
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ENHANCING GRAPH GENERATION WITH FIRST-ORDER
LOGIC RULES

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing graph generative models produce graphs that are often quite realistic, but
sometimes miss domain-specific patterns. Enhancing graph learning with domain
knowledge is one of the current frontiers for neural models of graph data. In this
paper, we propose a new approach to enhancing deep graph generative models with
knowledge that is represented by first-order logic rules. First-order logic provides
an expressive formalism for representing interpretable knowledge about relational
structures. Our conceptual contribution is a new first-order semantic loss function
for training a graph generative model on relational data: maximize the model
likelihood subject to a moment matching constraint, namely that the expected
instance count of each rule matches its observed instance count. Our algorithmic
contribution is a novel method for computing the expected instance count of a
first-order rule for a standard generative mixture model based on matrix multiplica-
tion. Empirical evaluation on seven benchmark datasets, both homogeneous and
heterogeneous, shows that moment matching improves the quality of generated
graphs substantially (by orders of magnitude on standard graph quality metrics),
and improves predictive accuracy on the downstream task of node classification.

1 INTRODUCTION

Generative models for graphs based on graph neural networks (GNNs) have achieved great success in
modeling complex graphs (Hamilton, 2020). One of the current research frontiers is enhancing graph
learning with domain knowledge (Tian et al., 2024) (Wang et al., 2020) (Sun et al., 2021) (Niresi
et al., 2024) (Yu et al., 2023) (Agarwal et al., 2022). Different enhancement methodologies are
appropriate for different types of knowledge. In this paper, we consider leveraging knowledge in the
form of a first-order logic knowledge base (Russell and Norvig, 2010), comprising a set of first-order
(FO) formulas. FO formulas represent domain knowledge by specifying important patterns in a
domain. Because formulas used in knowledge representation practice often take the form of if-then
rules, we refer to our approach as rule-enhanced graph generation. An example rule would be “If
person X works in city Y , then X lives in city Y (with probability p)".

Advantages. Logical formulas have several advantages for enhancing graph learning. (1) Expres-
siveness: First-order formulas are one of the most common formalisms for representing domain
knowledge in AI and database systems (Russell and Norvig, 2010). (2) Interpretability: Logical
formulas are easily understood by users and domain experts. (3) Learnability: The field of statistical-
relational learning (SRL) has developed methods for learning relevant formulas from a heterogeneous
training graph, known as structure learning. (4) User Control: Users can control the behavior of the
final graph generation system in a mixed-initiative approach, by specifying and/or rejecting formulas.
(5) Graph Realism and Data Efficiency: Matching first-order formulas leads to generating more
realistic graphs, while requiring less training data.

Approach. Figure 1 shows our system components. We show how fundamental ideas from
SRL (Raedt et al., 2016) can be combined with deep graph generative models (GGMs). A fundamental
concept of SRL is moment matching (Domingos and Lowd, 2019; Russell, 2015; Kuzelka et al.,
2018). The general idea is that a formula can be viewed as specifying a motif or subgraph pattern
with an instance count in a given graph. Formula moment matching requires that for each formula,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Input
Graph

Formulas/

Rulesmixed

initiativeDomain Expert

FO Structure Learner

Deep
Graph

Learning

moment matching

Graph Generative Model

Figure 1: System Overview for Rule-Enhanced Graph Generation

the expected instance count for a model should match the observed instance count in a training graph.
Our novel GGM training objective is to maximize the GGM likelihood subject to moment matching.

Our algorithmic contribution is a differentiable new matrix multiplication method for computing
observed and expected instance counts. We show that for every conjunctive formula (satisfying a
minor syntactic constraint), there is a corresponding sequence of adjacency matrices, such that i) the
observed instance count is obtained by multiplying the data adjacency matrices, and ii) the expected
instance count for a standard mixture model with conditionally independent links is obtained by
multiplying expected adjacency matrices.

Evaluation. Our methodology uses an A-B design where we compare training a recent state-of-the-
art variational graph auto-encoder (Mahmoudzadeh et al., 2024), called VGAE+, with and without
moment matching, on seven benchmark datasets. We find that rule-enhanced VGAEs score better than
standard VGAEs on several metrics: (1) They generate more realistic graphs, by orders of magnitude,
as measured by SOTA graph quality metrics (F1 MMD) (Thompson et al., 2022; O’Bray et al.,
2022). (2) On the downstream task of node classification, the rule-enhanced VGAE node embeddings
improve accuracy compared to standard VGAE. (3) Learning curves for node classification show that
first-order domain knowledge often leads to more data efficient learning.

Contributions Our main contributions can be summarized as follows.

• A new semantic loss objective function for enhancing generative graph training with domain
knowledge represented by first-order formulas: Maximize the data likelihood of a graph
generative model, constrained so that the observed number of formula instances matches the
expected number of formula instances.

• A new matrix multiplication algorithm for counting the number of formula instances in a
graph.

• A proof that the matrix multiplication algorithm can also be used to estimate the expected
number of instances for a standard mixture model. It can therefore be leveraged to compute
the new semantic loss objective.

• Our new VGAE+R system uses the new objective function to train a VGAE+ model that
matches formula instance counts.

2 RELATED WORK

Our work falls under the heading of neuro-symbolic AI, a cutting-edge field of AI that aims to combine
symbolic formalisms, such as first-order logic, with neural network learning; see Figure 2. For surveys
of neuro-symbolic AI, please see (Raedt et al., 2020; Garcez and Lamb, 2023), and Kautz’s 2022
Engelmore lecture. Within Kautz’s taxonomy, our approach belongs to the semantic loss frameworks
(type 5) where symbolic knowledge is encoded into the network’s loss function (Kautz, 2022; Xu et
al., 2018; Marra et al., 2019). The trained system is a standard NN model that does not utilize rules
at test time. In contrast, reasoning approaches typically perform symbolic inference (Raedt et al.,
2020; Qu et al., 2021) at test time.

Compared to previous semantic loss approaches (Xu et al., 2018), our main innovation is that we
incorporate knowledge expressed in first-order logic, rather than the less powerful formalism of
propositional logic. For example, a propositional rule would be “if a movie is a horror movie, it is
not likely to be a romance". A first-order rule could be "if a user rates a horror movie, the user is
most likely to be a man". Since first-order rules incorporate relationships, first-order logic (FOL) can

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Neuro-symbolic
learning

Other Approaches

Kautz 2022

Semantic Loss
(Type 5)

Propositional Logic

Single-Table Data

Xu et al. 2018

First-Order Logic
Relational Data

Moment Matching Only

Markov Logic Networks

Kuzelka et al. 2018

Moment Matching +

Deep Graph Learning

our paper

Figure 2: Within neuro-symbolic AI, we develop a new first-order semantic loss approach.

leverage the full power of relational data. We show that our semantic loss for FOL rules reduces
to the loss of (Xu et al., 2018) in the propositional case. Compared to previous FOL approaches
(e.g., Marra et al. (2019)), we use standard FOL semantics (not fuzzy logic), and our computations
do not require as input the full Cartesian product grounding over all domain elements (nodes).

Markov Logic Networks and Maximum Entropy Moment Matching. We use the same FO knowledge
representation structure as the well-known Markov Logic Network (MLN) model, namely a set
of FO formulas. The MLN formalism has been applied to represent knowledge in a number of
domains, and it has sufficient expressive power to capture other FO formalisms, such as rule-based
knowledge (Domingos and Lowd, 2019).

In terms of model training, Kuzelka et al. (2018) show that a distribution P over graphs maximizes
entropy subject to moment matching if and only if P is defined by an MLN with maximum likelihood
weights. Both the maximum entropy objective and our constrained likelihood objective capture the
global graph statistics represented by instance counts. However, the GGM likelihood can in addition
capture local graph patterns. For example, matching the number of observed triangles in a graph is
unlikely to capture community structure, or which nodes have special properties such as centrality.

Deep graph generative models. The closest predecessor to our work is the constrained VGAE
model of Ma et al. (2018) where a VGAE likelihood is maximized subject to a constraint of the
form g(θ) = 0. While this general form covers moment matching, the work of Ma et al. does not
incorporate FO logic for specifying graph patterns, nor does it address computing pattern counts.

In principle the moment matching likelihood objective can be used for maximum likelihood training
with any deep graph generative model. We selected VGAEs as our base model for several reasons.
(1) They are a well-established and widely used GGM. Mahmoudzadeh et al. (2024) show that their
VGAE+ model is a strong multitask model that provides accurate predictions for a wide range of
knowledge graph queries, based on inference from a single model. (2) They support learning from
a single large graph, rather than from a set of graphs (Faez et al., 2021). Rule learners also utilize
the single-graph setting (Qian and Schulte, 2015; Meilicke et al., 2024), so the VGAE input data
are compatible with the rule learner input data. (3) As we show in this paper, the conditional link
independence assumptions of VGAEs facilitates the computation of expected rule instance counts.
Extending rule moment matching to other generative models is a fruitful topic for future research.

3 BACKGROUND ON FIRST-ORDER LOGIC

Attributed Heterogenous Graphs An attributed graph is a pair G = (V,E) where V is a set of
nodes of size |V | = n and E ⊆ V ×V is a set of edges. Node features are summarized in n×f matrix
X and node labels in a n× L matrix L where the u-th row of L is a one-hot encoding of the label of
node u. Different edge types are represented by a set of adjacency matrices A = {A1, . . . ,AT }. The
notation Ar[u, v] = 1 indicates that there is a link u→r v of type r from node u to node v. Figure 3
shows part of the information in an attributed graph using the tabular SQL format.

Figure 3: Excerpt from a relational dataset. (a) An attributed graph represented in table format. (b)
The probabilities assigned to each data entry specify a probabilistic graph (see below).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Conjunction ϕ nϕ(G)
Age(User) = 0 376
Rating(User ,Movie) = 1 4701
Age(User) = 0 ,Rating(User ,Movie) = 1 2524

Table 1: Conjunction Instance counts in the MovieLens database G

First-Order Logic We follow previous work in SRL (Schulte and Gholami, 2017; Kimmig et al.,
2014). A population is a set of individuals of the same type (e.g., a set of Users , a set of Movies).
Individuals are denoted by constants (e.g., user3 and thor). An attributed graph specifies a set
of individuals (nodes) for each type. A node variable ranges over a population, and is denoted
in upper case such as User ,Movie,U ,V . A unary functor maps an individual to a value, and
corresponds to a node attribute/label. A binary functor maps an ordered pair of individuals to a value,
and corresponds to an edge/edge type. Functors are denoted f, f ′ etc.

A first-order term (FOT) is of the form f(U) where each population variable Ui is of the appropriate
type. FOT examples are age(User) and rating(User ,Movie). A FOT can be instantiated with
individual constants, much like an index in a plate model (Kimmig et al., 2014). A grounding
U = u for a list of FOTs simultaneously replaces each population variable in the list by a constant.
(We assume that different population variables are replaced by different constants.) A ground term,
Python-style, assigns individuals as argument to node variables, then applies the functor to return a
value. Examples are age(User = user5), and rating(User = user5 ,Movie = thor).

An FO literal is of the form ℓ ≡ f(U) = v. A conjunction is a list of literals ϕ = ℓ1, . . . , ℓs. We
write ϕ(U) for an FO conjunction and ϕ(U = u) for a ground conjunction. A graph G satisfies a
ground literal if the graph assigns value v to the ground term f(U = u), and satisfies the conjunction
ϕ if it satisfies each ground literal in the conjunction. The instance count nϕ(G) in a graph G returns
the number of ϕ-groundings satisfied by graph G.

A probabilistic graph G̃ assigns a probability pG̃(ℓ(U = u)) to each ground literal. The proba-
bilistic instance count of a conjunction (Kuzelka, 2023) is the probability product, summed over all
conjunction groundings:

nϕ(G̃) =
∑
U=u

s∏
i=1

pG̃(ℓi(U = u)) for ϕ = ℓ1, . . . , ℓs (1)

Examples. Age(User) = 1 ,rating(User ,Movie) = 4 is an FO conjunction. Its grounding
age(User = user5) = 1 , rating(User = user5 ,Movie = thor) = 4 is satisfied by the data
of Figure 3(a). In the probabilistic graph Figure 3(b), the probability of this conjunction is 0.43×
0.36 = 0.1548.

Table 1 illustrates FO instance counts using the MovieLens dataset (Qian and Schulte, 2015). Movie-
lens contains 376 users at age level 0. The number of user-movie pairs with a rating of 1 is 4701. The
number of such pairs with the user at age level 0 is 2524. An FO conjunction specifies a graph motif,
and the instance count is the motif count (Ma et al., 2019) (see Figure 9 for illustration).

4 RULE-ENHANCED GRAPH GENERATION

This section considers how to enhance training a parametrized graph generative model (GGM) Pθ on
a training graph D, with a list of formulas ϕ1, . . . , ϕk. Our semantic loss objective maximizes the
data likelihood Pθ(D), subject to the FO moment matching constraint that Eθ[ni] = ni(D), where
ni(D) is the data instance count of formula ϕi, and Eθ[ni] ≡

∑
G Pθ(G)ni(G) is the expected

instance count for the GGM. For a mixture model GGM, we derive the following Lagrangian ELBO.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Proposition 1. Suppose that Pθ(G) =
∫
p(G|z)p(z)dz is a mixture model. Then

lnPθ(D)− λ/k

k∑
i=1

ρ(ni(D), Eθ[ni]) ≥ (2)

Ez∼qϕ(z|D)[lnPθ(D|z)−KL
(
qϕ(z|D)||p(z)

)
(3)

−λ/k
k∑
i=1

ρ(ni(D), Eθ[ni|z])], (4)

where ρ(count1, count2) ≥ 0 is a differentiable count distance metric convex in Eθ[ni|z])].

Proposition 1 says that the constrained likelihood Equation (2) can be approximated by our new
moment matching variational ELBO objective (3). To compare an expected count to an observed
count, our experiments use

ρ(ni(D), Eθ[ni|z]) = | lnni(D)− lnEθ[ni|z]|.

Conjunction counts grow exponentially with the number of node variables in the conjunction. Com-
paring expected counts on a log-scale decreases the impact of the number of node variables and
improves numeric stability. With this choice of ρ, the FO semantic loss Equation (2) reduces to the
semantic loss of (Xu et al., 2018) for a propositional formula ϕ; see Appendix A.6 for details.

4.1 IMPLEMENTING THE MOMENT MATCHING ELBO

Our novel VGAE+R architecture extends the recent VGAE+ architecture (Mahmoudzadeh et al.,
2024) to match rules, including the new motif loss (4).

Encoder-Decoder Architecture. Figure 10 shows the VGAE+R architecture. The encoder model
qϕ(z|D) can be any GNN that maps a heterogeneous graph to node embeddings, such as RGCN. The
VGAE+R decoder independently maps node embeddings to different graph components with three
different decoders (Mahmoudzadeh et al., 2024):

lnPθ(D|z) = [α ln pη(A|z) + β ln pψ(X|z) + γ ln pϕ(L|z)

where pη : Rd × Rd → [0, 1] is a trainable link decoder, pψ is a trainable feature decoder, and pϕ
is a trainable label decoder (see Figure 10). The hyperparameters α, β and γ weight the importance
of different reconstruction tasks.

Computing Expected Instance Counts. Given a set of node embeddings z, the expected graph
G̃z is a probabilistic graph that assigns a probability to each ground literal by applying the decoder to
the relevant links/node features/edge types. For examples see Figure 3 and Figure 11.
Proposition 2. The expected instance count given a set of node embeddings can be computed as the
instance count in the expected graph: Eθ[ni|z] = ni(G̃z).

The proof is in the supplement. The upshot is that FO moment moment matching can be implemented
by performing (probabilistic) instance counting in a single graph.

5 MATRIX MULTIPLICATION FOR INSTANCE COUNTING

SOTA MLN structure learners output a set of conjunctive formulas or if-then rules (Qian and Schulte,
2015; Khot et al., 2011; Cui et al., 2022; Potter et al., 2024). We discuss instance counting for
conjunctive formulas, which we can be extended to if-then rules by restricting counts to instances
that match the antecedent (body); see Appendix A.4 for more details.

This section presents a novel matrix multiplication method for instance counting with conjunctive
formulas, that is differentiable and applies to both discrete and probabilistic graphs. To illustrate the
basic idea, consider the conjunction R(U1, V1), R(V1, V2), R(V2, U1), whose instance count gives
the number of triangles in an undirected graph represented by an adjacency matrix A. It is well-known

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

that the triangle count is given by
∑n
u=1 A3

u,u, the trace of the third power of the adjacency matrix. We
generalize this approach to a large class of logical formulas. A chain conjunction of binary literals
is of the form ϕ = ℓ1(U1, V1), . . . , ℓP (UP , VP) where Vi = Ui+1 for every i. Algorithm 1 maps
each chain conjunction to a sequence of adjacency matrix multiplications, such that the conjunction’s
instance count can be found by executing the matrix multiplications.

Algorithm 1 Matrix Multiplication for Instance Counting
1: Input: Chain conjunction ϕ = {ℓ1(U1, V1), . . . , ℓP (UP , VP)}
2: Output: Instance count nϕ(G) or expected count nϕ(G̃z)
3: {Initialize adjacency matrices Aℓk for binary literals ℓk, k = 1, . . . , P }
4: for k = 1 to P do
5: if positive literal ℓk = R(Uk, Vk) = 1 then
6: Aℓk ← Ar
7: else if ℓk = R(Uk, Vk) = 0 then
8: Aℓk ← ¬Ar where ¬Ar is the complement of Ar
9: end if

10: end for
11: O1 ← Aℓ1
12: for k = 1 to P − 1 do
13: Ok+1 ← Ok · Aℓk+1

14: if Vk+1 = U1 then
15: Zero out the non-diagonal entries of Ok+1

16: end if
17: end for
18: Return:
19: nϕ(G) =

∑
(OP (ϕ)) for input graph G

20: nϕ(G̃z) =
∑

(OP (ϕ)) for expected graph G̃z

Example. Consider the chain conjunction
AdvisedBy(Student ,Professor), Teaches(Professor ,Course) TakesCourse(Course,Student).
Figure 4 shows the corresponding sequence of matrix multiplications in a sample graph.

Figure 4: The matrix multiplication sequence for our example conjunction and sample graph data.
The final result is 2, which is the number of satisfying groundings in the input graph.

Extensions. Unary literals can be included by omitting nodes from the input graph that do not satisfy
them. Probabilistic instance counts can be obtained by using soft matrices Ã, X̃, L̃; see Appendix A.9.

Correctness. The next proposition shows that the instance count for the chain conjunction can be
obtained through summing over the entries in the constructed matrix product.

Proposition 3. Let ϕ be a centered chain conjunction of length k, i.e., the first node variable is the
only one that appears twice non-consecutively.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1. For an input graph G, the (u, v)-th entry of Ok counts the number of groundings of ϕ in G
where U1 = u and VP = v. Therefore nϕ(G) =

∑
(Ok(ϕ)).

2. For an expected graph G̃z , the (u, v)-th entry of Ok counts the expected number of ground-
ings of ϕ where U1 = u and VP = v. Therefore nϕ(G̃z) =

∑
(Ok(ϕ)).

In our experiments, we found that all learned rules were centered. The Appendix extends the matrix
multiplication method to non-centered chains.

Computational Complexity Algorithm 1 translates a logical formula into a sequence of matrix
multiplications in time linear in the length of the formula. The number of binary literals is small
enough to be treated as a constant k ≤ 5. The bottleneck is scaling a k-fold adjacency matrix product
to large graphs, especially the dense expected adjacency matrices.

6 EVALUATION

We detail our methodology and discuss our empirical results. Appendix A.5 provides training details.

6.1 EXPERIMENTAL DESIGN

We describe our benchmark datasets, comparison methods, and how evaluation metrics are computed.

Datasets We use datasets from previous studies of GGMs (Mahmoudzadeh et al., 2024; Yun et al.,
2019; Hao et al., 2020). Cora, ACM, and CiteSeer are citation networks, IMDb is a movie dataset,
and UW represents an academic department. Appendix A.1 presents dataset and preprocessing
details. We report results for homogeneous versions of ACM and IMDb in the main paper, and for
heterogeneous versions in Appendix A.2.

Evaluation Metrics We compare rule-enhanced VGAE+R training with plain VGAE+ training,
using three main metrics. In the following, we refer to a complete dataset as the input graph. Our
evaluation measures graph realism—the quality of generated graphs—and the downstream task of
node classification.

Count Distance. Given the training graph D, we sample one node embedding matrix z from the
encoder posterior qϕ(z|D) and then apply the decoder model eq. (5) to z to obtain the expected graph
D̃z . We report the mean squared distance (1/k

∑k
i=1[ni(D)−ni(D̃z)]

2)1/2—between the observed
motif counts and the expected motif counts in the reconstructed graph—as the count distance (CD),
where k is the number of formulas.

Graph Realism measures how similar graphs generated by the model are to observed graphs. How
to quantitatively assess generated graphs has been studied in recent papers. We adapt the SOTA
approach that compares graph embeddings of the training graph to embeddings of generated graphs
using Maximum Mean Distance (MMD) (O’Bray et al., 2022; Thompson et al., 2022; Shirzad et al.,
2022); see Appendix A.10 for details. The MMD metric is independent of the training objective.

Node Classification To compute a node classification score, we randomly divide the nodes in the
input graph into training, test and validation nodes (70%/20%/10%). The training graph is the input
graph but with the test node labels removed. At test time, we run the encoder on the input graph to
obtain node embeddings for all nodes, then apply the decoder to predict node labels for the test nodes.

6.2 EXPERIMENTAL RESULTS

Count Distance and Graph Realism are the most important metrics for us since they directly pertain
to graph generation quality. Our graph generation baseline is the VGAE+ model trained without
moment matching (i.e., λ = 0). To obtain formulas, we used the SOTA MLN structure learning
system Factorbase (Qian and Schulte, 2015) with default settings (Appendix A.4). To illustrate, in the
UW dataset, the learned formulas capture several patterns that express university domain knowledge,
such as the following. (1) Whether a person teaches a course correlates with whether they have a

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

position. (2) Course teachers are more likely to be professors. (3) A person’s program phase predicts
their years in the program.

Table 2: Mean ± Std for Count Distance (CD↓) and Graph Realism (MMD↓) with Improvements (in
scientific notation, so "e" represents ×10n).

Dataset Count Distance (MSE) Graph Realism (MMD)
VGAE+ VGAE+R Improv. (%) VGAE+ VGAE+R Improv. (%)

Cora 5.14e4± 8.07e3 2.68e4± 9.79e3 47.81 4.03e18± 3.21e18 6.84e17± 9.15e17 83.03
CiteSeer 3.40e4± 1.06e3 2.47e4± 1.38e3 27.35 1.20e18± 3.15e17 6.14e16± 3.65e16 94.88
Computers 4.63e5± 2.67e4 3.54e5± 6.44e4 23.61 3.80e25± 1.86e25 1.08e24± 1.45e24 97.16
Photo 2.01e5± 1.96e4 1.24e5± 1.37e4 38.01 1.16e24± 8.30e23 1.66e22± 7.63e21 98.57
IMDb 5.86e5± 1.96e4 3.23e5± 1.34e5 44.81 2.94e23± 6.29e22 4.58e22± 3.25e22 84.42
UW 9.92e5± 8.87e4 9.48e5± 5.69e4 4.51 4.72e13± 1.90e13 2.32e13± 1.94e13 50.74
ACM 1.24e5± 4.86e3 2.81e4± 3.54e3 77.34 3.31e20± 1.32e20 3.29e18± 3.08e18 99.01

6.2.1 COUNT DISTANCE AND GRAPH REALISM

Table 4 shows the difference between expected and observe instance counts. Both methods show
large absolute distances because a VGAE model tends to produce overly dense graphs (Orbanz and
Roy, 2014). However we observe a very large improvement in the match between expected and
observed counts, at least 23% on all datasets, except for the small graph UW with an improvement of
4.51%. On the graph realism metric, Table 4 again shows large absolute distances with the training
set, and very large improvements through FO moment matching, by an order of magnitude. Overall
we conclude that unconstrained VGAE training does not match the instantiation counts of the learned
formulas and that enforcing moment matching has a large impact on generated graph realism. In
addition, Section A.13 shows that VGAE + R outperforms VGAE + in statistic-based MMD metrics.
Also, as discussed in Appendix A.14, we report results for Count Distance Evaluation based on prior
embedding sampling. Moreover, there is a report on robustness to noisy or incomplete rules for Cora
dataset in Appendix A.16.

6.2.2 NODE CLASSIFICATION

Since SOTA performance on node classification is nearly saturated, we do not claim that VGAE+R
leads to uniformly best node classification. Instead we investigate two hypotheses:

1. Rule enhancement can improve GGM-based classification when the rules capture relevant
domain knowledge.

2. The VGAE+R model is competitive with current baselines.

Table 3 shows an improvement from rule enhancement (bold) on 4 out 7 datasets, substantive for two
of them (Cora and UW). The biggest improvement is on Cora, where moment matching increase the
AUC score by 10%. Even when the rules are not very relevant for the class label, moment matching
decreases classification performance only slightly.

Table 6 compares the rule-enhanced VGAE+R with the recent node classification baselines, described
in Appendix A.3. Our VGAE+R model shows the best node AUC classification performance on
3/6 datasets (4/6 on F1). The biggest improvement is on CiteSeer where our baselines are far from
SOTA performance. GiGaMAE is a strong baseline that achieves the best result on two datasets
(Table 3). Our conclusion is that rule-enhanced graph generation supports node classification that is
competitive with recent baselines.

Learning Curve We report a learning curve experiment to examine the effect of rule knowledge on
data efficiency. The idea is to simulate the impact of a domain expert providing the model with a
strong set of rules. We report the predictive accuracy on the test labels, after training the VGAE with
and without rules on x = 25%, 50%, 75%, 100% of training labels.

Figures 13 to 15 show that moment matching improves data efficiency substantially on the CiteSeer,
Cora, and Photos datasets. For example on CiteSeer with 50% of node labels, moment matching
achieves a 15% higher F1-score than baseline VGAE learning. The learning curves with and without

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Dataset Metric VGAE+R VGAE+ GiGaMAE

Cora AUC 0.965 ± 0.013 0.865 ± 0.043 0.920
F1 Score 0.887 ± 0.016 0.699 ± 0.103 0.856

UW AUC 0.960 ± 0.012 0.889 ± 0.054 -
F1 Score 0.654 ± 0.031 0.618 ± 0.030 -

CiteSeer AUC 0.903 ± 0.008 0.891 ± 0.013 0.842
F1 Score 0.794 ± 0.042 0.733 ± 0.058 0.798

Computers AUC 0.915 ± 0.022 0.920 ± 0.004 0.941
F1 Score 0.827 ± 0.047 0.837 ± 0.005 0.770

Photo AUC 0.991 ± 0.003 0.980 ± 0.021 0.963
F1 Score 0.972 ± 0.002 0.946 ± 0.052 0.569

ACM AUC 0.761 ± 0.077 0.775 ± 0.074 0.823
F1 Score 0.525 ± 0.014 0.523 ± 0.009 0.440

IMDb AUC 0.829 ± 0.006 0.828 ± 0.011 0.890
F1 Score 0.697 ± 0.008 0.687 ± 0.014 0.457

Table 3: Node classification results for graph generation with and without rule enhancement. The
recent GiGAMAE system is a strong baseline. Bold indicates the best VGAE score, underline the
best GiGAMAE score. Standard deviations are reported for five random weight initializations.

moment matching are similar for the datasets ACM, IMDb and Computers because their rules affect
node classification little.

Impact of Rules on Training Figure 19 shows the node label loss component of decoder train-
ing Equation (2) for the CiteSeer dataset. Rule matching adds a difficult new component to the
VGAE+ objective, which initially causes a spike in the label loss component. After the VGAE+R
model has encoded the background knowledge in its weights, it learns to optimize the other com-
ponents, including the node label loss. This shows that rule matching is a strong regularizer that
takes the network to a very different part of weight space compared to the baseline VGAE+ loss, and
supports better generalization. The supplement Appendix A.12 illustrates this pattern in loss curves.

7 CONCLUSION, LIMITATIONS AND FUTURE WORK

We proposed a new semantic loss objective function for training a deep graph generative model
(GGM) to incorporate FO domain knowledge expressed by logical formulas: Maximize the data
likelihood subject to a moment matching constraint, which requires the expected formula instance
counts under a model to match the observed instance count. Our main algorithmic contribution is a
new differentiable matrix multiplication method for computing both observed and expected counts. In
empirical evaluation, we found that moment matching improves the quality of the graphs generated
by a Variational Graph Auto-Encoder (VGAE) model by an order of magnitude or more, both with
respect to instance counts and with respect to a standard metric of graph realism. Applying the
trained GGM to the downstream task of node classification, moment matching improved classification
accuracy on all but one of our benchmark datasets. The domain knowledge incorporated in the model
is often effective in improving predictions from small datasets, as shown in learning curves.

Limitations. As our paper is the first to combine deep graph generation with a first-order semantic loss,
it leaves several aspects open for future developments. (1) Scaling the matrix multiplication algorithm
for expected counts is a challenge (Section 5). There is a report on scalability and runtime analysis
in Appendix A.15. A possible solution are approximation algorithms from the related problem of
weighted model counting (van Bremen and Kuzelka, 2020). (2) An incorrect or incomplete set of
rules limits the effectiveness of the semantic loss function. We did not explore methods for validating
the knowledge expressed in formulas, such as human-in-the-loop. (3) Because rule learners (MLN
structure learners) assume a single dataset, we did not explore enhancing GGMs other than VGAEs
(e.g., auto-regressive, diffusion, and matching flow models (cf. Section 2).

In sum, moment matching presents a novel semantic loss approach to neuro-symbolic AI that
combines logical rules with deep graph learning. Our experiments show great potential for enhancing
deep graph generative models with rule-based knowledge.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Ankush Agarwal, Raj Gite, Shreya Laddha, Pushpak Bhattacharyya, Satyanarayan Kar, Asif Ekbal,
Prabhjit Thind, Rajesh Zele, and Ravi Shankar. Knowledge graph - deep learning: A case study
in question answering in aviation safety domain. In Proceedings of the Thirteenth Language
Resources and Evaluation Conference, pages 6260–6270, June 2022.

Shan Cui, Tao Zhu, Xiao Zhang, and Huansheng Ning. Mcla: Research on cumulative learning of
markov logic network. Knowledge-Based Systems, 242:108352, 2022.

Pedro Domingos and Daniel Lowd. Unifying logical and statistical ai with markov logic. Communi-
cations of the ACM, 62(7):74–83, 2019.

Pedro Domingos and Matthew Richardson. Markov logic: A unifying framework for statistical
relational learning. In Introduction to Statistical Relational Learning. MIT Press, 2007.

Faezeh Faez, Yassaman Ommi, Mahdieh Soleymani Baghshah, and Hamid R Rabiee. Deep graph
generators: A survey. IEEE Access, 9:106675–106702, 2021.

Artur d’Avila Garcez and Luis C Lamb. Neurosymbolic AI: The 3rd wave. Artificial Intelligence
Review, pages 1–20, 2023.

William L Hamilton. Graph representation learning, volume 14. Morgan & Claypool Publishers,
2020.

Yu Hao, Xin Cao, Yixiang Fang, Xike Xie, and Sibo Wang. Inductive link prediction for nodes
having only attribute information. arXiv preprint arXiv:2007.08053, 2020.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
graphs. In International conference on machine learning, pages 4116–4126. PMLR, 2020.

Manfred Jaeger and Oliver Schulte. A complete characterization of projectivity for statistical relational
models. In International Joint Conferences on Artificial Intelligence IJCAI-20, pages 4283–4290,
2020.

Henry Kautz. The third AI summer: AAAI Robert S. Engelmore Memorial Lecture. AI magazine,
43(1):105–125, 2022.

Seyed Mehran Kazemi, David Buchman, Kristian Kersting, Sriraam Natarajan, and David Poole.
Relational logistic regression. In International Conference on the Principles of Knowledge
Representation and Reasoning, KRR 2014, 2014.

Hassan Khosravi, Oliver Schulte, Jianfeng Hu, and Tianxing Gao. Learning compact Markov logic
networks with decision trees. Machine Learning, 89(3):257–277, 2012.

Tushar Khot, Sriraam Natarajan, Kristian Kersting, and Jude W. Shavlik. Learning Markov logic
networks via functional gradient boosting. In ICDM, pages 320–329. IEEE Computer Society,
2011.

Angelika Kimmig, Lilyana Mihalkova, and Lise Getoor. Lifted graphical models: a survey. Machine
Learning, 99(1):1–45, 2014.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016.

Ondrej Kuzelka, Yuyi Wang, Jesse Davis, and Steven Schockaert. Relational marginal problems:
Theory and estimation. In AAAI Conference on Artificial Intelligence (AAAI-18), pages 1–8, 2018.

Ondrej Kuzelka. Counting and sampling models in first-order logic. In International Joint Conference
on Artificial Intelligence, IJCAI, pages 7020–7025, 2023.

Tengfei Ma, Jie Chen, and Cao Xiao. Constrained generation of semantically valid graphs via
regularizing variational autoencoders. In Advances in Neural Information Processing Systems,
NeurIPS 2018, pages 7113–7124, 2018.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chenhao Ma, Reynold Cheng, Laks VS Lakshmanan, Tobias Grubenmann, Yixiang Fang, and
Xiaodong Li. Linc: a motif counting algorithm for uncertain graphs. VLDB Endowment, 13(2):155–
168, 2019.

Erfaneh Mahmoudzadeh, Parmis Naddaf, Kiarash Zahirnia, and Oliver Schulte. Deep generative
models for subgraph prediction. In European Conference on Artificial Intelligence, ECAI 2024,
volume 392, pages 3128–3136, 2024.

Giuseppe Marra, Francesco Giannini, Michelangelo Diligenti, and Marco Gori. Lyrics: A general
interface layer to integrate logic inference and deep learning. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, ECML PKDD, pages 283–298, 2019.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based
recommendations on styles and substitutes. ACM, 2015.

Christian Meilicke, Melisachew Wudage Chekol, Patrick Betz, Manuel Fink, and Heiner Stuck-
eschmidt. Anytime bottom-up rule learning for large-scale knowledge graph completion. The
VLDB Journal, 33(1):131–161, 2024.

Keivan Faghih Niresi, Lucas Kuhn, Gaëtan Frusque, and Olga Fink. Informed graph learning by
domain knowledge injection and smooth graph signal representation. In 2024 32nd European
Signal Processing Conference (EUSIPCO), pages 2467–2471, 2024.

Leslie O’Bray, Max Horn, Bastian Rieck, and Karsten Borgwardt. Evaluation metrics for graph
generative models: Problems, pitfalls, and practical solutions. In International Conference on
Learning Representations, ICLR, 2022.

Peter Orbanz and Daniel M Roy. Bayesian models of graphs, arrays and other exchangeable random
structures. IEEE transactions on pattern analysis and machine intelligence, 37(2):437–461, 2014.

J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge university press, 2000.

George BG Potter, Gertjan Burghouts, and Joris Sijs. Incremental learning of affordances using
markov logic networks. In 2024 Eighth IEEE International Conference on Robotic Computing
(IRC), pages 46–53. IEEE, 2024.

Zhensong Qian and Oliver Schulte. Factorbase: Multi-relational model learning with sql all the way.
In Data Science and Advanced Analytics (DSAA), pages 1–10, 2015.

Meng Qu, Junkun Chen, Louis-Pascal Xhonneux, Yoshua Bengio, and Jian Tang. RNNLogic:
Learning logic rules for reasoning on knowledge graphs. In International Conference on Learning
Representations, ICLR, 2021.

Luc De Raedt, Kristian Kersting, Sriraam Natarajan, and David Poole. Statistical relational artificial
intelligence: Logic, probability, and computation. Synthesis lectures on artificial intelligence and
machine learning, 10(2):1–189, 2016.

Luc de Raedt, Sebastijan Dumančić, Robin Manhaeve, and Giuseppe Marra. From statistical relational
to neuro-symbolic artificial intelligence. In International Joint Conference on Artificial Intelligence,
IJCAI-20, pages 4943–4950, 2020.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 2010.

Stuart Russell. Unifying logic and probability. Communications of the ACM, 58(7):88–97, 2015.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In International conference
on the semantic web (ESWC 2018), pages 593–607, 2018.

Oliver Schulte and Sajjad Gholami. Locally consistent Bayesian network scores for multi-relational
data. In International Joint Conference on Artificial Intelligence (IJCAI), pages 2693–2700, 2017.

Oliver Schulte and Zhensong Qian. Factorbase: Sql for learning a multi-relational graphical model,
August 2015.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Oliver Schulte and Zhensong Qian. FACTORBASE: multi-relational structure learning with SQL all
the way. International Journal of Data Science and Analytics, 7(4):1–21, 2018.

Yucheng Shi, Yushun Dong, Qiaoyu Tan, Jundong Li, and Ninghao Liu. Gigamae: Generalizable
graph masked autoencoder via collaborative latent space reconstruction. In Proceedings of the 32nd
ACM International Conference on Information and Knowledge Management, pages 2259–2269,
2023.

Hamed Shirzad, Kaveh Hassani, and Danica J Sutherland. Evaluating graph generative models with
contrastively learned features. Advances in Neural Information Processing Systems, NeurIPS,
2022.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
variational autoencoders. In Artificial Neural Networks and Machine Learning–ICANN 2018,
pages 412–422. Springer, 2018.

Mengying Sun, Jing Xing, Huijun Wang, Bin Chen, and Jiayu Zhou. Mocl: Data-driven molecular
fingerprint via knowledge-aware contrastive learning from molecular graph. In Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, KDD ’21, page
3585–3594, 2021.

Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, and Graham W Taylor. On evaluation
metrics for graph generative models. In International Conference on Learning Representations,
ICLR, 2022.

Yijun Tian, Shichao Pei, Xiangliang Zhang, Wei Wang, Hanghang Tong, and Nitesh V. Chawla,
editors. Knowledge-enhanced Graph Learning. Workshop at AAAI, 2024.

Timothy van Bremen and Ondrej Kuzelka. Approximate weighted first-order model counting:
Exploiting fast approximate model counters and symmetry. In International Joint Conference on
Artificial Intelligence, IJCAI-20, pages 4252–4258, 7 2020.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
Digress: Discrete denoising diffusion for graph generation. 2023.

Daisy Zhe Wang, Eirinaios Michelakis, Minos Garofalakis, and Joseph M Hellerstein. Bayesstore:
managing large, uncertain data repositories with probabilistic graphical models. In VLDB, pages
340–351, 2008.

Shuo Wang, Yanran Li, Jiang Zhang, Qingye Meng, Lingwei Meng, and Fei Gao. Pm2.5-gnn: A
domain knowledge enhanced graph neural network for pm2.5 forecasting. In Proceedings of the
28th International Conference on Advances in Geographic Information Systems, SIGSPATIAL
’20, page 163–166, 2020.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. A semantic loss function
for deep learning with symbolic knowledge. In International Conference on Machine Learning,
ICML, volume 80, pages 5502–5511, 2018.

Huafei Yu, Tinghua Ai, Min Yang, Jingzhong Li, Lu Wang, Aji Gao, Tianyuan Xiao, and Zhe Zhou.
Integrating domain knowledge and graph convolutional neural networks to support river network
selection. Transactions in GIS, 27(7):1898–1927, 2023.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer
networks. Neural Information Processing Systems, NeurIPS, 32, 2019.

Qin Zhang, Zelin Shi, Xiaolin Zhang, Xiaojun Chen, Philippe Fournier-Viger, and Shirui Pan. G2pxy:
generative open-set node classification on graphs with proxy unknowns. In International Joint
Conference on Artificial Intelligence, IJCAI-23, pages 4576–4583, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 DATASET INFORMATION

To evaluate all the methods we utilize 5 datasets used in previous studies of generative models Kipf
and Welling (2016); Yun et al. (2019); Hao et al. (2020).

• Cora (Kipf and Welling, 2016) is a citation dataset that consists of nodes that represent
machine-learning papers divided into seven classes (the subjects of the papers) and links
that represent citation between them. The target for node classification is the subject of the
papers. This dataset has 5,429 links, 2,708 nodes with an average node degree of 3.8.

• ACM (Yun et al., 2019) is a citation dataset. It has three types of nodes (paper, author, and
venue) and four types of links. The target for node classification is predicting one of three
labels corresponding to the conferences where the papers were published. This dataset has
18,929 links, 8,993 nodes with an average node degree of 2.209.

• IMDb (Yun et al., 2019) is a movie dataset with three types of nodes (movies, actors, and
directors) and it uses the genre of movies as their labels. The target for node classification is
predicting one of three genres of movies. This dataset has 19,120 links, 12,772 nodes with
an average node degree of 2.9.

• CiteSeer (Kipf and Welling, 2016) is also a citation dataset that consists of nodes that
represent machine-learning papers divided into six classes (the topics of the papers) and
links that represent citation between them. The target for node classification is the topic of
the publications. This dataset has 4,732 links, 3,327 nodes with an average node degree of
2.7.

• The UW dataset models academic relationships at a university, where persons can be
both students and professors and key relations include AdvisedBy (a student advised by
a professor) and TaughtBy (a student taking a course taught by a professor). The dataset
contains 278 person entities and 132 course entities. The classification target is the phase of
study of the student, which can be one of three labels: pre-quals, post-quals, or post-generals.
If the person is not a student, the label is 0.

• Photo & Computers are datasets from the Amazon co-purchase graph (McAuley et al.,
2015). In these datasets, nodes represent goods, links indicate that two goods are frequently
bought together, node features are bag-of-words encoded product reviews, and class labels
are given by the product category (Hao et al., 2020).

Data Preprocessing Following previous work (Kipf and Welling, 2016), for GNN message passing
we add self-loops and make all links undirected (i.e., if the training data contains an adjacency, v → u,
it also contains u→ v.) Cora and CiteSeer are homogeneous datasets, whereas ACM and IMDb are
heterogeneous datasets. Rule learning is applied to the original data.

A.2 RESULTS FOR HETEROGENEOUS ACM AND IMDB

We present graph generation results for the original heterogeneous versions of IMDb and ACM,
which feature different types of nodes and links. For ease of comparison, we repeat the results for
homogeneous versions from the main paper. Heterogeneous versions are distinguished by an asterisk.
We observe large percentage improvements from rule enhancement, especially for IMDb.

Table 4: Mean ± Std for Count Distance (CD↓) and Graph Realism (MMD↓) with Improvements (in
scientific notation, so "e" represents ×10n).

Dataset Count Distance (MSE) Graph Realism (MMD)
VGAE+ VGAE+R Improv. (%) VGAE+ VGAE+R Improv. (%)

ACM 1.24e5± 4.86e3 2.81e4± 3.54e3 77.34 3.31e20± 1.32e20 3.29e18± 3.08e18 99.01
ACM* 3.65e5± 3.32e3 1.47e4± 2.54e3 95.97 1.9e15± 1.32e15 9.8e15± 0.98e15 −415.79
IMDb 5.86e5± 1.96e4 3.23e5± 1.34e5 44.81 2.94e23± 6.29e22 4.58e22± 3.25e22 84.42
IMDb* 1.37e5± 2.23e2 1.43e4± 1.98e2 89.56 1.9e20± 2.88e18 7.8e17± 1.32e17 99.59

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

For node classification on heterogeneous datasets, the class labels are as follows: For IMDb*, predict
the genre of the movie nodes, and for ACM*, predict the area of a paper. As with the homogeneous
versions, rule enhancement does not lead to substantive improvements on these datasets, because the
rules are not informative for node classification in these datasets.

Table 5: AUC and F1 Score for link prediction on heterogeneous ACM and IMDb (higher is better).
Dataset Model AUC F1 Score

ACM* VGAE+R 0.976 ± 0.004 0.9184 ± 0.011
VGAE+ 0.979 ± 0.003 0.9123 ± 0.011

IMDb* VGAE+R 0.774 ± 0.006 0.632 ± 0.008
VGAE+ 0.769 ± 0.011 0.615 ± 0.014

A.3 NODE CLASSIFICATION BASELINE METHODS

Table 6 compares the rule-enhanced VGAE+R with the following node classification baselines.
We focused on baselines that are similar to generative models in that they aim to support multiple
prediction tasks. The baselines apply to homogeneous graphs only, so we homogenized ACM and
IMDb (Mahmoudzadeh et al., 2024) and omitted UW.

Generalizable Graph Masked AutoEncoder (GiGaMAE) (Shi et al., 2023) introduces a novel
graph encoder based on aligning different node embeddings that respectively encode structural and
feature information. MVGRL is an inductive self-supervised approach for learning representations
of nodes and graphs by contrasting different structural views of graphs (Hassani and Khasahmadi,
2020). G2Pxy (Zhang et al., 2023) generates proxy nodes to support classification. For all methods
we used the authors’ code to train a node classifier and generate class labels.

Dataset Model AUC F1-score

Cora VGAE+R 0.965 ± 0.013 0.887 ± 0.016
GiGaMAE 0.920 0.856
G2Pxy 0.921 0.781
MVGRL 0.888 0.886

CiteSeer VGAE+R 0.903 ± 0.008 0.794 ± 0.042
GiGaMAE 0.842 0.798
G2Pxy 0.850 0.781
MVGRL 0.807 0.710

Computers VGAE+R 0.915 ± 0.022 0.827 ± 0.047
GiGaMAE 0.941 0.770
G2Pxy 0.680 0.578
MVGRL 0.983 0.816

Photo VGAE+R 0.991 ± 0.003 0.972 ± 0.002
GiGaMAE 0.963 0.569
G2Pxy 0.773 0.513
MVGRL 0.963 0.960

ACM VGAE+R 0.761 ± 0.084 0.525 ± 0.014
GiGaMAE 0.823 0.440
G2Pxy 0.742 0.661
MVGRL 0.708 0.803

IMDb VGAE+R 0.829 ± 0.006 0.697 ± 0.008
GiGaMAE 0.890 0.457
G2Pxy 0.654 0.541
MVGRL 0.788 0.653

Table 6: Node classification results comparing rule-enhanced graph generation against baselines.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.4 FORMULA LEARNING

In principle, any Markov Logic Network structure learning method can be used with our moment-
matching training objective. We deployed the Factorbase sytem (Qian and Schulte, 2015) for several
reasons.

1. Interpretability: The first phase of Factorbase uses Bayesian network structure learning
method to discover a causal graph that provides a perspicious visual representation of all
associations learned from the data.

2. Scalability: Factorbase scales to larger and more complex datasets than other MLN structure
learning method, on the order of 100K nodes.

3. Quality: Research has shown that the formulas discovered by Factorbase support high
quality inferences in relational prediction tasks.

Factorbase has three main phases.

1. Causal Graph Discovery.

2. Rule Extraction from the learned causal graph.

3. Moralization: convert learned rules to conjunctions.

Both rule extraction and moralization are computationally straightforward linear-time operations.
Moralization is a method for converting learned rules to conjunctions. Previous research in statistical-
relational learning (Kazemi et al., 2014; Khosravi et al., 2012) has shown that moralization is a
strong method for converting learned rules to useful features for generative graph models. Note
that therefore our matrix multiplication algorithm can be applied to any set of learned rules after
moralization. This means that our algorithm for rule enhancement can be applied to any set of
learned rules, not only those obtained from MLN structure learning. We next explain in the phases of
Factorbase formula discovery and illustrate the results on our dataset.

Figure 5: Example First-Order Causal Graphs: left = B1 with graph G1, right = B+
1 with graph G+1 .

Causal Graph Discovery A causal graph (CG) structure is a directed acyclic graph G (DAG)
whose nodes comprise a set of random variables Pearl (2000). The interpretation is that the parents
of a node represent its direct causes Pearl (2000). A causal Bayesian network B is a structure G
together with a set of parameter values of the form P (child_value|parent_values), which specify
the distribution of a child node given an assignment of values to its parent node. A first-order causal
graph Wang et al. (2008); Kimmig et al. (2014) (FOCG) is a CG whose nodes are first-order terms.
The CG parameters specify the distribution of a child node given an assignment of values to its parent
node. Figure 5 shows two parametrized FOCGs. The right FOCG connects the rating of a movie
to the age of the rater. In the left FOCG, ratings are independent of ages. The process of structure
learning searches for statistically significant connections between first-order terms to introduce or
remove edges (Schulte and Qian, 2018; Schulte and Gholami, 2017).

We show the causal graphs learned by Factorbase for three datasets. We find that many of the learned
rules capture intuitively plausible domain constraints, such as homophily: if one paper cites another,
then they are likely from the same research area. For example in the graph for the Cora dataset,
the parents of the target label of a paper (node) are paper features 1 and 2, the citation relationship
between a paper and the target paper (denoted “edges_table”), and the label of the citing paper. The

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 6: The causal graph for the Cora dataset. We have highlighted the homophily edge that shows
that if paper 0 cites paper 1, then the label of paper 0 correlates with the label of paper 1.

Figure 7: The causal graph for the UW dataset.

graph defines a rule for each combination of the 4 parent nodes, and each of the 7 possible child node
values (paper classes).

ACM and CiteSeer are citation networks like Cora with a similar graph, which we omit. Figure 7
shows the causal graph for the UW dataset. The graph captures a number of relationships that make
sense in the university domain. For example whether a person teaches a course correlates with
whether they have a position.

Figure 8 shows the causal graph for the IMDb dataset. The graph captures many correlations between
features of movies and actors. An interesting aspect of the graph is that for the target label (genre
of the movie), its only parents are other features of the movie to be classified (features 1,2,4). This
suggests that relational features, such as the features of actors who appear in the movie, should not
add information beyond movie features. We verified this directly by building a classifier based on
movie features only, which performed better than the GNN that uses relational features.

Figure 8: The causal graph for the IMDb dataaset.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 9: The FO conjunction Age(User) = 1 ,Rating(User ,Movie) = 4 can be viewed
as a two-node motif. The conjunction is obtained from the rule Age(User) = 1 →
Rating(User ,Movie) = 4 by moralization.

Figure 10: Encoder-Decoder Training Architecture for the VGAE+ Model.

Rule Extraction from Causal Graphs A rule is of the form B → H where the body B is an FO
conjunction and the head H is a single FO literal. An example rule is

Age(User) = 1 → Rating(User ,Movie) = 4 .

This rule expresses the knowledge that the age level of a user influences their ratings.

A single rule B → H is defined by a combination parent_values → child_value, for each child
node value and possible combination of parents values (Khosravi et al., 2012). For example, the
causal graph of Figure 5(right) defines the rule

Rating(User ,Movie) = 3→ Age(User) = 1).

Given 6 possible rating values and 5 age levels, the link Rating(User ,Movie) → Age(User))
defines 6× 5 = 30 rules.

As the Factorbase system can output many rules, we use
2n(B, H) ln(n(H|B)/n(H))− lnn(H) as a rule quality metric for pruning. The conditional count
is given by n(H|B) = n(H,B)/n(B). This metric computes the increase in the log-probability
of the head given the body, relative to the prior probability of the head, together with a BIC-type
correction for sample size (Schulte and Gholami, 2017). The quality metric can be interpreted as a
positive local BIC model selection score. We keep all rules whose quality metric is above 0. Rule
pruning reduces the number of rules for scalability, and also simulates the impact of a domain expert
selecting the most important rules.

Moralization: From rules to conjunctions Most rule learners are based on discriminative learning,
building on classification techniques to search for bodies that predict the head. A question researched
in SRL is how to convert a set of rules to a set of graph features/statistics that support generative
graph modelling. The recommended answer is moralization: convert each rule to a conjunction
ϕ = (B, H) (Domingos and Richardson, 2007, 12.5.3), (Kazemi et al., 2014). Figure 9 illustrates
how moralization converts a rule to a conjunction, and how a conjunction represents a motif.

A.5 DETAILS ON THE VGAE+R MODEL

Figure 10 shows the VGAE+R architecture. The graph encoder qϕ(z|X, A) is implemented by a
GNN that takes as input an attribute graph and returns latent node embeddings. For compatibility with

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

baseline methods, the encoder does not receive node labels as input, but adding them is straightforward.
Following Mahmoudzadeh et al. (2024), we used a multi-layer graph attention network (GAT) and an
RGCN (Schlichtkrull et al., 2018) for heterogeneous datasets. The encoders were configured in the
same way as Mahmoudzadeh et al. (2024).

The decoders generate links, node features, and node labels independently as follows.

pη(A|z) =
T∏
r=1

∏
u,v

pηr (Ar[u, v]|z[u], z[v]) (5)

pψ(X|z) =
∏
u

pψ(X[u]|z[u]) (6)

pϕ(L|z) =
∏
u

pϕ(L[u]|z[u]), (7)

Jaeger and Schulte (2020) provide a strong theoretical foundation for the independent decoder
model. Following Mahmoudzadeh et al. (2024), we use a stochastic blocks model for the link
decoder Equation (5), and MLPs for the feature and label decoders Equations (6) and (7). When
training a model for graph generation, we use the training objective Equation (2), without the node
labels. When training a model for node classification, the encoder does not see the node labels, but
the decoder has access to the training node labels to evaluate the node label term Equation (7). At test
time, the trained encoder is applied to the available graph information to produce node embeddings
for each test node, and then the trained decoder is applied to output class probabilities.

Hyperparameters We used the ADAM optimizer for training, with default hyperparameter values.
For graph generation we obtained the best results for both the VGAE+ and the VGAE+R model by
setting all ELBO hyperparameters α, β, γ to 1, similar to Simonovsky and Komodakis (2018). The
motif loss weight λ was also set to 1 except for Computers, where λ = 2 yielded better results. Both
models were trained for 100 epochs on all datasets.

For node classification, for the VGAE+ baseline model with λ = 0, we follow Mahmoudzadeh et al.
(2024) and use Bayesian optimization to fix the ELBO hyperparameters α, β, γ. For the VGAE+R
model, after fixing the ELBO hyperparameters, we set the motif loss weight λ empirically based on
a validation set. We found that different datasets require different training regimes to build good
node classifiers. Specifically, the number of training epochs were as follows for both VGAE+ and
VGAE+R models: 700 for Cora and CiteSeer, 1000 for IMDb, Computers, ACM, Photo, and 100 for
UW.

For the learning curves, we trained the model for 1000 epochs at each sample size on the Citeseer
dataset. To obtain standard deviations, we initialized training with five different seeds for node
classification, and three different seeds for graph generation.

Computing Resources The experiments were conducted using a GPU cluster. The compute
resources varied based on dataset size. For large datasets such as Computers and Photos, experiments
were run on NVIDIA A100 GPUs with 80GB VRAM, 64GB RAM, and 16 CPU threads. For IMDB
and ACM, NVIDIA A40 GPUs with 48GB VRAM, 64GB RAM, and 16 CPU threads were used. For
smaller datasets such as Cora, Citeseer, and UW, experiments were conducted on NVIDIA GeForce
GTX 1080 Ti GPUs. Each dataset required approximately 20GB of storage for generated graphs.
Given the training regime described, generating measurements for one dataset took approximately 4
to 5 hours.

A.6 FIRST-ORDER SEMANTIC LOSS VS. PROPOSITIONAL SEMANTIC LOSS

In this section we show how the semantic loss Equation (4) with the distance function

| lnni(D)− lnEθ[ni|z]| (8)

reduces to the semantic loss function of Xu et al. (2018) in the case of a propositional formula ϕi.
For a given graph, a propositional formula is either true or false in the graph. Xu et al. give the

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

example of an "exactly-one" constraint that says that each node is assigned exactly to exactly one
class. Translating into our notation, a propositional formula has an instance count of 1 if it is satisfied
in a graph, and 0 otherwise:

ni(G) ≤ 1 for propositional ϕi (9)

The basis idea of Xu et al. is to view a propositional formula as a constraint that a model should
satisfy. There the semantic loss function should maximize the probability of the formula under the
model. The probability of the formula is the probability of the graphs that satisfy it. The steps in the
proof are as follows.

pθ(ϕi|z) =
∑
G

Pθ(G|z)ni(G) = Eθ[ni|z] (10)

− ln pθ(ϕi|z) = − lnEθ[ni|z] (11)
| lnni(D)− lnEθ[ni|z]| = |0− lnEθ[ni|z]| = | − ln pθ(ϕi|z)| = − ln pθ(ϕi|z) (12)

Equation (10) holds because due to the zero-one condition (9) the probability of a formula is the
same as the expected instance count, which immediately implies Equation (11). For Equation (12),
since formula ϕi is assumed true in all graphs, in particular it will be true in the observed graph D.
Therefore ni(D) = 1. The last equality holds because for pθ ≤ 0, we have − ln pθ(ϕi|z) ≥ 0, so
− ln pθ(ϕi|z) = | − ln pθ(ϕi|z)|. The leftmost term in Equation (12) is our first-order semantic loss,
and the rightmost is the propositional first-order semantic loss of Xu et al., which establishes our
claim.

A.7 EXPANDED FIRST-ORDER LOGIC DEFINITIONS

We add to the definitions in the main body to introduce concepts we need in our proofs and in
the full description of matrix multiplication algorithm. We make this section self-contained for
ease of reference. A positive relationship literal is of the form R(U, V). A negative relationship
literal is of the form ¬R(U, V). A generic relationship literal (positive or negative) is denoted as
ℓ(U, V). A ground relationship literal is of the form ℓ(U = u, V = v) where u and v are two
node indices. Similar to specifying arguments for variables in a programming language, grounding
specifies arguments for node variables. Positive and negative unary literals are defined similarly.

For a positive ground relationship literal ℓ(U = u, V = v) = R(U = u, V = v), the indicator
IG(ℓ(U = u, V = v)) = 1 if the two nodes u and v are linked by edge type R in graph G.
For a negative ground relationship literal, ℓ(U = u, V = v) = ¬R(U = u, V = v), we have
IG(¬R(U = u, V = v)) = 1− IG(R(U = u, V = v)).

A conjunction is a list of literals. Intuitively, a conjunction is a template for a motif or frequently
occurring subgraph. The indicator function specifies which nodes satisfy the literal/conjunction. Our
formal definitions are as follows.

A conjunction ϕ comprises three elements:

1. A list ℓ1(U1, V1), . . . , ℓP (UP , VP) comprising P relationship literals where Ui and Vi are
node variables.

2. A list ℓ1(W1), . . . , ℓQ(WQ) comprising Q unary literals, where Wi is a node variable.
3. A set of equality constraints EQ of the form Dk = Ek for any two node variables Dk and

Ek that appear in the list of relationship literals or unary literals. Formally, EQ is a set of
unordered pairs of node variables.

This definition is equivalent to the definition in the main paper: all node variables are assumed to
occur exactly once in a conjunction, and the equality constraints specify which node variables must
be mapped to the same node indices. Representing equality constraints in an explicit list facilitates
the statement of our matrix multiplication algorithm.

A conjunction with P relationship literals ℓ1(U1, V1), . . . , ℓP (UP , VP) is a chain conjunction if
there is a permutation π of the literals such that the equality constraints comprise Vπ(i−1) = Uπ(i)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

for i = 2, . . . , P . A conjunction ϕ has 2P + Q parameters (i.e., node variables). Specifying a
list of 2P + Q node indices as arguments to the conjunction returns a grounded conjunction. A
grounded chain conjunction corresponds to a path in the graph where each consecutive pair of nodes
is connected by an edge.

The indicator function for a grounded conjunction is given by:

IG(ℓ1(U1 = u1, V1 = v1), . . . , ℓP (UP = uP , VP = vP),

ℓ1(W1 = w1), . . . , ℓQ(WQ = wQ))

=

P∏
i=1

IG(ℓi(Ui = ui, Vi = vi))

Q∏
j=1

IG(ℓj(Wj = wj))

Conjunction Counts. For compactness, write a grounding as ⟨U = u,V = v,W = w⟩ so
the indicator function returns a 0/1 value for IG(⟨U = u,V = v,W = w⟩,EQ). A grounding
⟨U = u,V = v,W = w⟩ is valid for a set of equality constraints EQ if for any two assignments
D = d and E = e we have d = e if and only if (D = E) ∈ EQ . Thus node variables constrained to
be equal must be assigned the same node, and otherwise must be assigned different nodes. We write
ValidEQ for the set of valid groundings. The instance count for a conjunction ϕ in a graph G returns
the number of valid groundings that satisfy the conjunction:

nϕ(G) =
∑

⟨u,v,w⟩∈ValidEQ

IG(⟨U = u,V = v,W = w⟩)

Here, we evaluate the indicator function for each combination of ⟨u,v,w⟩, and sum up the values
for all combinations to obtain the desired count of satisfying groundings.

A.8 PROOF OF PROPOSITION 2

Figure 11: An example expected graph corresponding to Figure 4.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

The output of the VGAE+ model is an expected graph like Figure 11. The following proposition
states that the expected counts can be computed based on a expected graph. We use the full first-order
logic definitions of Appendix A.7.

Proposition 2. The expected conjunction count given a set of node embeddings can be computed as
the conjunction count in the expected graph: EG∼P (G|z)[nϕ(G)] = nϕ(G̃z)

Proof. Without loss of generality, assume the conjunction is of the form ℓ1(U1 = u1, V1 =
v1), . . . , ℓP (UP = uP , VP = vP), ℓ1(W1 = w1), . . . , ℓQ(WQ = wQ) with equality constraints EQ .
Define the random variables luvi , i = 1, . . . , P to return the indicator value IG(ℓi(Ui = u, Vi = v)
and lwj , j = 1, . . . , Q to return the indicator value IG(ℓj(Wj = w)) . Then

EG∼P (G|z)[nϕ(G)]

= E[
∑

⟨u,v,w⟩∈V alidEQ

P∏
i=1

IG(ℓi(Ui = ui, Vi = vi))

Q∏
j=1

IG(ℓj(Wj = wj))]

= E[
∑

⟨u,v,w⟩∈V alidEQ

P∏
i=1

luivi
i

Q∏
j=1

l
wj

j]

=
∑

⟨u,v,w⟩∈V alidEQ

E[

P∏
i=1

luivi
i

Q∏
j=1

l
wj

j]

=
∑

⟨u,v,w⟩∈V alidEQ

P∏
i=1

E[luivi
i]

Q∏
j=1

E[l
wj

j]

=
∑

⟨u,v,w⟩∈V alidEQ

P∏
i=1

pG̃z
(ℓi(Ui = ui, Vi = vi))

Q∏
j=1

pG̃z
(ℓj(Wj = wj)) = nϕ(G̃z)

(13)

Equation (13) follows because the expectation of a product of independent random variables is
the product of their expectations. The random variables luivi

i and l
wj

j are independent because the
(in)equality constraints ensure that in a valid grounding, no two different literals are ground to the
same ground literal. And conditional on the node embeddings z, any two different ground literals are
independent.

A.9 MATRIX MULTIPLICATION METHOD

A.9.1 EXAMPLE FOR EXPECTED INSTANCE COUNT

Figure 12 illustrates the matrix multiplication method for the expected graph in our example.

Figure 12: The matrix multiplication sequence for our example conjunction and Figure 11 graph.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

A.9.2 FULL SPECIFICATION OF MATRIX MULTIPLICATION METHOD

Intuitively, a chain conjunction is a template for a motif or frequently occurring subgraph. The
indicator function specifies which nodes satisfy the literal/conjunction. Our formal definitions are as
follows.

The input to our counting algorithm is a chain conjunction
{ℓ1(U1, V1), . . . , ℓP (UP , VP), ℓ1(W1), . . . , ℓQ(WQ),EQ} and an input graph G. The first
step is to process the unary literals by masking adjacency matrix entries of nodes that do not satisfy
all unary literals. The second step is to define inductively a sequence of matrices such that the
instance count of the conjunction can be computed as the entry sum of the matrix product. We
use A ◦ B to denote the element-wise matrix (Hadamard) product and I for the identity matrix
of the appropriate dimension. A positive relationship literal R(U, V) is associated with Ar, the
adjacency matrix for relation R. A negative relationship literal ¬R(U, V) is associated with ¬Ar
where ¬Ar[u, v] = 1− Ar[u, v] for all node indices u, v.

Step 1: Unary Literals Consider binary relationship literal ℓi(U, V) with associated m × n
adjacency matrix Ai(G). We search for every unary literal ℓ(W) where (U = W) ∈ EQ . For each
such literal, we create a binary vector T of size m such that T [w] := IG(ℓ(W = w)). Thus the entry
T [w] masks all the nodes that do not satisfy the unary literal. We apply the mask to the w row of
matrix Ai, setting Āi[w, :] = Ai[w, :] ◦ T [w]. where A(w, :) represents the entire w row of matrix A.
If the w entry of T is zero, the entire row of Āi is set to 0. If the w entry of T is one, the entire row
of Ai is copied to Āi.

Similarly, if a unary literal ℓ(W) exists where (V = W) ∈ EQ , we mask the corresponding column
entries in the adjacency matrix Ai, and repeat the masking process for all such unary literals. We
refer to the adjacency matrix that incorporates the unary functor constraints as the masked adjacency
matrix Āi.

Step 2: Binary Literals A chain conjunction is centered if all equality constraints for the binary
literals (other than the chain constraints) involve the first node variable, that is they are of the form
U1 = Ek. For a centered chain, we define a sequence of matrix multiplications as follows.

1. For a single literal conjunct ϕ = ℓ(U, V) with associated masked matrix Ā, let

O1(ϕ) =

{
Ā, if U = V /∈ EQ

Ā ◦ I, if U = V ∈ EQ

Ā ◦ I agrees with Ā on the diagonal and is 0 off-diagonal.

2. Inductively, consider a conjunction ϕ of length k+1 in the form of ϕ = ϕ′, ℓk+1(Uk+1, Vk+1)
where ϕ′ = ℓ1(U1, V1), . . . , ℓk(Uk, Vk) is a conjunction of length k. Let

Ok+1(ϕ) =

{
Ok(ϕ

′)Āk+1, if U1 = Vk+1 /∈ EQ

(Ok(ϕ
′)Āk+1) ◦ I, if U1 = Vk+1 ∈ EQ

(14)

A.9.3 CORRECTNESS PROOF (PROPOSITION 3)

We next formulate the proposition that for every chain conjunction, there is a corresponding sequence
of matrix multiplication operations such that: for every input graph G, applying the operation sequence
to the graph edge label tensor returns the instance count. In this formulation, we use the following
facts: 1) Every ground positive (negative) relationship literal corresponds to a link present (absent) in
the graph. 2) A grounded chain conjunction corresponds to a path in the graph where each consecutive
pair of nodes is connected by a present/absent link.

Proposition 3. Let {ℓ1(U1, V1), . . . , ℓP (Uk, Vk), ℓ1(W1), . . . , ℓQ(WQ),EQ} be a chain conjunc-
tion of length k.

1. For an input graph G, the (u, v)-th entry of Ok counts the number of groundings of ϕ in G
where U1 = u and VP = v. Therefore nϕ(G) =

∑
(Ok(ϕ)).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

2. For an expected graph G̃z , the (u, v)-th entry of Ok counts the expected number of ground-
ings of ϕ where U1 = u and VP = v. Therefore nϕ(G̃z) =

∑
(Ok(ϕ)).

Proof. We give the proof for clause 1, counting observed counts in an input graph G. The argument
for expected counts computed from an expected graph is exactly parallel.

Base case, k = 1. If ϕ = {ℓ(U, V)}, then the conjunction count is the number of pairs (u, v) such that
(i) both groundings U = u and V = v satisfy all unary literals, and (ii) IG(ℓ(U = u, V = V)) = 1.
All and only such pairs have the entry Ā[u, v] = 1 in the masked adjacency matrix associated with
ℓ(U, V).

Case 1: (U = V) /∈ EQ . Then the number of satisfying groundings is simply given by
∑

(Ā).

Case 2: (U = V) ∈ EQ . Then the satisfying groundings are of the form U = u, V = u, so their
count is given by the matrix trace of Ā, or equivalently

∑
(Ā ◦ I). This establishes the base case.

Inductive Step: Assume the proposition holds for k and consider the matrix Ok+1 computed by Equa-
tion (14). By the inductive hypothesis, the (u, v)-th entry of Ok counts the number of instantiations
of length k between vertices u and v that satisfy ϕ′. Now, the number of instantiations of length k+1
between u and w equals the number of instantiations of length k from vertex u to each vertex v that
has ℓk+1 relation with w. The non-zero entries of column w of masked matrix Āk+1 represent vs
related by ℓk+1 to w. So, (u,w)-th entry of OkĀk+1 gives the number of instantiations between u
and w satisfying the centered conjunction and all equality constraints except possibly U1 = Vk+1.
Therefore for the case where U1 = Vk+1 ̸∈ EQ , the matrix Ok+1 satisfies the inductive hypothesis.
For the case where U1 = Vk+1 ∈ EQ , we observe that the number of instantiations of length k + 1
from node u to u equals the (u, u) diagonal entry of OkĀk+1 or equivalently, (OkĀk+1) ◦ I . Thus
the total number of satisfying groundings is given by

∑
(Ok+1(ϕ)) in either case, which establishes

the inductive hypothesis.

Extensions

• Our counting method is based on a sorting algorithm. A sorting algorithm is a procedure
that takes a set of relationship literals

ℓ1(U1, V1), . . . , ℓP (UP , VP)

and determines if there exists a permutation π such that the literals can be arranged to form
a chain conjunction. Specifically, it seeks to satisfy the equality constraints given by

Vπ(i−1) = Uπ(i) for i = 2, . . . , P.

Example
Consider the following conjunction of relationship literals:

AdvisedBy(Student ,Professor),

TaughtBy(Course,Professor),

Registered(Student ,Course)

This set of relationships is not a chain conjunction because there is no permutation of the
literals that satisfies the necessary chain equality constraints. However, we can transform
this into a chain conjunction using the reverse relations:

AdvisedBy(Student ,Professor),

Teaches(Professor ,Course),

TakeCourse(Course,Student)

In this case, the literals can be rearranged to form a chain conjunction, satisfying the equality
constraints. Here Teaches is the reverse of TaughtBy and TakeCourse is the reverse of
Registered .

• Our algorithm and proof can be extended to the case of nested conjunctions, which have
no crossing equalities. Say that two variable equalities Uk1 = Vk2 and Uk3 = Vk4 cross if
k1 < k3 < k2 and k2 < k4. A nested chain is composed of centered chains, so our matrix
multiplication algorithm can be used to recursively compute instance counts.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

A.10 GNN-BASED GRAPH REALISM METRIC FOR EVALUATING GRAPH GENERATION

How to quantitatively assess generated graphs has been studied in recent papers O’Bray et al. (2022);
Thompson et al. (2022); Shirzad et al. (2022). The general approach proceeds in two stages:

1. For a graph G, extract a real-valued descriptor vector ϕ(G).

2. Measure the similarity µ(G, Ĝ) of an observed graph G and a generated graph Ĝ by applying
a distance/kernel on their real-valued descriptors vectors ϕ(G) and ϕ(Ĝ).

The similarity of a set of observed graphs and a set of generated graphs can be quantified as the
similarity of their descriptor sets using Maximum Mean Distance (MMD). The SOTA descriptor
function utilizes a reference embedding network GNN E . The embedder E is obtained from random
weights and is therefore independent of any of the models under evaluation.

We adapt the SOTA GNN-based approach to the setting of learning from a single training graph D as
follows. We compare the training graph to generated expected graphs G̃1, . . . G̃m. An expected graph
G̃i is generated by sampling a node embedding zi from the prior distribution p(z), then applying
the decoder model eq. (5) to zi. Following Thompson et al. (2022), we apply an embedder E with
random weights to the training graph resp. generated expected graphs to obtain embeddings e resp.
ê1, . . . , êm. The random GNN option does not require multiple training graphs. The message-passing
mechanism of GNNs naturally extends to weighted graphs, so we can apply the GNN embedder to
expected graphs directly. To quantify the similarity of the generated embeddings ê1, . . . , êm to the
training graph embedding e, we utilize the MMD metric with a linear kernel, which is recommended
by Thompson et al. (2022). We used their code to compute the MMD metric results.

A.11 LEARNING CURVES

We report a learning curve experiment to examine the effect of rule knowledge on data efficiency.
The idea is to simulate the impact of a domain expert providing the model with a strong set of rules.
After learning an informative set of rules on the entire training graph, we sample 20% of node labels
as test labels and reserve the other 80% as training node labels. Then we sample x% of the training
node labels for training the VGAE with and without rules. We report the predictive accuracy on the
test labels, after training the VGAE with and without rules on x = 25%, 50%, 75%, 100% of training
labels. The models are tested on the remaining 100 − x% of nodes. UW is too small to obtain a
meaningful learning curve.

Figure 13: Learning curve for the CiteSeer dataset.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 14: Learning curve for the Cora dataset.

Figure 15: Learning curve for the Photo dataset.

A.12 LOSS CURVES

In this section we show that rule matching has a big impact on training, by in effect initializing the
GGM model in a part of weight space that encodes the rule knowledge.

A.12.1 LABEL LOSS CURVES

In this section, we compare the label loss component for each model across different datasets. As
shown in Figures 19, 20, 21, 22, and 23, the label loss for VGAE+R is generally lower than that
for VGAE+ across most datasets, suggesting that VGAE+R may yield better accuracy in node
classification.

A.12.2 TOTAL LOSS CURVES

In this section, we present the total loss curves for both the VGAE+ and VGAE+R models across
multiple datasets. While it is not possible to directly compare the loss values between the two models,
the downward trend in loss during training for both models indicates successful convergence. Figures

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 16: Learning curve for the ACM dataset.

Figure 17: Learning curve for the IMDb dataset.

24, 25, 26, 27, and 28 illustrate the total loss for each dataset, confirming the models’ progress
throughout the training process.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 18: Learning curve for the Computers dataset.

Figure 19: Label loss component for CiteSeer dataset during model training

Figure 20: Label Loss component for ACM dataset during model training

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 21: Label Loss component for IMDb dataset during model training

Figure 22: Label Loss component for UW dataset for person node type during model training

Figure 23: Label Loss component for UW dataset for course node type during model training

Figure 24: Total loss for Cora dataset during model training

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 25: Total Loss for CiteSeer dataset during model training

Figure 26: Total Loss for ACM dataset during model training

Figure 27: Total Loss for IMDb dataset during model training

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 28: Total Loss for UW dataset during model training

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 7: Graph quality comparison of VGAE+ and VGAE+R on six datasets using MMD metrics
(degree, clustering, 4-orbit, spectral, diameter). Lower values indicate generated graphs are closer to
observed ones; VGAE+R shows consistent improvements.

Dataset Metric VGAE+ VGAE+R

CiteSeer Degree MMD 0.752 0.604
Clustering MMD 0.733 1.672

4-Orbit MMD 0.549 0.538
Spectral MMD 0.506 0.431
Diameter MMD 2.000 1.877

Cora Degree MMD 0.768 0.707
Clustering MMD 1.680 1.648

4-Orbit MMD 1.400 1.375
Spectral MMD 0.514 0.461
Diameter MMD 1.979 1.944

IMDB Degree MMD 0.756 0.521
Clustering MMD 1.950 1.870

4-Orbit MMD 0.599 0.523
Spectral MMD 0.516 0.389
Diameter MMD 1.894 1.760

ACM Degree MMD 0.770 0.664
Clustering MMD 1.930 1.880

4-Orbit MMD 0.756 0.692
Spectral MMD 0.571 0.524
Diameter MMD 1.944 1.955

Photos Degree MMD 0.727 0.547
Clustering MMD 1.760 1.810

4-Orbit MMD 1.090 1.260
Spectral MMD 0.606 0.399
Diameter MMD 1.941 1.305

Computers Degree MMD 0.756 0.227
Clustering MMD 1.952 1.867

4-Orbit MMD 0.788 0.767
Spectral MMD 0.516 0.326
Diameter MMD 1.894 0.706

A.13 GRAPH REALISM EVALUATION

Our main metric of graph quality is the GNN-based graph realism MMD measure, which is the
current state-of-the-art method for comparing generated graphs with observed graphs. This metric
was introduced in prior work (Thompson et al., 2022) and relies on a reference GNN R to embed
entire graphs. Importantly, R is independent of the models under evaluation. In our experiments, we
used a reference GNN with random weights, as recommended by Thompson et al. (2022), ensuring
that no domain-specific information was encoded. A pre-trained reference GNN could also be used,
but we did not adopt that setting in this paper.

For completeness, we also report statistic-based MMD measures (degree, clustering, 4-orbit, spectral,
diameter), which have been widely used in earlier work on auto-regressive graph generation such as
GraphRNN. These complementary metrics show consistent benefits from incorporating first-order
rules.

Table 7 presents the performance of VGAE+ (baseline) and VGAE+R (rule-enhanced) across six
benchmark datasets. Across both GNN-based and classical MMD measures, lower values indicate
closer alignment between generated and observed graphs, and VGAE+R achieves lower scores in all
but one setting (clustering on Citeseer), demonstrating the positive effect of rule-based enhancement.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 8: Count Distance between rule values in the test set and generated graphs. Lower values are
better.

Dataset VGAE+ VGAE+R

Cora 1403.530 18.020
CiteSeer 459.560 24.760
IMDB 25762.900 1082.700
ACM 474.360 118.900
Photo 6046.740 1212.110
Computers 29567.100 1006.970
UW 763257.950 744808.390

Table 9: Runtime and memory usage of VGAE+ and VGAE+R across benchmark datasets.
Dataset #Nodes #Rules VRAM (GB) Runtime VGAE+ Runtime VGAE+R GPU

Cora 2708 138 12.2 0m 22.9s 0m 44.7s GTX 1080 Ti
CiteSeer 3327 193 11.7 1m 34.2s 2m 18.9s Titan X
IMDB 12772 31 38.8 3m 36.7s 4m 08.5s A40 (48 GB)
ACM 8993 62 41.2 2m 07.5s 2m 34.4s A40 (48 GB)
Photos 7650 207 80.0 1m 36.1s 2m 40.4s A100 (80 GB)
Computers 13752 58 79.5 4m 30.0s 5m 24.2s A100 (80 GB)
UW 410 111 0.175 0m 15.0s 0m 16.0s GTX 1080 Ti

A.14 COUNT DISTANCE EVALUATION BASED ON PRIOR EMBEDDINGS

For the Count Distance metric, prior work on VAE-based graph generation has often evaluated fit to
the training or test data using the ELBO as an indirect measure of generation quality (Simonovsky
and Komodakis, 2018). In our setting, Count Distance similarly measures how well generated graphs
reproduce rule instance counts observed in the data. One might expect a neural GGM to implicitly
match motif counts as part of modeling the training distribution, but our results show that a standard
VGAE does not. Adding our explicit semantic loss substantially reduces this discrepancy.

we also report results when sampling directly from the prior p(z). As shown in Table 8, the semantic
loss improves not only fit to training data but also pure generation under p(z). Lower values indicate
closer alignment between generated and observed rule counts, and VGAE+R consistently achieves
much lower distances than VGAE across all datasets.

A.15 SCALABILITY AND RUNTIME ANALYSIS

Our core algorithm relies on dense matrix multiplications over probabilistic adjacency matrices. As
discussed in Section 5, this raises natural concerns about scalability. In this appendix, we provide
additional details on the computational resources required and the observed runtime overhead of the
semantic loss.

Table 9 summarizes, for each benchmark graph, the number of nodes, number of rules, peak GPU
memory usage, runtime for 100 training epochs with VGAE+ and VGAE+R, and the GPU model
used. Storage needs for generating graphs ranged from 1GB for the smallest dataset to 70GB for the
largest, and end-to-end experiments (training + generation + evaluation) took between 4 and 5 hours
for the biggest dataset.

Modern GPUs render dense matrix multiplications surprisingly efficient: thousands of cores execute
multiply–add operations in parallel, while optimized libraries such as cuBLAS tile large matrices into
on-chip shared-memory blocks. Tensor Cores and fused multiply–add instructions further accelerate
throughput, often at reduced precision. As a result, the additional multiplications from our semantic
loss add only a modest wall-clock overhead.

For example, runtime on the UW graph increases by just 1 second (15s to 16s). For mid-sized graphs
such as ACM and IMDB, the slowdown is about 20% and 15%, respectively. Larger graphs such as
Photos incur slowdowns of 1.95× and 1.67×, yet all runs complete in under six minutes. Even the

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 10: Robustness of VGAE+R to noisy/incomplete rules on the Cora dataset.
Condition Degree Clust. 4-Orbit Spectral Diam. CountDist (train) CountDist (test) Graph Realism AUC (%) F1 (%)

50% Rules Deleted 0.733 1.640 1.398 0.517 1.914 58991.850 35.190 1.745e20 94.5 85.0
VGAE+R (full rules) 0.707 1.648 1.375 0.461 1.944 26800.000 18.000 6.840e17 96.5 88.0
Baseline VGAE+ 0.768 1.680 1.400 0.514 1.979 51400.000 1403.000 1.400e19 86.0 69.0

13k-node Computers graph finishes in 5m 24s on an A100 GPU. On average, VGAE+R adds only a
1.4× overhead while yielding substantial improvements in rule compliance and graph quality.

It is common practice to evaluate new objectives for graph generative models in settings that require a
full dense adjacency matrix. Examples include GraphVAE (Simonovsky and Komodakis, 2018) and
the more recent Digress diffusion model (Vignac et al., 2023). These evaluations remain meaningful
because many graph generation benchmarks consist of small to medium-sized graphs, such as
molecules and proteins. A general lesson in the field is that all-at-once methods have fast training
and generation for small to medium graphs, while scaling to very large graphs typically requires
autoregressive approaches (Hamilton, 2020).

A.16 ROBUSTNESS TO NOISY OR INCOMPLETE RULES

Almost all rules we use are non-deterministic, meaning they allow for exceptions (e.g., “if X works
in city Y , then X lives in city Y ,” which may not always hold). This flexibility is part of the
power of first-order rules, which can hold in a graph to a degree rather than absolutely (Domingos
and Richardson, 2007). If noise refers to uninformative rule bodies, we prune such rules during
preprocessing, which increases robustness. If the rule set is incomplete—missing important rules—the
system degrades gracefully toward the standard GGM likelihood. In the extreme case of an empty
rule set, our objective reduces exactly to the standard VGAE loss. Since our implementation derives
rules from a first-order Bayesian network that represents the full joint domain distribution (Schulte
and Qian, 2015), the resulting rule sets are likely close to complete.

Table 10 reports results on the Cora dataset under three settings: (1) deleting the top 50% of rules, (2)
using the full VGAE+R rule set, and (3) the baseline VGAE+. Metrics include generation quality
(MMD measures), count distance on train/test graphs, graph realism (×10n), and classification
accuracy (AUC, F1). Results confirm that pruning rules degrades performance, but VGAE+R remains
robust compared to the baseline VGAE+.

33

	Introduction
	Related Work
	Background on First-Order Logic
	Rule-Enhanced Graph Generation
	Implementing the Moment Matching ELBO

	Matrix Multiplication for Instance Counting
	Evaluation
	Experimental Design
	Experimental Results
	Count Distance and Graph Realism
	Node Classification

	Conclusion, Limitations and Future Work
	Appendix / supplemental material
	Dataset Information
	Results for Heterogeneous ACM and IMDb
	Node Classification Baseline Methods
	Formula Learning
	Details on the VGAE+R Model
	First-order Semantic Loss vs. Propositional Semantic Loss
	Expanded First-Order Logic Definitions
	Proof of Proposition 2
	Matrix Multiplication Method
	Example for Expected Instance Count
	Full Specification of Matrix Multiplication Method
	Correctness Proof (Proposition 3)

	GNN-Based Graph Realism Metric for Evaluating Graph Generation
	Learning Curves
	Loss Curves
	Label Loss Curves
	Total Loss Curves

	Graph Realism Evaluation
	Count Distance Evaluation based on prior embeddings
	Scalability and Runtime Analysis
	Robustness to Noisy or Incomplete Rules

