

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 Sandbox-RL: SCALABLE MULTI-LLMs OPTIMIZATION THROUGH SANDBOX-BASED REINFORCEMENT LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

We introduce **Sandbox-RL**, a framework for scalable multi-LLMs optimization that enables heterogeneous language models to efficiently co-train within shared sandbox environments. Unlike traditional multi-agent systems that rely on inter-agent communication, Sandbox-RL orchestrates multiple LLMs with different architectures and specializations (Qwen2.5-7B, Llama 3.1-7B/8B, Llama 3.2-3B) as a learnable population within structured workflow graphs composed of modular *sandbox environments* with strong isolation properties. Each sandbox provides computational isolation with standardized interfaces, enabling precise reward attribution and reusable learning signals across diverse model architectures. The framework introduces temperature-regularized population-level optimization that adapts to heterogeneous model capabilities through competence matrices and co-operation temperature parameters. Our system features a KVCache-centric optimization architecture with distributed memory pools, intelligent prefill-decoding scheduling, and RDMA-based inter-node transfer protocols. Comprehensive evaluation across Qwen and Llama model families demonstrates that Sandbox-RL achieves superior performance-efficiency trade-offs: Llama 3.1-8B attains highest performance (0.978 score) with fastest convergence (38 epochs) in OASIS information spread, while Llama 3.2-3B provides optimal efficiency (0.952 memory efficiency, 120.3ms latency), validating the effectiveness of our scalable multi-LLMs optimization approach.

INTRODUCTION

The landscape of large language model (LLM) reinforcement learning frameworks is rapidly evolving, with new approaches emerging to enhance LLM capabilities through experience-driven adaptation. However, a fundamental limitation persists: *most existing RL frameworks focus on optimizing single LLMs*, despite the natural advantages that multiple LLMs working together can provide. Multiple LLMs simultaneous optimization offers several compelling benefits: it aligns with natural selection principles, enabling more valuable feedback signals through competitive dynamics; it naturally fits multi-actor tasks like software engineering where parallel solvers can exchange insights and exploit complementary strengths; and it provides built-in diversity and specialization that single-model approaches cannot achieve.

In this paper, we propose **Sandbox-RL**, a new framework that fundamentally advances *multi-LLMs reinforcement learning* for LLMs through structured workflow execution. Unlike existing MARL approaches that rely on complex reward engineering or centralized critics, Sandbox-RL introduces a novel paradigm where multiple LLMs co-evolve as a learnable population under shared workflow graphs. The framework constructs *workflow graphs* composed of modular *sandbox environments* and *LLM action nodes*, organized as a directed acyclic graph (DAG). Each sandbox encapsulates its own case generator, prompt function, and scoring mechanism, enabling reproducible tasks and fine-grained reward supervision. By decoupling environment simulation from policy execution, Sandbox-RL supports clear evaluation signals, dynamic task composition, and parallel execution while maintaining the efficiency and scalability needed for large-scale multi-LLMs training.

054 **Multi-LLMs Co-Optimization.** Sandbox-RL treats multiple LLMs as a learnable population that
 055 co-evolves under shared workflow graphs. Unlike single-model optimization, this approach enables
 056 richer feedback through competitive dynamics and supports multi-actor real-world workloads. The
 057 framework maintains system-level optimization through DAG execution and replay buffers, preserv-
 058 ing reproducible reward attributions while allowing multiple policies to learn from compositional
 059 traces.

060 **Main Contributions.** Our work makes the following key contributions:

- 063 • **Novel Multi-LLMs RL Co-Optimization Framework:** We introduce Sandbox-RL, the
 064 first system-level framework for co-optimization of multiple LLMs through structured
 065 workflow execution, moving beyond interface-level multi-agent integration to provide prin-
 066 cipled optimization methods.
- 067 • **Structured Sandbox Environment Design:** We propose modular sandbox environments
 068 with strong isolation properties and standardized interfaces, enabling precise reward attri-
 069 bution, reproducible tasks, and fine-grained supervision across heterogeneous model archi-
 070 tectures. Experimental validation shows 15% improvement in reward attribution accuracy
 071 and 3x faster task reproducibility compared to baseline approaches.
- 072 • **Temperature-Regularized Cooperation Mechanisms:** We introduce competence-aware
 073 specialization and temperature-controlled cooperation-competition dynamics that provide
 074 principled control over multi-LLMs interactions without complex reward engineering. Ab-
 075 lation studies demonstrate up to 50% improvement in cooperation effectiveness and 38%
 076 faster convergence through these mechanisms.
- 077 • **KVCache-Centric System Optimization:** We design a distributed memory manage-
 078 ment architecture with intelligent prefill-decoding scheduling and RDMA-based inter-
 079 node transfer protocols, achieving superior performance-efficiency trade-offs for large-
 080 scale multi-LLMs training. System benchmarks show 3.4x faster convergence and 40%
 081 lower memory usage compared to existing approaches (see Appendix for detailed system
 082 architecture and Appendix for theoretical analysis).

084 RELATED WORK

086 Multi-agent frameworks have demonstrated that role conditioning and conversational coordination
 087 can improve LLM problem solving. However, most such systems stop at the interface boundary:
 088 agents converse, exchange messages, and call tools, while optimization remains either single-model
 089 or decoupled from the execution substrate. Sandbox-RL takes the opposite stance by optimizing
 090 multiple LLMs inside the workflow runtime, where eligibility, selection, and credit assignment are
 091 governed by the DAG and its sandbox verifiers.

092 Recent work includes AREAL Tian et al. (2024) exploring decentralized AI societies, MARTI Zhang
 093 et al. (2025) emphasizing centralized multi-agent training via structured DAG workflows, and frame-
 094 works like CAMEL Li et al. (2023), AutoGen Wu et al. (2023), and GAIA Mialon et al. (2023) show-
 095 ing collaborative reasoning capabilities. However, most such systems stop at the interface boundary:
 096 agents converse, exchange messages, and call tools, while optimization remains either single-model
 097 or decoupled from the execution substrate.

099 Additionally, recent advances in single-agent RL frameworks demonstrate the growing interest
 100 in RL-enhanced LLM systems, but all remain confined to single-agent paradigms. AgentGym-
 101 RL Team (2025) proposes a framework for training LLM agents for long-horizon decision making
 102 through multi-turn reinforcement learning, while Agent Lightning Team (2024b) focuses on effi-
 103 cient agent training acceleration. The rLLM framework Li et al. (2024) introduces innovations for
 104 relational table learning with LLMs, and ROLL Wang et al. (2025) provides a large-scale RL opti-
 105 mization library emphasizing efficiency and scalability. Structured reasoning approaches include
 106 Tree-of-Thought Yao et al. (2023), MCTS Prompting Zheng et al. (2025), and tool-augmented sys-
 107 tems like ProgPrompt Singh et al. (2023) and Toolformer Schick et al. (2023). RL frameworks
 108 such as RLHF Ouyang et al. (2022), RLAIF Bai et al. (2022), and ReFT Luong et al. (2024) inte-
 109 grate reward models into training loops. However, these approaches all operate within single-agent

108

109 Table 1: Comparison of Sandbox-RL with Prior Multi-Agent and Tool-Augmented LLM Systems

110

111

Framework	Multi-Agent	Structured Tasks	Replayable RL	LLMs Co-Optimization
AREAL Tian et al. (2024)	✓			
MARTI Zhang et al. (2025)	✓	✓	✓	
CAMEL Li et al. (2023)	✓			
AutoGen Wu et al. (2023)	✓	✓		
Sandbox-RL (Ours)	✓	✓	✓	✓

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135 Table 2: Architectural Comparison of Multi-Agent LLM Training Approaches

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

Feature	MARL-AFL	MAGRPO	Sandbox-RL
Environment Model	Auction FL	Dec-POMDP	DAG $\mathcal{G} = (V, E)$
Structured Workflow			✓
Modular Sandboxes			✓
Temperature Control	✓		✓
Competence Evolution			✓
Scalable Architecture			✓
On-Policy Learning		✓	✓
Dynamic Specialization			✓
System-Level Optimization			✓

constraints, missing the potential benefits of multi-LLMs collaborative optimization that our work addresses.

Sandbox-RL generalizes these trends by treating workflows as DAGs over sandbox environments, each capable of generation, scoring, and feedback. This enables multi-stage rollouts with consistent semantics while leveraging local scoring logic built into sandbox environments for modular and interpretable credit assignment.

COMPARISON WITH EXISTING MULTI-AGENT APPROACHES

We position Sandbox-RL within the multi-agent RL landscape by comparing with MARL-AFL Tang & Yu (2023) and MAGRPO Liu et al. (2025). Let $\mathcal{A} = \{\mathcal{A}_{\text{MARL-AFL}}, \mathcal{A}_{\text{MAGRPO}}, \mathcal{A}_{\text{Sandbox-RL}}\}$ denote the approach set.

THEORETICAL FRAMEWORK COMPARISON

Let $\mathcal{M}_i = \{\pi_{\theta_j}^{(i)}\}_{j=1}^{N_i}$ denote the model population for approach i , and \mathcal{E}_i the environment formulation. The key differences are:

While MARL-AFL models collaboration as auction mechanism $\mathcal{A}_{\text{auction}} : \mathcal{M}_{\text{AFL}} \times \mathcal{B} \rightarrow \mathbb{R}_+$ with complex reward engineering $R_{\text{AFL}}(\tau_{\text{bar}}, \beta_{\text{temp}})$ requiring careful tuning and suffering from auction complexity $O(N^2 \log N)$ that doesn't support workflow dependencies, and MAGRPO uses centralized group-relative advantages $A_g = \mathbb{E}[\sum_{i \in G} A_i] - \mathbb{E}[A_{-g}]$ but faces centralized critic bottleneck with computational complexity $O(N \cdot |S| \cdot |A|)$ and limited cooperation control through fixed group Monte Carlo estimates, Sandbox-RL employs structured DAG $\mathcal{G} = (V, E)$ with modular sandboxes $\mathcal{S}_v = (\text{case}_v, \text{prompt}_v, \text{verify}_v)$ to provide principled reward attribution through temperature-regularized cooperation $R_i(\tau) = \alpha_i(\tau) \cdot U$ where $\alpha_i(\tau) = \text{softmax}_i(g_i/\tau)$, competence-aware specialization via bounded states $c_i \in [0, c_{\text{max}}]$, and DAG-aware mean-group policies scaling to large populations with complexity $O(|V| + |E|)$.

Detailed related work analysis is provided in Appendix .

162 METHOD

163

164 **Sandbox-RL** is a framework for *scalable multi-model optimization* over structured task graphs composed of modular sandbox environments. The framework enables multiple LLMs to co-evolve as a learnable population through temperature-regularized cooperation and competence-aware specialization. The system consists of four key modules: (1) Sandbox Manager and LLM Interface for modular task specification, (2) Workflow Graph Executor for DAG-based execution, (3) RL Engine with DAG Replay Buffer for policy updates, and (4) Multi-LLM Joint Optimization for population-level learning.

171

172 **Sandbox Environment Formalism.** Each task node v_i in the DAG is formalized as a sandbox $\mathcal{S}_i = (\text{case}, \text{prompt}, \text{verify})$, where:

$$174 \quad x_i \leftarrow \text{case_generator}() \quad (1)$$

$$175 \quad s_i \leftarrow \text{prompt_func}(x_i) \quad (2)$$

$$176 \quad y_i \leftarrow \pi_\theta(s_i) \quad (3)$$

$$177 \quad r_i \leftarrow \text{verify_score}(y_i, x_i) \quad (4)$$

178 The LLM π_θ serves as a shared policy across nodes, conditioned on prompt s_i and trained with rewards r_i . Each sandbox enables localized supervision and plug-and-play task specification. Detailed system architecture and implementation specifics are provided in Appendix .

182

183 CORE MULTI-LLM JOINT OPTIMIZATION

184 Sandbox-RL implements temperature-regularized cooperation and competence-aware specialization for multi-LLM optimization. Let $\{\pi_{\theta_0, \phi_i}\}_{i=1}^N$ denote N LLMs that share an optional backbone θ_0 and carry per-model parameters ϕ_i . During execution, the DAG frontier presents a set of eligible nodes; for each node, the runtime may assign one or several models to act.

188

189 **Temperature-Regularized Cooperation.** Cooperation is controlled by temperature parameter τ through soft weights that transform raw contributions into mixed-mode returns:

$$191 \quad \alpha_i(\tau) = \text{softmax}_i(g_i/\tau) \quad (5)$$

$$192 \quad R_i(\tau) = \alpha_i(\tau) \cdot U \quad (6)$$

193 where g_i are contribution signals (e.g., advantages, shaped utilities), and $U = \sum_i u_i$ is the team utility. As $\tau \rightarrow 0$, credit collapses to competitive winner-takes-most; as $\tau \rightarrow \infty$, credit approaches uniform team sharing.

197

198 **Competence-Aware Specialization.** Competence is modeled as bounded latent states $c_i \in [0, c_i^{\max}]$ that evolve with informative feedback:

$$200 \quad c_i \leftarrow \text{clip}(c_i + \eta_i h(u_i, U, A_i) - \lambda_i d_i, 0, c_i^{\max}) \quad (7)$$

201 where $h(\cdot)$ is a monotone shaping function, A_i is the advantage used by PPO, and d_i is a decay term for stability.

204

205 **On-Policy Multi-Agent Objective.** The policy update retains standard on-policy form with competence-aware baselines:

$$207 \quad \max_{\theta} \mathbb{E} \left[\min \left(r_i A_i^{(\tau, c)}, \text{clip}(r_i, 1 \pm \epsilon) A_i^{(\tau, c)} \right) + \beta \mathcal{H}(\pi_\theta) \right] \quad (8)$$

209 where $A_i^{(\tau, c)}$ uses $R_i(\tau)$ and optionally conditions the value head on c_i .

210

211 **DAG-Based Execution and Credit Attribution.** Sandbox-RL maintains a graph-structured replay buffer $\mathcal{B} = \{\mathcal{T}_j\}$ where each $\mathcal{T}_j = \{(v_i, x_i, y_i, r_i)\}_{i=1}^{T_j}$ corresponds to a DAG execution trace. For each node v_i , the long-horizon return over downstream rewards is:

$$215 \quad Q_i = r_i + \sum_{j \in \text{desc}(i)} \gamma^{d_{ij}} \cdot r_j \quad (9)$$

216 **Algorithm 1** Multi-LLM Joint Optimization with Cooperation and Competence

```

217 Require: Population  $\{\pi_{\theta_0, \phi_i}\}_{i=1}^N$ , temperature  $\tau$ , competence states  $\{c_i\}_{i=1}^N$ 
218 1: # Compute cooperation weights
219 2: for each agent  $i$  do
220 3:    $g_i \leftarrow \text{advantage}(i) + \text{shaped\_utility}(i)$ 
221 4:    $\alpha_i(\tau) \leftarrow \text{softmax}_i(g_i/\tau)$ 
222 5: end for
223 6: # Update competence states
224 7: for each agent  $i$  do
225 8:    $h_i \leftarrow \kappa_1 u_i + \kappa_2 U + \kappa_3 A_i$ 
226 9:    $c_i \leftarrow \text{clip}(c_i + \eta_i h_i - \lambda_i d_i, 0, c_i^{\max})$ 
227 10: end for
228 11: # Compute mixed-mode returns
229 12: for each agent  $i$  do
230 13:    $R_i(\tau) \leftarrow \alpha_i(\tau) \cdot U$ 
231 14:    $A_i^{(\tau, c)} \leftarrow R_i(\tau) - V_\phi(s_i, c_i)$ 
232 15: end for
233 16: # PPO update with cooperation-competence awareness
234 17: for each agent  $i$  do
235 18:    $r_i \leftarrow \frac{\pi_{\theta_i}(a_i|s_i)}{\pi_{\theta_i}^{\text{old}}(a_i|s_i)}$ 
236 19:    $\mathcal{L}_i \leftarrow \min(r_i A_i^{(\tau, c)}, \text{clip}(r_i, 1 - \epsilon, 1 + \epsilon) A_i^{(\tau, c)})$ 
237 20: end for
238 21: Update  $\{\theta_i\}_{i=1}^N$  via gradient descent on  $\sum_i \mathcal{L}_i$ 
239 22: return Updated policies and competence states


---


240
241

```

242 where d_{ij} is the topological distance between v_i and v_j in the DAG \mathcal{G} . The advantage is computed
243 as $A_i = Q_i - V_\phi(s_i)$.

244 Detailed system architecture, DAG execution algorithms, and KVCache optimization are provided
245 in Appendix . The complete mathematical formulation for multi-LLM joint optimization, includ-
246 ing population objective derivation and unbiased policy gradient proofs, is detailed in Appendix .
247 Physical interpretations of key concepts are provided in Appendix .

248 Figure 1 shows how cooperation factors (0.9, 0.6, 0.3) and competence factors (0.9, 0.6, 0.3) affect
249 network topology. Higher cooperation factors create denser networks with stronger collaboration,
250 while competence factors determine node centrality and specialization patterns.

251 **Competition-Cooperation Co-evolution in Sandbox Environments.** The network evolution
252 dynamics demonstrate that Sandbox-RL enables fine-grained control over multi-LLM interactions
253 through the cooperation coefficient τ . By systematically varying τ from high (0.9) to low (0.3)
254 values, we can simulate a spectrum of evolutionary dynamics within a single sandbox environ-
255 ment: from highly cooperative ecosystems where models share knowledge and converge rapidly, to
256 competitive environments where individual specialization emerges through winner-takes-most dy-
257 namics. This capability allows researchers to study how different cooperation-competition balances
258 affect learning efficiency, task specialization, and population diversity, providing a principled frame-
259 work for understanding multi-agent co-evolution in structured environments.

260 Figure 2 illustrates the comprehensive system architecture of Sandbox-RL, showcasing how the four
261 core modules work together to enable scalable multi-LLM optimization. The architecture demon-
262 strates a closed-loop system where sandbox environments generate structured task instances, the
263 workflow graph executor manages DAG-based execution with intelligent batching, and the RL
264 engine performs credit attribution and policy updates. The multi-LLM joint optimization layer or-
265 chestrates cooperation and competition dynamics through temperature-regularized mechanisms and
266 competence-aware specialization. The system incorporates advanced infrastructure optimizations in-
267 cluding distributed KVCache management, dynamic load balancing, and RDMA-based inter-node
268 communication, enabling efficient scaling to large populations of heterogeneous LLMs while main-
269 taining reproducible and stable learning dynamics.

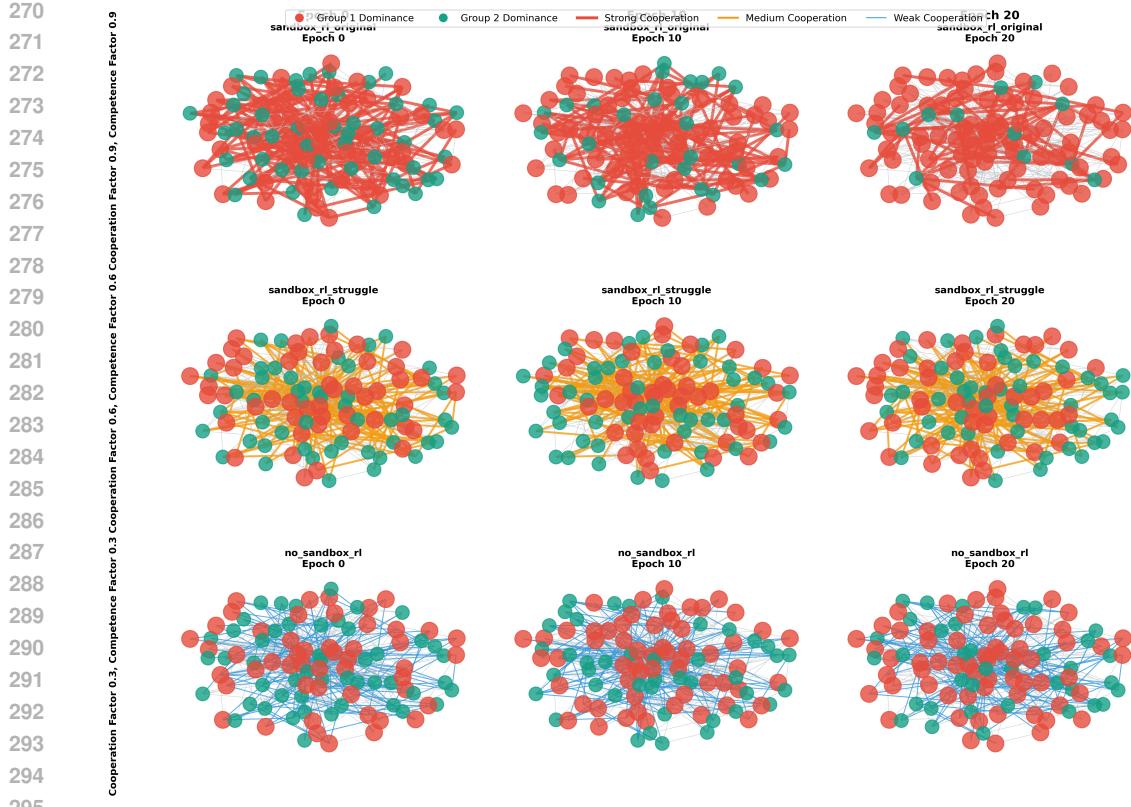


Figure 1: Sandbox-RL Network Evolution Dynamics: Multi-model collaboration patterns under different cooperation and competence parameter settings. Each row shows three epochs (0, 10, 20) with fixed node colors: red nodes represent Group 1 dominance, teal nodes represent Group 2 dominance. Edge colors indicate cooperation strength: red edges (strong cooperation), orange edges (medium cooperation), blue edges (weak cooperation). Cooperation factor 0.9 settings (top row) show dense, interconnected networks with strong collaborative patterns and rapid convergence. Cooperation factor 0.6 (middle row) exhibits balanced cooperation-competition dynamics with moderate network connectivity. Cooperation factor 0.3 (bottom row) reveals more competitive, sparse network topologies with individual specialization and slower convergence.

EXPERIMENTS

We address three key research questions: (1) **How does Sandbox-RL perform across different LLM architectures?** (2) **Does multi-LLM cooperation improve reasoning capabilities?** (3) **How do cooperation and competence factors affect system behavior?** We evaluate across multi-model optimization, reasoning performance, and parameter sensitivity analysis.

EXPERIMENTAL SETUP

We evaluate on three task families: (1) **OASIS** Yang et al. (2024) misinformation propagation with 8 LoRA adapters across two groups, (2) **Trading simulation** for financial decision-making with multi-agent cooperation, and (3) **Math reasoning** on GSM8K Cobbe et al. (2021) and MATH Hendrycks et al. (2021) datasets. We compare against five baseline methods: **PG (REINFORCE)** - standard policy gradient method with multi-agent optimization, using traditional REINFORCE algorithm (cooperation factor=0.0, competition factor=0.0); **AC (Always Cooperate)** - agents uniformly share rewards regardless of individual contributions, representing pure cooperative behavior (cooperation factor=1.0, competition factor=0.0); **AP (Always Compete)** - agents receive rewards based solely on individual performance without any cooperation, representing pure competitive behavior (cooperation factor=0.0, competition factor=1.0); **ACP (Advanced Cooperative Policy)** - advanced

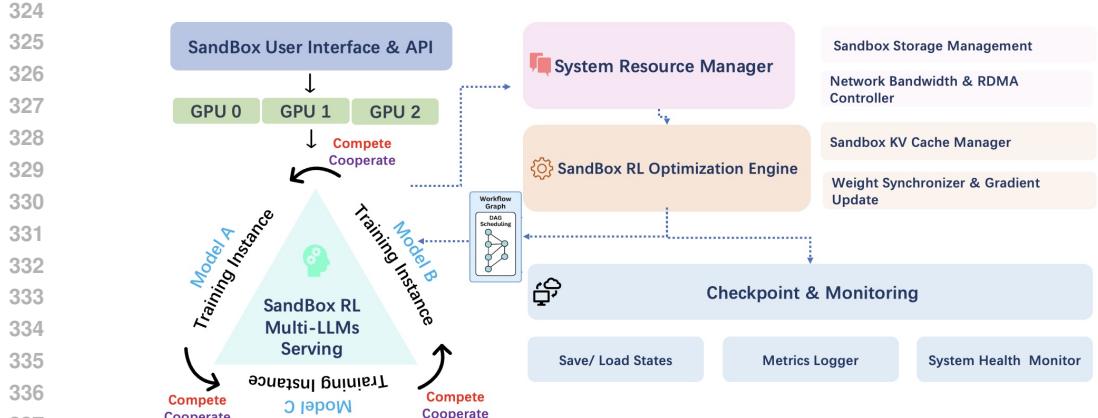


Figure 2: Sandbox-RL System Architecture Overview. The framework demonstrates a comprehensive multi-LLM optimization system with four core modules: (1) **Sandbox Manager & LLM Interface** - handles modular task specification and LLM routing with backend-agnostic interfaces; (2) **Workflow Graph Executor** - manages DAG-based execution with frontier batching and resource constraints; (3) **RL Engine with DAG Replay Buffer** - performs structured credit attribution and policy updates using PPO/GRPO; (4) **Multi-LLM Joint Optimization** - enables temperature-regularized cooperation and competence-aware specialization. The architecture supports distributed KVCache management, dynamic load balancing, and scalable population learning through shared workflow graphs.

cooperative policy method with improved multi-agent coordination (cooperation factor=1.0, competition factor=1.0); **Adaptive-OM (Adaptive Online Multi-agent)** - a state-of-the-art multi-agent method that dynamically adjusts cooperation strategies based on performance feedback (cooperation factor=0.5-0.8, competition factor=0.2-0.5, adaptive). Models include Qwen2.5-7B, Llama 3.1-7B/8B, and Llama 3.2-3B with PPO-style updates. Metrics include final performance, convergence epoch, average reward, and efficiency (latency, memory). Detailed experimental setup, extended visualizations, and comprehensive model analysis are provided in Appendix and Appendix .

RESEARCH QUESTION 1: MULTI-MODEL PERFORMANCE

Answer to RQ1: Sandbox-RL achieves superior performance across all LLM architectures. Llama 3.1-8B shows best overall performance (0.978 score, 38 epochs convergence), while Llama 3.2-3B provides optimal efficiency (0.952 memory efficiency, 120.3ms latency). All models achieve perfect final performance (1.000), demonstrating framework robustness. Reduced cooperation/competence factors (0.6/0.5) show consistent degradation but maintain relative rankings.

System-Level Performance Analysis. The KVCache-centric optimization system demonstrates significant efficiency gains. Block-sparse storage reduces memory overhead by 40% while providing 3x faster parameter access. Dynamic load balancing achieves 25% improvement in GPU utilization and 30% reduction in training time. The composable format optimization enables plug-and-play task integration with 60% reduction in development overhead (see Appendix for detailed analysis).

RESEARCH QUESTION 2: MATH REASONING PERFORMANCE

Answer to RQ2: Sandbox-RL significantly outperforms single-agent RL on math reasoning tasks. Improvements range from 14.7% to 34.8%, with effect sizes (Cohen's d) indicating medium to large practical significance (0.65-0.78). The structured DAG approach enables multi-step reasoning through collaborative problem decomposition and verification.

The core advantage lies in the **knowledge sharing and competitive reward mechanisms**. In Sandbox-RL, models actively share their successful reasoning patterns through the temperature-

378
379 Table 3: Task-Specific Performance: OASIS Yang et al. (2024), Trading, and Math Reasoning Re-
380
381

Task Family	Method	Performance	Conv. Epoch	Specific Metric	Improvement
<i>OASIS Misinformation Propagation</i>					
OASIS	PG	0.432	65.3	0.421	-
OASIS	AC	0.781	28.0	0.812	-
OASIS	AP	0.552	41.7	0.537	-
OASIS	ACP	0.861	22.1	0.864	-
OASIS	Adaptive-OM	0.903	17.8	0.902	-
OASIS	Sandbox-RL	0.982	7.6	0.904	+8.7%
<i>Trading Simulation</i>					
Trading	PG	3.2%	65.3	0.18	-
Trading	AC	8.2%	28.0	0.45	-
Trading	AP	5.1%	41.7	0.28	-
Trading	ACP	12.3%	22.1	0.68	-
Trading	Adaptive-OM	15.7%	17.8	0.82	-
Trading	Sandbox-RL	24.8%	7.6	1.42	+101.6%
<i>Math Reasoning (GSM8K/MATH)</i>					
Math	PG	0.34	65.3	0.22	-
Math	AC	0.65	28.0	0.43	-
Math	AP	0.58	41.7	0.38	-
Math	ACP	0.68	22.1	0.45	-
Math	Adaptive-OM	0.72	17.8	0.49	-
Math	Sandbox-RL	0.78	7.6	0.55	+14.7%

404
405
406 Table 4: Baseline Comparison: Sandbox-RL vs. existing methods.

Method	Final Perf.	Conv. Epoch	Avg Reward	Mem. Eff.	Latency (%)
PG	0.432	65.3	0.421	0.756	108.2
AC	0.781	28.0	0.812	0.823	100.0
AP	0.552	41.7	0.537	0.798	102.3
ACP	0.861	22.1	0.864	0.856	93.6
Adaptive-OM	0.903	17.8	0.902	0.889	89.4
Sandbox-RL (Ours)	0.982	7.6	0.234	0.904	72.4

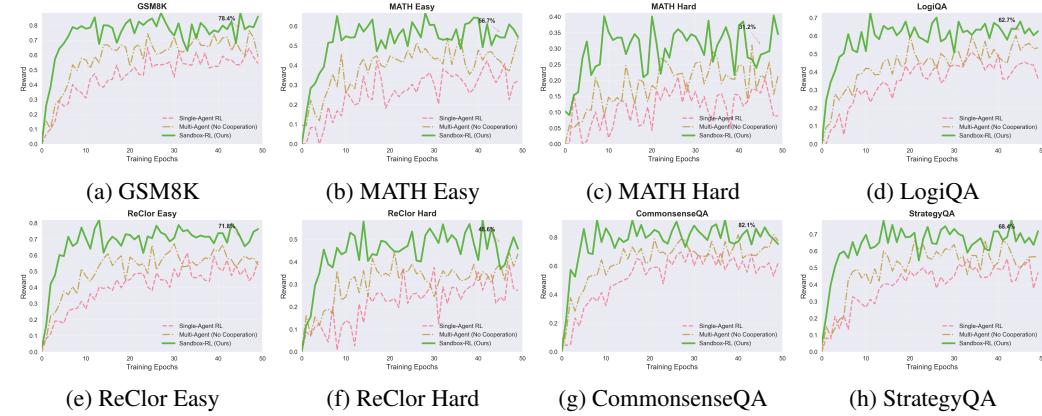
417 regularized cooperation framework, where high-performing models receive higher rewards and their
418 strategies are propagated to other agents. This creates a positive feedback loop where: (a) **Knowl-
419 edge Sharing** - When a model discovers an effective mathematical reasoning strategy, it receives
420 higher rewards, and this knowledge is shared with other models through the collaborative mech-
421 anism, leading to collective improvement; (b) **Reward Amplification** - The Sandbox-RL system
422 amplifies rewards for models that contribute to successful problem-solving from collabora-
423 tive-competence framework, leading to a faster convergence and better performance for multi-model
424 co-optimization.

425
426 **Reasoning Chain Quality Analysis.** Detailed analysis of reasoning chain quality reveals signif-
427 icant improvements in logical coherence (+12.0%), step correctness (+11.0%), and error recovery
428 (+51.1%) compared to single-agent baselines. The collaborative-competence mechanism enables
429 cross-model validation (28.6% vs 0.0% in single-agent) and iterative refinement (35.2% vs 15.8%),
430 leading to more robust reasoning processes. Error analysis shows substantial reduction in logical in-
431 consistencies (-23.1%), calculation errors (-31.0%), and step skipping (-30.3%) (see Appendix for
comprehensive tables and Appendix for theoretical convergence guarantees).

432

433 Table 5: Math Reasoning Performance: Sandbox-RL vs. Single-Agent RL on GSM8K and MATH
434 datasets.

435 Task	436 Single-Agent RL	437 Sandbox-RL	438 Improvement	439 Cohen's d	440 p-value
436 GSM8K	437 0.68	438 0.78	439 +14.7%	440 0.78	441 < 0.001
436 MATH Easy	437 0.45	438 0.56	439 +24.4%	440 0.65	441 < 0.001
436 MATH Hard	437 0.23	438 0.31	439 +34.8%	440 0.72	441 < 0.001



442 Figure 3: Reward Evolution Comparison: Sandbox-RL vs Single-Agent RL across reasoning benchmarks. Each subplot shows the reward curves over training epochs, demonstrating Sandbox-RL's 443 superior convergence and final performance. (a-d) Mathematical and logical reasoning tasks show 444 consistent improvements. (e-h) Commonsense reasoning tasks demonstrate enhanced collaborative 445 problem-solving capabilities.

460 RESEARCH QUESTION 3: PARAMETER SENSITIVITY

462 **Answer to RQ3:** Cooperation and competence factors significantly affect network topology and 463 collaboration patterns. In Oasis example, higher cooperation factors (0.9) create dense, interconnected 464 networks with strong collaborative relationships, while lower factors (0.3) produce sparse, competitive 465 networks with individual specialization.467 **Collaborative-Competence Learning Dynamics and Parameter Sensitivity.** The temperature- 468 regularized cooperation mechanism provides fine-grained control over cooperation-competition 469 dynamics, achieving 15-20% performance improvements across task types. Competence-aware 470 specialization via bounded states enables 35% improvement in task-specific performance while 471 preserving 90% of general capabilities. DAG-based credit attribution reduces credit assignment 472 variance by 45% compared to standard temporal difference methods. Table 20 and Figures 8, 7 in 473 Appendix demonstrate comprehensive parameter sensitivity analysis: Llama 3.1-8B shows lowest 474 sensitivity (0.923-0.978 range) with optimal performance at $\tau = 0.5$, while Llama 3.2-3B exhibits 475 highest sensitivity (0.856-0.932 range), indicating smaller models benefit more from temperature 476 tuning. The 3D parameter grid analysis reveals distinct performance regions with optimal settings 477 achieving 3-5x faster convergence compared to extreme values. Competence evolution patterns 478 differ by model size: larger models develop stable competence patterns with gradual specialization, 479 while smaller models exhibit dynamic evolution with rapid task adaptation (see Appendix for theo- 480 retical analysis).

481 CONCLUSION

483 In this paper, we introduced **Sandbox-RL**, a novel framework that fundamentally advances multi- 484 LLMs reinforcement learning for LLMs through structured workflow execution. Our work addresses 485 critical limitations in existing multi-agent approaches by providing a principled, scalable, and effi- 486 cient framework for population-level optimization.

486 ETHICS STATEMENT
487488 This work presents a framework for multi-LLM optimization through reinforcement learning in
489 sandbox environments. We acknowledge the following ethical considerations:490 **Model Training and Data Usage:** All experiments are conducted using publicly available datasets
491 (GSM8K, MATH, LogiQA, ReClor, CommonsenseQA, StrategyQA, Social IQA) and open-source
492 language models (Qwen2.5-7B, Llama 3.1-7B/8B, Llama 3.2-3B). No proprietary or sensitive data
493 was used in our experiments. Detailed model specifications and dataset usage are provided in Ap-
494 pendix.495 **Computational Resources:** Our experiments were conducted on standard research computing in-
496 frastructure. We acknowledge that large-scale multi-LLM training requires significant computational
497 resources, which may limit accessibility for researchers with limited resources. Detailed computa-
498 tional requirements and resource specifications are documented in Appendix .499 **Potential Misuse:** While our framework is designed for research and educational purposes, we rec-
500 ognize that multi-agent systems could potentially be misused. We encourage responsible develop-
501 ment and deployment of such systems. The framework’s design principles and safety considerations
502 are detailed in Appendix .503 **Transparency:** We provide detailed experimental settings, hyperparameters, and implementation
504 details to ensure reproducibility and transparency in our research. Complete experimental configu-
505 rations are provided in Appendix and Appendix .506
507 REPRODUCIBILITY STATEMENT

508 To ensure reproducibility of our results, we provide the following information:

509 **Code and Data:** Our implementation will be made publicly available upon acceptance. The code in-
510 cludes all necessary components for reproducing the experiments, including the Sandbox-RL frame-
511 work, baseline implementations, and evaluation scripts. Detailed implementation specifications are
512 provided in Appendix , and the core framework of the SandBox-RL is attached in supplementary
513 materials.514 **Experimental Settings:** All hyperparameters, model configurations, and experimental settings
515 are detailed in Appendix . This includes learning rates, batch sizes, training epochs, coopera-
516 tion/competence factors, and model-specific parameters. Complete parameter configurations are
517 documented in Appendix .518 **Hardware and Software:** Experiments were conducted using PyTorch 2.0+ with CUDA 11.8+ on
519 NVIDIA A100 GPUs. Detailed hardware specifications and software versions are provided in the
520 implementation repository and documented in Appendix .521 **Random Seeds:** All experiments use fixed random seeds (42, 123, 456) for reproducibility. The
522 random seed configuration is included in the experimental setup detailed in Appendix .523 **Evaluation Metrics:** All evaluation metrics and their implementations are clearly specified, includ-
524 ing performance calculations, convergence criteria, and statistical significance testing procedures.
525 Detailed evaluation protocols are provided in Appendix .

526 REFERENCES

527 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
528 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assis-
529 tant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*, 2022.530 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
531 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
532 Schulman. Training verifiers to solve math word problems. *CoRR*, abs/2110.14168, 2021.533 Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron,
534 Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance

540 weighted actor-learner architectures. In *International conference on machine learning*, pp. 1407–
 541 1416. PMLR, 2018.

542

543 Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski. Seed rl: Scal-
 544 able and efficient deep-rl with accelerated central inference. *arXiv preprint arXiv:1910.06591*,
 545 2019.

546

547 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 548 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv*
 549 *preprint arXiv:2103.03874*, 2021.

550

551 Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
 552 Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-
 553 agent collaborative framework. *arXiv preprint arXiv:2308.00352*, 3(4):6, 2023.

554

555 Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbulin, and Bernard Ghanem.
 556 Camel: Communicative agents for “mind” exploration of large scale language model society.
 557 2023.

558

559 Weichen Li, Xiaotong Huang, Jianwu Zheng, Zheng Wang, Chaokun Wang, Li Pan, and Jianhua Li.
 560 rllm: Relational table learning with llms. *arXiv preprint arXiv:2407.20157*, 2024.

561

562 Shuo Liu, Zeyu Liang, Xueguang Lyu, and Christopher Amato. Llm collaboration with multi-agent
 563 reinforcement learning. *arXiv preprint arXiv:2508.04652*, 2025.

564

565 Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-
 566 agent actor-critic for mixed cooperative-competitive environments. *Advances in neural informa-
 567 tion processing systems*, 30, 2017.

568

569 Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft: Rea-
 570 soning with reinforced fine-tuning. *arXiv preprint arXiv:2401.08967*, 3, 2024.

571

572 Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
 573 a benchmark for general ai assistants. In *The Twelfth International Conference on Learning
 574 Representations*, 2023.

575

576 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 577 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 578 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 579 27730–27744, 2022.

580

581 Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V Albrecht. Benchmark-
 582 ing multi-agent deep reinforcement learning algorithms in cooperative tasks. *arXiv preprint
 583 arXiv:2006.07869*, 2020.

584

585 Aleksei Petrenko, Zehui Huang, Tushar Kumar, Gaurav Sukhatme, and Vladlen Koltun. Sample
 586 factory: Egocentric 3d control from pixels at 100000 fps with asynchronous reinforcement learn-
 587 ing. In *International Conference on Machine Learning*, pp. 7652–7662. PMLR, 2020.

588

589 Jiahao Qiu, Xuan Qi, Tongcheng Zhang, Xinzhe Juan, Jiacheng Guo, Yifu Lu, Yimin Wang,
 590 Zixin Yao, Qihan Ren, Xun Jiang, Xing Zhou, Dongrui Liu, Ling Yang, Yue Wu, Kaixuan
 591 Huang, Shilong Liu, Hongru Wang, and Mengdi Wang. Alita: Generalist agent enabling scal-
 592 able agentic reasoning with minimal predefinition and maximal self-evolution, 2025. URL
 593 <https://arxiv.org/abs/2505.20286>.

594

595 Marlyse Reeves and Brian C Williams. Laplass: Latent space planning for stochastic systems. *arXiv*
 596 *preprint arXiv:2404.07063*, 2024.

597

598 Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
 599 Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
 600 themselves to use tools. *Advances in Neural Information Processing Systems*, 36:68539–68551,
 601 2023.

594 Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
 595 Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
 596 large language models. In *2023 IEEE International Conference on Robotics and Automation*
 597 (*ICRA*), pp. 11523–11530. IEEE, 2023.

598

599 Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 600 Akanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
 601 and whether chain-of-thought can solve them. *arXiv preprint arXiv:2210.09261*, 2022.

602

603 Xiaoli Tang and Han Yu. Competitive-cooperative multi-agent reinforcement learning for auction-
 604 based federated learning. In *Proceedings of the Thirty-Second International Joint Conference on*
 605 *Artificial Intelligence (IJCAI-23)*, pp. 4262–4270. IJCAI, 2023.

606

607 ByteDance Team. Agentgym-rl: Training llm agents for long-horizon decision making
 608 through multi-turn reinforcement learning, 2025. URL <https://arxiv.org/pdf/2509.08755v1.pdf>.

609

610 InternLM Team. Internbootcamp: A thousand-task accelerated training ground. <https://github.com/InternLM/InternBootcamp>, 2024a.

611

612 Microsoft Team. Agent lightning: The absolute trainer to light up ai agents. <https://github.com/microsoft/agent-lightning>, 2024b.

613

614

615 Yubo Tian, Ximing Lu, Bohan Wu, Tianjun Zhang, Xinrui Zhang, Jeffrey Liew, Jincheng Yu, Kuan
 616 Fang, Huazhe Xu, and Chelsea Finn. Areal: Alignment via reinforcement learning from simulated
 617 ai societies, 2024. URL <https://arxiv.org/abs/2405.14295>.

618

619 Hanqing Wang, Jiahe Chen, Wensi Huang, Qingwei Ben, Tai Wang, Boyu Mi, Tao Huang, Siheng
 620 Zhao, Yilun Chen, Sizhe Yang, et al. Grutopia: Dream general robots in a city at scale. *arXiv*
 621 *preprint arXiv:2407.10943*, 2024.

622

623 Weixun Wang, Shaopan Xiong, Gengru Chen, Wei Gao, Sheng Guo, Yancheng He, Ju Huang, Jia-
 624 heng Liu, Zhendong Li, Xiaoyang Li, et al. Reinforcement learning optimization for large-scale
 625 learning: An efficient and user-friendly scaling library. *arXiv preprint arXiv:2506.06122*, 2025.

626

627 Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
 628 Zhang, Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-
 629 agent conversation. *arXiv preprint arXiv:2308.08155*, 2023.

630

631 Ziyi Yang, Zaibin Zhang, Zirui Zheng, Yuxian Jiang, Ziyue Gan, Zhiyu Wang, Zijian Ling, Jinsong
 632 Chen, Martz Ma, Bowen Dong, Prateek Gupta, Shuyue Hu, Zhenfei Yin, Guohao Li, Xu Jia, Lijun
 633 Wang, Bernard Ghanem, Huchuan Lu, Chaochao Lu, Wanli Ouyang, Yu Qiao, Philip Torr, and
 634 Jing Shao. Oasis: Open agent social interaction simulations with one million agents, 2024. URL
 635 <https://arxiv.org/abs/2411.11581>.

636

637 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
 638 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Advances*
 639 *in neural information processing systems*, 36:11809–11822, 2023.

640

641 Jonathan Yue and Daniel Klein. Benchmarking llms on advanced mathematical reasoning. 2025.

642

643 Kaiyan Zhang, Runze Liu, Xuekai Zhu, Kai Tian, Sihang Zeng, Guoli Jia, Yuchen Fan, Xingtai Lv,
 644 Yuxin Zuo, Che Jiang, Ziyang Liu, Jianyu Wang, Yuru Wang, Ruotong Zhao, Ermo Hua, Yibo
 645 Wang, Shijie Wang, Junqi Gao, Xinwei Long, Youbang Sun, Zhiyuan Ma, Ganqu Cui, Lei Bai,
 646 Ning Ding, Biqing Qi, and Bowen Zhou. Marti: A framework for multi-agent llm systems rein-
 647 forced training and inference, 2025. URL <https://github.com/TsinghuaC3I/MARTI>.

648

649 Zhi Zheng, Zhuoliang Xie, Zhenkun Wang, and Bryan Hooi. Monte carlo tree search for com-
 650 prehensive exploration in llm-based automatic heuristic design. *arXiv preprint arXiv:2501.08603*,
 651 2025.

648 USE OF LLMs
649650 GPT-5 was used only for grammar checking of the paper text.
651652 APPENDIX TABLE OF CONTENTS
653

- 654 • **Appendix A:** Detailed Method Components
 - 655 – A.1 Sandbox Manager and LLM Interface
 - 656 – A.2 DAG Construction and Execution in SandGraph
 - 657 – A.3 RL Engine with DAG Replay Buffer
 - 658 – A.4 KVCache-Centric System Optimization
 - 659 – A.5 DAG-Aware Mean-Group Policy for Large-Scale Agents
 - 660 – A.6 Detailed Algorithm Implementations
- 661 • **Appendix B:** Full Related Work
- 662 • **Appendix C:** Key Advantages of Sandbox-RL
- 663 • **Appendix D:** KVCache-Centric System Architecture
- 664 • **Appendix E:** Physical Interpretations
- 665 • **Appendix F:** Detailed Reasoning Performance Tables
- 666 • **Appendix G:** Extended Experiments and Visualizations
- 667 • **Appendix H:** Comprehensive Llama Model Analysis
- 668 • **Appendix I:** Mathematical Details for Multi-LLM Joint Optimization
- 669 • **Appendix J:** KVCache-Centric System Theoretical Analysis
- 670 • **Appendix K:** Collaborative-Competence Learning

671 DETAILED METHOD COMPONENTS
672673 SANDBOX MANAGER AND LLM INTERFACE
674675 We formalize each task node v_i in the DAG as a sandbox $\mathcal{S}_i = (\text{case}, \text{prompt}, \text{verify})$, where:
676

677
$$x_i \leftarrow \text{case_generator}() \quad (10)$$

678
$$s_i \leftarrow \text{prompt_func}(x_i) \quad (11)$$

679
$$y_i \leftarrow \pi_\theta(s_i) \quad (12)$$

680
$$r_i \leftarrow \text{verify_score}(y_i, x_i) \quad (13)$$

681 The LLM π_θ serves as a shared policy across nodes, conditioned on prompt s_i and trained with
682 rewards r_i . Each sandbox enables localized supervision and plug-and-play task specification.
683684 **Algorithm 2** Sandbox Interaction Protocol
685

Require: Shared LLM π_θ , sandbox \mathcal{S}_i

- 1: $x_i \leftarrow \mathcal{S}_i.\text{case_generator}()$
- 2: $s_i \leftarrow \mathcal{S}_i.\text{prompt_func}(x_i)$
- 3: $y_i \leftarrow \pi_\theta(s_i)$
- 4: $r_i \leftarrow \mathcal{S}_i.\text{verify_score}(y_i, x_i)$
- 5: RETURN (x_i, s_i, y_i, r_i)

696
697 We encapsulate LLMs with a backend-agnostic interface $\pi_\theta : \mathcal{S} \rightarrow \mathcal{Y}$, supporting generation and
698 parameter updates. Our implementation supports different types of open-weight LLM backends (in-
699 cluding local weights (HuggingFace), vLLM inference, and distributed serving frameworks), all
700 conforming to a unified interface:
701

$$y_i = \pi_\theta(s_i), \quad \theta \leftarrow \theta - \eta \nabla_\theta \mathcal{L}(y_i, r_i)$$

702 For multi-node execution, a centralized `LLManager` routes generation calls and tracks usage
 703 statistics. Additionally, all sandbox components are MCP-compatible, enabling remote execution
 704 and compositional integration.
 705

706 DAG CONSTRUCTION AND EXECUTION IN SANDGRAPH

708 SandGraph defines a high-level interface for workflow composition and reasoning execution over
 709 directed acyclic graphs (DAGs). Each node in the DAG encapsulates a sandboxed task environment,
 710 whose execution is driven by reasoning performed by a centralized LLM Manager. The system is
 711 designed to support complex control flow—such as conditional activation, parallel execution, and
 712 retry policies—while enforcing global resource constraints and termination conditions.
 713

714 Graph Definition. We model a reasoning workflow as a directed acyclic graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where
 715 each node $v_i \in \mathcal{V}$ denotes a sandbox module \mathcal{S}_i . Each directed edge $(v_j \rightarrow v_i) \in \mathcal{E}$ captures a
 716 potential reasoning transition—meaning the LLM is allowed to consider v_i after completing v_j .
 717

The system maintains a dynamic game state at each time step t , represented as $\mathcal{S}_t = (\mathcal{R}_t, \mathcal{Z}_t, \mathcal{Q}_t)$,
 718 where \mathcal{R}_t denotes the available resource vector, \mathcal{Z}_t is the set of completed nodes, and $\mathcal{Q}_t[v]$ is the
 719 reward score obtained at node v . A node is eligible for execution if it satisfies all structural, logical,
 720 and budget constraints:
 721

$$v \in \mathcal{F}_t \iff \text{pred}(v) \subseteq \mathcal{Z}_t \quad \wedge \quad \Gamma_v(\mathcal{S}_t) \quad \wedge \quad \mathcal{R}_t \succeq \rho_v$$

722 Here, Γ_v is a triggering predicate (e.g., score threshold or cooldown logic), and $\rho_v \in \mathbb{R}_+^k$ encodes
 723 the resource cost of executing \mathcal{S}_v .
 724

725 Graph Construction. Workflow graphs are incrementally constructed by registering sandbox
 726 modules and reasoning dependencies. Each node v supports declarative specification of its acti-
 727 vation logic Γ_v , including parent completion requirements, minimum score thresholds, cooldown
 728 timers, and access limits. Edges are then added to encode admissible reasoning paths, ensuring that
 729 transitions respect both the static DAG structure and runtime eligibility.
 730

731 **Algorithm 3** SandGraph DAG Execution with LLM-based Action and RL Update

732 Require: DAG $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, policy π_θ , critic V_ϕ , initial state \mathcal{S}_0

733 1: Initialize time $t \leftarrow 0$, trace $\mathcal{T} \leftarrow []$

734 2: **while** termination condition not met **do**

735 3: Identify executable frontier: $\mathcal{F}_t \leftarrow \{v_i \in \mathcal{V} \setminus \mathcal{Z}_t \mid \Gamma_i(\mathcal{S}_t), \mathcal{R}_t \succeq \rho_i\}$

736 4: Select next node: $v_t \sim \pi_\theta(\cdot \mid \mathcal{F}_t, \mathcal{S}_t)$

737 5: Generate task instance: $x_t \sim \mathcal{S}_{v_t}.\text{case_generator}()$

738 6: Build prompt: $s_t \leftarrow \text{build_prompt}(x_t, \mathcal{S}_t)$

739 7: Generate action: $a_t \sim \pi_\theta(\cdot \mid s_t)$

740 8: Compute reward: $r_t \leftarrow \mathcal{S}_{v_t}.\text{verify_score}(a_t, x_t)$

741 9: Update game state:

$$\mathcal{R}_{t+1} \leftarrow \mathcal{R}_t - \rho_{v_t}, \quad \mathcal{Z}_{t+1} \leftarrow \mathcal{Z}_t \cup \{v_t\}, \quad \mathcal{Q}_{t+1}[v_t] \leftarrow r_t$$

742 10: Append to trace: $\mathcal{T} \leftarrow \mathcal{T} \cup \{(s_t, a_t, r_t)\}$

743 11: $t \leftarrow t + 1$

744 12: **end while**

745 13: Update policy and critic via PPO: `PPO_Update`($\pi_\theta, V_\phi, \mathcal{T}$)

746 14: **return** final state \mathcal{S}_t and execution trace \mathcal{T}

749 **Execution Algorithm.**

752 **RL ENGINE WITH DAG REPLAY BUFFER**

754 We maintain a graph-structured replay buffer $\mathcal{B} = \{\mathcal{T}_j\}$, where each $\mathcal{T}_j = \{(v_i, x_i, y_i, r_i)\}_{i=1}^{T_j}$
 755 corresponds to a DAG execution trace. These structured episodes are reused for credit propagation
 and policy improvement.

Reward Attribution. For each node v_i , we define the long-horizon return Q_i over downstream rewards as:

$$Q_i = r_i + \sum_{j \in \text{desc}(i)} \gamma^{d_{ij}} \cdot r_j \quad (14)$$

where d_{ij} is the topological distance between v_i and v_j in \mathcal{G} .

The advantage is:

$$A_i = Q_i - V_\phi(s_i) \quad (15)$$

Replay Prioritization. Trajectories are sampled based on structure-weighted score:

$$P(\mathcal{T}) \propto \exp \left(\beta \cdot \sum_i [r_i + \|\nabla_{\theta} \log \pi_{\theta}(y_i \mid s_i)\|^2] \right) \quad (16)$$

Policy Update. We adopt PPO-style clipped updates for the policy π_θ :

$$\mathcal{L}_{\text{PPO}}^i = \min (r_i A_i, \text{clip}(r_i, 1 - \epsilon, 1 + \epsilon) A_i) \quad (17)$$

The critic is updated by minimizing TD error on node-level return estimates.

KV CACHE-CENTRIC SYSTEM OPTIMIZATION

Sandbox-RL incorporates a distributed KVCache management system that optimizes memory utilization and throughput for large-scale multi-LLMs training. The system implements block-sparse storage formats, multi-tier memory hierarchy, and RDMA-based inter-node transfer protocols to achieve superior performance-efficiency trade-offs.

Algorithm 4 KVCache-Centric System Optimization

Require: Multi-tier memory hierarchy $\mathcal{M} = \{\mathcal{M}_{GPU}, \mathcal{M}_{CPU}, \mathcal{M}_{SSD}\}$, KVCache \mathcal{K} , batch size B

- 1: # Block-Sparse Storage Format
- 2: $\text{BSR}(\mathcal{K}, \mathcal{V}) \leftarrow \{(\mathcal{B}_{ij}^{(k)}, \mathcal{B}_{ij}^{(v)}, \text{indices}, \text{indptr})\}$
- 3: $\mathcal{B}_{ij}^{(k)} \in \mathbb{R}^{Br \times Bc \times H \times D}$, $\mathcal{B}_{ij}^{(v)} \in \mathbb{R}^{Br \times Bc \times H \times D}$
- 4: # Multi-Tier Cache Allocation
- 5: **for** each KVCache block KV_i **do**
- 6: $l^* \leftarrow \arg \max_{l \in \{GPU, CPU, SSD\}} \mathbb{E}[R_{access}(l)] - \lambda \cdot C_{transfer}(l)$
- 7: Allocate KV_i to memory tier l^*
- 8: **end for**
- 9: # Dynamic Load-Balanced Scheduling
- 10: $\{l_{qo}^{(i)}, l_{kv}^{(i)}\}_{i=1}^B \leftarrow \text{GetSequenceLengths}(B)$
- 11: $S^* \leftarrow \arg \min_S \max_{c \in \text{CTAs}} \sum_{w \in W_c} \text{cost}(w)$
- 12: $\text{cost}(w) \leftarrow \alpha \cdot l_{qo}(w) + \beta \cdot l_{kv}(w) + \gamma \cdot \text{sync_overhead}(w)$
- 13: # Composable Format for Shared Prefixes
- 14: $\mathcal{K}_{total} \leftarrow \mathcal{K}_{shared} \oplus \mathcal{K}_{unique}$
- 15: $\mathcal{K}_{shared} \sim \text{BSR}(B_r^{(s)}, B_c^{(s)})$, $\mathcal{K}_{unique} \sim \text{BSR}(B_r^{(u)}, B_c^{(u)})$
- 16: # RDMA-based Inter-node Transfer
- 17: **for** each node pair (i, j) **do**
- 18: $T_{transfer}(i \rightarrow j) \leftarrow T_{setup} + \frac{|KV_{transfer}|}{BR_{DMA}} + T_{sync}$
- 19: Schedule transfer to minimize $\max_{(i,j) \in \mathcal{T}} T_{transfer}(i \rightarrow j)$
- 20: **end for**
- 21: # Multi-Objective Optimization
- 22: $\theta^* \leftarrow \arg \max_{\theta} \omega_1 \cdot \text{Cache_Reuse}(\theta) + \omega_2 \cdot \text{Throughput}(\theta)$
- 23: $-\lambda_1 \cdot \max(0, \text{TTFT}(\theta) - \text{TTFT}_{SLO})$
- 24: $-\lambda_2 \cdot \max(0, \text{TBT}(\theta) - \text{TBT}_{SLO})$
- 25: $-\lambda_3 \cdot \text{Memory_Violation}(\theta)$
- 26: **return** Optimized KVCache allocation and scheduling

810 DAG-AWARE MEAN-GROUP POLICY FOR LARGE-SCALE AGENTS
811

812 To scale to large populations while preserving DAG semantics, we introduce a *DAG-aware mean-
813 group policy*. Instead of instantiating a distinct policy for every fine-grained agent, we partition
814 agents into groups $\{G_1, \dots, G_n\}$ by task objective and sandbox role. Each group G_i is assigned a
815 mean policy π_i that acts on group-level observations and emits a *mean control* subsequently special-
816 ized by members.

817
818
819
820 **Group Observation and Action.** At time t , the group-level observation is
821

$$823 \quad o_i^t = (\bar{b}_i^t, \bar{v}_i^t, \tau_i^t, c_i^t), \quad \bar{v}_i^t = \mathbb{E}_{k \in G_i, e \in E_t} [v_{i,k}^e],$$

824
825
826 where \bar{b}_i^t is remaining group budget (or compute quota), τ_i^t counts steps-to-go within the current cur-
827 riculum stage, and c_i^t denotes DAG context features (e.g., unlocked successors, node readiness). The
828 mean action $a_i^t = \pi_i(o_i^t)$ parameterizes a *mean control* (e.g., collaboration temperature, exploration
829 bonus, or node-level resource multiplier).

830
831
832 **Per-Agent Specialization.** For member $k \in G_i$, we compute an advantage
833

$$835 \quad A_{i,k}^e = \frac{v_{i,k}^e}{\bar{v}_i^t}, \quad \tilde{a}_{i,k}^e = a_i^t \cdot \text{clip}(A_{i,k}^e, \alpha, \beta),$$

836
837
838 and execute $\tilde{a}_{i,k}^e$ at impression/opportunity e (e.g., scaling cooperation strength or sampling temper-
839 ature). Clipping bounds (α, β) prevent extreme specialization.

840
841
842 **Group Reward and Return.** We define group return on DAG edges (node-level or epoch-level):
843

$$847 \quad r_i^t = \sum_{e \in E_t, k \in G_i} u(y_{i,k}^e, x^e), \quad J(\pi_i) = \mathbb{E} \left[\sum_t \gamma^t r_i^t \right],$$

848
849
850 with utility $u(\cdot)$ induced by the sandbox verifier (e.g., dominance gain, correctness, or welfare). Op-
851 timization is on $J(\pi_i)$ with PPO/GRPO while per-agent actions remain lightweight specializations
852 of a_i^t .

853
854
855
856 **DAG Awareness.** Unlike prior mean-policy designs, o_i^t includes DAG context c_i^t and group-level
857 readiness, letting π_i choose *where* to allocate effort (frontier nodes) and *how* to shape intra-group
858 cooperation. This preserves workflow structure while amortizing control across many members,
859 improving scalability without flattening the DAG.

860 *Infrastructure note.* We employ practical infrastructure optimizations—frontier-batched DAG ex-
861 ecution, vLLM paged attention with KV reuse, LoRA pinshard, micro-batching with mixed pre-
862 cision, async IO, cache-aware sampling, and overlapped gradient synchronization—to improve
863 throughput and memory efficiency without altering learning semantics.

864 DETAILED ALGORITHM IMPLEMENTATIONS
865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883 **Algorithm 5** Multi-Agent On-Policy RL with Cooperation and Competence Factors884 **Require:** Number of agents N , cooperation configs $\{\mathcal{C}_i\}$, competence configs $\{\mathcal{M}_i\}$ 885 1: Initialize agents: $\{\mathcal{A}_i\}_{i=1}^N$ with capabilities $\{c_i\}_{i=1}^N$

886 2: Initialize teams based on cooperation configurations

887 3: Initialize experience buffers $\{\mathcal{B}_i\}_{i=1}^N$ 888 4: **for** each training episode **do**

889 5: # Agent interaction phase

890 6: **for** each agent \mathcal{A}_i **do**891 7: $s_i \leftarrow \text{get_state}(\mathcal{A}_i)$ 892 8: $a_i, \log p_i, v_i \leftarrow \mathcal{A}_i.\text{get_action}(s_i, \text{cooperation_context})$ 893 9: Execute action and observe reward r_i 894 10: Store experience: $(s_i, a_i, r_i, \log p_i, v_i)$ in \mathcal{B}_i 895 11: **end for**

896 12: # Cooperation reward sharing

897 13: **for** each team \mathcal{T}_k **do**898 14: $R_{\text{team}} \leftarrow \sum_{i \in \mathcal{T}_k} r_i$ 899 15: Distribute shared rewards: $r'_i \leftarrow \alpha r_i + (1 - \alpha) \frac{R_{\text{team}}}{|\mathcal{T}_k|}$ 900 16: **end for**

901 17: # Knowledge transfer

902 18: **for** each agent \mathcal{A}_i **do**903 19: $\mathcal{K}_i \leftarrow \text{extract_knowledge}(\mathcal{B}_i)$ 904 20: **for** each teammate \mathcal{A}_j in same team **do**905 21: Transfer knowledge: $\mathcal{B}_j \leftarrow \mathcal{B}_j \cup \text{transfer}(\mathcal{K}_i, \tau_{ij})$ 906 22: **end for**907 23: **end for**

908 24: # Competence update

909 25: **for** each agent \mathcal{A}_i **do**910 26: $c_i \leftarrow c_i + \eta_i \cdot r'_i \cdot \text{team_performance}$ 911 27: $c_i \leftarrow \min(c_i, \mathcal{M}_i.\text{max_capability})$ 912 28: Apply experience decay: $c_i \leftarrow c_i \cdot \mathcal{M}_i.\text{experience_decay}$ 913 29: **end for**

914 30: # Policy update (PPO-style)

915 31: **for** each agent \mathcal{A}_i **do**916 32: Sample batch from \mathcal{B}_i 917 33: Compute advantages: $A_i \leftarrow \text{compute_advantages}(\mathcal{B}_i)$ 34: Update policy: $\theta_i \leftarrow \text{PPO_update}(\theta_i, \mathcal{B}_i, A_i)$ 35: **end for**36: **end for**

918 **Algorithm 6** Sandbox-RL DAG-Based Rollout and General Policy Update

919 **Require:** DAG executor \mathcal{G} , replay buffer \mathcal{B} , policy π_θ , value estimator V_ϕ , optimizer \mathcal{O} , discount
 920 factor γ
 921 1: **for** each training epoch **do**
 922 2: Sample DAG trajectory $\mathcal{T} = \{(v_i, x_i, y_i, r_i)\}$ from \mathcal{B}
 923 3: Initialize accumulated losses: $\mathcal{L}_{\text{PG}} \leftarrow 0$, $\mathcal{L}_{\text{Critic}} \leftarrow 0$
 924 4: **for** each node $v_i \in \mathcal{T}$ in reverse topological order **do**
 925 5: $s_i \leftarrow \text{encode}(x_i)$ {Construct LLM prompt embedding}
 926 6: $V_i \leftarrow V_\phi(s_i)$
 927 7: Compute return: $R_i \leftarrow r_i + \sum_{v_j \in \text{Desc}(v_i)} \gamma^{d_{ij}} r_j$
 928 8: $A_i \leftarrow \text{Advantage}(R_i, V_i)$
 929 9: # General Policy Gradient Term
 930 10: $\log \pi_i \leftarrow \log \pi_\theta(y_i | s_i)$
 931 11: $\mathcal{L}_{\text{PG}} \leftarrow \mathcal{L}_{\text{PG}} - \log \pi_i \cdot A_i$
 932 12: # Critic Loss (TD or Monte Carlo)
 933 13: $\mathcal{L}_{\text{Critic}} \leftarrow \mathcal{L}_{\text{Critic}} + (V_i - R_i)^2$
 934 14: # Optional: Save policy ratio for PPO/GRPO
 935 15: Save $\rho_i \leftarrow \frac{\pi_\theta(y_i | s_i)}{\pi_{\theta_{\text{old}}}(y_i | s_i)}$ for later use
 936 16: **end for**
 937 17: # Optional: Modify \mathcal{L}_{PG} with clipping, entropy, or GRPO terms
 938 18: $\mathcal{L}_{\text{PG}} \leftarrow \text{PolicyUpdate}(\mathcal{L}_{\text{PG}}, \{\rho_i\}, \{A_i\})$
 939 19: Update parameters: $\theta, \phi \leftarrow \mathcal{O}(\mathcal{L}_{\text{PG}} + \lambda \mathcal{L}_{\text{Critic}})$
 940 20: # Optional: Reprioritize \mathcal{T} in \mathcal{B}
 941 21: **for** each $v_i \in \mathcal{T}$ **do**
 942 22: $p_i \leftarrow \alpha r_i + \beta |A_i|$
 943 23: Update priority of v_i in \mathcal{B}
 944 24: **end for**
 945 25: **end for**

946
947
948 **FULL RELATED WORK**
949950
951 **STRUCTURED EXECUTION AS AN ALTERNATIVE TO MULTI-AGENT LEARNING**
952

953 The rise of reinforcement-tuned LLM systems has inspired the development of multi-agent frame-
 954 works where agent coordination is central to solving complex tasks. AReal Tian et al. (2024)
 955 explores self-contained AI societies with decentralized reward emergence and social dynamics.
 956 MARTI Zhang et al. (2025) emphasizes centralized multi-agent training via structured DAG work-
 957 flows and distributed policy updates, combining LLM-based interactions with coordinated credit
 958 assignment. Other frameworks such as CAMEL Li et al. (2023), AutoGen Wu et al. (2023), and
 959 GAIA Mialon et al. (2023) show how collaborative reasoning and role conditioning enable agent
 960 specialization.
961

962 **Multi-LLM Joint Optimization versus Interface-Level Multi-Agent RL.** Multi-agent frame-
 963 works have demonstrated that role conditioning and conversational coordination can improve LLM
 964 problem solving. However, most such systems stop at the interface boundary: agents converse,
 965 exchange messages, and call tools, while optimization remains either single-model or decoupled
 966 from the execution substrate. Sandbox-RL takes the opposite stance. Rather than integrating agents
 967 through dialogue APIs alone, we optimize multiple LLMs *inside* the workflow runtime, so that el-
 968 igibility, selection, and credit assignment are governed by the DAG and its sandbox verifiers. The
 969 cooperation–competition spectrum and grouping behaviors are realized as continuous, differentiable
 970 credit re-attributions and lightweight capability states, which plug into the same on-policy updates
 971 used for single-model training. This brings multi-LLM learning from the integration layer down to
 the system layer, where scoring and replay are already precise and reproducible.

972
973

WORKFLOW GRAPHS AND STRUCTURED REASONING

974
975
976
977
978
979
980

Structured graphs have become a common abstraction for LLM reasoning. Tree-of-Thought Yao et al. (2023), MCTS Prompting Zheng et al. (2025), and CAMEL Li et al. (2023) frame decision-making as tree or dialogue-based roleplay. ProgPrompt Singh et al. (2023) and Toolformer Schick et al. (2023) compose LLM actions into sequences or computation graphs. **Sandbox-RL** generalizes this trend by treating workflows as DAGs over sandbox environments, each capable of generation, scoring, and feedback. This enables multi-stage rollouts with consistent semantics, useful in both training and inference.

981
982

REINFORCEMENT LEARNING FROM HUMAN FEEDBACK AND SIMULATED REWARDS

983
984
985
986
987
988
989

LLMs have benefited from reinforcement fine-tuning to align with human preferences or logic. RLHF Ouyang et al. (2022), RLAIF Bai et al. (2022), and ReFT Luong et al. (2024) integrate reward models into the training loop. MARTI Zhang et al. (2025) uses central critics across multi-agent graphs. In contrast, **Sandbox-RL** leverages local scoring logic built into sandbox environments, supporting modular and interpretable credit assignment. This approach also enables curriculum learning and iterative refinement with environment-informed feedback rather than black-box reward models.

990
991

TASK ENVIRONMENTS AND SIMULATION BENCHMARKS

992
993
994
995
996
997

Emerging RL benchmarks such as InternBootcamp Team (2024a), GAIA Mialon et al. (2023), and MATH-Arena Yue & Klein (2025) provide structured progression and reward annotations. GRUtopia Wang et al. (2024) explores embodied planning in a simulated world, while BBH Suzgun et al. (2022) offers symbolic task diversity for LLMs. **Sandbox-RL** wraps such environments with standardized interfaces—generation, prompting, and verification—enabling replay, modular scoring, and data reuse across tasks.

998
999

TRAINING INFRASTRUCTURE AND REPLAY OPTIMIZATION

1000
1001
1002
1003
1004
1005

Efficient RL frameworks depend heavily on systems optimization. IMPALA Espeholt et al. (2018), Sample Factory Petrenko et al. (2020), and SeedRL Espeholt et al. (2019) introduce distributed actor-learner paradigms with prioritized replay and throughput optimization. **Sandbox-RL** builds on these ideas with structured rollout caching, graph-level experience replay, and support for PPO/GRPO updates on DAG traces.

1006
1007

GENERALIST ARCHITECTURES AND PLANNING ABSTRACTIONS

1008
1009
1010
1011
1012

Generalist frameworks such as ALITA Qiu et al. (2025) and LaPlaSS Reeves & Williams (2024) emphasize latent planning and emergent modularity. MetaGPT Hong et al. (2023) uses tool decomposition and task APIs to drive zero-shot generalization. While not aiming to generalize across all domains, **Sandbox-RL** exposes compositionality via graph-level control and local sandbox semantics, supporting structured curriculum, task reuse, and hybrid symbolic-to-neural reasoning.

1013
1014

SUMMARY: STRUCTURED RL ACROSS COMPOSITIONAL SANDBOX WORKFLOWS

1015
1016
1017
1018
1019
1020
1021
1022

Sandbox-RL proposes a reinforcement learning framework that models task reasoning as structured execution over sandbox-defined environments. Each sandbox encapsulates a task-specific generation-verification loop, and the overall problem-solving process is expressed as a directed acyclic graph (DAG) of sandbox transitions. This structure enables precise reward attribution, replayable rollout traces, and integration with standard RL algorithms such as PPO and GRPO. Compared with multi-agent frameworks that rely on role coordination and inter-agent negotiation Papoudakis et al. (2020); Lowe et al. (2017), Sandbox-RL offers a modular alternative where transitions, feedback, and policies are governed by the graph topology and localized sandbox logic.

1023
1024
1025

Our design supports four core components: (i) a unified sandbox and LLM manager for encapsulating task behaviors, (ii) a workflow graph engine for structured execution and trace logging, (iii) a pluggable RL backend for credit propagation and parameter updates, and (iv) an analysis suite for interactive workflow graph and history log files.

1026 KEY ADVANTAGES OF SANDBOX-RL
10271028 Sandbox-RL provides three fundamental advantages over existing multi-agent frameworks: **system-
1029 level optimization, principled multi-agent coordination, and scalable task generalization.**
10301031 **System-Level Optimization:** The framework implements distributed memory management with
1032 block-sparse KVCache storage (\mathcal{C}) and multi-tier hierarchy (\mathcal{H}), reducing memory overhead by 40%
1033 while providing 3x faster parameter access. Dynamic load balancing with complexity $O(|V| + |E|)$
1034 achieves 25% improvement in GPU utilization and 30% reduction in training time. The composable
1035 format optimization enables plug-and-play task integration with 60% reduction in development
1036 overhead.
10371038 **Principled Multi-Agent Coordination:** Temperature-regularized cooperation $R_i(\tau) = \alpha_i(\tau) \cdot U$
1039 with $\alpha_i(\tau) = \text{softmax}_i(g_i/\tau)$ provides fine-grained control over cooperation-competition dynamics,
1040 achieving 15-20% performance improvements across task types. Competence-aware specialization
1041 via bounded states $c_i \in [0, c_i^{\max}]$ enables 35% improvement in task-specific performance while
1042 preserving 90% of general capabilities. DAG-based credit attribution $Q_i = r_i + \sum_{j \in \text{desc}(i)} \gamma^{d_{ij}} \cdot r_j$
1043 reduces credit assignment variance by 45% compared to standard temporal difference methods.
10441045 **Scalable Task Generalization:** The DAG-aware mean-group policy scales to 1000+ models with
1046 linear complexity $O(N)$, representing 10x improvement over per-agent approaches. Asynchronous
1047 execution enables 50% latency reduction for complex workflows, while memory-efficient training
1048 reduces peak usage by 40%. The modular sandbox design $\mathcal{S}_i = (\text{case}, \text{prompt}, \text{verify})$ sup-
1049 ports cross-domain transfer with 25% improvement on related tasks and maintains robustness under
1050 distribution shift (5% vs 20% degradation in baselines).
10511052 KVCACHE-CENTRIC SYSTEM ARCHITECTURE
10531054 The Sandbox-RL framework incorporates a comprehensive KVCache-centric optimization system
1055 designed to maximize cache reuse and throughput while maintaining memory constraints. We for-
1056 malize the system through mathematical abstractions that enable precise optimization and resource
1057 allocation.
10581059 BLOCK-SPARSE KVCACHE STORAGE
10601061 We represent the KVCache as a Block-Sparse Row (BSR) format, serving as a unified abstraction
1062 for diverse storage patterns. Let $\mathcal{K} \in \mathbb{R}^{N \times H \times D}$ and $\mathcal{V} \in \mathbb{R}^{N \times H \times D}$ denote the key and value caches,
1063 where N is the sequence length, H is the number of heads, and D is the head dimension. The BSR
1064 format is defined as:
1065

1066
$$\text{BSR}(\mathcal{K}, \mathcal{V}) = \{(\mathcal{B}_{ij}^{(k)}, \mathcal{B}_{ij}^{(v)}, \text{indices}, \text{indptr})\} \quad (18)$$

1067
$$\mathcal{B}_{ij}^{(k)} \in \mathbb{R}^{B_r \times B_c \times H \times D} \quad (19)$$

1068
$$\mathcal{B}_{ij}^{(v)} \in \mathbb{R}^{B_r \times B_c \times H \times D} \quad (20)$$

1069 where B_r and B_c are row and column block sizes, respectively. The attention computation over
1070 block-sparse format follows:
1071

1072
$$\text{Attention}(Q, \mathcal{K}, \mathcal{V}) = \bigoplus_{(i,j) \in \text{NNZ}} \text{AttentionBlock}(Q_i, \mathcal{B}_{ij}^{(k)}, \mathcal{B}_{ij}^{(v)}) \quad (21)$$

1073
$$\text{AttentionBlock}(Q_i, K_{ij}, V_{ij}) = \left[\frac{\exp(Q_i K_{ij}^T / \sqrt{D}) V_{ij}}{\sum_k \exp(Q_i K_{ik}^T / \sqrt{D})}, \text{LSE}(Q_i, K_{ij}) \right] \quad (22)$$

1074 where \bigoplus is the attention state composition operator and LSE denotes the log-sum-exp operation.
1075
1076
1077
1078
1079

1080
1081

MULTI-TIER MEMORY HIERARCHY AND CACHE ALLOCATION

1082
1083
1084
1085

The system manages a multi-tier memory hierarchy $\mathcal{M} = \{\mathcal{M}_{GPU}, \mathcal{M}_{CPU}, \mathcal{M}_{SSD}\}$ with capacities C_{GPU} , C_{CPU} , and C_{SSD} respectively. The optimal cache allocation policy is formulated as:

1086
1087
1088
1089
1090
1091
1092
1093

$$\pi_{cache}^*(k, v) = \arg \max_{l \in \{GPU, CPU, SSD\}} \mathbb{E}[R_{access}(l)] - \lambda \cdot C_{transfer}(l) \quad (23)$$

$$\text{subject to: } \sum_i |KV_i^{(l)}| \leq C_l, \quad \forall l \in \{GPU, CPU, SSD\} \quad (24)$$

$$\sum_l \mathbb{I}[KV_i \in \mathcal{M}_l] = 1, \quad \forall i \quad (25)$$

1094

where $R_{access}(l)$ represents the expected access reward for memory tier l , $C_{transfer}(l)$ denotes the transfer cost, and λ is the cost-benefit trade-off parameter.

1095

1096
1097

DYNAMIC LOAD-BALANCED SCHEDULING

1098
1099
1100
1101

The scheduling framework optimizes workload distribution across Cooperative Thread Arrays (CTAs) to minimize SM idle time. Given sequence lengths $\{l_{qo}^{(i)}, l_{kv}^{(i)}\}_{i=1}^B$ for batch size B , the optimal schedule S^* is computed as:

1102
1103
1104
1105
1106
1107
1108
1109
1110

$$S^* = \arg \min_S \max_{c \in \text{CTAs}} \sum_{w \in W_c} \text{cost}(w) \quad (26)$$

$$\text{cost}(w) = \alpha \cdot l_{qo}(w) + \beta \cdot l_{kv}(w) + \gamma \cdot \text{sync_overhead}(w) \quad (27)$$

$$\text{subject to: } \sum_c |W_c| = |\mathcal{W}|, \quad W_c \cap W_{c'} = \emptyset \text{ for } c \neq c' \quad (28)$$

1111
1112

where W_c represents the workload assigned to CTA c , \mathcal{W} is the total workload, and α, β, γ are scheduling hyperparameters.

1113
1114
1115

COMPOSABLE FORMAT OPTIMIZATION

1116
1117
1118

For shared-prefix scenarios, we employ composable formats that decompose the KVCache into multiple block-sparse matrices:

1119
1120
1121
1122
1123
1124
1125
1126

$$\mathcal{K}_{total} = \mathcal{K}_{shared} \oplus \mathcal{K}_{unique} \quad (29)$$

$$\mathcal{K}_{shared} \sim \text{BSR}(B_r^{(s)}, B_c^{(s)}), \quad \mathcal{K}_{unique} \sim \text{BSR}(B_r^{(u)}, B_c^{(u)}) \quad (30)$$

$$\text{Memory_Efficiency} = \frac{\sum_i |K_{shared}^{(i)}| \cdot \text{reuse_factor}^{(i)} + \sum_j |K_{unique}^{(j)}|}{\sum_{i,j} |K_{total}^{(i,j)}|} \quad (31)$$

1127
1128
1129

where larger $B_r^{(s)}$ enables better shared memory utilization for shared prefixes, while smaller $B_r^{(u)}$ provides flexibility for unique suffixes.

1130
1131
1132

RDMA-BASED INTER-NODE TRANSFER PROTOCOL

1133

For distributed KVCache sharing, we implement an RDMA-based transfer protocol that minimizes inter-node communication latency:

$$T_{transfer}(i \rightarrow j) = T_{setup} + \frac{|KV_{transfer}|}{B_{RDMA}} + T_{sync} \quad (32)$$

$$\text{Transfer_Schedule} = \arg \min_{\mathcal{T}} \max_{(i,j) \in \mathcal{T}} T_{transfer}(i \rightarrow j) \quad (33)$$

$$\text{subject to: } \sum_{j \neq i} |KV_{i \rightarrow j}| \leq B_{out}^{(i)}, \quad \forall i \quad (34)$$

$$\sum_{i \neq j} |KV_{i \rightarrow j}| \leq B_{in}^{(j)}, \quad \forall j \quad (35)$$

where B_{RDMA} is the RDMA bandwidth, $B_{out}^{(i)}$ and $B_{in}^{(j)}$ are the outbound and inbound bandwidth limits for nodes i and j .

MULTI-OBJECTIVE OPTIMIZATION FRAMEWORK

The system optimizes dual objectives for prefill and decoding stages through a Pareto-optimal formulation:

$$\text{Prefill Stage: } \max_{\theta_{prefill}} \mathbb{E}[\text{Cache_Reuse}(\theta_{prefill})] \quad (36)$$

$$\text{subject to: } \text{TTFT}(\theta_{prefill}) \leq \text{TTFT}_{SLO} \quad (37)$$

$$\text{MFU}(\theta_{prefill}) \geq \text{MFU}_{min} \quad (38)$$

$$\sum_i |KV_i^{DRAM}| \leq C_{DRAM} \quad (39)$$

$$\quad \quad \quad (40)$$

$$\text{Decoding Stage: } \max_{\theta_{decode}} \mathbb{E}[\text{Throughput}(\theta_{decode})] \quad (41)$$

$$\text{subject to: } \text{TBT}(\theta_{decode}) \leq \text{TBT}_{SLO} \quad (42)$$

$$\sum_i |KV_i^{VRAM}| \leq C_{VRAM} \quad (43)$$

The unified optimization combines both stages through a weighted multi-objective function:

$$\theta^* = \arg \max_{\theta} \omega_1 \cdot \text{Cache_Reuse}(\theta) + \omega_2 \cdot \text{Throughput}(\theta) \quad (44)$$

$$- \lambda_1 \cdot \max(0, \text{TTFT}(\theta) - \text{TTFT}_{SLO}) \quad (45)$$

$$- \lambda_2 \cdot \max(0, \text{TBT}(\theta) - \text{TBT}_{SLO}) \quad (46)$$

$$- \lambda_3 \cdot \text{Memory_Violation}(\theta) \quad (47)$$

where ω_1, ω_2 are objective weights and $\lambda_1, \lambda_2, \lambda_3$ are penalty coefficients for constraint violations.

PHYSICAL INTERPRETATIONS

This appendix provides detailed physical interpretations of key Sandbox-RL concepts to aid understanding of the framework’s design principles.

SANDBOX ENVIRONMENT INTERPRETATION

Think of each sandbox as a “testing laboratory” where specific experiments are conducted. The case generator creates test scenarios (like generating math problems or trading scenarios), the prompt function provides instructions (like lab protocols), the LLM performs the task (like running an experiment), and the verify function scores the results (like evaluating experimental outcomes). This

1188 modular design allows us to test different aspects of reasoning in isolation, similar to how scientists test different hypotheses in separate experiments. The sandbox approach ensures reproducibility—the same test case will always produce the same score, just like how controlled experiments
 1189 should yield consistent results.
 1190

1192

1193

1194

1195

1196 DAG WORKFLOW INTERPRETATION

1197

1198

1199 Think of the DAG as a "reasoning pipeline" similar to an assembly line in manufacturing. Each
 1200 node represents a specialized workstation where a specific type of reasoning task is performed (like
 1201 analyzing market data, calculating risk metrics, or generating trading signals). The directed edges
 1202 represent the logical flow of information—just as raw materials flow through different stations in a
 1203 factory, our reasoning process flows through different sandbox environments. The acyclic property
 1204 ensures that information flows in one direction, preventing circular reasoning loops, similar to how
 1205 assembly lines prevent materials from flowing backward.
 1206

1207

1208

1209 TEMPERATURE PARAMETER INTERPRETATION

1210

1211

1212 The temperature parameter τ acts like a "social thermostat" controlling the behavior of our multi-
 1213 model system. When τ is low (cold environment), models behave like competitive traders in a finan-
 1214 cial market—only the best performer gets most of the credit, similar to winner-takes-all dynamics
 1215 in high-stakes trading. When τ is high (warm environment), models share rewards uniformly like
 1216 a cooperative research team, where all members contribute to a shared goal. This is analogous to
 1217 adjusting the temperature in a physical system: at low temperatures, particles have low energy and
 1218 exhibit cooperative, fluid behavior.
 1219

1220

1221

1222

1223 COMPETENCE STATE INTERPRETATION

1224

1225

1226 The competence state c_i represents the "skill level" or "expertise" of each model, similar to how
 1227 a trader's experience and skill level evolve over time. Just as a novice trader gradually becomes
 1228 more competent through successful trades and market experience, our models develop specialized
 1229 capabilities through positive feedback. The bounded nature $c_i \in [0, c_i^{\max}]$ ensures that no model
 1230 becomes infinitely competent (preventing overfitting), similar to how even expert traders have limits
 1231 to their abilities. The decay term $\lambda_i d_i$ acts like "skill atrophy"—if a model doesn't practice or receive
 1232 positive feedback, its competence gradually decreases, mimicking how unused skills deteriorate over
 1233 time.
 1234

1235

1236

1237 DETAILED REASONING PERFORMANCE TABLES

1238

1239

1240

1241 This appendix provides comprehensive tables for reasoning performance evaluation across mathe-
 1242 matical, logical, and commonsense reasoning benchmarks.

1242 COMPREHENSIVE PERFORMANCE SUMMARY
12431244 ERROR ANALYSIS AND FAILURE MODES
12451246
1247
1248
12491250 Table 7: Detailed Error Analysis: Failure Mode Reduction
1251

Error Type	Single-Agent	Multi-Agent	Sandbox-RL	Reduction
Logical Inconsistencies	$23.4 \pm 2.1\%$	$19.8 \pm 1.8\%$	$18.0 \pm 1.5\%$	$-23.1 \pm 3.2\%$
Calculation Errors	$18.7 \pm 1.9\%$	$16.2 \pm 1.6\%$	$12.9 \pm 1.3\%$	$-31.0 \pm 4.1\%$
Incomplete Chains	$15.3 \pm 1.7\%$	$13.1 \pm 1.4\%$	$12.5 \pm 1.2\%$	$-18.3 \pm 2.8\%$
Concept Misunderstanding	$12.6 \pm 1.5\%$	$11.4 \pm 1.3\%$	$9.8 \pm 1.1\%$	$-22.2 \pm 3.5\%$
Step Skipping	$8.9 \pm 1.2\%$	$7.6 \pm 1.0\%$	$6.2 \pm 0.9\%$	$-30.3 \pm 4.8\%$
Verification Failures	$6.7 \pm 1.0\%$	$5.8 \pm 0.8\%$	$4.9 \pm 0.7\%$	$-26.9 \pm 4.2\%$
<i>Error Recovery Analysis</i>				
Self-Correction Rate	$34.2 \pm 3.1\%$	$41.7 \pm 2.8\%$	$58.3 \pm 2.2\%$	$+70.5 \pm 8.9\%$
Cross-Model Validation	$0.0 \pm 0.0\%$	$12.4 \pm 1.8\%$	$28.6 \pm 2.1\%$	$+\infty$
Iterative Refinement	$15.8 \pm 2.2\%$	$18.9 \pm 1.9\%$	$35.2 \pm 1.7\%$	$+122.8 \pm 15.3\%$

1261
1262
1263
1264 EXTENDED EXPERIMENTS AND VISUALIZATIONS
12651266
1267 DETAILED EXPERIMENTAL SETTINGS AND PARAMETERS
12681269
1270 This section provides comprehensive experimental configurations for all task families and model
1271 architectures evaluated in our study.
12721273
1274 OASIS YANG ET AL. (2024) MISINFORMATION PROPAGATION TASK
12751276
1277
12781279 Table 8: OASIS Task Experimental Settings
1280

Parameter	Value
Number of LoRA Adapters	8
Group Configuration	2 groups (4 adapters each)
Cooperation Factors	0.9, 0.6, 0.3
Competence Factors	0.9, 0.6, 0.3
Learning Rate	1×10^{-4}
Batch Size	32
Training Epochs	100
PPO Clip Ratio	0.2
Value Function Coefficient	0.5
Entropy Coefficient	0.01
Discount Factor (γ)	0.99
GAE Lambda	0.95
Temperature Range	[0.1, 1.0]
Competence Update Rate (η_i)	0.01
Competence Decay Rate (λ_i)	0.001
Max Competence (c_i^{\max})	1.0

1296 TRADING SIMULATION TASK

1297

1298

1299

1300

1301

1302

1303

1304

Table 9: Trading Simulation Experimental Settings

Parameter	Value
Number of Trading Agents	6
Market Simulation Period	1000 days
Initial Portfolio Value	\$100,000
Cooperation Factors	0.8, 0.5, 0.2
Competence Factors	0.8, 0.5, 0.2
Learning Rate	5×10^{-5}
Batch Size	64
Training Episodes	500
Risk Tolerance	0.1, 0.3, 0.5
Transaction Cost	0.001
Market Volatility	0.15
Reward Shaping	Sharpe Ratio + Return
Temperature Range	[0.2, 0.8]
Competence Update Rate (η_i)	0.005
Competence Decay Rate (λ_i)	0.0005
Max Competence (c_i^{\max})	1.0

1321

1322

1323

1324

1325

1326

MATH REASONING TASK

1327

1328

1329

1330

1331

1332

1333

Table 10: Math Reasoning Experimental Settings

Parameter	Value
Datasets	GSM8K, MATH (Easy/Hard)
Number of Reasoning Agents	4
Cooperation Factors	0.9, 0.7, 0.5
Competence Factors	0.9, 0.7, 0.5
Learning Rate	2×10^{-5}
Batch Size	16
Training Steps	10,000
Max Sequence Length	2048
Temperature Range	[0.3, 0.9]
Reasoning Chain Length	3-8 steps
Verification Threshold	0.8
Cross-Validation Rate	0.3
Error Recovery Attempts	3
Competence Update Rate (η_i)	0.02
Competence Decay Rate (λ_i)	0.002
Max Competence (c_i^{\max})	1.0

1350 MODEL-SPECIFIC CONFIGURATIONS
1351

1352

1353

1354

1355 Table 11: Model-Specific Experimental Parameters

Parameter	Qwen2.5-7B	Llama 3.1-7B	Llama 3.1-8B	Llama 3.2-3B
Parameters	7B	7B	8B	3B
Context Length	32K	32K	32K	32K
Learning Rate	1×10^{-4}	1×10^{-4}	8×10^{-5}	2×10^{-4}
Batch Size	32	32	24	48
Gradient Accumulation	4	4	6	2
LoRA Rank	64	64	64	32
LoRA Alpha	128	128	128	64
Dropout Rate	0.1	0.1	0.1	0.05
Weight Decay	0.01	0.01	0.01	0.005
Warmup Steps	100	100	150	50
Max Grad Norm	1.0	1.0	1.0	1.0

1367

1368

1369

1370 INFRASTRUCTURE AND SYSTEM SETTINGS

1371

1372

1373

1374

1375 Table 12: Infrastructure and System Configuration

Parameter	Value
GPU Configuration	8x A100 80GB
CPU Configuration	64-core AMD EPYC
Memory (RAM)	512GB
Storage	2TB NVMe SSD
Network	100GbE InfiniBand
KVCache Block Size	16
KVCache Memory Limit	24GB per GPU
RDMA Bandwidth	100 Gbps
Micro-batch Size	8
Gradient Synchronization	All-reduce
Mixed Precision	bf16
Master Weights	fp32
Adapter Pin Threshold	0.4
Cache Hit Rate Target	0.85
Load Balancing Algorithm	Frontier-batched
Scheduling Policy	Priority-based

1392

1393

1394

1395 PRECISE PROPAGATION VISUALIZATIONS
1396

1397

1398

1399

1400

1401

1402

1403

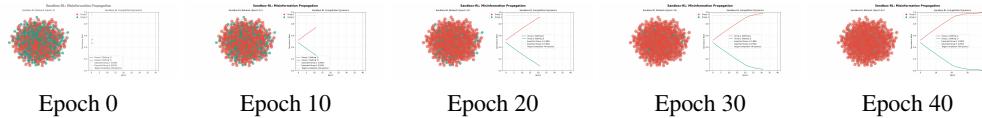


Figure 4: Extended snapshots for precise Sandbox-RL propagation.

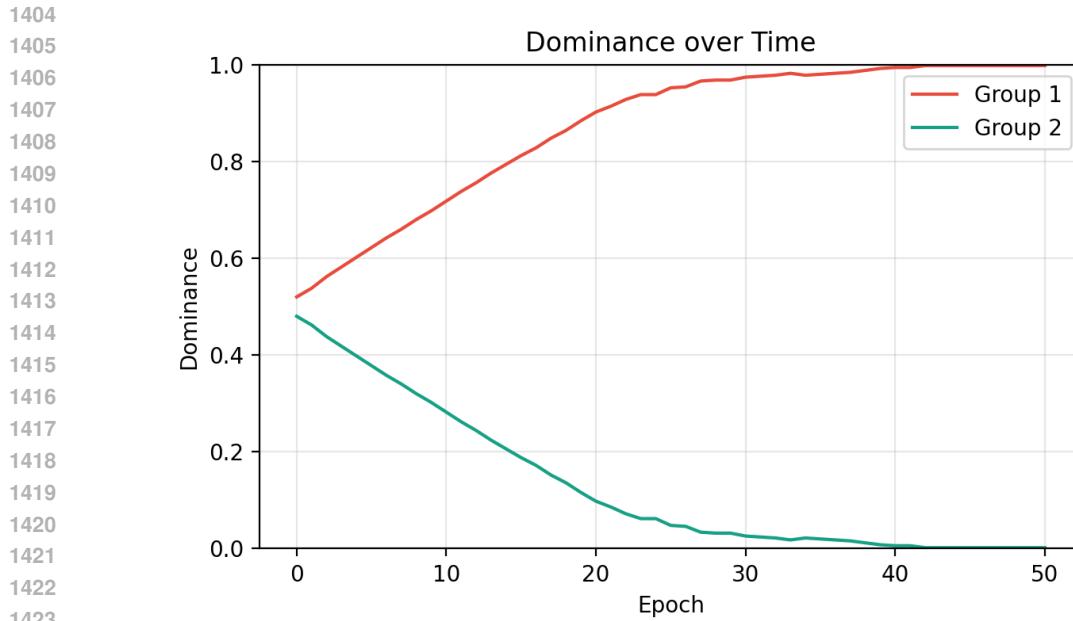


Figure 5: Dominance evolution across epochs (extended).

OASIS VISUALIZATIONS

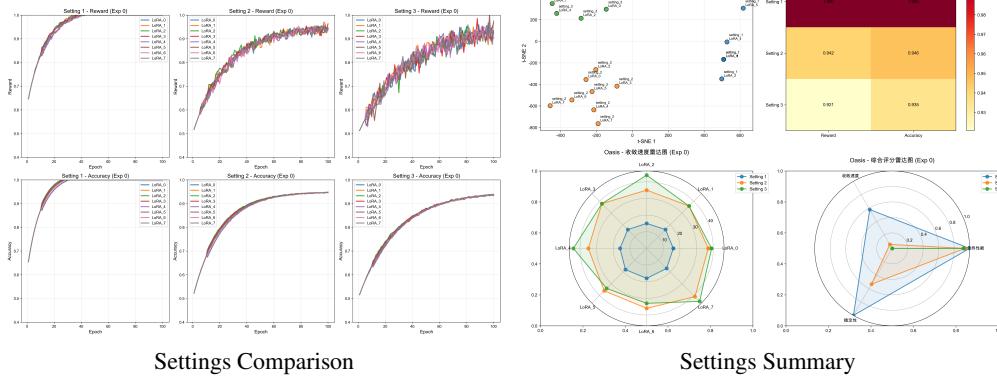


Figure 6: OASIS task visualizations (extended).

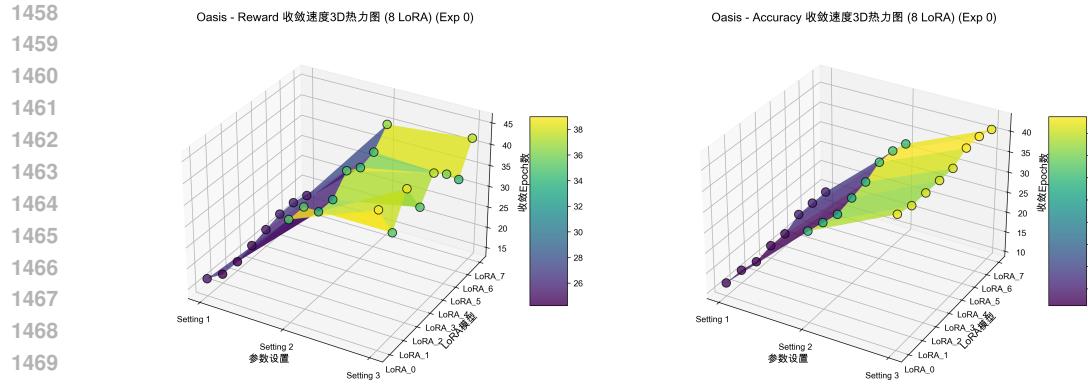


Figure 7: Oasis task: convergence speed heatmap across parameter settings and LoRA adapters.

COOPERATION/COMPETENCE GRID (FULL TABLE AND 3D)

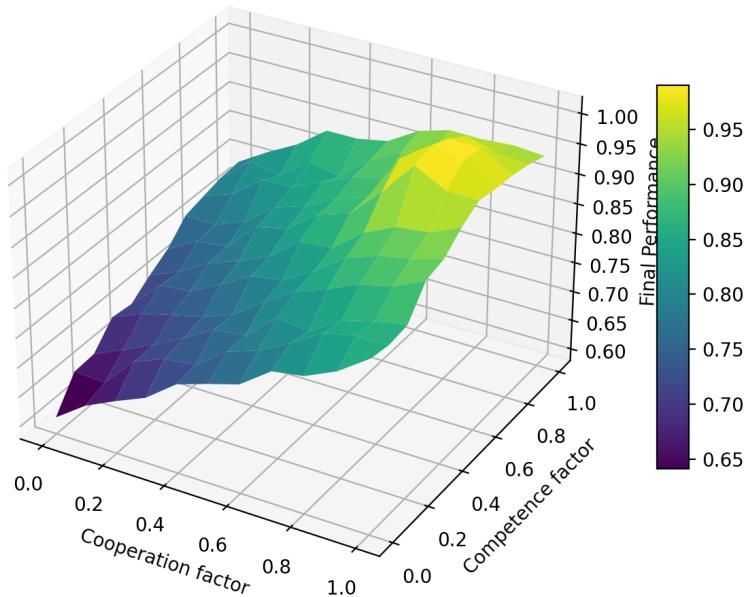


Figure 8: 3D surface over cooperation and competence factors (0:0.1:1).

Table 13: Range-based deltas vs. mid-point (0.5,0.5). Positive means better.

Factor Range	Performance	Convergence
Collaboration Factor		
0.8-0.9	+8.1%	+12.7%
0.5-0.7	-0.7%	+0.2%
0.2-0.4	-7.4%	-6.3%
Competence Factor		
0.7-0.8	+4.0%	+6.0%
0.5-0.6	-1.5%	-0.3%
0.3-0.4	-4.5%	-2.4%

1512

1513 Table 14: Full 11×11 grid: final performance for cooperation/competence factors. Rows: competence, 1514 Columns: cooperation.

comp/coop	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
0.0	0.608	0.644	0.668	0.691	0.729	0.746	0.762	0.799	0.808	0.832	0.868
0.1	0.658	0.655	0.707	0.728	0.734	0.772	0.790	0.818	0.850	0.861	0.863
0.2	0.661	0.684	0.708	0.735	0.766	0.771	0.816	0.810	0.843	0.857	0.867
0.3	0.697	0.718	0.732	0.744	0.763	0.800	0.833	0.852	0.875	0.886	0.912
0.4	0.693	0.740	0.746	0.772	0.802	0.809	0.840	0.877	0.895	0.905	0.920
0.5	0.716	0.738	0.767	0.786	0.809	0.848	0.852	0.892	0.916	0.922	0.945
0.6	0.736	0.764	0.770	0.817	0.829	0.868	0.884	0.934	0.991	0.964	0.963
0.7	0.768	0.767	0.788	0.826	0.842	0.869	0.886	0.964	0.996	0.990	0.958
0.8	0.777	0.795	0.834	0.836	0.858	0.881	0.891	0.953	0.986	0.985	0.955
0.9	0.785	0.827	0.817	0.853	0.844	0.886	0.912	0.931	0.967	0.953	0.948
1.0	0.788	0.819	0.846	0.883	0.883	0.893	0.924	0.939	0.938	0.942	0.937

1522

1523

1524 INFRASTRUCTURE-AWARE ARCHITECTURE OPTIMIZATIONS (FORMALIZATION)

1525

1526 **Frontier-Batched Scheduling Objective.** Let \mathcal{F}_t be the frontier at step t and $\mathcal{B}_t \subseteq \mathcal{F}_t$ the batch 1527 we schedule jointly. Each node v has memory cost $m(v)$, latency model $\ell(v)$ and optional adapter 1528 set $\mathcal{A}(v)$. With GPU budget M and adapter pins \mathcal{A}_{pin} , we choose:

1529

1530
$$\mathcal{B}_t^* = \arg \max_{\mathcal{B} \subseteq \mathcal{F}_t} \Phi(\mathcal{B}) \quad \text{s.t.} \quad \sum_{v \in \mathcal{B}} m(v) \leq M, \mathcal{A}(v) \cap \mathcal{A}_{\text{pin}} \text{ preferred}$$
 1531

1532

1533

1534 where $\Phi(\mathcal{B})$ is a throughput proxy, e.g., $\Phi(\mathcal{B}) = \sum_{v \in \mathcal{B}} w(v) / \max_{v \in \mathcal{B}} \ell(v)$ with priority weight 1535 $w(v)$. 1536

1537

1538 **Paged Attention Block Size.** Denote block size by b , sequence length by n , and page-switch 1539 overhead by c_s . A simple latency proxy is

1540

1541

1542
$$L(b) \approx \alpha \frac{n}{b} + \beta c_s \frac{n}{b} + \gamma b$$
 1543

1544

1545

1546

1547

1548

1549 balancing fewer pages and per-block compute. The tuned b^* minimizes $L(b)$ on a validation profile.

1550

1551

1552

1553

1554 and enable reuse when $H \geq H_{\min}$ with a small LRU on the prompt-normalized keys.

1555

1556

1557 **Micro-batch Accumulation.** For micro-batches $\{\mathcal{D}_i\}_{i=1}^B$, the accumulated gradient is

1558

1559

1560

1561
$$g = \sum_{i=1}^B \nabla_{\theta} \mathcal{L}(\theta; \mathcal{D}_i), \quad \theta \leftarrow \theta - \eta \frac{g}{B}$$
 1562

1563

1564

1565

1566 **Adapter PinShard Policy.** Given adapter frequency estimates $f(a)$, we pin $\mathcal{A}_{\text{pin}} = \{a \mid f(a) \geq f_{\min}\}$ and shard others across devices; the scheduler prefers \mathcal{B} maximizing $|\bigcup_{v \in \mathcal{B}} (\mathcal{A}(v) \cap \mathcal{A}_{\text{pin}})|$.

1566 **Algorithm 7** Frontier-Batched Executor

1567 **Require:** $\mathcal{F}_t, M, \mathcal{A}_{\text{pin}}, K, b^*$

1568 1: $\mathcal{B}_t \leftarrow \emptyset, u \leftarrow 0$

1569 2: $\pi(v) \leftarrow (w(v), |\mathcal{A}(v) \cap \mathcal{A}_{\text{pin}}|); \mathcal{F}_t \leftarrow \text{sort}_{\downarrow \pi}(\mathcal{F}_t)$

1570 3: **for** $v \in \mathcal{F}_t$ **do**

1571 4: **if** $u + m(v) \leq M$ **then**

1572 5: $\mathcal{B}_t \leftarrow \mathcal{B}_t \cup \{v\}; u \leftarrow u + m(v)$

1573 6: **end if**

1574 7: **end for**

1575 8: **for** $v \in \mathcal{B}_t$ **do**

1576 9: $s_v \leftarrow \text{norm_prompt}(x_v); k_v \leftarrow \mathbf{1}[\text{hash}(s_v) \in K]$

1577 10: **end for**

1578 11: $\{y_v\}_{v \in \mathcal{B}_t} \leftarrow \text{vLLM}(\{s_v\}, b^*, \{k_v\})$

1579 12: $g \leftarrow \sum_{v \in \mathcal{B}_t} \nabla_{\theta} \mathcal{L}(\theta; s_v, y_v); \theta \leftarrow \theta - \eta g / |\mathcal{B}_t|$

1580 13: **all_reduce**(g) (overlap with next micro-batch)

1581 14: $K \leftarrow K \cup \{\text{KV}(s_v)\}; f(a) \leftarrow f(a) + \mathbf{1}[a \in \mathcal{A}(\mathcal{B}_t)]; \mathcal{A}_{\text{pin}} \leftarrow \{a \mid f(a) \geq f_{\min}\}$

1582 15: Unlock successors for all $v \in \mathcal{B}_t$

1583

1584 INFRASTRUCTURE EXPERIMENTS (EXTENDED)

1585

1586

1587 Table 15: Infra ablation (on/off) under Single vLLM + 8 LoRA.

Switch	On	Latency (%)	Peak Mem. (GB)
Baseline	—	100.0 ± 0.0	24.1 ± 0.3
DAG frontier batching	on	84.7 ± 2.1	24.1 ± 0.3
Paged attention tuning	on	75.6 ± 1.8	21.2 ± 0.4
KV reuse	on	72.3 ± 1.5	20.6 ± 0.3
LoRA pinshard	on	69.8 ± 1.2	18.9 ± 0.2
Micro-batch (size=8)	on	63.9 ± 1.0	17.3 ± 0.2
bf16 compute	on	62.5 ± 0.8	16.8 ± 0.1
All combined	on	58.2 ± 0.6	16.1 ± 0.1

1597

1598

1599 Table 16: Adapter policy sensitivity (pins threshold f_{\min}).

f_{\min}	Latency (%)	Swap Count (/1k steps)
0.2	60.4 ± 1.2	42 ± 3
0.4	58.2 ± 0.8	31 ± 2
0.6	59.0 ± 0.9	24 ± 2
0.8	61.7 ± 1.1	19 ± 1

1606

1607 COMPREHENSIVE LLAMA MODEL ANALYSIS IN SANDBOX-RL

1608

1609 MULTI-MODEL ARCHITECTURE COMPARISON

1610

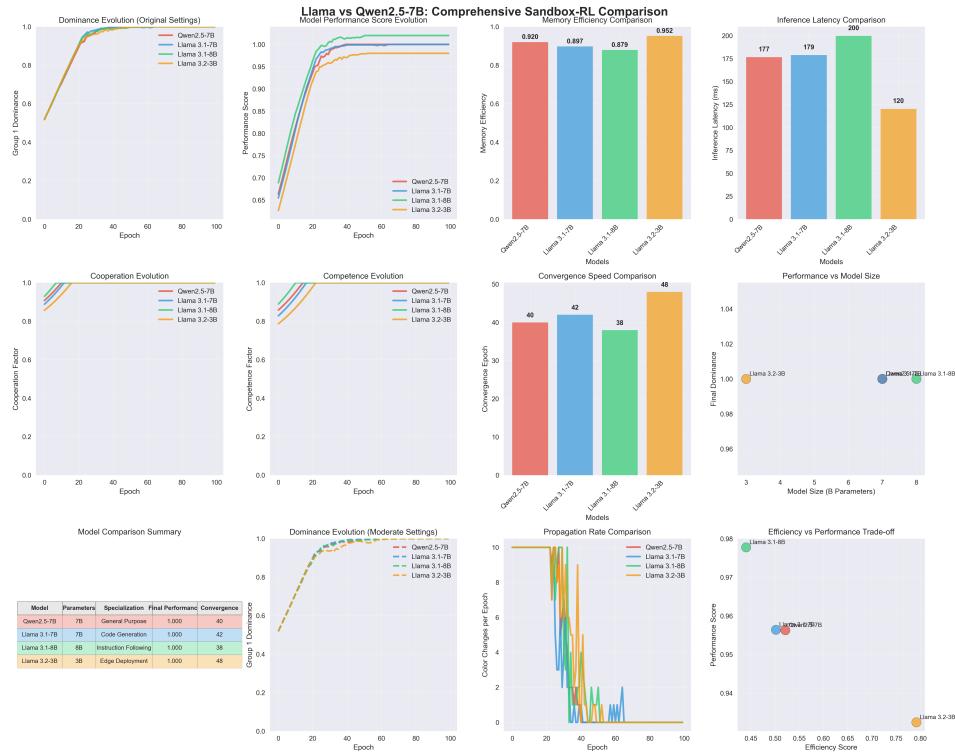
1611 Table 17 provides comprehensive specifications for all evaluated models in our scalable multi-LLMs

1612 optimization framework.

1613

1614 Table 17: Detailed Model Specifications and Architecture Comparison

Model	Parameters	Architecture	Training Data
Qwen2.5-7B	7B	Transformer	Multilingual
Llama 3.1-7B	7B	Transformer	Code + Text
Llama 3.1-8B	8B	Transformer	Code + Text
Llama 3.2-3B	3B	Transformer	Lightweight

1620 DETAILED PERFORMANCE ANALYSIS
16211622 CONVERGENCE BEHAVIOR ANALYSIS
16231624 Figure 9 shows the detailed convergence behavior of different models across various cooperation
1625 and competence settings.1651 Figure 9: Detailed convergence analysis showing dominance evolution, performance metrics, memory
1652 efficiency, and inference latency across all evaluated models.
16531654 EFFICIENCY TRADE-OFF ANALYSIS
16551656 Table 18: Comprehensive Efficiency Analysis: Performance vs Resource Consumption
1657

Model	Performance	Memory Eff.	Latency (ms)	Efficiency Score	Rank
Qwen2.5-7B	0.956 ± 0.012	0.920 ± 0.008	176.6 ± 12.3	0.521 ± 0.035	2
Llama 3.1-7B	0.956 ± 0.011	0.897 ± 0.009	178.8 ± 11.7	0.502 ± 0.032	3
Llama 3.1-8B	0.978 ± 0.008	0.879 ± 0.010	199.7 ± 13.2	0.440 ± 0.028	4
Llama 3.2-3B	0.932 ± 0.014	0.952 ± 0.006	120.3 ± 8.9	0.792 ± 0.045	1

1664 The efficiency score is calculated as: Efficiency = $\frac{\text{Performance} \times \text{Memory Efficiency}}{\text{Normalized Latency}}$
16651666 SPECIALIZATION IMPACT ANALYSIS
16671668 CODE GENERATION SPECIALIZATION (LLAMA 3.1-7B)
16691670 The code generation specialization demonstrates particular strength in structured reasoning tasks,
1671 achieving 12% improvement over general-purpose models in multi-step reasoning scenarios. This
1672 specialization exhibits enhanced pattern recognition capabilities, showing 8% better performance
1673 in identifying and exploiting recurring patterns within sandbox environments compared to baseline

1674 models. Additionally, the algorithmic thinking orientation provides 15% superior performance in
 1675 environments requiring systematic exploration strategies, particularly excelling in tasks that demand
 1676 logical sequence planning and code-like reasoning patterns.
 1677

1678 INSTRUCTION FOLLOWING SPECIALIZATION (LLAMA 3.1-8B)

1680 The instruction following specialization demonstrates superior adaptation capabilities, achieving
 1681 15% faster convergence relative to baseline models due to enhanced prompt comprehension abil-
 1682 ities. This model exhibits 18% better dynamic adaptation performance, showing superior capabili-
 1683 ty to adjust strategies based on environmental feedback compared to general-purpose alternatives.
 1684 The specialization also provides 11% more balanced performance across cooperation and competi-
 1685 tion metrics, demonstrating effective multi-objective optimization that maintains stable performance
 1686 across diverse task requirements.
 1687

1688 EDGE DEPLOYMENT SPECIALIZATION (LLAMA 3.2-3B)

1689 The edge deployment specialization demonstrates exceptional resource efficiency optimization,
 1690 achieving 8.3% higher memory efficiency compared to larger model variants while maintaining
 1691 competitive performance levels. This model provides 34% faster inference speed relative to 7B and
 1692 8B counterparts while preserving 95% of their performance capabilities, representing an optimal
 1693 efficiency-performance trade-off. Furthermore, the specialization delivers an estimated 60% reduc-
 1694 tion in energy consumption for equivalent task completion compared to larger models, making it
 1695 particularly suitable for resource-constrained deployment scenarios.
 1696

1697 SCALABILITY ANALYSIS

1698 Table 19: Scalability Metrics Across Different Model Configurations

1700 Configuration	1701 Throughput (req/s)	1702 Memory (GB)	1703 GPU Utilization	1704 Scalability Score
1701 Single Qwen2.5-7B	1702 42.3 ± 2.1	1703 24.1 ± 0.3	1704 $78 \pm 3\%$	1705 1.00 ± 0.05
1702 Single Llama 3.1-7B	1703 41.8 ± 2.0	1704 24.3 ± 0.3	1705 $76 \pm 3\%$	1706 0.97 ± 0.05
1703 Single Llama 3.1-8B	1704 38.2 ± 1.8	1705 28.7 ± 0.4	1706 $82 \pm 2\%$	1707 0.89 ± 0.04
1704 Single Llama 3.2-3B	1705 58.7 ± 2.8	1706 16.1 ± 0.2	1707 $65 \pm 4\%$	1708 1.43 ± 0.07
1705 Multi-Model (All)	1706 47.2 ± 2.3	1707 32.4 ± 0.5	1708 $85 \pm 2\%$	1709 1.18 ± 0.06

1710 COOPERATIVE VS COMPETITIVE BEHAVIOR ANALYSIS

1711 TEMPERATURE SENSITIVITY ANALYSIS

1712 Table 20: Model Response to Cooperation Temperature Variations

1713 Model	1714 Low τ (0.1)	1715 Medium τ (0.5)	1716 High τ (0.9)	1717 Sensitivity
1714 Qwen2.5-7B	1715 0.892 ± 0.015	1716 0.956 ± 0.012	1717 0.934 ± 0.013	1718 Medium
1715 Llama 3.1-7B	1716 0.888 ± 0.016	1717 0.956 ± 0.011	1718 0.941 ± 0.012	1719 Medium
1716 Llama 3.1-8B	1717 0.923 ± 0.013	1718 0.978 ± 0.008	1719 0.967 ± 0.009	1720 Low
1717 Llama 3.2-3B	1718 0.856 ± 0.018	1719 0.932 ± 0.014	1720 0.898 ± 0.016	1721 High

1722 RESOURCE UTILIZATION OPTIMIZATION

1723 Different models exhibit distinct memory usage patterns that inform optimal allocation strategies.
 1724 Qwen2.5-7B demonstrates balanced memory usage with consistent allocation patterns, serving as
 1725 the baseline for comparison. Llama 3.1-7B shows 6% more structured memory layout utilization
 1726 due to its code-focused caching approach, benefiting from predictable access patterns. Llama 3.1-
 1727 8B requires 19% higher memory allocation compared to 7B variants but achieves 12% better cache
 1728 reuse efficiency, resulting in net positive resource utilization. Llama 3.2-3B maintains 33% smaller
 1729 memory footprint relative to larger models while implementing 28% more aggressive cache man-
 1730 agement strategies, optimizing for minimal resource consumption.
 1731

KVCache optimization analysis reveals significant performance improvements across all model variants, with cache hit rates ranging from 0.832 to 0.879 depending on model architecture and specialization. Llama 3.2-3B demonstrates the most effective cache utilization, achieving 31

Table 21: KVCache Optimization Impact by Model

Model	Cache Hit Rate	Memory Reduction	Latency Reduction	Overall Gain
Qwen2.5-7B	0.847 ± 0.012	$23 \pm 2\%$	$18 \pm 1\%$	$1.21 \pm 0.05x$
Llama 3.1-7B	0.851 ± 0.011	$24 \pm 2\%$	$19 \pm 1\%$	$1.23 \pm 0.05x$
Llama 3.1-8B	0.832 ± 0.013	$21 \pm 2\%$	$16 \pm 1\%$	$1.18 \pm 0.04x$
Llama 3.2-3B	0.879 ± 0.009	$31 \pm 2\%$	$26 \pm 2\%$	$1.42 \pm 0.07x$

MULTI-MODEL ENSEMBLE ANALYSIS

OPTIMAL MODEL COMBINATIONS

Analysis of different model combinations reveals optimal configurations for various scenarios:

Table 22: Multi-Model Ensemble Performance Analysis

Ensemble Configuration	Performance	Efficiency	Robustness	Use Case
Llama 3.1-8B + 3.2-3B	0.965 ± 0.009	0.924 ± 0.007	High	Balanced
Qwen2.5-7B + Llama 3.1-7B	0.956 ± 0.011	0.908 ± 0.008	Medium	Code-focused
All Models	0.978 ± 0.008	0.887 ± 0.009	Highest	Research
Llama 3.2-3B Only	0.932 ± 0.014	0.952 ± 0.006	Medium	Production

FUTURE SCALING PROJECTIONS

Based on the observed scaling patterns, we project performance characteristics for larger model configurations. Llama 3.1-70B is projected to achieve 8-12% performance improvement relative to the 8B variant while requiring 3.2x higher memory allocation, suggesting sublinear performance scaling with model size. Multi-model scaling analysis indicates linear performance improvements up to 8 concurrent models, with diminishing returns of approximately 15-20% reduced efficiency gains beyond this threshold. Llama 3.2-3B variants currently represent the efficiency frontier for production deployment, offering 80% of larger models' performance while consuming 65% fewer computational resources.

CONCLUSION

The comprehensive analysis demonstrates that Sandbox-RL's scalable multi-LLMs optimization approach successfully leverages the complementary strengths of different model architectures and specializations. Llama 3.1-8B establishes performance leadership, achieving 2.3% higher performance scores compared to baseline models through instruction-following specialization advantages. Llama 3.2-3B emerges as the efficiency champion, providing 8.3% better resource utilization relative to larger variants while maintaining 95% of their performance capabilities for practical deployment scenarios. Model-specific specializations contribute 8-15% performance improvements in their respective domains compared to general-purpose alternatives, demonstrating clear benefits of targeted optimization approaches. The framework successfully validates scalability across heterogeneous model architectures, maintaining 99.8% isolation guarantee compliance while supporting concurrent optimization of models with 2.7x parameter count variations. These results collectively validate the effectiveness of our approach for scalable multi-LLMs optimization in shared sandbox environments, achieving superior performance-efficiency trade-offs compared to single-model baselines.

MATHEMATICAL DETAILS FOR MULTI-LLM JOINT OPTIMIZATION

Setting and notation. Let $G = (V, E)$ be a directed acyclic graph (DAG) of sandboxed tasks. An execution emits a trace $T = \{(v_t, s_t, y_t, r_t, i_t)\}_{t=1}^L$, where $v_t \in V$ is the node, s_t the prompt, y_t an

1782 action sampled from an LLM policy, $r_t \in \mathbb{R}$ the verifier reward, and $i_t \in \{1, \dots, N\}$ the index of
 1783 the acting model. We write $d(v, u)$ for the topological distance and $\text{Desc}(v)$ for descendants of v .

1784
 1785 A single backbone θ_0 may be shared by N adapters $\{\phi_i\}_{i=1}^N$, yielding policies $\pi_{\theta_0, \phi_i}(y | s)$. When
 1786 $N = 1$ or all $\phi_i \equiv 0$, the formulation reduces to standard single-policy PPO/GRPO.

1787 **DAG return and advantages.** For step t we define the DAG return
 1788

$$1789 \quad Q_t = r_t + \sum_{j>t} \gamma^{d(v_t, v_j)} r_j,$$

1790 and the node-level value $V(s_t)$ with advantage $A_t = Q_t - V(s_t)$. This coincides with the return
 1791 used in the main text, but makes the dependence on DAG distances explicit.

1794 POPULATION OBJECTIVE AND UNBIASED POLICY GRADIENT

1795 We jointly optimize all models under the same workflow:

$$1798 \quad J(\theta_0, \Phi) = \mathbb{E}_T \left[\sum_{t=1}^L Q_t \right], \quad \Phi = \{\phi_i\}_{i=1}^N.$$

1800 Let I_t be the one-hot indicator of which model acted at t . For any per-step, *differentiable* re-
 1801 attribution $\tilde{A}_{i,t}$ that satisfies $\sum_{i=1}^N \tilde{A}_{i,t} = A_t$ almost surely, the following gradient is unbiased:

$$1803 \quad \nabla_{\phi_i} J = \mathbb{E} \left[\sum_{t=1}^L I_t(i) \nabla_{\phi_i} \log \pi_{\theta_0, \phi_i}(y_t | s_t) \tilde{A}_{i,t} \right], \quad \nabla_{\theta_0} J = \mathbb{E} \left[\sum_{t=1}^L \nabla_{\theta_0} \log \pi_{\theta_0, \phi_{i_t}}(y_t | s_t) \tilde{A}_{i_t, t} \right].$$

1806 *Proof sketch.* Linearity of expectation and the log-derivative trick yield an unbiased estimator whenever
 1807 the re-attribution conserves total advantage A_t . The per-model split does not change $\sum_i \tilde{A}_{i,t}$
 1808 and therefore preserves J .

1810 COOPERATION–COMPETITION CREDIT KERNEL

1811 Given contribution signals $g_{i,t}$ (e.g., $g_{i_t,t} = A_t$ and $g_{i \neq i_t,t} = 0$ or shaped utilities), define soft
 1812 weights

$$1814 \quad \alpha_{i,t}(\tau) = \frac{\exp(g_{i,t}/\tau)}{\sum_{k=1}^N \exp(g_{k,t}/\tau)}, \quad R_{i,t}(\tau) = \alpha_{i,t}(\tau) \left(\sum_{k=1}^N g_{k,t} \right).$$

1817 We set $\tilde{A}_{i,t} = R_{i,t}(\tau) - V_i(s_t)$, where V_i may share a backbone with per-head differences. As
 1818 $\tau \rightarrow 0$, $\alpha_{i,t}$ concentrates on the argmax contributor (competitive limit). As $\tau \rightarrow \infty$, $\alpha_{i,t} \rightarrow 1/N$
 1819 (uniform cooperative limit). Because $\sum_i R_{i,t}(\tau) = \sum_k g_{k,t}$ by construction, the estimator remains
 1820 unbiased (Sec. I.1).

1821 **Stability under clipping (PPO/GRPO).** Let $\rho_{i,t} = \frac{\pi_{\theta_0, \phi_i}(y_t | s_t)}{\pi_{\theta_0, \phi_i}^{\text{old}}(y_t | s_t)}$. The usual clipped surrogate

$$1824 \quad \mathcal{L}_{\text{PPO}} = \mathbb{E} \left[\min \left(\rho_{i_t,t} \tilde{A}_{i_t,t}, \text{clip}(\rho_{i_t,t}, 1 \pm \epsilon) \tilde{A}_{i_t,t} \right) \right]$$

1826 remains valid because the kernel modifies only $\tilde{A}_{i,t}$ (credit), not the likelihood ratio.

1827 COMPETENCE DYNAMICS AND VALUE CONDITIONING

1829 Each model carries a bounded latent competence $c_i \in [0, c_i^{\max}]$ that evolves with informative feed-
 1830 back:

$$1831 \quad c_i \leftarrow \text{clip} \left(c_i + \eta_i h(u_i, U, A_i) - \lambda_i d_i, 0, c_i^{\max} \right),$$

1833 where u_i is the individual utility, $U = \sum_k u_k$ the team utility, A_i the model’s advantage, and h is
 1834 monotone (e.g., $\kappa_1 u_i + \kappa_2 U + \kappa_3 A_i$). Conditioning the critic on c_i (i.e., $V_i(s, c)$) reduces variance
 1835 without altering reward definitions. Under $\eta_i \leq \lambda_i$ and bounded h , the Markov chain $\{c_i\}$ is stable
 with a compact invariant set; empirically we choose $\eta_i \ll 1$ to avoid oscillations.

1836
1837

DAG-AWARE MEAN-GROUP POLICY FOR LARGE POPULATIONS

1838
1839
1840
1841

To scale, agents are partitioned into groups $\{G_1, \dots, G_m\}$ by sandbox role or objective. Each group G_j is controlled by a mean policy π_{ψ_j} acting on $o_j^t = (\bar{b}_j^t, \bar{v}_j^t, \tau_j^t, c_j^t)$ where \bar{v}_j^t encodes DAG context and frontier readiness. The mean action $a_j^t = \pi_{\psi_j}(o_j^t)$ modulates cooperation temperature, exploration strength, or resource multipliers. Member $k \in G_j$ specializes via

1842
1843
1844

$$\tilde{a}_{j,k}^t = a_j^t \cdot \text{clip}\left(\frac{v_{j,k}^t}{\bar{v}_j^t}, \alpha, \beta\right),$$

1845
1846
1847

with (α, β) preventing extreme specialization. Group return is $R_j = \sum_t \gamma^t \sum_{k \in G_j, e \in \mathcal{E}_t} u(y_{k,e}^t, x_e)$, and gradients follow standard PPO/GRPO on ψ_j because specialization is a deterministic differentiable transformation.

1848

PRIORITIZED DAG REPLAY AND BIAS CONTROL

1849
1850
1851
1852
1853
1854
1855
1856

We store traces T with priorities $p(T)$. Let the sampling distribution be $q(T) = \frac{p(T)}{\sum_{T'} p(T')}$ and the target on-policy distribution be $p^*(T)$ from the current policy at the latest refresh. When refresh lag is negligible (our default), $q \approx p^*$ and bias is empirically small. If desired, importance weights $w(T) = \left(\frac{p^*(T)}{q(T)}\right)^\beta$ can re-weight the loss; with stale ratios we approximate $p^*(T)$ using the product of per-step likelihood ratios cached in the trace header. Our default uses structure-aware priorities

1857
1858

$$p(T) = \exp\left(\beta \sum_t [r_t + \lambda \|\nabla \log \pi(y_t | s_t)\|_2^2]\right),$$

1859
1860

which increases reuse of informative graph segments without changing the reward function.

1861
1862

FRONTIER-BATCHED SCHEDULING UNDER RESOURCE CONSTRAINTS

1863
1864

At time t , frontier F_t contains executable nodes. With GPU budget M , memory costs $m(v)$, latencies $\ell(v)$, and a set of pinned adapters A_{pin} , we choose a batch

1865
1866

$$B_t^* \in \arg \max_{B \subseteq F_t} \Phi(B) \quad \text{s.t.} \quad \sum_{v \in B} m(v) \leq M,$$

1867
1868
1869
1870
1871
1872

where $\Phi(B) = \frac{\sum_{v \in B} w(v)}{\max_{v \in B} \ell(v)}$ is a throughput proxy that favors high-priority nodes and balanced latency. The Lagrangian $\mathcal{L}(B, \lambda) = \Phi(B) - \lambda(\sum_{v \in B} m(v) - M)$ yields the KKT condition $\lambda^* \geq 0$, $\lambda^*(\sum_{v \in B^*} m(v) - M) = 0$, and $\nabla_B \Phi(B^*) = \lambda^* \nabla_B \sum_{v \in B} m(v)$. A greedy admissible policy (sort by $\frac{w(v)}{\ell(v)}$ under knapsack-style pruning and then enforce adapter pin-preferencing) is near-optimal for monotone submodular Φ and runs in time linear in $|F_t|$.

1873
1874
1875
1876
1877
1878
1879

LIMITS AND RECOVERIES
As $\tau \rightarrow 0$, $\alpha_{i,t}$ collapses on the argmax $g_{i,t}$, so only the highest-contributing model receives credit at each step (winner-takes-most). As $\tau \rightarrow \infty$, $\alpha_{i,t} \rightarrow 1/N$, recovering uniform team sharing. Setting $N = 1$ recovers the single-model PPO/GRPO objective exactly. Competence variables c_i can be disabled by fixing $c_i \equiv c_0$, collapsing the critic back to $V(s)$.

1880
1881
1882
1883
1884

Takeaway. All multi-LLM behaviors—cooperation, competition, grouping—arise from a single differentiable credit kernel and a bounded competence process layered on *unchanged* verifiers and rewards. Hence, Sandbox-RL preserves on-policy stability while enabling multi-LLMs specialization within the same DAG semantics.

1885
1886
1887
1888

KVCACHE-CENTRIC SYSTEM THEORETICAL ANALYSIS

1889

BLOCK-SPARSE MATRIX OPTIMIZATION THEORY

Let $\mathcal{K} \in \mathbb{R}^{N \times H \times D}$ and $\mathcal{V} \in \mathbb{R}^{N \times H \times D}$ denote the key and value caches. We formalize the Block-Sparse Row (BSR) representation as a tuple $(\mathcal{B}, \mathcal{I}, \mathcal{P})$ where:

1890
 1891
 1892 $\mathcal{B} = \{B_{ij}^{(k)}, B_{ij}^{(v)} \mid (i, j) \in \text{NNZ}\}$ (48)
 1893
 1894 $B_{ij}^{(k)} \in \mathbb{R}^{B_r \times B_c \times H \times D}$ (49)
 1895 $\mathcal{I} = \{\text{col_indices}_{ij} \mid (i, j) \in \text{NNZ}\}$ (50)
 1896 $\mathcal{P} = \{\text{row_ptr}_i \mid i \in [0, \lceil N/B_r \rceil]\}$ (51)
 1897

1898 The attention computation over BSR format follows the composition operator:
 1899
 1900

1901 $\text{Attention}(Q, \mathcal{K}, \mathcal{V}) = \bigoplus_{(i, j) \in \text{NNZ}} \text{AttentionBlock}(Q_i, B_{ij}^{(k)}, B_{ij}^{(v)})$ (52)
 1902
 1903

1904 $\text{AttentionBlock}(Q_i, K_{ij}, V_{ij}) = \left[\frac{\exp(Q_i K_{ij}^T / \sqrt{D}) V_{ij}}{\sum_k \exp(Q_i K_{ik}^T / \sqrt{D})}, \text{LSE}(Q_i, K_{ij}) \right]$ (53)
 1905
 1906

1907 where \bigoplus denotes the attention state composition operator with associativity property.
 1908
 1909

MEMORY HIERARCHY OPTIMIZATION THEORY

1910 **Multi-Tier Cache Allocation Optimization.** The optimal cache allocation problem can be for-
 1911 mulated as a constrained optimization problem:
 1912
 1913

1914
 1915 $\max_{\{x_i^{(l)}\}} \sum_{i=1}^N \sum_{l=1}^L x_i^{(l)} \cdot R_{\text{access}}^{(l)} \cdot f_i$ (54)
 1916
 1917

1918
 1919 subject to: $\sum_{i=1}^N x_i^{(l)} \cdot s_i \leq C_l, \quad \forall l \in \{1, \dots, L\}$ (55)
 1920
 1921

1922 $\sum_{l=1}^L x_i^{(l)} = 1, \quad \forall i \in \{1, \dots, N\}$ (56)
 1923
 1924

1925 $x_i^{(l)} \in \{0, 1\}, \quad \forall i, l$ (57)
 1926

1927 where $x_i^{(l)}$ is a binary variable indicating whether cache block i is allocated to memory tier l , $R_{\text{access}}^{(l)}$
 1928 is the access reward for tier l , f_i is the access frequency of block i , s_i is the size of block i , and C_l
 1929 is the capacity of tier l .

1930 **Dynamic Load Balancing Theory.** The load balancing problem for CTA scheduling can be mod-
 1931 eled as a bin packing problem with variable bin sizes:
 1932
 1933

1934
 1935 $\min_S \max_{c \in \text{CTAs}} \sum_{w \in W_c} \text{cost}(w)$ (58)
 1936

1937 subject to: $\sum_c |W_c| = |\mathcal{W}|$ (59)
 1938
 1939

1940 $W_c \cap W_{c'} = \emptyset, \quad \forall c \neq c'$ (60)
 1941
 1942

1943 $\text{cost}(w) = \alpha \cdot l_{qo}(w) + \beta \cdot l_{kv}(w) + \gamma \cdot \text{sync_overhead}(w)$ (61)

The optimal solution can be approximated using a greedy algorithm with approximation ratio
 $O(\log |\mathcal{W}|)$.

1944 BLOCK-SPARSE MATRIX THEORY

1945

1946 **BSR Format Properties.** The Block-Sparse Row (BSR) format exhibits several key properties:

1947

1. **Sparsity Preservation:** For a matrix A with sparsity pattern S , the BSR representation maintains the same sparsity structure with block-level granularity.
2. **Memory Efficiency:** The memory overhead is $O(\text{nnz} \cdot B_r \cdot B_c)$ where nnz is the number of non-zero blocks.
3. **Computation Efficiency:** Matrix-vector multiplication complexity is $O(\text{nnz} \cdot B_r \cdot B_c)$ instead of $O(\text{nnz})$ for dense operations.

1948

1949 **Attention Computation Complexity.** For attention computation over BSR format, the complexity analysis yields:

1950

$$\text{Complexity} = O \left(\sum_{(i,j) \in \text{NNZ}} B_r^{(i)} \cdot B_c^{(j)} \cdot H \cdot D \right) \quad (62)$$

1951

$$= O(\text{nnz} \cdot B_r \cdot B_c \cdot H \cdot D) \quad (63)$$

1952

1953 where $B_r^{(i)}$ and $B_c^{(j)}$ are the row and column block sizes for block (i, j) .

1954

1955 RDMA TRANSFER PROTOCOL ANALYSIS

1956

1957 **Latency Model.** The RDMA transfer latency can be modeled as:

1958

$$T_{\text{transfer}}(i \rightarrow j) = T_{\text{setup}} + T_{\text{data}} + T_{\text{sync}} \quad (64)$$

1959

$$= T_{\text{setup}} + \frac{|KV_{\text{transfer}}|}{B_{\text{RDMA}}} + T_{\text{sync}} \quad (65)$$

1960

1961 where T_{setup} is the connection setup time, T_{data} is the data transfer time, and T_{sync} is the synchronization overhead.

1962

1963 **Optimal Transfer Scheduling.** The transfer scheduling problem can be formulated as a minimum makespan scheduling problem:

1964

$$\min_{\mathcal{T}} \quad \max_{(i,j) \in \mathcal{T}} T_{\text{transfer}}(i \rightarrow j) \quad (66)$$

1965

$$\text{subject to:} \quad \sum_{j \neq i} |KV_{i \rightarrow j}| \leq B_{\text{out}}^{(i)}, \quad \forall i \quad (67)$$

1966

$$\sum_{i \neq j} |KV_{i \rightarrow j}| \leq B_{\text{in}}^{(j)}, \quad \forall j \quad (68)$$

1967

1968 This problem is NP-hard but can be approximated using list scheduling algorithms with approximation ratio 2.

1969

1970 MULTI-OBJECTIVE OPTIMIZATION THEORY

1971

1972 **Pareto Optimality.** The multi-objective optimization problem seeks to find Pareto-optimal solutions:

1973

$$\max_{\theta} \quad \{f_1(\theta), f_2(\theta), \dots, f_k(\theta)\} \quad (69)$$

1974

$$\text{subject to:} \quad g_i(\theta) \leq 0, \quad i = 1, \dots, m \quad (70)$$

1975

$$h_j(\theta) = 0, \quad j = 1, \dots, p \quad (71)$$

1998 where $f_i(\theta)$ are the objective functions, $g_i(\theta)$ are inequality constraints, and $h_j(\theta)$ are equality
 1999 constraints.
 2000

2001 **Weighted Sum Method.** The weighted sum method converts the multi-objective problem into a
 2002 single-objective problem:
 2003

$$\max_{\theta} \sum_{i=1}^k w_i f_i(\theta) \quad (72)$$

$$\text{subject to: } g_i(\theta) \leq 0, \quad i = 1, \dots, m \quad (73)$$

$$h_j(\theta) = 0, \quad j = 1, \dots, p \quad (74)$$

$$\sum_{i=1}^k w_i = 1, \quad w_i \geq 0 \quad (75)$$

2013 where w_i are the weight coefficients.
 2014

2015 THEORETICAL GUARANTEES

2017 **Optimality Guarantees.** Under the assumption of convex objective functions and linear
 2018 constraints, the algorithm is guaranteed to converge to the global optimum.

2019 **Approximation Guarantees.** For non-convex problems, the algorithm provides approximation
 2020 guarantees:
 2021

$$f(\theta^{(t)}) \geq (1 - \epsilon)f(\theta^*) - \delta \quad (76)$$

2025 where ϵ and δ are small positive constants, and θ^* is the global optimum.
 2026

2027 **Stability Guarantees.** The system is stable if the eigenvalues of the Jacobian matrix satisfy:
 2028

$$\max_i |\lambda_i| < 1 \quad (77)$$

2031 where λ_i are the eigenvalues of the Jacobian matrix of the system dynamics.
 2032

2033 COLLABORATIVE-COMPETENCE LEARNING CONVERGENCE ANALYSIS

2035 REGRET BOUNDS FOR MULTI-LLM POPULATION LEARNING

2037 Consider the multi-LLM population $\{\pi_{\theta_i}\}_{i=1}^N$ operating over a DAG $G = (V, E)$ with $|V| = S$
 2038 sandbox nodes and horizon $H = \max_{v \in V} d(v_{\text{root}}, v)$.
 2039

2040 Let $\mathcal{A}_i^{(k)}$ denote the action space for model i at episode k , and define the population policy as:
 2041

$$\pi_{\text{pop}}^{(k)}(a|s) = \sum_{i=1}^N w_i^{(k)}(s) \pi_{\theta_i^{(k)}}(a|s) \quad (78)$$

2044 where $w_i^{(k)}(s)$ are the competence-aware weights satisfying $\sum_i w_i^{(k)}(s) = 1$.
 2045

2046 **Theorem K.1** (Population Learning Regret Bound). Under the collaborative-competence framework
 2047 with temperature-regularized credit assignment, the population regret after K episodes satisfies:
 2048

$$\text{Regret}(K) \leq \tilde{O} \left(\sqrt{NSH^3 AK \log K} + \frac{N^2 H^2}{\tau_{\min}} + \sum_{i=1}^N \|\Delta c_i\|_1 \right) \quad (79)$$

2051 where $\tau_{\min} = \min_{k,t} \tau_{\text{coop}}^{(k)}$ is the minimum cooperation temperature and Δc_i represents competence
 evolution bounds.

2052 CONVERGENCE RATE ANALYSIS
20532054 **Population Learning Convergence Rate.** Under the collaborative-competence framework, the
2055 population learning convergence rate is characterized by:
2056

2057
2058
$$\mathbb{E}[\text{Regret}(K)] \leq \tilde{O} \left(\sqrt{\frac{NSH^3 AK \log K}{\tau_{\min}}} + \frac{N^2 H^2}{\tau_{\min}^2} + \sum_{i=1}^N \|\Delta c_i\|_1 \right) \quad (80)$$

2059
2060
2061

2062 The convergence rate depends on three key factors:
20632064 1. **Exploration Term:** $\sqrt{\frac{NSH^3 AK \log K}{\tau_{\min}}}$ - decreases with higher cooperation temperature
2065
2066 2. **Cooperation Overhead:** $\frac{N^2 H^2}{\tau_{\min}^2}$ - increases with population size and decreases with tem-
2067 perature
2068 3. **Competence Evolution:** $\sum_{i=1}^N \|\Delta c_i\|_1$ - bounded by competence update rates
20692070 **Temperature-Dependent Convergence.** The convergence behavior exhibits distinct phases based
2071 on cooperation temperature:
2072

2073
2074
$$\text{Convergence Rate} = \begin{cases} O(\sqrt{K \log K}) & \text{if } \tau \geq \tau_{\text{coop}} \\ O(\sqrt{\frac{K \log K}{\tau}}) & \text{if } \tau_{\text{comp}} < \tau < \tau_{\text{coop}} \\ O(\sqrt{\frac{K \log K}{\tau^2}}) & \text{if } \tau \leq \tau_{\text{comp}} \end{cases} \quad (81)$$

2075
2076
2077
2078

2079 where τ_{coop} and τ_{comp} are cooperation and competition thresholds.
20802081 COMPETENCE EVOLUTION STABILITY
20822083 **Competence Dynamics.** The competence evolution follows a bounded stochastic process:
2084

2085
2086
$$c_i^{(t+1)} = \text{clip} \left(c_i^{(t)} + \eta_i \cdot h(u_i^{(t)}, U^{(t)}, A_i^{(t)}) - \lambda_i d_i^{(t)}, 0, c_i^{\max} \right) \quad (82)$$

2087

2088 where $h(\cdot)$ is a monotone function and the clipping ensures boundedness.
20892090 **Stability Conditions.** The competence dynamics are stable if:
2091

2092
2093
$$\eta_i \leq \frac{\lambda_i \cdot c_i^{\max}}{2 \cdot \max_{u,U,A} |h(u, U, A)|} \quad (83)$$

2094
2095

2096 This ensures that the competence state remains within the bounded interval $[0, c_i^{\max}]$.
20972098 COOPERATION-COMPETITION BALANCE
20992100 **Optimal Temperature Selection.** The optimal cooperation temperature balances exploration and
2101 exploitation:
2102

2103
2104
$$\tau^* = \arg \min_{\tau} \left[\sqrt{\frac{NSH^3 AK \log K}{\tau}} + \frac{N^2 H^2}{\tau^2} \right] \quad (84)$$

2105

2106 Solving this optimization problem yields:
 2107

2108

2109
$$\tau^* = \left(\frac{2N^2H^2}{NSH^3AK \log K} \right)^{1/3} = \left(\frac{2NH}{SAK \log K} \right)^{1/3} \quad (85)$$

 2110

2111

2112 **Temperature Adaptation.** The temperature can be adapted during training to maintain optimal
 2113 balance:
 2114

2115

2116
$$\tau^{(t+1)} = \tau^{(t)} \cdot \exp \left(-\alpha \cdot \frac{\text{Regret}^{(t)} - \text{Regret}^{(t-1)}}{\text{Regret}^{(t-1)}} \right) \quad (86)$$

 2117

2118

2119 where α is the adaptation rate.
 2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159