) and optionally conditions the value head on ¢;.

DAG-Based Execution and Credit Attribution. Sandbox-RL maintains a graph-structured re-

play buffer B = {7;} where each T; = {(vi, z;, yi, n)}zll corresponds to a DAG execution trace.
For each node v;, the long-horizon return over downstream rewards is:

Qi=rit Y, . ©)

jé€desc(i)

Under review as a conference paper at ICLR 2025

Algorithm 1 Multi-LLM Joint Optimization with Cooperation and Competence
N
i=1

Require: Population {mg, 4, } ¥ ;, temperature 7, competence states {c; }
1: # Compute cooperation weights
2: for each agent ¢ do
3: g; < advantage(i) + shaped_utility(7)
4: (1) + softmax;(g;/7)
5: end for
6: # Update competence states
7: for each agent ¢ do
8: hl — K1U; + K)QU + lﬁ)gAi
9: ¢ « clip(e; + mhy — Nid;, 0, P2
10: end for
11: # Compute mixed-mode returns
12: for each agent 7 do
13: Ri(1) «+ ai(r)- U
14: AT Ri(r) = Vy(si, i)
15: end for
16: # PPO update with cooperation-competence awareness
17: for each agent i do
o, (a;|s;
18 e ﬂ‘é‘?%‘lil‘si;
190 L; « min(riAET’c), clip(r;, 1 —e, 1+ E)AgT’C))
20: end for
21: Update {6;}}¥, via gradient descenton ", £;
22: return Updated policies and competence states

where d;; is the topological distance between v; and v; in the DAG G. The advantage is computed
as Ai = Qz — V(z,(sz)

Detailed system architecture, DAG execution algorithms, and KVCache optimization are provided
in Appendix . The complete mathematical formulation for multi-LLM joint optimization, includ-
ing population objective derivation and unbiased policy gradient proofs, is detailed in Appendix .
Physical interpretations of key concepts are provided in Appendix .

Figure E] shows how cooperation factors (0.9, 0.6, 0.3) and competence factors (0.9, 0.6, 0.3) affect
network topology. Higher cooperation factors create denser networks with stronger collaboration,
while competence factors determine node centrality and specialization patterns.

Competition-Cooperation Co-evolution in Sandbox Environments. The network evolution dy-
namics demonstrate that Sandbox-RL enables fine-grained control over multi-LLM interactions
through the cooperation coefficient 7. By systematically varying 7 from high (0.9) to low (0.3)
values, we can simulate a spectrum of evolutionary dynamics within a single sandbox environ-
ment: from highly cooperative ecosystems where models share knowledge and converge rapidly, to
competitive environments where individual specialization emerges through winner-takes-most dy-
namics. This capability allows researchers to study how different cooperation-competition balances
affect learning efficiency, task specialization, and population diversity, providing a principled frame-
work for understanding multi-agent co-evolution in structured environments.

Figure2illustrates the comprehensive system architecture of Sandbox-RL, showcasing how the four
core modules work together to enable scalable multi-LLM optimization. The architecture demon-
strates a closed-loop system where sandbox environments generate structured task instances, the
workflow graph executor manages DAG-based execution with intelligent batching, and the RL en-
gine performs credit attribution and policy updates. The multi-LLM joint optimization layer or-
chestrates cooperation and competition dynamics through temperature-regularized mechanisms and
competence-aware specialization. The system incorporates advanced infrastructure optimizations in-
cluding distributed KVCache management, dynamic load balancing, and RDMA-based inter-node
communication, enabling efficient scaling to large populations of heterogeneous LLMs while main-
taining reproducible and stable learning dynamics.

Under review as a conference paper at ICLR 2025

® ' Group'l Dominance @ Group 2 Domil e Strong C i —— Medium Cooperation ~—— Weak Cooperation h 20
sandbox_ri—originai sandbox_rioriginai——————————— —candbox. vl_original

ii_onig
Epoch 10 Epoch 20

ion Factor 0.9, Ct Factor 0.9
m
5
°

Factor 0.6 C

ion Factor 0.6, C

no_sandbox_rl no_sandbox_rl no_sandbox_rl
Epoch 0 Epoch 10 Epoch 20

Factor 0.3 C

ion Factor 0.3, C

Figure 1: Sandbox-RL Network Evolution Dynamics: Multi-model collaboration patterns under dif-
ferent cooperation and competence parameter settings. Each row shows three epochs (0, 10, 20) with
fixed node colors: red nodes represent Group 1 dominance, teal nodes represent Group 2 dominance.
Edge colors indicate cooperation strength: red edges (strong cooperation), orange edges (medium
cooperation), blue edges (weak cooperation). Cooperation factor 0.9 settings (top row) show dense,
interconnected networks with strong collaborative patterns and rapid convergence. Cooperation fac-
tor 0.6 (middle row) exhibits balanced cooperation-competition dynamics with moderate network
connectivity. Cooperation factor 0.3 (bottom row) reveals more competitive, sparse network topolo-
gies with individual specialization and slower convergence.

EXPERIMENTS

We address three key research questions: (1) How does Sandbox-RL perform across different
LLM architectures? (2) Does multi-LLM cooperation improve reasoning capabilities? (3) How
do cooperation and competence factors affect system behavior? We evaluate across multi-model
optimization, reasoning performance, and parameter sensitivity analysis.

EXPERIMENTAL SETUP

We evaluate on three task families: (1) OASIS misinformation propagation with 8
LoRA adapters across two groups, (2) Trading simulation for financial decision-making with multi-
agent cooperation, and (3) Math reasoning on GSM8K [Cobbe et al.| (2021) and MATH
datasets. We compare against five baseline methods: PG (REINFORCE) - standard
policy gradient method with multi-agent optimization, using traditional REINFORCE algorithm (co-
operation factor=0.0, competition factor=0.0); AC (Always Cooperate) - agents uniformly share
rewards regardless of individual contributions, representing pure cooperative behavior (cooperation
factor=1.0, competition factor=0.0); AP (Always Compete) - agents receive rewards based solely
on individual performance without any cooperation, representing pure competitive behavior (co-
operation factor=0.0, competition factor=1.0); ACP (Advanced Cooperative Policy) - advanced

Under review as a conference paper at ICLR 2025

SandBox User Interface & API Sandbox Storage Management
System Resource Manager
1 o . Network Bandwidth & RDMA
H Controller
GPU O GPU 1 GPU 2 .
J, Compete Sandbox KV Cache Manager

Looperate {@} SandBox RL Optimization Engine

Weight Synchronizer & Gradient
Update

o 2
v & L% T b (RE—
Y @ 5 Ty dwmeenmnn] | By [g
RO 2 o i
SRS © o v
«.\O (o)) /?p)
<. £ . 0 a
g S Checkpoint & Monitorin
sandBoxRL >, B 9
~ Multi-LLMs ®
Serving . .
Save/ Load States Metrics Logger System Health Monitor
9duejsu| Buluterl
Compete 3P0 Compete
Cooperate J [9pon Cooperate

Figure 2: Sandbox-RL System Architecture Overview. The framework demonstrates a comprehen-
sive multi-LLLM optimization system with four core modules: (1) Sandbox Manager & LLM In-
terface - handles modular task specification and LLM routing with backend-agnostic interfaces;
(2) Workflow Graph Executor - manages DAG-based execution with frontier batching and re-
source constraints; (3) RL Engine with DAG Replay Buffer - performs structured credit attribution
and policy updates using PPO/GRPO; (4) Multi-LLM Joint Optimization - enables temperature-
regularized cooperation and competence-aware specialization. The architecture supports distributed
KVCache management, dynamic load balancing, and scalable population learning through shared
workflow graphs.

cooperative policy method with improved multi-agent coordination (cooperation factor=1.0, com-
petition factor=1.0); Adaptive-OM (Adaptive Online Multi-agent) - a state-of-the-art multi-agent
method that dynamically adjusts cooperation strategies based on performance feedback (coopera-
tion factor=0.5-0.8, competition factor=0.2-0.5, adaptive). Models include Qwen2.5-7B, Llama 3.1-
7B/8B, and Llama 3.2-3B with PPO-style updates. Metrics include final performance, convergence
epoch, average reward, and efficiency (latency, memory). Detailed experimental setup, extended
visualizations, and comprehensive model analysis are provided in Appendix and Appendix .

RESEARCH QUESTION 1: MULTI-MODEL PERFORMANCE

Answer to RQ1: Sandbox-RL achieves superior performance across all LLM architectures. Llama
3.1-8B shows best overall performance (0.978 score, 38 epochs convergence), while Llama 3.2-3B
provides optimal efficiency (0.952 memory efficiency, 120.3ms latency). All models achieve perfect
final performance (1.000), demonstrating framework robustness. Reduced cooperation/competence
factors (0.6/0.5) show consistent degradation but maintain relative rankings.

System-Level Performance Analysis. The KVCache-centric optimization system demonstrates
significant efficiency gains. Block-sparse storage reduces memory overhead by 40% while providing
3x faster parameter access. Dynamic load balancing achieves 25% improvement in GPU utilization
and 30% reduction in training time. The composable format optimization enables plug-and-play task
integration with 60% reduction in development overhead (see Appendix for detailed analysis).

RESEARCH QUESTION 2: MATH REASONING PERFORMANCE

Answer to RQ2: Sandbox-RL significantly outperforms single-agent RL on math reasoning tasks.
Improvements range from 14.7% to 34.8%, with effect sizes (Cohen’s d) indicating medium to
large practical significance (0.65-0.78). The structured DAG approach enables multi-step reasoning
through collaborative problem decomposition and verification.

The core advantage lies in the knowledge sharing and competitive reward mechanisms. In
Sandbox-RL, models actively share their successful reasoning patterns through the temperature-

Under review as a conference paper at ICLR 2025

Table 3: Task-Specific Performance: OASIS |Yang et al.[(2024), Trading, and Math Reasoning Re-
sults.

Task Family Method Performance Conv. Epoch Specific Metric Improvement

OASIS Misinformation Propagation

OASIS PG 0.432 65.3 0.421 -
OASIS AC 0.781 28.0 0.812 -
OASIS AP 0.552 41.7 0.537 -
OASIS ACP 0.861 22.1 0.864 -
OASIS Adaptive-OM 0.903 17.8 0.902 -
OASIS Sandbox-RL 0.982 7.6 0.904 +8.7 %
Trading Simulation

Trading PG 3.2% 65.3 0.18 -
Trading AC 8.2% 28.0 0.45 -
Trading AP 5.1% 41.7 0.28 -
Trading ACP 12.3% 22.1 0.68 -
Trading Adaptive-OM 15.7% 17.8 0.82 -
Trading Sandbox-RL 24.8% 7.6 1.42 +101.6%
Math Reasoning (GSMS8K/MATH)

Math PG 0.34 65.3 0.22 -
Math AC 0.65 28.0 0.43 -
Math AP 0.58 41.7 0.38 -
Math ACP 0.68 22.1 0.45 -
Math Adaptive-OM 0.72 17.8 0.49 -
Math Sandbox-RL 0.78 7.6 0.55 +14.7 %

Table 4: Baseline Comparison: Sandbox-RL vs. existing methods.

Method Final Perf. Conv. Epoch Avg Reward Mem. Eff. Latency (%)
PG 0.432 65.3 0.421 0.756 108.2
AC 0.781 28.0 0.812 0.823 100.0
AP 0.552 41.7 0.537 0.798 102.3
ACP 0.861 22.1 0.864 0.856 93.6
Adaptive-OM 0.903 17.8 0.902 0.889 89.4
Sandbox-RL (Ours) 0.982 7.6 0.234 0.904 72.4

regularized cooperation framework, where high-performing models receive higher rewards and their
strategies are propagated to other agents. This creates a positive feedback loop where: (a) Knowl-
edge Sharing - When a model discovers an effective mathematical reasoning strategy, it receives
higher rewards, and this knowledge is shared with other models through the collaborative mech-
anism, leading to collective improvement; (b) Reward Amplification - The Sandbox-RL system
amplifies rewards for models that contribute to successful problem-solving from collaborative-
competence framework, leading to a faster convergence and better performance for multi-model
co-optimization.

Reasoning Chain Quality Analysis. Detailed analysis of reasoning chain quality reveals signif-
icant improvements in logical coherence (+12.0%), step correctness (+11.0%), and error recovery
(+51.1%) compared to single-agent baselines. The collaborative-competence mechanism enables
cross-model validation (28.6% vs 0.0% in single-agent) and iterative refinement (35.2% vs 15.8%),
leading to more robust reasoning processes. Error analysis shows substantial reduction in logical in-
consistencies (-23.1%), calculation errors (-31.0%), and step skipping (-30.3%) (see Appendix for
comprehensive tables and Appendix for theoretical convergence guarantees).

Under review as a conference paper at ICLR 2025

Table 5: Math Reasoning Performance: Sandbox-RL vs. Single-Agent RL on GSM8K and MATH
datasets.

Task Single-Agent RL. Sandbox-RL. Improvement Cohen’sd p-value
GSMS8K 0.68 0.78 +14.7% 0.78 < 0.001
MATH Easy 0.45 0.56 +24.4% 0.65 < 0.001
MATH Hard 0.23 0.31 +34.8% 0.72 < 0.001
’ Gf’t;K - } ”\ v MATI: En,’iy e \ ‘MAI'HHard : " . ’Logm : -
«“/ \/ i \\/\/x ’ \/\ / ° ,r"“\/ 4 \‘V\/’\/\"‘\"’ \ "/\/’ \\/\\/) \ \“‘ i V W\ ““\\ r\/ N \A'(\.,/ \\Mﬂ\ e ﬂ/\/\/ 4 /\ «/\v«/\/ o
’/ V TR \ E /
|

(a) GSM8K (b) MATH Easy (c) MATH Hard (d) LogiQA

ReClor Easy ReClor Hard

, AV | M A\ A
J*J\/ \/\/WJ\f\W - N \ﬁ/\//\ J/\‘ \/\/ \V \\ A

nnnnnnnnnn QA StrategyQA

' M (\7\ AV ! A A N v
MMM AW RNAY

(e) ReClor Easy (f) ReClor Hard (g) CommonsenseQA (h) StrategyQA

Figure 3: Reward Evolution Comparison: Sandbox-RL vs Single-Agent RL across reasoning bench-
marks. Each subplot shows the reward curves over training epochs, demonstrating Sandbox-RL’s
superior convergence and final performance. (a-d) Mathematical and logical reasoning tasks show
consistent improvements. (e-h) Commonsense reasoning tasks demonstrate enhanced collaborative
problem-solving capabilities.

RESEARCH QUESTION 3: PARAMETER SENSITIVITY

Answer to RQ3: Cooperation and competence factors significantly affect network topology and col-
laboration patterns. In Oasis examle, higher cooperation factors (0.9) create dense, interconnected
networks with strong collaborative relationships, while lower factors (0.3) produce sparse, competi-
tive networks with individual specialization.

Collaborative-Competence Learning Dynamics and Parameter Sensitivity. The temperature-
regularized cooperation mechanism provides fine-grained control over cooperation-competition dy-
namics, achieving 15-20% performance improvements across task types. Competence-aware spe-
cialization via bounded states enables 35% improvement in task-specific performance while pre-
serving 90% of general capabilities. DAG-based credit attribution reduces credit assignment vari-
ance by 45% compared to standard temporal difference methods. Table 20 and Figures 8] [7]in Ap-
pendix demonstrate comprehensive parameter sensitivity analysis: Llama 3.1-8B shows lowest sen-
sitivity (0.923-0.978 range) with optimal performance at 7 = 0.5, while Llama 3.2-3B exhibits
highest sensitivity (0.856-0.932 range), indicating smaller models benefit more from temperature
tuning. The 3D parameter grid analysis reveals distinct performance regions with optimal settings
achieving 3-5x faster convergence compared to extreme values. Competence evolution patterns dif-
fer by model size: larger models develop stable competence patterns with gradual specialization,
while smaller models exhibit dynamic evolution with rapid task adaptation (see Appendix for theo-
retical analysis).

CONCLUSION

In this paper, we introduced Sandbox-RL, a novel framework that fundamentally advances multi-
LLMs reinforcement learning for LLMs through structured workflow execution. Our work addresses
critical limitations in existing multi-agent approaches by providing a principled, scalable, and effi-
cient framework for population-level optimization.

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

This work presents a framework for multi-LLM optimization through reinforcement learning in
sandbox environments. We acknowledge the following ethical considerations:

Model Training and Data Usage: All experiments are conducted using publicly available datasets
(GSMB8K, MATH, LogiQA, ReClor, CommonsenseQA, StrategyQA, Social IQA) and open-source
language models (Qwen2.5-7B, Llama 3.1-7B/8B, Llama 3.2-3B). No proprietary or sensitive data
was used in our experiments. Detailed model specifications and dataset usage are provided in Ap-
pendix.

Computational Resources: Our experiments were conducted on standard research computing in-
frastructure. We acknowledge that large-scale multi-LLM training requires significant computational
resources, which may limit accessibility for researchers with limited resources. Detailed computa-
tional requirements and resource specifications are documented in Appendix .

Potential Misuse: While our framework is designed for research and educational purposes, we rec-
ognize that multi-agent systems could potentially be misused. We encourage responsible develop-
ment and deployment of such systems. The framework’s design principles and safety considerations
are detailed in Appendix .

Transparency: We provide detailed experimental settings, hyperparameters, and implementation
details to ensure reproducibility and transparency in our research. Complete experimental configu-
rations are provided in Appendix and Appendix .

REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide the following information:

Code and Data: Our implementation will be made publicly available upon acceptance. The code in-
cludes all necessary components for reproducing the experiments, including the Sandbox-RL frame-
work, baseline implementations, and evaluation scripts. Detailed implementation specifications are
provided in Appendix, and the core framework of the SandBox-RL is attached in supplementary
materials.

Experimental Settings: All hyperparameters, model configurations, and experimental settings
are detailed in Appendix . This includes learning rates, batch sizes, training epochs, coopera-
tion/competence factors, and model-specific parameters. Complete parameter configurations are
documented in Appendix .

Hardware and Software: Experiments were conducted using PyTorch 2.0+ with CUDA 11.8+ on
NVIDIA A100 GPUs. Detailed hardware specifications and software versions are provided in the
implementation repository and documented in Appendix .

Random Seeds: All experiments use fixed random seeds (42, 123, 456) for reproducibility. The
random seed configuration is included in the experimental setup detailed in Appendix .

Evaluation Metrics: All evaluation metrics and their implementations are clearly specified, includ-
ing performance calculations, convergence criteria, and statistical significance testing procedures.
Detailed evaluation protocols are provided in Appendix.

REFERENCES

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assis-
tant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron,
Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance

10

Under review as a conference paper at ICLR 2025

weighted actor-learner architectures. In International conference on machine learning, pp. 1407—
1416. PMLR, 2018.

Lasse Espeholt, Rapha&l Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski. Seed rl: Scal-
able and efficient deep-rl with accelerated central inference. arXiv preprint arXiv:1910.06591,
2019.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-
agent collaborative framework. arXiv preprint arXiv:2308.00352, 3(4):6, 2023.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
Camel: Communicative agents for” mind” exploration of large scale language model society.
2023.

Weichen Li, Xiaotong Huang, Jianwu Zheng, Zheng Wang, Chaokun Wang, Li Pan, and Jianhua Li.
rllm: Relational table learning with llms. arXiv preprint arXiv:2407.20157, 2024.

Shuo Liu, Zeyu Liang, Xueguang Lyu, and Christopher Amato. Llm collaboration with multi-agent
reinforcement learning. arXiv preprint arXiv:2508.04652, 2025.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAl Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. Advances in neural informa-
tion processing systems, 30, 2017.

Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft: Rea-
soning with reinforced fine-tuning. arXiv preprint arXiv:2401.08967, 3, 2024.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants. In The Twelfth International Conference on Learning
Representations, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730-27744, 2022.

Georgios Papoudakis, Filippos Christianos, Lukas Schifer, and Stefano V Albrecht. Benchmark-
ing multi-agent deep reinforcement learning algorithms in cooperative tasks. arXiv preprint
arXiv:2006.07869, 2020.

Aleksei Petrenko, Zhehui Huang, Tushar Kumar, Gaurav Sukhatme, and Vladlen Koltun. Sample
factory: Egocentric 3d control from pixels at 100000 fps with asynchronous reinforcement learn-
ing. In International Conference on Machine Learning, pp. 7652-7662. PMLR, 2020.

Jiahao Qiu, Xuan Qi, Tongcheng Zhang, Xinzhe Juan, Jiacheng Guo, Yifu Lu, Yimin Wang,
Zixin Yao, Qihan Ren, Xun Jiang, Xing Zhou, Dongrui Liu, Ling Yang, Yue Wu, Kaixuan
Huang, Shilong Liu, Hongru Wang, and Mengdi Wang. Alita: Generalist agent enabling scal-
able agentic reasoning with minimal predefinition and maximal self-evolution, 2025. URL
https://arxiv.org/abs/2505.20286.

Marlyse Reeves and Brian C Williams. Laplass: Latent space planning for stochastic systems. arXiv
preprint arXiv:2404.07063, 2024.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. Advances in Neural Information Processing Systems, 36:68539-68551,
2023.

11

https://arxiv.org/abs/2505.20286

Under review as a conference paper at ICLR 2025

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
large language models. In 2023 IEEE International Conference on Robotics and Automation

(ICRA), pp. 11523-11530. IEEE, 2023.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Xiaoli Tang and Han Yu. Competitive-cooperative multi-agent reinforcement learning for auction-
based federated learning. In Proceedings of the Thirty-Second International Joint Conference on
Artificial Intelligence (IJCAI-23), pp. 4262-4270. 1JCAI, 2023.

ByteDance Team. Agentgym-rl: Training Ilm agents for long-horizon decision making
through multi-turn reinforcement learning, 2025. URL https://arxiv.org/pdf/2509.
08755v1.

InternLM Team. Internbootcamp: A thousand-task accelerated training ground. https://
github.com/InternLM/InternBootcamp, 2024a.

Microsoft Team. Agent lightning: The absolute trainer to light up ai agents. https://github.
com/microsoft/agent—-lightning, 2024b.

Yubo Tian, Ximing Lu, Bohan Wu, Tianjun Zhang, Xinrui Zhang, Jeffrey Liew, Jincheng Yu, Kuan
Fang, Huazhe Xu, and Chelsea Finn. Areal: Alignment via reinforcement learning from simulated
ai societies, 2024. URL https://arxiv.org/abs/2405.14295.

Hanqing Wang, Jiahe Chen, Wensi Huang, Qingwei Ben, Tai Wang, Boyu Mi, Tao Huang, Siheng
Zhao, Yilun Chen, Sizhe Yang, et al. Grutopia: Dream general robots in a city at scale. arXiv
preprint arXiv:2407.10943, 2024.

Weixun Wang, Shaopan Xiong, Gengru Chen, Wei Gao, Sheng Guo, Yancheng He, Ju Huang, Jia-
heng Liu, Zhendong Li, Xiaoyang Li, et al. Reinforcement learning optimization for large-scale
learning: An efficient and user-friendly scaling library. arXiv preprint arXiv:2506.06122, 2025.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen Ilm applications via multi-
agent conversation. arXiv preprint arXiv:2308.08155, 2023.

Ziyi Yang, Zaibin Zhang, Zirui Zheng, Yuxian Jiang, Ziyue Gan, Zhiyu Wang, Zijian Ling, Jinsong
Chen, Martz Ma, Bowen Dong, Prateek Gupta, Shuyue Hu, Zhenfei Yin, Guohao Li, Xu Jia, Lijun
Wang, Bernard Ghanem, Huchuan Lu, Chaochao Lu, Wanli Ouyang, Yu Qiao, Philip Torr, and
Jing Shao. Oasis: Open agent social interaction simulations with one million agents, 2024. URL
https://arxiv.org/abs/2411.11581l

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Advances
in neural information processing systems, 36:11809-11822, 2023.

Jonathan Yue and Daniel Klein. Benchmarking Ilms on advanced mathematical reasoning. 2025.

Kaiyan Zhang, Runze Liu, Xuekai Zhu, Kai Tian, Sihang Zeng, Guoli Jia, Yuchen Fan, Xingtai Lv,
Yuxin Zuo, Che Jiang, Ziyang Liu, Jianyu Wang, Yuru Wang, Ruotong Zhao, Ermo Hua, Yibo
Wang, Shijie Wang, Junqi Gao, Xinwei Long, Youbang Sun, Zhiyuan Ma, Ganqu Cui, Lei Bai,
Ning Ding, Biqing Qi, and Bowen Zhou. Marti: A framework for multi-agent Ilm systems rein-
forced training and inference, 2025. URL https://github.com/TsinghuaC3I/MARTI.

Zhi Zheng, Zhuoliang Xie, Zhenkun Wang, and Bryan Hooi. Monte carlo tree search for compre-

hensive exploration in llm-based automatic heuristic design. arXiv preprint arXiv:2501.08603,
2025.

12

https://arxiv.org/pdf/2509.08755v1
https://arxiv.org/pdf/2509.08755v1
https://github.com/InternLM/InternBootcamp
https://github.com/InternLM/InternBootcamp
https://github.com/microsoft/agent-lightning
https://github.com/microsoft/agent-lightning
https://arxiv.org/abs/2405.14295
https://arxiv.org/abs/2411.11581
https://github.com/TsinghuaC3I/MARTI

Under review as a conference paper at ICLR 2025

USE OF LLMS

GPT-5 was used only for grammar checking of the paper text.

APPENDIX TABLE OF CONTENTS

* Appendix A: Detailed Method Components

A.1 Sandbox Manager and LLM Interface

A.2 DAG Construction and Execution in SandGraph

A.3 RL Engine with DAG Replay Buffer

A.4 KVCache-Centric System Optimization

A.5 DAG-Aware Mean-Group Policy for Large-Scale Agents
A.6 Detailed Algorithm Implementations

¢ Appendix B: Full Related Work

* Appendix C: Key Advantages of Sandbox-RL

* Appendix D: KVCache-Centric System Architecture

» Appendix E: Physical Interpretations

* Appendix F: Detailed Reasoning Performance Tables

* Appendix G: Extended Experiments and Visualizations

* Appendix H: Comprehensive Llama Model Analysis

* Appendix I: Mathematical Details for Multi-LLM Joint Optimization
* Appendix J: KVCache-Centric System Theoretical Analysis

* Appendix K: Collaborative-Competence Learning

DETAILED METHOD COMPONENTS

SANDBOX MANAGER AND LLM INTERFACE

We formalize each task node v; in the DAG as a sandbox S; = (case,prompt, verify), where:

x; + case_generator() (10)
8; + prompt_func(z;) (11)
Yi < To(5:) (12)
r; < verify_score(y;, ;) (13)

The LLM 7y serves as a shared policy across nodes, conditioned on prompt s; and trained with
rewards r;. Each sandbox enables localized supervision and plug-and-play task specification.

Algorithm 2 Sandbox Interaction Protocol

Require: Shared LLM 7y, sandbox S;
: x; S;.case_generator()

$; « S;.prompt_func(z;)

Yi < mo(si)

r; + S;.verify_score(y;, x;)
RETURN (LUZ', SiyYiy 'I’i)

A

We encapsulate LLMs with a backend-agnostic interface 7y : S — Y, supporting generation and
parameter updates. Our implementation supports different types of open-weight LLM backends (in-
cluding local weights (HuggingFace), vLLM inference, and distributed serving frameworks), all
conforming to a unified interface:

yi = mo(ss), 0 <0 —nVeLl(yi,ri)

13

Under review as a conference paper at ICLR 2025

For multi-node execution, a centralized LLMManager routes generation calls and tracks usage
statistics. Additionally, all sandbox components are MCP-compatible, enabling remote execution
and compositional integration.

DAG CONSTRUCTION AND EXECUTION IN SANDGRAPH

SandGraph defines a high-level interface for workflow composition and reasoning execution over
directed acyclic graphs (DAGs). Each node in the DAG encapsulates a sandboxed task environment,
whose execution is driven by reasoning performed by a centralized LLM Manager. The system is
designed to support complex control flow—such as conditional activation, parallel execution, and
retry policies—while enforcing global resource constraints and termination conditions.

Graph Definition. We model a reasoning workflow as a directed acyclic graph G = (V, &), where
each node v; € V denotes a sandbox module S;. Each directed edge (vj — ;) € & captures a
potential reasoning transition—meaning the LLM is allowed to consider v; after completing v;.

The system maintains a dynamic game state at each time step ¢, represented as S; = (Ry, Z¢, Q1),
where R; denotes the available resource vector, Z; is the set of completed nodes, and Q;[v] is the
reward score obtained at node v. A node is eligible for execution if it satisfies all structural, logical,
and budget constraints:

veEF — pred(v) C Z A\ Fv(St) AN Ry Pu

Here, I',, is a triggering predicate (e.g., score threshold or cooldown logic), and p, € R’_j encodes
the resource cost of executing S,,.

Graph Construction. Workflow graphs are incrementally constructed by registering sandbox
modules and reasoning dependencies. Each node v supports declarative specification of its acti-
vation logic I';,, including parent completion requirements, minimum score thresholds, cooldown
timers, and access limits. Edges are then added to encode admissible reasoning paths, ensuring that
transitions respect both the static DAG structure and runtime eligibility.

Algorithm 3 SandGraph DAG Execution with LLM-based Action and RL Update
Require: DAG G = (V, £), policy my, critic Vy, initial state Sy
1: Initialize time ¢ < 0, trace T + |]
2: while termination condition not met do
3: Identify executable frontier: F; < {v; € V\ Z; | T4(St), Rt = pi}
Select next node: vy ~ mo (- | Ft, St)
Generate task instance: x; ~ S,,.case_generator()
Build prompt: s; < build_prompt(z¢,S;)
Generate action: a; ~ mg(- | s¢)
Compute reward: 7 < S, .verify_score(a,)
Update game state:

R AN

Rit1 R — puys 21— ZeU{we}, Quialve] 14

10: Append to trace: T < T U {(sy, ar,74)}

11: t+t+1

12: end while

13: Update policy and critic via PPO: PPO_Update(mg, Vi, T)
14: return final state S; and execution trace T

Execution Algorithm.

RL ENGINE WITH DAG REPLAY BUFFER
We maintain a graph-structured replay buffer B = {7}, where each 7; = {(v;,z;, i, rz)}tTél

corresponds to a DAG execution trace. These structured episodes are reused for credit propagation
and policy improvement.

14

Under review as a conference paper at ICLR 2025

Reward Attribution. For each node v;, we define the long-horizon return (); over downstream

rewards as:
Qi=ri+ Y M.ry (14)
j€desc(i)
where d;; is the topological distance between v; and v; in G.
The advantage is:
Ai = Qi — Vy(si) (15)

Replay Prioritization. Trajectories are sampled based on structure-weighted score:
P(T) o exp <5 : Z [ri + | Ve log ma(y; | Si)2]> (16)
Policy Update. We adopt PPO-style clipped updates for the policy 7p:
Lipo = min (r; A, clip(ri, 1 — €, 1 + €) 4;) 17

The critic is updated by minimizing TD error on node-level return estimates.

KVCACHE-CENTRIC SYSTEM OPTIMIZATION

Sandbox-RL incorporates a distributed KVCache management system that optimizes memory uti-
lization and throughput for large-scale multi-LLMs training. The system implements block-sparse
storage formats, multi-tier memory hierarchy, and RDMA-based inter-node transfer protocols to
achieve superior performance-efficiency trade-offs.

Algorithm 4 KVCache-Centric System Optimization

Require: Multi-tier memory hierarchy M = {M¢gpuy, Mcopu, Mssp}, KVCache K, batch size
B
Block-Sparse Storage Format

BSR(K, V) + {(B (k) B indices, indptr) }

ij zg ’
B(k) RBrxBexHxD B (v) € RBrxBexHxD
Mult] Tier Cache All()um()n
for each KVCache block K'V; do
I* < argmax;c (g rv,cpu,s5D} E[Raccess(1)] = A Crransfer(l)
Allocate K'V; to memory tier [*
end for
Dynamic Load-Balanced Scheduling
{189,191 B | < GetSequenceLengths(B)
: S < arg ming maxXc.ccras ZweWc cost(w)
s cost(w) < a - lgo(w) + B - lgy(w) + v - sync_overhead(w)
: # Composable Format for Shared Prefixes
: Kiotal — Kshared ®]Cunique
: ’Csha'red ~ BSR(BT(S); BSS))s Icunique ~ BSR(-B?EU); Bgu))
. # RDMA-based Inter-node Transfer
: for each node pair (7, j) do
. . KViransfer
Ttransfer (Z — j) «— Tsetup + M + Tsync

Brpma

Schedule transfer to minimize max; jye7 Ttransfer(i — J)
end for
: # Multi-Objective Optimization
: 0* < argmaxp w; - Cache Reuse(f) + ws - Throughput(6)
—A1 - max(0, TTFT(0) — TTFTsL0)
—X2 - max(0, TBT(A) — TBTsLo)
—A3 - Memory _Violation(6)
. return Optimized KVCache allocation and scheduling

A A A T

—
AL ~,O VO

RN R RN — — = —
QAN HhLN OO0 ® I

15

Under review as a conference paper at ICLR 2025

DAG-AWARE MEAN-GROUP POLICY FOR LARGE-SCALE AGENTS

To scale to large populations while preserving DAG semantics, we introduce a DAG-aware mean-
group policy. Instead of instantiating a distinct policy for every fine-grained agent, we partition
agents into groups {G1, ..., G, } by task objective and sandbox role. Each group G; is assigned a
mean policy 7; that acts on group-level observations and emits a mean control subsequently special-
ized by members.

Group Observation and Action. At time ¢, the group-level observation is

t_ (it oAttt —t_ e
0; = (b, v, 7/, i), U = Egeq,, ech, [Ui,k]7

where b! is remaining group budget (or compute quota), 7/ counts steps-to-go within the current cur-
riculum stage, and cﬁ denotes DAG context features (e.g., unlocked successors, node readiness). The
mean action a! = ;(o!) parameterizes a mean control (e.g., collaboration temperature, exploration
bonus, or node-level resource multiplier).

Per-Agent Specialization. For member k € G;, we compute an advantage

~e t .
i,k = —t a;k = ai : Chp(A;ka «, 6)7

and execute a5 ,, at impression/opportunity e (e.g., scaling cooperation strength or sampling temper-
ature). Clipping bounds («, §) prevent extreme specialization.

Group Reward and Return. We define group return on DAG edges (node-level or epoch-level):

M= Y uest). Jm)=E[34,
t

e€Ey, keG,

with utility u(-) induced by the sandbox verifier (e.g., dominance gain, correctness, or welfare). Op-
timization is on J(7;) with PPO/GRPO while per-agent actions remain lightweight specializations
of al.

DAG Awareness. Unlike prior mean-policy designs, o} includes DAG context ¢! and group-level
readiness, letting 7; choose where to allocate effort (frontier nodes) and how to shape intra-group
cooperation. This preserves workflow structure while amortizing control across many members,
improving scalability without flattening the DAG.

Infrastructure note. We employ practical infraarchitecture optimizations—frontier-batched DAG ex-
ecution, VLLM paged attention with KV reuse, LoRA pinshard, micro-batching with mixed pre-
cision, async 10, cache-aware sampling, and overlapped gradient synchronization—to improve
throughput and memory efficiency without altering learning semantics.

16

Under review as a conference paper at ICLR 2025

DETAILED ALGORITHM IMPLEMENTATIONS

Algorithm 5 Multi-Agent On-Policy RL with Cooperation and Competence Factors

Require: Number of agents IV, cooperation configs /\{Ci}’ competence configs {M;}
1: Initialize agents: {A;}Y , with capabilities {c; } Y,
2: Initialize teams based on cooperation configurations
3: Initialize experience buffers {3},
4: for each training episode do

5: # Agent interaction phase
6: for each agent A; do
7: s; < get_state(A;)
8: a;,log p;,v; < A;.get_action(s;, cooperation_context)
9: Execute action and observe reward ;
10: Store experience: (s;, a;, r;,log p;, v;) in B;
11: end for

12: # Cooperation reward sharing
13: for each team 7 do

14: R[eam — ZlE'Tk Ti

15: Distribute shared rewards: r; < ar; + (1 — «) 1‘37‘%:““

16: end for

17: # Knowledge transfer

18: for each agent A; do

19: K; + extract_knowledge(B5;)

20: for each teammate .4; in same team do

21: Transfer knowledge: B; <— B; U transfer(K;, 7;;)
22: end for

23: end for

24: # Competence update

25: for each agent A; do

26: Ci < Ci+n;- r; -team_performance

27: ¢; < min(¢;, M;max_capability)

28: Apply experience decay: ¢; < ¢; - M;.experience_decay
29: end for

30: # Policy update (PPO-style)

31: for each agent A; do

32: Sample batch from B;

33: Compute advantages: A; + compute_advantages(B;)
34: Update policy: 6; < PPO_update(6;, B;, A;)

35: end for

36: end for

17

Under review as a conference paper at ICLR 2025

Algorithm 6 Sandbox-RL DAG-Based Rollout and General Policy Update

Require: DAG executor G, replay buffer B, policy 7y, value estimator Vy, optimizer O, discount
factor ~y

1: for each training epoch do

2: Sample DAG trajectory T = {(v;, x;, y;,7i)} from B
3 Initialize accumulated losses: Lpg < 0, Lcyite < 0
4: for each node v; € T in reverse topological order do
5: s; < encode(x;) {Construct LLM prompt embedding }
6: V; < V¢(Si)

7 Compute return: R; < r; + zvj EDesc(v:) iy

8: A; + Advantage(R;,V;)

9: # General Policy Gradient Term
10: log m; < log mo(yi | ;)
11: EPG(*,CprIOgWZ"AZ‘
12: # Critic Loss (TD or Monte Carlo)
13: Levitie < Leriie + (Vi — R;)?
14: # Optional: Save policy ratio for PPO/GRPO

To(Wilsi) for Jater use
o (Yilsi)

15: Save p; +
16: end for

17: # Optional: Modify Lpg with clipping, entropy, or GRPO terms
18: Lpg « PolicyUpdate(Leg, {pi}, {Ai})

19: Update parameters: 0, ¢ < O(Lpg + ALcritic)

20: # Optional: Reprioritize 7 in B

21: foreachv; € T do

22: Di (—OZT1+ﬁ|A2|

23: Update priority of v; in B
24: end for

25: end for

FUuLL RELATED WORK

STRUCTURED EXECUTION AS AN ALTERNATIVE TO MULTI-AGENT LEARNING

The rise of reinforcement-tuned LLM systems has inspired the development of multi-agent frame-
works where agent coordination is central to solving complex tasks. AReal [Tian et al.| (2024)
explores self-contained Al societies with decentralized reward emergence and social dynamics.
MARTTI |Zhang et al.| (2025) emphasizes centralized multi-agent training via structured DAG work-
flows and distributed policy updates, combining LLM-based interactions with coordinated credit
assignment. Other frameworks such as CAMEL |Li et al.| (2023), AutoGen Wu et al.| (2023)), and
GAIA Mialon et al.| (2023) show how collaborative reasoning and role conditioning enable agent
specialization.

Multi-LLM Joint Optimization versus Interface-Level Multi-Agent RL. Multi-agent frame-
works have demonstrated that role conditioning and conversational coordination can improve LLM
problem solving. However, most such systems stop at the interface boundary: agents converse,
exchange messages, and call tools, while optimization remains either single-model or decoupled
from the execution substrate. Sandbox-RL takes the opposite stance. Rather than integrating agents
through dialogue APIs alone, we optimize multiple LLMs inside the workflow runtime, so that el-
igibility, selection, and credit assignment are governed by the DAG and its sandbox verifiers. The
cooperation—competition spectrum and grouping behaviors are realized as continuous, differentiable
credit re-attributions and lightweight capability states, which plug into the same on-policy updates
used for single-model training. This brings multi-LLM learning from the integration layer down to
the system layer, where scoring and replay are already precise and reproducible.

18

Under review as a conference paper at ICLR 2025

WORKFLOW GRAPHS AND STRUCTURED REASONING

Structured graphs have become a common abstraction for LLM reasoning. Tree-of-Thought [Yao
et al.| (2023), MCTS Prompting Zheng et al.| (2025)), and CAMEL |Li et al.| (2023)) frame decision-
making as tree or dialogue-based roleplay. ProgPrompt Singh et al.| (2023)) and Toolformer [Schick
et al.[(2023) compose LLM actions into sequences or computation graphs. Sandbox-RL generalizes
this trend by treating workflows as DAGs over sandbox environments, each capable of generation,
scoring, and feedback. This enables multi-stage rollouts with consistent semantics, useful in both
training and inference.

REINFORCEMENT LEARNING FROM HUMAN FEEDBACK AND SIMULATED REWARDS

LLMs have benefited from reinforcement fine-tuning to align with human preferences or logic.
RLHF Ouyang et al.|(2022), RLAIF [Bai et al.[(2022), and ReFT [Luong et al.| (2024)) integrate re-
ward models into the training loop. MARTI|Zhang et al.|(2025) uses central critics across multi-agent
graphs. In contrast, Sandbox-RL leverages local scoring logic built into sandbox environments, sup-
porting modular and interpretable credit assignment. This approach also enables curriculum learning
and iterative refinement with environment-informed feedback rather than black-box reward models.

TASK ENVIRONMENTS AND SIMULATION BENCHMARKS

Emerging RL benchmarks such as InternBootcamp [Team| (2024a), GAIA Mialon et al.| (2023)), and
MATH-Arena |Yue & Klein| (2025) provide structured progression and reward annotations. GRU-
topia Wang et al| (2024) explores embodied planning in a simulated world, while BBH [Suzgun
et al.| (2022) offers symbolic task diversity for LLMs. Sandbox-RL wraps such environments with
standardized interfaces—generation, prompting, and verification—enabling replay, modular scor-
ing, and data reuse across tasks.

TRAINING INFRASTRUCTURE AND REPLAY OPTIMIZATION

Efficient RL frameworks depend heavily on systems optimization. IMPALA [Espeholt et al.|(2018),
Sample Factory Petrenko et al.[(2020), and SeedRL |Espeholt et al.[(2019) introduce distributed actor-
learner paradigms with prioritized replay and throughput optimization. Sandbox-RL builds on these
ideas with structured rollout caching, graph-level experience replay, and support for PPO/GRPO
updates on DAG traces.

GENERALIST ARCHITECTURES AND PLANNING ABSTRACTIONS

Generalist frameworks such as ALITA |Qiu et al.| (2025) and LaPlaSS |[Reeves & Williams| (2024))
emphasize latent planning and emergent modularity. MetaGPT Hong et al.| (2023) uses tool decom-
position and task APIs to drive zero-shot generalization. While not aiming to generalize across all
domains, Sandbox-RL exposes compositionality via graph-level control and local sandbox seman-
tics, supporting structured curriculum, task reuse, and hybrid symbolic-to-neural reasoning.

SUMMARY: STRUCTURED RL ACROSS COMPOSITIONAL SANDBOX WORKFLOWS

Sandbox-RL proposes a reinforcement learning framework that models task reasoning as struc-
tured execution over sandbox-defined environments. Each sandbox encapsulates a task-specific
generation-verification loop, and the overall problem-solving process is expressed as a directed
acyclic graph (DAG) of sandbox transitions. This structure enables precise reward attribution, re-
playable rollout traces, and integration with standard RL algorithms such as PPO and GRPO. Com-
pared with multi-agent frameworks that rely on role coordination and inter-agent negotiation Pa-
poudakis et al.|(2020); Lowe et al.[(2017), Sandbox-RL offers a modular alternative where transi-
tions, feedback, and policies are governed by the graph topology and localized sandbox logic.

Our design supports four core components: (i) a unified sandbox and LLM manager for encapsulat-
ing task behaviors, (ii) a workflow graph engine for structured execution and trace logging, (iii) a
pluggable RL backend for credit propagation and parameter updates, and (iv) an analysis suite for
interactive work flow graph and history log files.

19

Under review as a conference paper at ICLR 2025

KEY ADVANTAGES OF SANDBOX-RL

Sandbox-RL provides three fundamental advantages over existing multi-agent frameworks: system-
level optimization, principled multi-agent coordination, and scalable task generalization.

System-Level Optimization: The framework implements distributed memory management with
block-sparse KVCache storage (C) and multi-tier hierarchy (), reducing memory overhead by 40%
while providing 3x faster parameter access. Dynamic load balancing with complexity O(|V| + | E|)
achieves 25% improvement in GPU utilization and 30% reduction in training time. The compos-
able format optimization enables plug-and-play task integration with 60% reduction in development
overhead.

Principled Multi-Agent Coordination: Temperature-regularized cooperation R;(7) = a;(7) - U
with o; (7) = softmax;(g;/7) provides fine-grained control over cooperation-competition dynamics,
achieving 15-20% performance improvements across task types. Competence-aware specialization
via bounded states ¢; € [0, ¢{"**] enables 35% improvement in task-specific performance while
preserving 90% of general capabilities. DAG-based credit attribution Q); = r; + Zjedesc(i) s . T
reduces credit assignment variance by 45% compared to standard temporal difference methods.

Scalable Task Generalization: The DAG-aware mean-group policy scales to 1000+ models with
linear complexity O(IV), representing 10x improvement over per-agent approaches. Asynchronous
execution enables 50% latency reduction for complex workflows, while memory-efficient training
reduces peak usage by 40%. The modular sandbox design S; = (case,prompt,verify) sup-
ports cross-domain transfer with 25% improvement on related tasks and maintains robustness under
distribution shift (5% vs 20% degradation in baselines).

KVCACHE-CENTRIC SYSTEM ARCHITECTURE

The Sandbox-RL framework incorporates a comprehensive KVCache-centric optimization system
designed to maximize cache reuse and throughput while maintaining memory constraints. We for-
malize the system through mathematical abstractions that enable precise optimization and resource
allocation.

BLOCK-SPARSE KVCACHE STORAGE

We represent the KVCache as a Block-Sparse Row (BSR) format, serving as a unified abstraction
for diverse storage patterns. Let L € RN XH*D and Y ¢ RVXHXD denote the key and value caches,
where N is the sequence length, H is the number of heads, and D is the head dimension. The BSR
format is defined as:

BSR(K, V) = {(B, B}, indices, indptr) } (18)
Bz(f) € RBrxBexHxD (19)
BY) ¢ RBrxBexHxD 20)

¥

where B, and B, are row and column block sizes, respectively. The attention computation over
block-sparse format follows:

Attention(Q, K, V) = @ AttentionBlock(Q;, Bz{f), BZ(;)) (21)
(4,7) ENNZ
exp(Q; KL /v/ D)V,
AttentionBlock(Qi, Kij; ‘/”) = p(Q U/) / 7LSE(Q/’7 KU) (22)

Dok exp(QiK;‘Z/\/E)

where € is the attention state composition operator and LSE denotes the log-sum-exp operation.

20

Under review as a conference paper at ICLR 2025

MULTI-TIER MEMORY HIERARCHY AND CACHE ALLOCATION

The system manages a multi-tier memory hierarchy M = { Mgpy, Mcopu, Mssp} with capaci-
ties Capu, Copy, and Cggp respectively. The optimal cache allocation policy is formulated as:

Trcache(k7 ’U) = arglE{GPU%a;(U,SSD}E[RaCCESS(l)] -)\ : Ctransfer(l) (23)
subjectto: Y _|KV"| <G, Vi€ {GPU,CPU,SSD} (24)
Y IKV; e M =1, Vi (25)

l

where R, ccss(l) represents the expected access reward for memory tier I, Cyrans fe,,(l) denotes the
transfer cost, and \ is the cost-benefit trade-off parameter.

DYNAMIC LOAD-BALANCED SCHEDULING

The scheduling framework optimizes workload distribution across Cooperative Thread Arrays

(CTAs) to minimize SM idle time. Given sequence lengths {l((fo), l,(;g }B | for batch size B, the opti-
mal schedule S™ is computed as:

S* = arg min max cost(w) (26)

weW,
cost(w) = a - lgo(w) + B - lgw(w) + v - sync_overhead(w) 27
subjectto: > [We| = W[, W.NWeu =0forc#c (28)

where W, represents the workload assigned to CTA ¢, W is the total workload, and «, 3,~ are
scheduling hyperparameters.

COMPOSABLE FORMAT OPTIMIZATION

For shared-prefix scenarios, we employ composable formats that decompose the KVCache into mul-
tiple block-sparse matrices:

Ktotal = ,Cshm*ed 2 ICunique (29)
}Cshared ~ BSR(BSG); Bgs)), Kunique ~ BSR(Bﬁu), Bgu)) (30)
Zi ‘Kigared| : reusejactolr(l") + Zj |K1(1:?n)ique| (31)

o 1K)

Memory_Efficiency =

where larger Bﬁs) enables better shared memory utilization for shared prefixes, while smaller Bﬁ")

provides flexibility for unique suffixes.

RDMA-BASED INTER-NODE TRANSFER PROTOCOL

For distributed KVCache sharing, we implement an RDMA-based transfer protocol that minimizes
inter-node communication latency:

21

Under review as a conference paper at ICLR 2025

. . KVT'G.TLS er
T‘transfer(Z -]) = Tsetup + % + Tsync (32)
RDMA

Transfer_Schedule = arg m7i_n (2n;l)aexT Tiransfer (@ — J) (33)
subjectto: > |KViy;| < B, Vi (34)

i
S IV <BY, vy (35)

i#£j

where Brpasa is the RDMA bandwidth, BY, and BY) are the outbound and inbound bandwidth
limits for nodes ¢ and j.

MULTI-OBJECTIVE OPTIMIZATION FRAMEWORK

The system optimizes dual objectives for prefill and decoding stages through a Pareto-optimal for-
mulation:

Prefill Stage: max E[Cache_Reuse(8pre fiir)] (36)
prefill

subject to: TTFT(Oprcfini) < TTFTsro (37)

MFU(eprefill) > MFU, 5, (38)

Z |KVPEAM| < Cpram (39)

(40)

Decoding Stage: max E[Throughput(fgecode)] (41)

subject to: TBT(@yecode) < TBTsL0 (42)

S IKVYEAM| < Cypan (43)

The unified optimization combines both stages through a weighted multi-objective function:

0" = arg maxwy - Cache Reuse(6) + ws - Throughput(6) 44)
— A1 - max(0, TTFT(#) — TTFTs70) (45)
— Ao - max(0, TBT(A) — TBTs10) (46)
— A3 - Memory_Violation(6) 47

where w1, wo are objective weights and A1, Ao, A3 are penalty coefficients for constraint violations.

PHYSICAL INTERPRETATIONS

This appendix provides detailed physical interpretations of key Sandbox-RL concepts to aid under-
standing of the framework’s design principles.

SANDBOX ENVIRONMENT INTERPRETATION

Think of each sandbox as a "testing laboratory” where specific experiments are conducted. The case
generator creates test scenarios (like generating math problems or trading scenarios), the prompt
function provides instructions (like lab protocols), the LLM performs the task (like running an ex-
periment), and the verify function scores the results (like evaluating experimental outcomes). This

22

Under review as a conference paper at ICLR 2025

modular design allows us to test different aspects of reasoning in isolation, similar to how scien-
tists test different hypotheses in separate experiments. The sandbox approach ensures reproducibil-
ity—the same test case will always produce the same score, just like how controlled experiments
should yield consistent results.

DAG WORKFLOW INTERPRETATION

Think of the DAG as a “reasoning pipeline” similar to an assembly line in manufacturing. Each
node represents a specialized workstation where a specific type of reasoning task is performed (like
analyzing market data, calculating risk metrics, or generating trading signals). The directed edges
represent the logical flow of information—just as raw materials flow through different stations in a
factory, our reasoning process flows through different sandbox environments. The acyclic property
ensures that information flows in one direction, preventing circular reasoning loops, similar to how
assembly lines prevent materials from flowing backward.

TEMPERATURE PARAMETER INTERPRETATION

The temperature parameter 7 acts like a “’social thermostat” controlling the behavior of our multi-
model system. When 7 is low (cold environment), models behave like competitive traders in a finan-
cial market—only the best performer gets most of the credit, similar to winner-takes-all dynamics
in high-stakes trading. When 7 is high (warm environment), models share rewards uniformly like
a cooperative research team, where all members contribute to a shared goal. This is analogous to
adjusting the temperature in a physical system: at low temperatures, particles have low energy and
tend to settle into competitive, ordered states; at high temperatures, particles have high energy and
exhibit cooperative, fluid behavior.

COMPETENCE STATE INTERPRETATION

The competence state c; represents the “’skill level” or “expertise” of each model, similar to how
a trader’s experience and skill level evolve over time. Just as a novice trader gradually becomes
more competent through successful trades and market experience, our models develop specialized
capabilities through positive feedback. The bounded nature ¢; € [0, c*®*] ensures that no model
becomes infinitely competent (preventing overfitting), similar to how even expert traders have limits
to their abilities. The decay term \;d; acts like “skill atrophy”—if a model doesn’t practice or receive
positive feedback, its competence gradually decreases, mimicking how unused skills deteriorate over
time.

DETAILED REASONING PERFORMANCE TABLES

This appendix provides comprehensive tables for reasoning performance evaluation across mathe-
matical, logical, and commonsense reasoning benchmarks.

23

Under review as a conference paper at ICLR 2025

COMPREHENSIVE PERFORMANCE SUMMARY

ERROR ANALYSIS AND FAILURE MODES

Table 7: Detailed Error Analysis: Failure Mode Reduction

Error Type Single-Agent | Multi-Agent | Sandbox-RL Reduction
Logical Inconsistencies 23.4+£21% | 19.8+1.8% | 18.0£1.5% —231+3.2%
Calculation Errors 187+1.9% | 16.2+1.6% | 129 +1.3% —-31.0+4.1%
Incomplete Chains 15.3+£1.7% | 131+1.4% | 125+ 1.2% —18.3 £ 2.8%
Concept Misunderstanding | 12.6 £1.5% | 11.4+1.3% | 9.8+ 1.1% —22.2 +3.5%
Step Skipping 8.9+ 1.2% 7.6 £1.0% 6.2+ 0.9% —30.3 £ 4.8%
Verification Failures 6.7+ 1.0% 5.8 +0.8% 4.9 +0.7% —26.9 + 4.2%
Error Recovery Analysis

Self-Correction Rate 34.2+3.1% | 41.7+2.8% | 583 +2.2% +70.5 £ 8.9%
Cross-Model Validation 0.0£0.0% | 124+18% | 28.6 +2.1% +o0
Iterative Refinement 15.8+22% | 189+1.9% | 352+1.7% | +122.8 +15.3%

EXTENDED EXPERIMENTS AND VISUALIZATIONS

DETAILED EXPERIMENTAL SETTINGS AND PARAMETERS

This section provides comprehensive experimental configurations for all task families and model
architectures evaluated in our study.

OASIS [YANG ET AL.|(2024)) MISINFORMATION PROPAGATION TASK

Table 8: OASIS Task Experimental Settings

Parameter Value
Number of LoRA Adapters 8
Group Configuration 2 groups (4 adapters each)
Cooperation Factors 0.9,0.6,0.3
Competence Factors 0.9,0.6,0.3
Learning Rate 1x 1077
Batch Size 32
Training Epochs 100
PPO Clip Ratio 0.2
Value Function Coefficient 0.5
Entropy Coefficient 0.01
Discount Factor () 0.99
GAE Lambda 0.95
Temperature Range [0.1, 1.0]
Competence Update Rate (n;) 0.01
Competence Decay Rate (\;) 0.001
Max Competence (c;"**) 1.0

24

Under review as a conference paper at ICLR 2025

TRADING SIMULATION TASK

Table 9: Trading Simulation Experimental Settings

Parameter Value
Number of Trading Agents 6
Market Simulation Period 1000 days
Initial Portfolio Value $100,000
Cooperation Factors 0.8,0.5,0.2
Competence Factors 0.8,0.5,0.2
Learning Rate 5x107°
Batch Size 64
Training Episodes 500
Risk Tolerance 0.1,0.3,0.5
Transaction Cost 0.001
Market Volatility 0.15
Reward Shaping Sharpe Ratio + Return
Temperature Range [0.2, 0.8]
Competence Update Rate (1;) 0.005
Competence Decay Rate (\;) 0.0005
Max Competence (c;"**) 1.0

MATH REASONING TASK

Table 10: Math Reasoning Experimental Settings

Parameter Value
Datasets GSMSK, MATH (Easy/Hard)
Number of Reasoning Agents 4
Cooperation Factors 0.9,0.7,0.5
Competence Factors 0.9,0.7,0.5
Learning Rate 2x107°
Batch Size 16
Training Steps 10,000
Max Sequence Length 2048
Temperature Range [0.3,0.9]
Reasoning Chain Length 3-8 steps
Verification Threshold 0.8
Cross-Validation Rate 0.3
Error Recovery Attempts 3
Competence Update Rate (1;) 0.02
Competence Decay Rate ()\;) 0.002
Max Competence (c;"**) 1.0

25

Under review as a conference paper at ICLR 2025

MODEL-SPECIFIC CONFIGURATIONS

Table 11: Model-Specific Experimental Parameters

Parameter Qwen2.5-7B | Llama 3.1-7B | Llama 3.1-8B | Llama 3.2-3B
Parameters 7B 7B 8B 3B
Context Length 32K 32K 32K 32K
Learning Rate 1x 1077 1x107% 8x107° 2x 10771
Batch Size 32 32 24 48
Gradient Accumulation 4 4 6 2
LoRA Rank 64 64 64 32
LoRA Alpha 128 128 128 64
Dropout Rate 0.1 0.1 0.1 0.05
Weight Decay 0.01 0.01 0.01 0.005
Warmup Steps 100 100 150 50
Max Grad Norm 1.0 1.0 1.0 1.0

INFRASTRUCTURE AND SYSTEM SETTINGS

Table 12: Infrastructure and System Configuration

Parameter Value

GPU Configuration 8x A100 80GB
CPU Configuration 64-core AMD EPYC
Memory (RAM) 512GB
Storage 2TB NVMe SSD
Network 100GbE InfiniBand
KVCache Block Size 16
KVCache Memory Limit 24GB per GPU
RDMA Bandwidth 100 Gbps
Micro-batch Size 8
Gradient Synchronization All-reduce
Mixed Precision bf16
Master Weights fp32
Adapter Pin Threshold 0.4

Cache Hit Rate Target 0.85

Load Balancing Algorithm Frontier-batched
Scheduling Policy Priority-based

PRECISE PROPAGATION VISUALIZATIONS

Epoch 0 Epoch 10 Epoch 20 Epoch 30

Epoch 40

Figure 4: Extended snapshots for precise Sandbox-RL propagation.

26

Under review as a conference paper at ICLR 2025

Dominance over Time

1.0
— Group 1
— Group 2
0.8 -
Y 0.6 1
c
©
£
&
a 0.4 -
0.2 1
0.0 T T T T T T
0 10 20 30 40 50
Epoch

Figure 5: Dominance evolution across epochs (extended).

OASIS VISUALIZATIONS

Settings Comparison Settings Summary

Figure 6: Oasis task visualizations (extended).

27

Under review as a conference paper at ICLR 2025

Oasis - Reward WS 3DH 1A (8 LoRA) (Exp 0) Oasis - Accuracy S 3D# 1B (8 LoRA) (Exp 0)

LoRA.
Lomqagg‘
LorA 2 S
LoRA_1
LoRA 0

Setting 1

Setting 2
B E

Setting3 LORA0 Setting 3

Figure 7: Oasis task: convergence speed heatmap across parameter settings and LoRA adapters.

COOPERATION/COMPETENCE GRID (FULL TABLE AND 3D)

1.00 0.95
0.95
0.90 0.90
0.85
0.80 0.85
0.75 o
0.70 £ 0.80
0.65
0.60 0.75
1.0 0.70
st 0.65

0.8 &
acto, 1.0

Figure 8: 3D surface over cooperation and competence factors (0:0.1:1).

Table 13: Range-based deltas vs. mid-point (0.5,0.5). Positive means better.

Factor Range Performance | Convergence
Collaboration Factor

0.8-0.9 +8.1% +12.7%
0.5-0.7 -0.7% +0.2%
0.2-0.4 -7.4% -6.3%
Competence Factor

0.7-0.8 +4.0% +6.0%
0.5-0.6 -1.5% -0.3%
0.3-0.4 -4.5% -2.4%

28

Under review as a conference paper at ICLR 2025

Table 14: Full 11x11 grid: final performance for cooperation/competence factors. Rows: compe-
tence, Columns: cooperation.

comp/coop 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0 0.608 0.644 0.668 0.691 0.729 0.746 0.762 0.799 0.808 0.832 0.868
0.1 0.658 0.655 0.707 0.728 0.734 0.772 0.790 0.818 0.850 0.861 0.863
0.2 0.661 0.684 0.708 0.735 0.766 0.771 0.816 0.810 0.843 0.857 0.867
0.3 0.697 0.718 0.732 0.744 0.763 0.800 0.833 0.852 0.875 0.886 0.912
0.4 0.693 0.740 0.746 0.772 0.802 0.809 0.840 0.877 0.895 0.905 0.920
0.5 0.716 0.738 0.767 0.786 0.809 0.848 0.852 0.892 0.916 0.922 0.945
0.6 0.736 0.764 0.770 0.817 0.829 0.868 0.884 0.934 0.991 0.964 0.963
0.7 0.768 0.767 0.788 0.826 0.842 0.869 0.886 0.964 0.996 0.990 0.958
0.8 0.7717 0.795 0.834 0.836 0.858 0.881 0.891 0.953 0.986 0.985 0.955
0.9 0.785 0.827 0.817 0.853 0.844 0.886 0.912 0.931 0.967 0.953 0.948
1.0 0.788 0.819 0.846 0.883 0.883 0.893 0.924 0.939 0.938 0.942 0.937

INFRASTRUCTURE-AWARE ARCHITECTURE OPTIMIZATIONS (FORMALIZATION)

Frontier-Batched Scheduling Objective. Let F; be the frontier at step ¢ and B; C F; the batch
we schedule jointly. Each node v has memory cost m(v), latency model ¢(v) and optional adapter
set A(v). With GPU budget M and adapter pins Ay, we choose:

B = arg max ®(B) st Z m(v) < M, A(v) N Apin preferred
=t veEB

where ®(B) is a throughput proxy, e.g., ®(B) = >_ s w(v)/ max,ep £(v) with priority weight
w(v).

Paged Attention Block Size. Denote block size by b, sequence length by n, and page-switch
overhead by c;. A simple latency proxy is

n n
L)~ o+ +Bes - +7b
b b
balancing fewer pages and per-block compute. The tuned b* minimizes L(b) on a validation profile.

KYV Cache Reuse and Hit Rate. Let K be KV entries, () be queries within a training window. We
track a normalized hit rate

> qeq 1[hash(q) € K]

H =
Q]

and enable reuse when H > H,;, with a small LRU on the prompt-normalized keys.

B
i=1>

Micro-batch Accumulation. For micro-batches {D;} the accumulated gradient is

B

g

g = E VoL(0;D;), 0<—(9—77E
i=1

with bf16 forward/backward and fp32 master weights.

Adapter PinShard Policy. Given adapter frequency estimates f(a), we pin Apin = {a | f(a) >
Jmin} and shard others across devices; the scheduler prefers B maximizing | |J,cz(A(v) N Apin)|.

29

Under review as a conference paper at ICLR 2025

Algorithm 7 Frontier-Batched Executor

Require: F;, M, Ay, K, b*

A A o e

B0, u+20
7(v) (w(v), |A(v) N Apin|); Fr sorty(F)
for v € F; do

if u + m(v) < M then

By + B:U{v}; u<+ u+m(v)

end if
end for
for v € B; do

Sy ¢ norm_prompt(x,); ky < l[hash(s,) € K]
end for

: {yv}UEBt A VLLM({SU}, b*7 {ku})

D g+ ZueBt VoL(0;8y,9s); 0 0—ng/|B

: all_reduce(g) (overlap with next micro-batch)

: K+ KU{RV(sy)}: fla) < f(a) + 1ja € A(By)]; Apin < {a | f(@) > fmin}
: Unlock successors for all v € B;

INFRASTRUCTURE EXPERIMENTS (EXTENDED)

Table 15: Infra ablation (onoff) under Single vLLM + 8 LoRA.

Switch On | Latency (%) | Peak Mem. (GB)
Baseline — | 100.0+0.0 241+£03
DAG frontier batching | on 84.7£2.1 24.1+£0.3
Paged attention tuning | on 75.6 £1.8 21.2+04
KV reuse on 72.3+£1.5 206 £0.3
LoRA pinshard on 69.8 +1.2 18.9+£0.2
Micro-batch (size=8) on 63.9+1.0 17.3+0.2
bf16 compute on 62.5£0.8 16.8 £ 0.1
All combined on 58.2+ 0.6 16.1 £0.1

Table 16: Adapter policy sensitivity (pins threshold fi,iy).

fmin | Latency (%) | Swap Count (/1k steps)
0.2 60.4 +1.2 42+ 3
0.4 58.2 £+ 0.8 31+£2
0.6 59.04+0.9 24 4+ 2
0.8 61.7+1.1 19+1

COMPREHENSIVE LLAMA MODEL ANALYSIS IN SANDBOX-RL

MULTI-MODEL ARCHITECTURE COMPARISON

Table[T7)provides comprehensive specifications for all evaluated models in our scalable multi-LLMs
optimization framework.

Table 17: Detailed Model Specifications and Architecture Comparison

Model Parameters | Architecture | Training Data
Qwen2.5-7B 7B Transformer Multilingual
Llama 3.1-7B 7B Transformer Code + Text
Llama 3.1-8B 8B Transformer Code + Text
Llama 3.2-3B 3B Transformer Lightweight

30

Under review as a conference paper at ICLR 2025

DETAILED PERFORMANCE ANALYSIS

CONVERGENCE BEHAVIOR ANALYSIS

Figure [0] shows the detailed convergence behavior of different models across various cooperation
and competence settings.

Llama vs Qwen2.5-7B: Comprehensive Sandbox-RL Comparison

Model Performance Scoré Evolution i Memory Effciency Comparison

R = e
L 0879 s ™

4 5 5
Model Size (B Parameters)

Model Comparison Summary Dominance Evolution (Moderate Settings)
10 P

Efficiency vs Performance Trade-off
18

e

Figure 9: Detailed convergence analysis showing dominance evolution, performance metrics, mem-
ory efficiency, and inference latency across all evaluated models.

EFFICIENCY TRADE-OFF ANALYSIS

Table 18: Comprehensive Efficiency Analysis: Performance vs Resource Consumption
Model Performance | Memory Eff. | Latency (ms) | Efficiency Score | Rank
Qwen2.5-7B | 0.956 £ 0.012 | 0.920 +0.008 | 176.6 +12.3 0.521 £ 0.035 2
Llama 3.1-7B | 0.956 £ 0.011 | 0.897 £0.009 | 178.8 +11.7 0.502 £+ 0.032 3
Llama 3.1-8B | 0.978 = 0.008 | 0.879 +0.010 | 199.7 +13.2 0.440 £ 0.028 4
Llama 3.2-3B | 0.932 £0.014 | 0.952 +0.006 | 120.3 + 8.9 0.792 + 0.045 1

Performance X Memory Efficiency
Normalized Latency

The efficiency score is calculated as: Efficiency =

SPECIALIZATION IMPACT ANALYSIS

CODE GENERATION SPECIALIZATION (LLAMA 3.1-7B)

The code generation specialization demonstrates particular strength in structured reasoning tasks,
achieving 12% improvement over general-purpose models in multi-step reasoning scenarios. This
specialization exhibits enhanced pattern recognition capabilities, showing 8% better performance
in identifying and exploiting recurring patterns within sandbox environments compared to baseline

31

Under review as a conference paper at ICLR 2025

models. Additionally, the algorithmic thinking orientation provides 15% superior performance in
environments requiring systematic exploration strategies, particularly excelling in tasks that demand
logical sequence planning and code-like reasoning patterns.

INSTRUCTION FOLLOWING SPECIALIZATION (LLAMA 3.1-8B)

The instruction following specialization demonstrates superior adaptation capabilities, achieving
15% faster convergence relative to baseline models due to enhanced prompt comprehension abil-
ities. This model exhibits 18% better dynamic adaptation performance, showing superior capabil-
ity to adjust strategies based on environmental feedback compared to general-purpose alternatives.
The specialization also provides 11% more balanced performance across cooperation and competi-
tion metrics, demonstrating effective multi-objective optimization that maintains stable performance
across diverse task requirements.

EDGE DEPLOYMENT SPECIALIZATION (LLAMA 3.2-3B)

The edge deployment specialization demonstrates exceptional resource efficiency optimization,
achieving 8.3% higher memory efficiency compared to larger model variants while maintaining
competitive performance levels. This model provides 34% faster inference speed relative to 7B and
8B counterparts while preserving 95% of their performance capabilities, representing an optimal
efficiency-performance trade-off. Furthermore, the specialization delivers an estimated 60% reduc-
tion in energy consumption for equivalent task completion compared to larger models, making it
particularly suitable for resource-constrained deployment scenarios.

SCALABILITY ANALYSIS

Table 19: Scalability Metrics Across Different Model Configurations

Configuration Throughput (req/s) | Memory (GB) | GPU Utilization | Scalability Score
Single Qwen2.5-7B 42.34+2.1 24.1+£0.3 78 + 3% 1.00 £ 0.05
Single Llama 3.1-7B 41.8+2.0 24.3+0.3 76 + 3% 0.97 +0.05
Single Llama 3.1-8B 38.2+1.8 28.7+0.4 82 + 2% 0.89 +0.04
Single Llama 3.2-3B 58.7+2.8 16.1+0.2 65 + 4% 1.43 £0.07

| Multi-Model (All) | 472423 | 324£05 | 85 + 2% | 1.18+0.06

COOPERATIVE VS COMPETITIVE BEHAVIOR ANALYSIS

TEMPERATURE SENSITIVITY ANALYSIS

Table 20: Model Response to Cooperation Temperature Variations

Model Low 7 (0.1) | Medium 7 (0.5) | High 7 (0.9) | Sensitivity
Qwen2.5-7B | 0.892+£0.015 | 0.956 £0.012 | 0.934 £0.013 | Medium
Llama 3.1-7B | 0.888 £0.016 | 0.956 +0.011 | 0.941 £0.012 | Medium
Llama 3.1-8B | 0.923 £0.013 | 0.978 £0.008 | 0.967 £ 0.009 Low
Llama 3.2-3B | 0.856 £0.018 | 0.932+0.014 | 0.898 £ 0.016 High

RESOURCE UTILIZATION OPTIMIZATION

Different models exhibit distinct memory usage patterns that inform optimal allocation strategies.
Qwen2.5-7B demonstrates balanced memory usage with consistent allocation patterns, serving as
the baseline for comparison. Llama 3.1-7B shows 6% more structured memory layout utilization
due to its code-focused caching approach, benefiting from predictable access patterns. Llama 3.1-
8B requires 19% higher memory allocation compared to 7B variants but achieves 12% better cache
reuse efficiency, resulting in net positive resource utilization. Llama 3.2-3B maintains 33% smaller
memory footprint relative to larger models while implementing 28% more aggressive cache man-
agement strategies, optimizing for minimal resource consumption.

32

Under review as a conference paper at ICLR 2025

KVCache optimization analysis reveals significant performance improvements across all model vari-
ants, with cache hit rates ranging from 0.832 to 0.879 depending on model architecture and special-
ization. Llama 3.2-3B demonstrates the most effective cache utilization, achieving 31

Table 21: KVCache Optimization Impact by Model

Model Cache Hit Rate | Memory Reduction | Latency Reduction | Overall Gain
Qwen2.5-7B 0.847 + 0.012 23+ 2% 18+ 1% 1.21 + 0.05x
Llama 3.1-7B | 0.851 +0.011 24 + 2% 19+ 1% 1.23 + 0.05x
Llama 3.1-8B | 0.832 +0.013 21 +2% 16 + 1% 1.18 + 0.04x
Llama 3.2-3B | 0.879 + 0.009 31 +2% 26 + 2% 1.42 +0.07x

MULTI-MODEL ENSEMBLE ANALYSIS

OPTIMAL MODEL COMBINATIONS

Analysis of different model combinations reveals optimal configurations for various scenarios:

Table 22: Multi-Model Ensemble Performance Analysis

Ensemble Configuration Performance Efficiency Robustness Use Case
Llama 3.1-8B + 3.2-3B 0.965 + 0.009 | 0.924 4+ 0.007 High Balanced
Qwen2.5-7B + Llama 3.1-7B | 0.956 4+ 0.011 | 0.908 + 0.008 Medium Code-focused
All Models 0.978 £ 0.008 | 0.887 £ 0.009 Highest Research
Llama 3.2-3B Only 0.932 £ 0.014 | 0.952 £ 0.006 Medium Production

FUTURE SCALING PROJECTIONS

Based on the observed scaling patterns, we project performance characteristics for larger model
configurations. Llama 3.1-70B is projected to achieve 8-12% performance improvement relative to
the 8B variant while requiring 3.2x higher memory allocation, suggesting sublinear performance
scaling with model size. Multi-model scaling analysis indicates linear performance improvements
up to 8 concurrent models, with diminishing returns of approximately 15-20% reduced efficiency
gains beyond this threshold. Llama 3.2-3B variants currently represent the efficiency frontier for
production deployment, offering 80% of larger models’ performance while consuming 65% fewer
computational resources.

CONCLUSION

The comprehensive analysis demonstrates that Sandbox-RL’s scalable multi-LLMs optimization ap-
proach successfully leverages the complementary strengths of different model architectures and spe-
cializations. Llama 3.1-8B establishes performance leadership, achieving 2.3% higher performance
scores compared to baseline models through instruction-following specialization advantages. Llama
3.2-3B emerges as the efficiency champion, providing 8.3% better resource utilization relative to
larger variants while maintaining 95% of their performance capabilities for practical deployment
scenarios. Model-specific specializations contribute 8-15% performance improvements in their re-
spective domains compared to general-purpose alternatives, demonstrating clear benefits of targeted
optimization approaches. The framework successfully validates scalability across heterogeneous
model architectures, maintaining 99.8% isolation guarantee compliance while supporting concur-
rent optimization of models with 2.7x parameter count variations. These results collectively validate
the effectiveness of our approach for scalable multi-LLMs optimization in shared sandbox environ-
ments, achieving superior performance-efficiency trade-offs compared to single-model baselines.

MATHEMATICAL DETAILS FOR MULTI-LLM JOINT OPTIMIZATION

Setting and notation. Let G = (V| F) be a directed acyclic graph (DAG) of sandboxed tasks. An
execution emits a trace T = {(vy, 8¢, ys, 74, 4¢) }1 |, where v; € V is the node, s; the prompt, y; an

33

Under review as a conference paper at ICLR 2025

action sampled from an LLM policy, 7; € R the verifier reward, and ¢; € {1,..., N} the index of
the acting model. We write d(v, u) for the topological distance and Desc(v) for descendants of v.

A single backbone 6, may be shared by N adapters {¢; } ,, yielding policies g, ¢, (y | s). When
N =1 orall ¢; = 0, the formulation reduces to standard single-policy PPO/GRPO.

DAG return and advantages. For step ¢ we define the DAG return
Qr = 1 + Z»}/d(vt»”j)rj’

J>t
and the node-level value V' (s;) with advantage A; = Q; — V'(s;). This coincides with the return
used in the main text, but makes the dependence on DAG distances explicit.

POPULATION OBJECTIVE AND UNBIASED POLICY GRADIENT

‘We jointly optimize all models under the same workflow:

L
ZQJ ;o ={a}L,
t=1

Let I; be the one-hot indicator of which model acted at ¢. For any per-step, differentiable re-
attribution A, , that satisfies Zf\; A;+ = A, almost surely, the following gradient is unbiased:

J(00,®) = Er

L L
V¢i‘] =K Z I (Z) v¢1ﬂ log 00, (yt | St) A’i,t ’ v90‘] =K lz v90 log T6o,p:, (yt | St) Aiz,t
t=1

t=1

Proof sketch. Linearity of expectation and the log-derivative trick yield an unbiased estimator when-
ever the re-attribution conserves total advantage A;. The per-model split does not change >, A; ;
and therefore preserves .J.

COOPERATION—COMPETITION CREDIT KERNEL

Given contribution signals g; ; (e.g., g;,,; = A and g;+;, = 0 or shaped utilities), define soft
weights

aia(r) = exp(gi,¢/T) Ris(r) = aie(7) (igk,t)-
k=1

= — :
> i1 €XP(gr,e/T)

We set A;; = R; (1) — Vi(s;), where V; may share a backbone with per-head differences. As
T — 0, a; ¢ concentrates on the argmax contributor (competitive limit). As 7 — oo, o ¢ — 1/N
(uniform cooperative limit). Because p R (1) =3 « Jk,t Dy construction, the estimator remains
unbiased (Sec. I.1).

Stability under clipping (PPO/GRPO). Letp;; = 7.0, Welst) phe ysual clipped surrogate

”Zlg,¢i(yt\5t)
Lppo = E[Inin (Pit,t[lit,t» clip(pi, ¢ 1:|:€)Ait7t):|

remains valid because the kernel modifies only /L-,t (credit), not the likelihood ratio.

COMPETENCE DYNAMICS AND VALUE CONDITIONING

Each model carries a bounded latent competence ¢; € [0, c*®*] that evolves with informative feed-
back:

Ci = Chp(cl + 1 h(uu U7 Az) -)\idi, O7 C?lax)7

where u; is the individual utility, U = & Uk the team utility, A; the model’s advantage, and h is
monotone (e.g., k1u; + kaU + k3A;). Conditioning the critic on ¢; (i.e., V;(s, ¢)) reduces variance
without altering reward definitions. Under 7; < \; and bounded h, the Markov chain {¢;} is stable
with a compact invariant set; empirically we choose 7; < 1 to avoid oscillations.

34

Under review as a conference paper at ICLR 2025

DAG-AWARE MEAN-GROUP POLICY FOR LARGE POPULATIONS

To scale, agents are partitioned into groups {G1, ..., G, } by sandbox role or objective. Each group

G/ is controlled by a mean policy 7y, acting on o} = (E;, v, 7f, ¢;) where v encodes DAG context
and frontier readiness. The mean action a§ = Ty, (0?) modulates cooperation temperature, explo-

ration strength, or resource multipliers. Member k € G; specializes via

vt
~t ot Js
a;r = aj-clip = ,a, B8],

J

with («, 8) preventing extreme specialization. Group returnis R; = Y, 7" > KEG, ecEs (Y, or Te)s
and gradients follow standard PPO/GRPO on 1); because specialization is a deterministic differen-
tiable transformation.

PRIORITIZED DAG REPLAY AND BiAS CONTROL

We store traces T with priorities p(T'). Let the sampling distribution be ¢(7T") = % and the
T/

target on-policy distribution be p*(7") from the current policy at the latest refresh. When refresh
lag is negligible (our default), ¢ ~ p* and bias is empirically small. If desired, importance weights

« B
w(T) = (pq ((TT))) can re-weight the loss; with stale ratios we approximate p*(7") using the product
of per-step likelihood ratios cached in the trace header. Our default uses structure-aware priorities

p(T) = exp (B [re+ M|V log m(y: | 50)3]).

which increases reuse of informative graph segments without changing the reward function.

FRONTIER-BATCHED SCHEDULING UNDER RESOURCE CONSTRAINTS

At time ¢, frontier F; contains executable nodes. With GPU budget M, memory costs m(v), latencies
£(v), and a set of pinned adapters Apin, we choose a batch
B} € arg max ®(B) st Z m(v) < M,
veEDB
where ®(B) = &%}% is a throughput proxy that favors high-priority nodes and balanced
latency. The Lagrangian £(B,\) = ®(B)—A(>_, c g m(v) — M) yields the KKT condition * > 0,
N (e m(v)=M) =0,and Vp®(B*) = *V), .5 m(v). A greedy admissible policy (sort

by 12;((3)) under knapsack-style pruning and then enforce adapter pin-preferencing) is near-optimal for

monotone submodular ® and runs in time linear in | F}|.

LIMITS AND RECOVERIES

As T — 0, a4 collapses on the argmax g; ;, so only the highest-contributing model receives credit at
each step (winner-takes-most). As 7 — 0o, a; ; — 1/N, recovering uniform team sharing. Setting
N = 1 recovers the single-model PPO/GRPO objective exactly. Competence variables c; can be
disabled by fixing ¢; = ¢y, collapsing the critic back to V' (s).

Takeaway. All multi-LLM behaviors—cooperation, competition, grouping—arise from a single
differentiable credit kernel and a bounded competence process layered on unchanged verifiers and

rewards. Hence, Sandbox-RL preserves on-policy stability while enabling multi-LLMs specializa-
tion within the same DAG semantics.

KVCACHE-CENTRIC SYSTEM THEORETICAL ANALYSIS

BLOCK-SPARSE MATRIX OPTIMIZATION THEORY

Let K € RNXHXD and Y € RVXHXD denote the key and value caches. We formalize the Block-
Sparse Row (BSR) representation as a tuple (B, Z, P) where:

35

Under review as a conference paper at ICLR 2025

B={B, B | (i,j) € NNZ} (48)
BZ(;:) € RBrxBexHxD (49)
Z = {col.indices;; | (i,j) € NNZ} (50)
P = {rowptr; | i € [0,[N/B,]]} (51)

The attention computation over BSR format follows the composition operator:

Attention(Q,KC,V) = (P AttentionBlock(Q;, BLY, B\.) (52)
(i,7)ENNZ
exp(Qi K /VD)Vi

Attel’ltiOHBlOCk(Qi, Kija V;]) = 7LSE(CzZ7 K”) (53)

> exp(Qi K /V D)
where €0 denotes the attention state composition operator with associativity property.

MEMORY HIERARCHY OPTIMIZATION THEORY

Multi-Tier Cache Allocation Optimization. The optimal cache allocation problem can be for-
mulated as a constrained optimization problem:

N L
max Z Z 'rgl) : Rt(llc)cess : fl (54)
="y iHi=
N
subjectto: Y a5, <G, Vie{l,...,L} (55)
=1
L
Soah =1, vie{1,...,N} (56)
=1
2D e{0,1}, Vil (57)

where :rgl) is a binary variable indicating whether cache block ¢ is allocated to memory tier [, Rélc)cess

is the access reward for tier [, f; is the access frequency of block 4, s; is the size of block 4, and C;
is the capacity of tier .

Dynamic Load Balancing Theory. The load balancing problem for CTA scheduling can be mod-
eled as a bin packing problem with variable bin sizes:

min - max 2 cost(w) (58)
subject to: > [We| = [W| (59)
W.NWy =0, Ve (60)

cost(w) = a - lgo(w) + B - lgy(w) + v - sync_overhead(w) (61)

The optimal solution can be approximated using a greedy algorithm with approximation ratio
O(log [W]).

36

Under review as a conference paper at ICLR 2025

BLOCK-SPARSE MATRIX THEORY
BSR Format Properties. The Block-Sparse Row (BSR) format exhibits several key properties:

1. Sparsity Preservation: For a matrix A with sparsity pattern .S, the BSR representation
maintains the same sparsity structure with block-level granularity.

2. Memory Efficiency: The memory overhead is O(nnz - B, - B,.) where nnz is the number
of non-zero blocks.

3. Computation Efficiency: Matrix-vector multiplication complexity is O(nnz - B,. - B.)
instead of O(nnz) for dense operations.

Attention Computation Complexity. For attention computation over BSR format, the complexity
analysis yields:

Complexity = O Z BY.BY .H.D (62)
(i,7)ENNZ
=O(mz- B, -B.-H-D) (63)

where Bﬁi) and ng) are the row and column block sizes for block (i, 7).

RDMA TRANSFER PROTOCOL ANALYSIS

Latency Model. The RDMA transfer latency can be modeled as:

Ttransfer (7' —]) = Teetup + Tdata + TGyn(: (64)
KViansger
= Lsetup + |Btif| + Tsync (65)
RDMA

where T’s..,p 18 the connection setup time, Tiy,¢q is the data transfer time, and T, is the synchro-
nization overhead.

Optimal Transfer Scheduling. The transfer scheduling problem can be formulated as a minimum
makespan scheduling problem:

m7i,n (zr,l_/]l)aEXT Ttransfer (Z - J) (66)
subjectto: Y [KViy;| < BS), Vi (67)
j#i
ST IKVing| < B, Vi (68)
i#j

This problem is NP-hard but can be approximated using list scheduling algorithms with approxima-
tion ratio 2.

MULTI-OBJECTIVE OPTIMIZATION THEORY

Pareto Optimality. The multi-objective optimization problem seeks to find Pareto-optimal solu-
tions:

max {f1(0), fo(0).... fu(0)) (©9)
subjectto: ¢;(0) <0, i=1,...,m (70)
hj(0) =0, j=1,....p (71)

37

Under review as a conference paper at ICLR 2025

where f;(6) are the objective functions, g;(#) are inequality constraints, and h;(6) are equality
constraints.

Weighted Sum Method. The weighted sum method converts the multi-objective problem into a
single-objective problem:

k
> wifi(0) (72)
=1
subjectto: ¢;(0) <0, i=1,...,m (73)
hi(0)=0, j=1,....p (74)
k
Zw,-:L w; >0 (75)
=1

where w; are the weight coefficients.

THEORETICAL GUARANTEES

Optimality Guarantees. Under the assumption of convex objective functions and linear con-
straints, the algorithm is guaranteed to converge to the global optimum.

Approximation Guarantees. For non-convex problems, the algorithm provides approximation
guarantees:

FOD) > 1 —e)f(0") -6 (76)

where € and § are small positive constants, and 6* is the global optimum.

Stability Guarantees. The system is stable if the eigenvalues of the Jacobian matrix satisfy:

max |A;| <1 (77)

where \; are the eigenvalues of the Jacobian matrix of the system dynamics.

COLLABORATIVE-COMPETENCE LEARNING CONVERGENCE ANALYSIS

REGRET BOUNDS FOR MULTI-LLM POPULATION LEARNING

Consider the multi-LLM population {mp, } ¥, operating over a DAG G = (V, E) with |[V| = S
sandbox nodes and horizon H = max,cy d(Vroot, V)-

Let Agk) denote the action space for model 7 at episode k, and define the population policy as:

k) (Z w;™ (s)m00 (al5) (78)

where w()() are the competence-aware weights satisfying > °, w(k)() =1

Theorem K.1 (Population Learning Regret Bound). Under the collaborative-competence framework
with temperature-regularized credit assignment, the population regret after K episodes satisfies:

||1> (79)

. k) . A .
where Tp,in = ming ¢ Tc(oo)p is the minimum cooperation temperature and Aci represents competence
evolution bounds.

Regret(K) < O (NSH3AK log K

38

Under review as a conference paper at ICLR 2025

CONVERGENCE RATE ANALYSIS

Population Learning Convergence Rate. Under the collaborative-competence framework, the
population learning convergence rate is characterized by:

X 2
Tmin min i=1

~ [|INSH3AKlog K N2H?
E[Regret(K)] < O \/ 6= +3 1A (80)

The convergence rate depends on three key factors:

1. Exploration Term: ,/ w - decreases with higher cooperation temperature

. 22
2. Cooperation Overhead: A; - - increases with population size and decreases with tem-

min
perature

3. Competence Evolution: vazl ||Ac;||1 - bounded by competence update rates

Temperature-Dependent Convergence. The convergence behavior exhibits distinct phases based
on cooperation temperature:

O(VKIlogK) if T > Teoop
Convergence Rate = O(ch;gK) if Teomp < T < Teoop (81)
O(Klng) if 7 < Teomp

where T¢oop and Teomp are cooperation and competition thresholds.

COMPETENCE EVOLUTION STABILITY

Competence Dynamics. The competence evolution follows a bounded stochastic process:

D = elip (e + ;- b, UD, AP) = i, 0,6) (82)

i i 7
where h(-) is a monotone function and the clipping ensures boundedness.

Stability Conditions. The competence dynamics are stable if:

)‘i . ¢nax
< i 83
=57 max,, A |h(u, U, A)|)

This ensures that the competence state remains within the bounded interval [0, ¢f**].

COOPERATION-COMPETITION BALANCE

Optimal Temperature Selection. The optimal cooperation temperature balances exploration and
exploitation:

NSHiAKlog K N2H?
2

(84)

7 = arg min
T T T

39

Under review as a conference paper at ICLR 2025

Solving this optimization problem yields:
2N2H? Y3 oNH '3
’ <NSH3AK logK) <SAKlogK) (83)

Temperature Adaptation. The temperature can be adapted during training to maintain optimal
balance:

® _ (t-1)
PO Z 0 oxp [Regret Regret (86)
Regret(t_l)

where « is the adaptation rate.

40

	Introduction
	Related Work
	Comparison with Existing Multi-Agent Approaches
	Theoretical Framework Comparison

	Method
	Core Multi-LLM Joint Optimization

	Experiments
	Experimental Setup
	Research Question 1: Multi-Model Performance
	Research Question 2: Math Reasoning Performance
	Research Question 3: Parameter Sensitivity

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Use of LLMs
	Appendix Table of Contents
	Detailed Method Components
	Sandbox Manager and LLM Interface
	DAG Construction and Execution in SandGraph
	RL Engine with DAG Replay Buffer
	KVCache-Centric System Optimization
	DAG-Aware Mean-Group Policy for Large-Scale Agents
	Detailed Algorithm Implementations

	Full Related Work
	Structured Execution as an Alternative to Multi-Agent Learning
	Workflow Graphs and Structured Reasoning
	Reinforcement Learning from Human Feedback and Simulated Rewards
	Task Environments and Simulation Benchmarks
	Training Infrastructure and Replay Optimization
	Generalist Architectures and Planning Abstractions
	Summary: Structured RL Across Compositional Sandbox Workflows

	Key Advantages of Sandbox-RL
	KVCache-Centric System Architecture
	Block-Sparse KVCache Storage
	Multi-Tier Memory Hierarchy and Cache Allocation
	Dynamic Load-Balanced Scheduling
	Composable Format Optimization
	RDMA-based Inter-node Transfer Protocol
	Multi-Objective Optimization Framework

	Physical Interpretations
	Sandbox Environment Interpretation
	DAG Workflow Interpretation
	Temperature Parameter Interpretation
	Competence State Interpretation

	Detailed Reasoning Performance Tables
	Comprehensive Performance Summary
	Error Analysis and Failure Modes

	Extended Experiments and Visualizations
	Detailed Experimental Settings and Parameters
	OASIS oasis2024 Misinformation Propagation Task
	Trading Simulation Task
	Math Reasoning Task
	Model-Specific Configurations
	Infrastructure and System Settings

	Precise Propagation Visualizations
	Oasis Visualizations
	Cooperation/Competence Grid (Full Table and 3D)
	Infrastructure-Aware Architecture Optimizations (Formalization)
	Infrastructure Experiments (Extended)

	Comprehensive Llama Model Analysis in Sandbox-RL
	Multi-Model Architecture Comparison
	Detailed Performance Analysis
	Convergence Behavior Analysis
	Efficiency Trade-off Analysis

	Specialization Impact Analysis
	Code Generation Specialization (Llama 3.1-7B)
	Instruction Following Specialization (Llama 3.1-8B)
	Edge Deployment Specialization (Llama 3.2-3B)

	Scalability Analysis
	Cooperative vs Competitive Behavior Analysis
	Temperature Sensitivity Analysis

	Resource Utilization Optimization
	Multi-Model Ensemble Analysis
	Optimal Model Combinations

	Future Scaling Projections
	Conclusion

	Mathematical Details for Multi-LLM Joint Optimization
	Population Objective and Unbiased Policy Gradient
	Cooperation–Competition Credit Kernel
	Competence Dynamics and Value Conditioning
	DAG-aware Mean-Group Policy for Large Populations
	Prioritized DAG Replay and Bias Control
	Frontier-batched Scheduling under Resource Constraints
	Limits and Recoveries

	KVCache-Centric System Theoretical Analysis
	Block-Sparse Matrix Optimization Theory
	Memory Hierarchy Optimization Theory
	Block-Sparse Matrix Theory
	RDMA Transfer Protocol Analysis
	Multi-Objective Optimization Theory
	Theoretical Guarantees

	Collaborative-Competence Learning Convergence Analysis
	Regret Bounds for Multi-LLM Population Learning
	Convergence Rate Analysis
	Competence Evolution Stability
	Cooperation-Competition Balance

