

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ENHANCING GRAPH GENERATION WITH FIRST-ORDER LOGIC RULES

Anonymous authors

Paper under double-blind review

ABSTRACT

Existing graph generative models produce graphs that are often quite realistic, but sometimes miss domain-specific patterns. Enhancing graph learning with domain knowledge is one of the current frontiers for neural models of graph data. In this paper, we propose a new approach to enhancing deep graph generative models with knowledge that is represented by first-order logic rules. First-order logic provides an expressive formalism for representing interpretable knowledge about relational structures. Our conceptual contribution is a new first-order semantic loss function for training a graph generative model on relational data: maximize the model likelihood subject to a *moment matching constraint*, namely that the expected instance count of each rule matches its observed instance count. Our algorithmic contribution is a novel method for computing the expected instance count of a first-order rule for a standard generative mixture model based on matrix multiplication. Empirical evaluation on seven benchmark datasets, both homogeneous and heterogeneous, shows that moment matching improves the quality of generated graphs substantially (by orders of magnitude on standard graph quality metrics), and improves predictive accuracy on the downstream task of node classification.

1 INTRODUCTION

Generative models for graphs based on graph neural networks (GNNs) have achieved great success in modeling complex graphs (Hamilton, 2020). One of the current research frontiers is enhancing graph learning with domain knowledge (Tian *et al.*, 2024) (Wang *et al.*, 2020) (Sun *et al.*, 2021) (Niresi *et al.*, 2024) (Yu *et al.*, 2023) (Agarwal *et al.*, 2022). Different enhancement methodologies are appropriate for different types of knowledge. In this paper, we consider leveraging knowledge in the form of a *first-order logic knowledge base* (Russell and Norvig, 2010), comprising a set of first-order (FO) formulas. FO formulas represent domain knowledge by specifying important patterns in a domain. Because formulas used in knowledge representation practice often take the form of if-then rules, we refer to our approach as rule-enhanced graph generation. An example rule would be “If person X works in city Y , then X lives in city Y (with probability p)”.

Advantages. Logical formulas have several advantages for enhancing graph learning. (1) *Expressiveness*: First-order formulas are one of the most common formalisms for representing domain knowledge in AI and database systems (Russell and Norvig, 2010). (2) *Interpretability*: Logical formulas are easily understood by users and domain experts. (3) *Learnability*: The field of statistical-relational learning (SRL) has developed methods for learning relevant formulas from a heterogeneous training graph, known as *structure learning*. (4) *User Control*: Users can control the behavior of the final graph generation system in a mixed-initiative approach, by specifying and/or rejecting formulas. (5) *Graph Realism and Data Efficiency*: Matching first-order formulas leads to generating more realistic graphs, while requiring less training data.

Approach. Figure 1 shows our system components. We show how fundamental ideas from SRL (Raedt *et al.*, 2016) can be combined with deep graph generative models (GGMs). A fundamental concept of SRL is *moment matching* (Domingos and Lowd, 2019; Russell, 2015; Kuzelka *et al.*, 2018). The general idea is that a formula can be viewed as specifying a *motif* or subgraph pattern with an **instance count** in a given graph. Formula moment matching requires that for each formula,

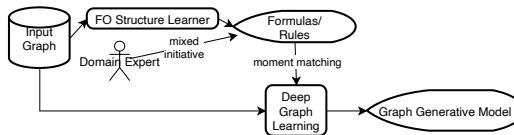


Figure 1: System Overview for Rule-Enhanced Graph Generation

the expected instance count for a model should match the observed instance count in a training graph. Our novel GGM training objective is to maximize the GGM likelihood subject to moment matching.

Our algorithmic contribution is a *differentiable new matrix multiplication method* for computing observed and expected instance counts. We show that for every conjunctive formula (satisfying a minor syntactic constraint), there is a corresponding sequence of adjacency matrices, such that i) the observed instance count is obtained by multiplying the data adjacency matrices, and ii) the expected instance count for a standard mixture model with conditionally independent links is obtained by multiplying expected adjacency matrices.

Evaluation. Our methodology uses an A-B design where we compare training a recent state-of-the-art variational graph auto-encoder (Mahmoudzadeh *et al.*, 2024), called VGAE+, with and without moment matching, on seven benchmark datasets. We find that rule-enhanced VGAEs score better than standard VGAEs on several metrics: (1) They generate *more realistic graphs*, by orders of magnitude, as measured by SOTA graph quality metrics (F1 MMD) (Thompson *et al.*, 2022; O’Bray *et al.*, 2022). (2) On the downstream task of *node classification*, the rule-enhanced VGAE node embeddings improve accuracy compared to standard VGAE. (3) Learning curves for node classification show that first-order domain knowledge often leads to more data efficient learning.

Contributions Our main contributions can be summarized as follows.

- A new semantic loss objective function for enhancing generative graph training with domain knowledge represented by first-order formulas: Maximize the data likelihood of a graph generative model, constrained so that the observed number of formula instances matches the expected number of formula instances.
- A new matrix multiplication algorithm for counting the number of formula instances in a graph.
- A proof that the matrix multiplication algorithm can also be used to estimate the expected number of instances for a standard mixture model. It can therefore be leveraged to compute the new semantic loss objective.
- Our new VGAE+R system uses the new objective function to train a VGAE+ model that matches formula instance counts.

2 RELATED WORK

Our work falls under the heading of *neuro-symbolic AI*, a cutting-edge field of AI that aims to combine symbolic formalisms, such as first-order logic, with neural network learning; see Figure 2. For surveys of neuro-symbolic AI, please see (Raedt *et al.*, 2020; Garcez and Lamb, 2023), and Kautz’s 2022 Engelmore lecture. Within Kautz’s taxonomy, our approach belongs to the *semantic loss* frameworks (type 5) where symbolic knowledge is encoded into the network’s loss function (Kautz, 2022; Xu *et al.*, 2018; Marra *et al.*, 2019). The trained system is a standard NN model that does not utilize rules at test time. In contrast, reasoning approaches typically perform symbolic inference (Raedt *et al.*, 2020; Qu *et al.*, 2021) at test time.

Compared to previous semantic loss approaches (Xu *et al.*, 2018), our main innovation is that we incorporate knowledge expressed in first-order logic, rather than the less powerful formalism of propositional logic. For example, a propositional rule would be “if a movie is a horror movie, it is not likely to be a romance”. A first-order rule could be “if a user rates a horror movie, the user is most likely to be a man”. Since first-order rules incorporate relationships, *first-order logic (FOL) can*

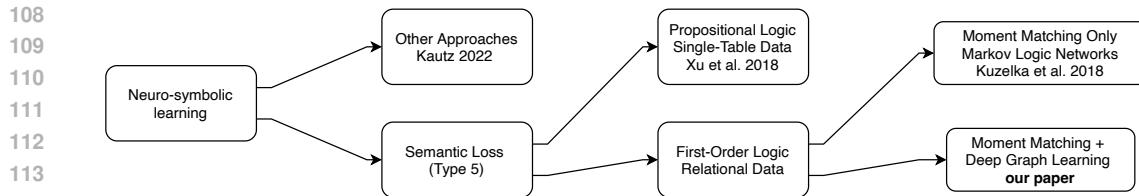


Figure 2: Within neuro-symbolic AI, we develop a new first-order semantic loss approach.

leverage the full power of relational data. We show that our semantic loss for FOL rules reduces to the loss of (Xu *et al.*, 2018) in the propositional case. Compared to previous FOL approaches (e.g., Marra *et al.* (2019)), we use standard FOL semantics (not fuzzy logic), and our computations do not require as input the full Cartesian product grounding over all domain elements (nodes).

Markov Logic Networks and Maximum Entropy Moment Matching. We use the same FO knowledge representation structure as the well-known **Markov Logic Network** (MLN) model, namely a set of FO formulas. The MLN formalism has been applied to represent knowledge in a number of domains, and it has sufficient expressive power to capture other FO formalisms, such as rule-based knowledge (Domingos and Lowd, 2019).

In terms of model training, Kuzelka *et al.* (2018) show that a distribution P over graphs maximizes entropy subject to moment matching if and only if P is defined by an MLN with maximum likelihood weights. Both the maximum entropy objective and our constrained likelihood objective capture the global graph statistics represented by instance counts. However, the GGM likelihood can in addition capture local graph patterns. For example, matching the number of observed triangles in a graph is unlikely to capture community structure, or which nodes have special properties such as centrality.

Deep graph generative models. The closest predecessor to our work is the constrained VGAE model of Ma *et al.* (2018) where a VGAE likelihood is maximized subject to a constraint of the form $g(\theta) = 0$. While this general form covers moment matching, the work of Ma *et al.* does not incorporate FO logic for specifying graph patterns, nor does it address computing pattern counts.

In principle the moment matching likelihood objective can be used for maximum likelihood training with any deep graph generative model. We selected VGAEs as our base model for several reasons. (1) They are a well-established and widely used GGM. Mahmoudzadeh *et al.* (2024) show that their VGAE+ model is a strong multitask model that provides accurate predictions for a wide range of knowledge graph queries, based on inference from a single model. (2) They support learning from a single large graph, rather than from a set of graphs (Faez *et al.*, 2021). Rule learners also utilize the single-graph setting (Qian and Schulte, 2015; Meilicke *et al.*, 2024), so the VGAE input data are compatible with the rule learner input data. (3) As we show in this paper, the conditional link independence assumptions of VGAEs facilitates the computation of expected rule instance counts. Extending rule moment matching to other generative models is a fruitful topic for future research.

147

3 BACKGROUND ON FIRST-ORDER LOGIC

149

Attributed Heterogenous Graphs An attributed graph is a pair $\mathcal{G} = (V, E)$ where V is a set of nodes of size $|V| = n$ and $E \subseteq V \times V$ is a set of edges. Node features are summarized in $n \times f$ matrix \mathbf{X} and node labels in a $n \times L$ matrix \mathbf{L} where the u -th row of \mathbf{L} is a one-hot encoding of the label of node u . Different edge types are represented by a set of adjacency matrices $\mathbf{A} = \{\mathbf{A}_1, \dots, \mathbf{A}_T\}$. The notation $\mathbf{A}_r[u, v] = 1$ indicates that there is a link $u \rightarrow_r v$ of type r from node u to node v . Figure 3 shows part of the information in an attributed graph using the tabular SQL format.

156

157

158

159

160

161

User Id	User	Gender	User Id	Rating	Movie Id	Rating	Movie Id	Action	Drama	Horror
1	1 (0.34)	M (0.55)	3	1 (0.75)	The Dictator	1 (0.75)	The Dictator	0 (0.38)	0 (0.73)	0 (0.85)
5	1 (0.43)	F (0.34)	5	4 (0.36)	Thor	4 (0.36)	Thor	1 (0.49)	0 (0.66)	0 (0.4)
7	2 (0.90)	M (0.84)	5	3 (0.84)	The Dictator	3 (0.84)	BraveHeart	1 (0.91)	1 (0.41)	1 (0.7)
...	7	5 (0.98)	BraveHeart	5 (0.98)

Figure 3: Excerpt from a relational dataset. (a) An attributed graph represented in table format. (b) The probabilities assigned to each data entry specify a probabilistic graph (see below).

Conjunction ϕ	$n_\phi(\mathcal{G})$
$Age(User) = 0$	376
$Rating(User, Movie) = 1$	4701
$Age(User) = 0, Rating(User, Movie) = 1$	2524

Table 1: Conjunction Instance counts in the MovieLens database \mathcal{G}

First-Order Logic We follow previous work in SRL (Schulte and Gholami, 2017; Kimmig *et al.*, 2014). A **population** is a set of individuals of the same type (e.g., a set of *Users*, a set of *Movies*). Individuals are denoted by constants (e.g., $user_3$ and $thor$). An attributed graph specifies a set of individuals (nodes) for each type. A **node variable** ranges over a population, and is denoted in upper case such as *User*, *Movie*, U , V . A unary **functor** maps an individual to a value, and corresponds to a node attribute/label. A binary functor maps an ordered pair of individuals to a value, and corresponds to an edge/edge type. Functors are denoted f , f' etc.

A **first-order** term (FOT) is of the form $f(\mathbf{U})$ where each population variable U_i is of the appropriate type. FOT examples are $age(User)$ and $rating(User, Movie)$. A FOT can be instantiated with individual constants, much like an index in a plate model (Kimmig *et al.*, 2014). A **grounding** $\mathbf{U} = \mathbf{u}$ for a list of FOTs simultaneously replaces each population variable in the list by a constant. (We assume that different population variables are replaced by different constants.) A ground term, Python-style, assigns individuals as argument to node variables, then applies the functor to return a value. Examples are $age(User = user_5)$, and $rating(User = user_5, Movie = thor)$.

An **FO literal** is of the form $\ell \equiv f(\mathbf{U}) = v$. A **conjunction** is a list of literals $\phi = \ell_1, \dots, \ell_s$. We write $\phi(\mathbf{U})$ for an FO conjunction and $\phi(\mathbf{U} = \mathbf{u})$ for a ground conjunction. A graph \mathcal{G} **satisfies** a ground literal if the graph assigns value v to the ground term $f(\mathbf{U} = \mathbf{u})$, and satisfies the conjunction ϕ if it satisfies each ground literal in the conjunction. The **instance count** $n_\phi(\mathcal{G})$ in a graph \mathcal{G} returns the number of ϕ -groundings satisfied by graph \mathcal{G} .

A **probabilistic graph** $\tilde{\mathcal{G}}$ assigns a probability $p_{\tilde{\mathcal{G}}}(\ell(\mathbf{U} = \mathbf{u}))$ to each ground literal. The **probabilistic instance count** of a conjunction (Kuzelka, 2023) is the probability product, summed over all conjunction groundings:

$$n_\phi(\tilde{\mathcal{G}}) = \sum_{\mathbf{U}=\mathbf{u}} \prod_{i=1}^s p_{\tilde{\mathcal{G}}}(\ell_i(\mathbf{U} = \mathbf{u})) \text{ for } \phi = \ell_1, \dots, \ell_s \quad (1)$$

Examples. $Age(User) = 1, rating(User, Movie) = 4$ is an FO conjunction. Its grounding $age(User = user_5) = 1, rating(User = user_5, Movie = thor) = 4$ is satisfied by the data of Figure 3(a). In the probabilistic graph Figure 3(b), the probability of this conjunction is $0.43 \times 0.36 = 0.1548$.

Table 1 illustrates FO instance counts using the MovieLens dataset (Qian and Schulte, 2015). MovieLens contains 376 users at age level 0. The number of user-movie pairs with a rating of 1 is 4701. The number of such pairs with the user at age level 0 is 2524. An *FO conjunction* specifies a graph motif, and the instance count is the motif count (Ma *et al.*, 2019) (see Figure 9 for illustration).

4 RULE-ENHANCED GRAPH GENERATION

This section considers how to enhance training a parametrized graph generative model (GGM) P_θ on a training graph D , with a list of formulas ϕ_1, \dots, ϕ_k . Our *semantic loss objective* maximizes the data likelihood $P_\theta(D)$, subject to the FO moment matching constraint that $E_\theta[n_i] = n_i(D)$, where $n_i(D)$ is the **data instance count** of formula ϕ_i , and $E_\theta[n_i] \equiv \sum_{\mathcal{G}} P_\theta(\mathcal{G}) n_i(\mathcal{G})$ is the **expected instance count** for the GGM. For a mixture model GGM, we derive the following Lagrangian ELBO.

216 **Proposition 1.** Suppose that $P_{\theta}(\mathcal{G}) = \int p(\mathcal{G}|\mathbf{z})p(\mathbf{z})d\mathbf{z}$ is a mixture model. Then

217

$$\ln P_{\theta}(D) - \lambda/k \sum_{i=1}^k \rho(n_i(D), E_{\theta}[n_i]) \geq \quad (2)$$

218

$$E_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|D)} [\ln P_{\theta}(D|\mathbf{z}) - KL(q_{\phi}(\mathbf{z}|D)||p(\mathbf{z}))] \quad (3)$$

219

$$- \lambda/k \sum_{i=1}^k \rho(n_i(D), E_{\theta}[n_i|\mathbf{z}]), \quad (4)$$

220 where $\rho(count_1, count_2) \geq 0$ is a differentiable count distance metric convex in $E_{\theta}[n_i|\mathbf{z}]$].

221 Proposition 1 says that the constrained likelihood Equation (2) can be approximated by our new
222 **moment matching variational ELBO objective** (3). To compare an expected count to an observed
223 count, our experiments use

224

$$\rho(n_i(D), E_{\theta}[n_i|\mathbf{z}]) = |\ln n_i(D) - \ln E_{\theta}[n_i|\mathbf{z}]|.$$

225 Conjunction counts grow exponentially with the number of node variables in the conjunction. Comparing expected counts on a log-scale decreases the impact of the number of node variables and
226 improves numeric stability. With this choice of ρ , the *FO semantic loss Equation (2) reduces to the*
227 *semantic loss of* (Xu et al., 2018) *for a propositional formula* ϕ ; see Appendix A.6 for details.

228 4.1 IMPLEMENTING THE MOMENT MATCHING ELBO

229 Our novel VGAE+R architecture extends the recent VGAE+ architecture (Mahmoudzadeh et al.,
230 2024) to match rules, including the new **motif loss** (4).

231 **Encoder-Decoder Architecture.** Figure 10 shows the VGAE+R architecture. The **encoder** model
232 $q_{\phi}(\mathbf{z}|D)$ can be any GNN that maps a heterogeneous graph to node embeddings, such as RGCN. The
233 VGAE+R **decoder** independently maps node embeddings to different graph components with three
234 different decoders (Mahmoudzadeh et al., 2024):

235

$$\ln P_{\theta}(D|\mathbf{z}) = [\alpha \ln p_{\eta}(\mathbf{A}|\mathbf{z}) + \beta \ln p_{\psi}(\mathbf{X}|\mathbf{z}) + \gamma \ln p_{\phi}(\mathbf{L}|\mathbf{z})]$$

236 where $p_{\eta} : \mathbb{R}^d \times \mathbb{R}^d \rightarrow [0, 1]$ is a trainable **link decoder**, p_{ψ} is a trainable **feature decoder**, and p_{ϕ}
237 is a trainable **label decoder** (see Figure 10). The hyperparameters α , β and γ weight the importance
238 of different reconstruction tasks.

239 **Computing Expected Instance Counts.** Given a set of node embeddings \mathbf{z} , the **expected graph**
240 $\tilde{\mathcal{G}}_{\mathbf{z}}$ is a probabilistic graph that assigns a probability to each ground literal by applying the decoder to
241 the relevant links/node features/edge types. For examples see Figure 3 and Figure 11.

242 **Proposition 2.** The expected instance count given a set of node embeddings can be computed as the
243 instance count in the expected graph: $E_{\theta}[n_i|\mathbf{z}] = n_i(\tilde{\mathcal{G}}_{\mathbf{z}})$.

244 The proof is in the supplement. The upshot is that *FO moment moment matching can be implemented*
245 *by performing (probabilistic) instance counting in a single graph.*

246 5 MATRIX MULTIPLICATION FOR INSTANCE COUNTING

247 SOTA MLN structure learners output a set of conjunctive formulas or if-then rules (Qian and Schulte,
248 2015; Khot et al., 2011; Cui et al., 2022; Potter et al., 2024). We discuss instance counting for
249 conjunctive formulas, which we can be extended to if-then rules by restricting counts to instances
250 that match the antecedent (body); see Appendix A.4 for more details.

251 This section presents a novel matrix multiplication method for instance counting with conjunctive
252 formulas, that is differentiable and applies to both discrete and probabilistic graphs. To illustrate the
253 basic idea, consider the conjunction $R(U_1, V_1), R(V_1, V_2), R(V_2, U_1)$, whose instance count gives
254 the number of triangles in an undirected graph represented by an adjacency matrix \mathbf{A} . It is well-known

270 that the triangle count is given by $\sum_{u=1}^n A_{u,u}^3$, the trace of the third power of the adjacency matrix. We
 271 generalize this approach to a large class of logical formulas. A **chain conjunction** of binary literals
 272 is of the form $\phi = \ell_1(U_1, V_1), \dots, \ell_P(U_P, V_P)$ where $V_i = U_{i+1}$ for every i . Algorithm 1 maps
 273 each chain conjunction to a sequence of adjacency matrix multiplications, such that the conjunction's
 274 instance count can be found by executing the matrix multiplications.
 275

Algorithm 1 Matrix Multiplication for Instance Counting

```

277 1: Input: Chain conjunction  $\phi = \{\ell_1(U_1, V_1), \dots, \ell_P(U_P, V_P)\}$ 
278 2: Output: Instance count  $n_\phi(\mathcal{G})$  or expected count  $n_\phi(\tilde{\mathcal{G}}_z)$ 
279 3: {Initialize adjacency matrices  $\mathbf{A}_{\ell_k}$  for binary literals  $\ell_k, k = 1, \dots, P$  }
280 4: for  $k = 1$  to  $P$  do
281 5:   if positive literal  $\ell_k = R(U_k, V_k) = 1$  then
282 6:      $\mathbf{A}_{\ell_k} \leftarrow \mathbf{A}_r$ 
283 7:   else if  $\ell_k = R(U_k, V_k) = 0$  then
284 8:      $\mathbf{A}_{\ell_k} \leftarrow \neg \mathbf{A}_r$  where  $\neg \mathbf{A}_r$  is the complement of  $\mathbf{A}_r$ 
285 9:   end if
286 10: end for
287 11:  $O_1 \leftarrow \mathbf{A}_{\ell_1}$ 
288 12: for  $k = 1$  to  $P - 1$  do
289 13:    $O_{k+1} \leftarrow O_k \cdot \mathbf{A}_{\ell_{k+1}}$ 
290 14:   if  $V_{k+1} = U_1$  then
291 15:     Zero out the non-diagonal entries of  $O_{k+1}$ 
292 16:   end if
293 17: end for
294 18: Return:
295 19:  $n_\phi(\mathcal{G}) = \sum(O_P(\phi))$  for input graph  $\mathcal{G}$ 
296 20:  $n_\phi(\tilde{\mathcal{G}}_z) = \sum(O_P(\phi))$  for expected graph  $\tilde{\mathcal{G}}_z$ 
  
```

297
 298 **Example.** Consider the chain conjunction
 299 *AdvisedBy(Student, Professor)*, *Teaches(Professor, Course)* *TakesCourse(Course, Student)*.
 300 Figure 4 shows the corresponding sequence of matrix multiplications in a sample graph.

301
 302

Advised by	
Student	Professor
Jack	Jane
Joey	Tom

Teaches	
Professor	Course
Jane	DL
Tom	DL
Tom	NLP

Takes Course	
Course	Student
DL	Jack
DL	Joey
DL	Lucas
DL	Ellie
NLP	Lucas
NLP	Ellie

303 AdvisedBy(Student, Professor) Teaches(Professor, Course) TakeCourse(Course, Student)

304 $\begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$ $\times \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ $\times \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$ \longrightarrow $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 2 & 1 & 2 & 1 \end{bmatrix}$

305
 306
 307
 308
 309
 310
 311
 312
 313

314 Figure 4: The matrix multiplication sequence for our example conjunction and sample graph data.
 315 The final result is 2, which is the number of satisfying groundings in the input graph.

316
 317 **Extensions.** Unary literals can be included by omitting nodes from the input graph that do not satisfy
 318 them. Probabilistic instance counts can be obtained by using soft matrices $\tilde{A}, \tilde{X}, \tilde{L}$; see Appendix A.9.
 319

320 **Correctness.** The next proposition shows that the instance count for the chain conjunction can be
 321 obtained through summing over the entries in the constructed matrix product.
 322

323 **Proposition 3.** *Let ϕ be a centered chain conjunction of length k , i.e., the first node variable is the
 324 only one that appears twice non-consecutively.*

324 1. For an input graph \mathcal{G} , the (u, v) -th entry of O_k counts the number of groundings of ϕ in \mathcal{G}
 325 where $U_1 = u$ and $V_P = v$. Therefore $n_\phi(\mathcal{G}) = \sum(O_k(\phi))$.
 326

327 2. For an expected graph $\tilde{\mathcal{G}}_z$, the (u, v) -th entry of O_k counts the expected number of ground-
 328 ings of ϕ where $U_1 = u$ and $V_P = v$. Therefore $n_\phi(\tilde{\mathcal{G}}_z) = \sum(O_k(\phi))$.
 329

330 In our experiments, we found that all learned rules were centered. The Appendix extends the matrix
 331 multiplication method to non-centered chains.
 332

333 **Computational Complexity** Algorithm 1 translates a logical formula into a sequence of matrix
 334 multiplications in time linear in the length of the formula. The number of binary literals is small
 335 enough to be treated as a constant $k \leq 5$. The bottleneck is scaling a k -fold adjacency matrix product
 336 to large graphs, especially the dense expected adjacency matrices.
 337

338 6 EVALUATION

340 We detail our methodology and discuss our empirical results. Appendix A.5 provides training details.
 341

342 6.1 EXPERIMENTAL DESIGN

344 We describe our benchmark datasets, comparison methods, and how evaluation metrics are computed.
 345

346 **Datasets** We use datasets from previous studies of GGMs (Mahmoudzadeh *et al.*, 2024; Yun *et al.*,
 347 2019; Hao *et al.*, 2020). Cora, ACM, and CiteSeer are citation networks, IMDb is a movie dataset,
 348 and UW represents an academic department. Appendix A.1 presents dataset and preprocessing
 349 details. We report results for homogeneous versions of ACM and IMDb in the main paper, and for
 350 heterogeneous versions in Appendix A.2.
 351

352 **Evaluation Metrics** We compare rule-enhanced VGAE+R training with plain VGAE+ training,
 353 using three main metrics. In the following, we refer to a complete dataset as the **input graph**. Our
 354 evaluation measures *graph realism*—the quality of generated graphs—and the downstream task of
 355 node classification.
 356

357 **Count Distance.** Given the training graph D , we sample one node embedding matrix z from the
 358 encoder posterior $q_\phi(z|D)$ and then apply the decoder model eq. (5) to z to obtain the expected graph
 359 \tilde{D}_z . We report the mean squared distance $(1/k \sum_{i=1}^k [n_i(D) - n_i(\tilde{D}_z)]^2)^{1/2}$ —between the observed
 360 motif counts and the expected motif counts in the reconstructed graph—as the **count distance** (CD),
 361 where k is the number of formulas.
 362

363 **Graph Realism** measures how similar graphs generated by the model are to observed graphs. How
 364 to quantitatively assess generated graphs has been studied in recent papers. We adapt the SOTA
 365 approach that compares graph embeddings of the training graph to embeddings of generated graphs
 366 using Maximum Mean Distance (MMD) (O’Bray *et al.*, 2022; Thompson *et al.*, 2022; Shirzad *et al.*,
 367 2022); see Appendix A.10 for details. The MMD metric is independent of the training objective.
 368

369 **Node Classification** To compute a node classification score, we randomly divide the nodes in the
 370 input graph into training, test and validation nodes (70%/20%/10%). The training graph is the input
 371 graph but with the test node labels removed. At test time, we run the encoder on the input graph to
 372 obtain node embeddings for all nodes, then apply the decoder to predict node labels for the test nodes.
 373

374 6.2 EXPERIMENTAL RESULTS

375 **Count Distance and Graph Realism** are the most important metrics for us since they directly pertain
 376 to graph generation quality. Our graph generation baseline is the VGAE+ model trained without
 377 moment matching (i.e., $\lambda = 0$). To obtain formulas, we used the SOTA MLN structure learning
 378 system Factorbase (Qian and Schulte, 2015) with default settings (Appendix A.4). To illustrate, in the
 379 UW dataset, the learned formulas capture several patterns that express university domain knowledge,
 380 such as the following. (1) Whether a person teaches a course correlates with whether they have a
 381

378 position. (2) Course teachers are more likely to be professors. (3) A person’s program phase predicts
 379 their years in the program.
 380

382 Table 2: Mean \pm Std for Count Distance (CD \downarrow) and Graph Realism (MMD \downarrow) with Improvements (in
 383 scientific notation, so "e" represents $\times 10^n$).

384 Dataset	385 Count Distance (MSE)			386 Graph Realism (MMD)		
	387 VGAE+	388 VGAE+R	389 Improv. (%)	390 VGAE+	391 VGAE+R	392 Improv. (%)
Cora	5.14e4 \pm 8.07e3	2.68e4 \pm 9.79e3	47.81	4.03e18 \pm 3.21e18	6.84e17 \pm 9.15e17	83.03
CiteSeer	3.40e4 \pm 1.06e3	2.47e4 \pm 1.38e3	27.35	1.20e18 \pm 3.15e17	6.14e16 \pm 3.65e16	94.88
Computers	4.63e5 \pm 2.67e4	3.54e5 \pm 6.44e4	23.61	3.80e25 \pm 1.86e25	1.08e24 \pm 1.45e24	97.16
Photo	2.01e5 \pm 1.96e4	1.24e5 \pm 1.37e4	38.01	1.16e24 \pm 8.30e23	1.66e22 \pm 7.63e21	98.57
IMDb	5.86e5 \pm 1.96e4	3.23e5 \pm 1.34e5	44.81	2.94e23 \pm 6.29e22	4.58e22 \pm 3.25e22	84.42
UW	9.92e5 \pm 8.87e4	9.48e5 \pm 5.69e4	4.51	4.72e13 \pm 1.90e13	2.32e13 \pm 1.94e13	50.74
ACM	1.24e5 \pm 4.86e3	2.81e4 \pm 3.54e3	77.34	3.31e20 \pm 1.32e20	3.29e18 \pm 3.08e18	99.01

393 6.2.1 COUNT DISTANCE AND GRAPH REALISM

394 Table 4 shows the difference between expected and observe instance counts. Both methods show
 395 large absolute distances because a VGAE model tends to produce overly dense graphs (Orbán and
 396 Roy, 2014). However we observe a *very large improvement in the match between expected and*
 397 *observed counts*, at least 23% on all datasets, except for the small graph UW with an improvement of
 398 4.51%. On the graph realism metric, Table 4 again shows large absolute distances with the training
 399 set, and *very large improvements through FO moment matching, by an order of magnitude*. Overall
 400 we conclude that unconstrained VGAE training does not match the instantiation counts of the learned
 401 formulas and that enforcing moment matching has a large impact on generated graph realism. In
 402 addition, Section A.13 shows that VGAE + R outperforms VGAE + in statistic-based MMD metrics.
 403 Also, as discussed in Appendix A.14, we report results for Count Distance Evaluation based on prior
 404 embedding sampling. Moreover, there is a report on robustness to noisy or incomplete rules for Cora
 405 dataset in Appendix A.16.

406 6.2.2 NODE CLASSIFICATION

408 Since SOTA performance on node classification is nearly saturated, we do not claim that VGAE+R
 409 leads to uniformly best node classification. Instead we investigate two hypotheses:

- 411 1. Rule enhancement can improve GGM-based classification when the rules capture relevant
 412 domain knowledge.
- 413 2. The VGAE+R model is competitive with current baselines.

415 Table 3 shows an improvement from rule enhancement (**bold**) on 4 out 7 datasets, substantive for two
 416 of them (Cora and UW). The biggest improvement is on Cora, where moment matching increase the
 417 AUC score by 10%. Even when the rules are not very relevant for the class label, moment matching
 418 decreases classification performance only slightly.

419 Table 6 compares the rule-enhanced VGAE+R with the recent node classification baselines, described
 420 in Appendix A.3. Our VGAE+R model shows the best node AUC classification performance on
 421 3/6 datasets (4/6 on F1). The biggest improvement is on CiteSeer where our baselines are far from
 422 SOTA performance. GiGaMAE is a strong baseline that achieves the best result on two datasets
 423 (Table 3). Our conclusion is that *rule-enhanced graph generation supports node classification that is*
 424 *competitive with recent baselines*.

425 **Learning Curve** We report a learning curve experiment to examine the effect of rule knowledge on
 426 data efficiency. The idea is to simulate the impact of a domain expert providing the model with a
 427 strong set of rules. We report the predictive accuracy on the test labels, after training the VGAE with
 428 and without rules on $x = 25\%, 50\%, 75\%, 100\%$ of training labels.

430 Figures 13 to 15 show that *moment matching improves data efficiency substantially on the CiteSeer,*
 431 *Cora, and Photos datasets*. For example on CiteSeer with 50% of node labels, moment matching
 achieves a 15% higher F1-score than baseline VGAE learning. The learning curves with and without

Dataset	Metric	VGAE+R	VGAE+	GiGaMAE
Cora	AUC	0.965 ± 0.013	0.865 ± 0.043	0.920
	F1 Score	0.887 ± 0.016	0.699 ± 0.103	0.856
UW	AUC	0.960 ± 0.012	0.889 ± 0.054	-
	F1 Score	0.654 ± 0.031	0.618 ± 0.030	-
CiteSeer	AUC	0.903 ± 0.008	0.891 ± 0.013	0.842
	F1 Score	0.794 ± 0.042	0.733 ± 0.058	<u>0.798</u>
Computers	AUC	0.915 ± 0.022	0.920 ± 0.004	<u>0.941</u>
	F1 Score	0.827 ± 0.047	0.837 ± 0.005	0.770
Photo	AUC	0.991 ± 0.003	0.980 ± 0.021	0.963
	F1 Score	0.972 ± 0.002	0.946 ± 0.052	0.569
ACM	AUC	0.761 ± 0.077	0.775 ± 0.074	<u>0.823</u>
	F1 Score	0.525 ± 0.014	0.523 ± 0.009	0.440
IMDb	AUC	0.829 ± 0.006	0.828 ± 0.011	<u>0.890</u>
	F1 Score	0.697 ± 0.008	0.687 ± 0.014	0.457

Table 3: Node classification results for graph generation with and without rule enhancement. The recent GiGAMAE system is a strong baseline. Bold indicates the best VGAE score, underline the best GiGAMAE score. Standard deviations are reported for five random weight initializations.

moment matching are similar for the datasets ACM, IMDb and Computers because their rules affect node classification little.

Impact of Rules on Training Figure 19 shows the node label loss component of decoder training Equation (2) for the CiteSeer dataset. Rule matching adds a difficult new component to the VGAE+ objective, which initially causes a spike in the label loss component. After the VGAE+R model has encoded the background knowledge in its weights, it learns to optimize the other components, including the node label loss. This shows that *rule matching is a strong regularizer* that takes the network to a very different part of weight space compared to the baseline VGAE+ loss, and supports better generalization. The supplement Appendix A.12 illustrates this pattern in loss curves.

7 CONCLUSION, LIMITATIONS AND FUTURE WORK

We proposed a new semantic loss objective function for training a deep graph generative model (GGM) to incorporate FO domain knowledge expressed by logical formulas: Maximize the data likelihood subject to a moment matching constraint, which requires *the expected formula instance counts under a model to match the observed instance count*. Our main algorithmic contribution is a *new differentiable matrix multiplication method for computing both observed and expected counts*. In empirical evaluation, we found that moment matching improves the quality of the graphs generated by a Variational Graph Auto-Encoder (VGAE) model by an order of magnitude or more, both with respect to instance counts and with respect to a standard metric of graph realism. Applying the trained GGM to the downstream task of node classification, moment matching improved classification accuracy on all but one of our benchmark datasets. The domain knowledge incorporated in the model is often effective in improving predictions from small datasets, as shown in learning curves.

Limitations. As our paper is the first to combine deep graph generation with a first-order semantic loss, it leaves several aspects open for future developments. (1) Scaling the matrix multiplication algorithm for expected counts is a challenge (Section 5). There is a report on scalability and runtime analysis in Appendix A.15. A possible solution are approximation algorithms from the related problem of weighted model counting (van Bremen and Kuzelka, 2020). (2) An incorrect or incomplete set of rules limits the effectiveness of the semantic loss function. We did not explore methods for validating the knowledge expressed in formulas, such as human-in-the-loop. (3) Because rule learners (MLN structure learners) assume a single dataset, we did not explore enhancing GGMs other than VGAEs (e.g., auto-regressive, diffusion, and matching flow models (cf. Section 2).

In sum, moment matching presents a novel semantic loss approach to neuro-symbolic AI that combines logical rules with deep graph learning. Our experiments show great potential for enhancing deep graph generative models with rule-based knowledge.

486 REFERENCES
487

488 Ankush Agarwal, Raj Gite, Shreya Laddha, Pushpak Bhattacharyya, Satyanarayan Kar, Asif Ekbal,
489 Prabhjot Thind, Rajesh Zele, and Ravi Shankar. Knowledge graph - deep learning: A case study
490 in question answering in aviation safety domain. In *Proceedings of the Thirteenth Language
491 Resources and Evaluation Conference*, pages 6260–6270, June 2022.

492 Shan Cui, Tao Zhu, Xiao Zhang, and Huansheng Ning. Mcla: Research on cumulative learning of
493 markov logic network. *Knowledge-Based Systems*, 242:108352, 2022.

494 Pedro Domingos and Daniel Lowd. Unifying logical and statistical ai with markov logic. *Communi-
495 cations of the ACM*, 62(7):74–83, 2019.

496 Pedro Domingos and Matthew Richardson. Markov logic: A unifying framework for statistical
497 relational learning. In *Introduction to Statistical Relational Learning*. MIT Press, 2007.

498 Faezeh Faez, Yassaman Ommi, Mahdieh Soleymani Baghshah, and Hamid R Rabiee. Deep graph
499 generators: A survey. *IEEE Access*, 9:106675–106702, 2021.

500 Artur d’Avila Garcez and Luis C Lamb. Neurosymbolic AI: The 3rd wave. *Artificial Intelligence
501 Review*, pages 1–20, 2023.

502 William L Hamilton. *Graph representation learning*, volume 14. Morgan & Claypool Publishers,
503 2020.

504 Yu Hao, Xin Cao, Yixiang Fang, Xike Xie, and Sibo Wang. Inductive link prediction for nodes
505 having only attribute information. *arXiv preprint arXiv:2007.08053*, 2020.

506 Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
507 graphs. In *International conference on machine learning*, pages 4116–4126. PMLR, 2020.

508 Manfred Jaeger and Oliver Schulte. A complete characterization of projectivity for statistical relational
509 models. In *International Joint Conferences on Artificial Intelligence IJCAI-20*, pages 4283–4290,
510 2020.

511 Henry Kautz. The third AI summer: AAAI Robert S. Engelmore Memorial Lecture. *AI magazine*,
512 43(1):105–125, 2022.

513 Seyed Mehran Kazemi, David Buchman, Kristian Kersting, Sriraam Natarajan, and David Poole.
514 Relational logistic regression. In *International Conference on the Principles of Knowledge
515 Representation and Reasoning, KRR 2014*, 2014.

516 Hassan Khosravi, Oliver Schulte, Jianfeng Hu, and Tianxing Gao. Learning compact Markov logic
517 networks with decision trees. *Machine Learning*, 89(3):257–277, 2012.

518 Tushar Khot, Sriraam Natarajan, Kristian Kersting, and Jude W. Shavlik. Learning Markov logic
519 networks via functional gradient boosting. In *ICDM*, pages 320–329. IEEE Computer Society,
520 2011.

521 Angelika Kimmig, Lilyana Mihalkova, and Lise Getoor. Lifted graphical models: a survey. *Machine
522 Learning*, 99(1):1–45, 2014.

523 Thomas N Kipf and Max Welling. Variational graph auto-encoders. *arXiv preprint arXiv:1611.07308*,
524 2016.

525 Ondrej Kuzelka, Yuyi Wang, Jesse Davis, and Steven Schockaert. Relational marginal problems:
526 Theory and estimation. In *AAAI Conference on Artificial Intelligence (AAAI-18)*, pages 1–8, 2018.

527 Ondrej Kuzelka. Counting and sampling models in first-order logic. In *International Joint Conference
528 on Artificial Intelligence, IJCAI*, pages 7020–7025, 2023.

529 Tengfei Ma, Jie Chen, and Cao Xiao. Constrained generation of semantically valid graphs via
530 regularizing variational autoencoders. In *Advances in Neural Information Processing Systems,
531 NeurIPS 2018*, pages 7113–7124, 2018.

540 Chenhao Ma, Reynold Cheng, Laks VS Lakshmanan, Tobias Grubenmann, Yixiang Fang, and
 541 Xiaodong Li. Linc: a motif counting algorithm for uncertain graphs. *VLDB Endowment*, 13(2):155–
 542 168, 2019.

543 Erfaneh Mahmoudzadeh, Parmis Naddaf, Kiarash Zahiri, and Oliver Schulte. Deep generative
 544 models for subgraph prediction. In *European Conference on Artificial Intelligence, ECAI 2024*,
 545 volume 392, pages 3128–3136, 2024.

546 Giuseppe Marra, Francesco Giannini, Michelangelo Diligenti, and Marco Gori. Lyrics: A general
 547 interface layer to integrate logic inference and deep learning. In *Joint European Conference on*
 548 *Machine Learning and Knowledge Discovery in Databases, ECML PKDD*, pages 283–298, 2019.

549 Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based
 550 recommendations on styles and substitutes. *ACM*, 2015.

551 Christian Meilicke, Melisachew Wudage Chekol, Patrick Betz, Manuel Fink, and Heiner Stuck-
 552 eschmidt. Anytime bottom-up rule learning for large-scale knowledge graph completion. *The*
 553 *VLDB Journal*, 33(1):131–161, 2024.

554 Keivan Faghah Niresi, Lucas Kuhn, Gaëtan Frusque, and Olga Fink. Informed graph learning by
 555 domain knowledge injection and smooth graph signal representation. In *2024 32nd European*
 556 *Signal Processing Conference (EUSIPCO)*, pages 2467–2471, 2024.

557 Leslie O’Bray, Max Horn, Bastian Rieck, and Karsten Borgwardt. Evaluation metrics for graph
 558 generative models: Problems, pitfalls, and practical solutions. In *International Conference on*
 559 *Learning Representations, ICLR*, 2022.

560 Peter Orbanz and Daniel M Roy. Bayesian models of graphs, arrays and other exchangeable random
 561 structures. *IEEE transactions on pattern analysis and machine intelligence*, 37(2):437–461, 2014.

562 J. Pearl. *Causality: Models, Reasoning, and Inference*. Cambridge university press, 2000.

563 George BG Potter, Gertjan Burghouts, and Joris Sijs. Incremental learning of affordances using
 564 markov logic networks. In *2024 Eighth IEEE International Conference on Robotic Computing*
 565 (*IRC*), pages 46–53. IEEE, 2024.

566 Zhensong Qian and Oliver Schulte. Factorbase: Multi-relational model learning with sql all the way.
 567 In *Data Science and Advanced Analytics (DSAA)*, pages 1–10, 2015.

568 Meng Qu, Junkun Chen, Louis-Pascal Xhonneux, Yoshua Bengio, and Jian Tang. RNNLogic:
 569 Learning logic rules for reasoning on knowledge graphs. In *International Conference on Learning*
 570 *Representations, ICLR*, 2021.

571 Luc De Raedt, Kristian Kersting, Sriraam Natarajan, and David Poole. Statistical relational artificial
 572 intelligence: Logic, probability, and computation. *Synthesis lectures on artificial intelligence and*
 573 *machine learning*, 10(2):1–189, 2016.

574 Luc de Raedt, Sebastijan Dumančić, Robin Manhaeve, and Giuseppe Marra. From statistical relational
 575 to neuro-symbolic artificial intelligence. In *International Joint Conference on Artificial Intelligence,*
 576 *IJCAI-20*, pages 4943–4950, 2020.

577 Stuart Russell and Peter Norvig. *Artificial Intelligence: A Modern Approach*. Prentice Hall, 2010.

578 Stuart Russell. Unifying logic and probability. *Communications of the ACM*, 58(7):88–97, 2015.

579 Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
 580 Welling. Modeling relational data with graph convolutional networks. In *International conference*
 581 *on the semantic web (ESWC 2018)*, pages 593–607, 2018.

582 Oliver Schulte and Sajjad Gholami. Locally consistent Bayesian network scores for multi-relational
 583 data. In *International Joint Conference on Artificial Intelligence (IJCAI)*, pages 2693–2700, 2017.

584 Oliver Schulte and Zhensong Qian. Factorbase: Sql for learning a multi-relational graphical model,
 585 August 2015.

594 Oliver Schulte and Zhensong Qian. FACTORBASE: multi-relational structure learning with SQL all
 595 the way. *International Journal of Data Science and Analytics*, 7(4):1–21, 2018.
 596

597 Yucheng Shi, Yushun Dong, Qiaoyu Tan, Jundong Li, and Ninghao Liu. Gigamae: Generalizable
 598 graph masked autoencoder via collaborative latent space reconstruction. In *Proceedings of the 32nd*
 599 *ACM International Conference on Information and Knowledge Management*, pages 2259–2269,
 600 2023.

601 Hamed Shirzad, Kaveh Hassani, and Danica J Sutherland. Evaluating graph generative models with
 602 contrastively learned features. *Advances in Neural Information Processing Systems, NeurIPS*,
 603 2022.

604 Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
 605 variational autoencoders. In *Artificial Neural Networks and Machine Learning–ICANN 2018*,
 606 pages 412–422. Springer, 2018.
 607

608 Mengying Sun, Jing Xing, Huijun Wang, Bin Chen, and Jiayu Zhou. Mocl: Data-driven molecular
 609 fingerprint via knowledge-aware contrastive learning from molecular graph. In *Proceedings of*
 610 *the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, KDD ’21*, page
 611 3585–3594, 2021.

612 Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, and Graham W Taylor. On evaluation
 613 metrics for graph generative models. In *International Conference on Learning Representations,*
 614 *ICLR*, 2022.

615 Yijun Tian, Shichao Pei, Xiangliang Zhang, Wei Wang, Hanghang Tong, and Nitesh V. Chawla,
 616 editors. *Knowledge-enhanced Graph Learning*. Workshop at AAAI, 2024.
 617

618 Timothy van Bremen and Ondrej Kuzelka. Approximate weighted first-order model counting:
 619 Exploiting fast approximate model counters and symmetry. In *International Joint Conference on*
 620 *Artificial Intelligence, IJCAI-20*, pages 4252–4258, 7 2020.

621 Clement Vignac, Igor Krawczuk, Antoine Sraordin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
 622 Digress: Discrete denoising diffusion for graph generation. 2023.
 623

624 Daisy Zhe Wang, Eirinaios Michelakis, Minos Garofalakis, and Joseph M Hellerstein. Bayesstore:
 625 managing large, uncertain data repositories with probabilistic graphical models. In *VLDB*, pages
 626 340–351, 2008.

627 Shuo Wang, Yanran Li, Jiang Zhang, Qingye Meng, Lingwei Meng, and Fei Gao. Pm2.5-gnn: A
 628 domain knowledge enhanced graph neural network for pm2.5 forecasting. In *Proceedings of the*
 629 *28th International Conference on Advances in Geographic Information Systems, SIGSPATIAL*
 630 *’20*, page 163–166, 2020.
 631

632 Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. A semantic loss function
 633 for deep learning with symbolic knowledge. In *International Conference on Machine Learning,*
 634 *ICML*, volume 80, pages 5502–5511, 2018.

635 Huafei Yu, Tinghua Ai, Min Yang, Jingzhong Li, Lu Wang, Aji Gao, Tianyuan Xiao, and Zhe Zhou.
 636 Integrating domain knowledge and graph convolutional neural networks to support river network
 637 selection. *Transactions in GIS*, 27(7):1898–1927, 2023.

638 Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer
 639 networks. *Neural Information Processing Systems, NeurIPS*, 32, 2019.

640 Qin Zhang, Zelin Shi, Xiaolin Zhang, Xiaojun Chen, Philippe Fournier-Viger, and Shirui Pan. G2pxy:
 641 generative open-set node classification on graphs with proxy unknowns. In *International Joint*
 642 *Conference on Artificial Intelligence, IJCAI-23*, pages 4576–4583, 2023.
 643

644

645

646

647

648 **A APPENDIX / SUPPLEMENTAL MATERIAL**
649650 **A.1 DATASET INFORMATION**
651652 To evaluate all the methods we utilize 5 datasets used in previous studies of generative models Kipf
653 and Welling (2016); Yun *et al.* (2019); Hao *et al.* (2020).
654

- **Cora** (Kipf and Welling, 2016) is a citation dataset that consists of nodes that represent machine-learning papers divided into seven classes (the subjects of the papers) and links that represent citation between them. The target for node classification is the subject of the papers. This dataset has 5,429 links, 2,708 nodes with an average node degree of 3.8.
- **ACM** (Yun *et al.*, 2019) is a citation dataset. It has three types of nodes (paper, author, and venue) and four types of links. The target for node classification is predicting one of three labels corresponding to the conferences where the papers were published. This dataset has 18,929 links, 8,993 nodes with an average node degree of 2.209.
- **IMDb** (Yun *et al.*, 2019) is a movie dataset with three types of nodes (movies, actors, and directors) and it uses the genre of movies as their labels. The target for node classification is predicting one of three genres of movies. This dataset has 19,120 links, 12,772 nodes with an average node degree of 2.9.
- **CiteSeer** (Kipf and Welling, 2016) is also a citation dataset that consists of nodes that represent machine-learning papers divided into six classes (the topics of the papers) and links that represent citation between them. The target for node classification is the topic of the publications. This dataset has 4,732 links, 3,327 nodes with an average node degree of 2.7.
- The **UW** dataset models academic relationships at a university, where persons can be both students and professors and key relations include `AdvisedBy` (a student advised by a professor) and `TaughtBy` (a student taking a course taught by a professor). The dataset contains 278 person entities and 132 course entities. The classification target is the phase of study of the student, which can be one of three labels: *pre-quals*, *post-quals*, or *post-general*. If the person is not a student, the label is 0.
- **Photo & Computers** are datasets from the Amazon co-purchase graph (McAuley *et al.*, 2015). In these datasets, nodes represent goods, links indicate that two goods are frequently bought together, node features are bag-of-words encoded product reviews, and class labels are given by the product category (Hao *et al.*, 2020).

683 **Data Preprocessing** Following previous work (Kipf and Welling, 2016), for GNN message passing
684 we add self-loops and make all links undirected (i.e., if the training data contains an adjacency, $v \rightarrow u$,
685 it also contains $u \rightarrow v$.) Cora and CiteSeer are homogeneous datasets, whereas ACM and IMDb are
686 heterogeneous datasets. Rule learning is applied to the original data.
687688 **A.2 RESULTS FOR HETEROGENEOUS ACM AND IMD**
689690 We present graph generation results for the original heterogeneous versions of IMDb and ACM,
691 which feature different types of nodes and links. For ease of comparison, we repeat the results for
692 homogeneous versions from the main paper. Heterogeneous versions are distinguished by an asterisk.
693 We observe large percentage improvements from rule enhancement, especially for IMDb.
694695 Table 4: Mean \pm Std for Count Distance (CD \downarrow) and Graph Realism (MMD \downarrow) with Improvements (in
696 scientific notation, so "e" represents $\times 10^n$).
697

Dataset	Count Distance (MSE)			Graph Realism (MMD)		
	VGAE+	VGAE+R	Improv. (%)	VGAE+	VGAE+R	Improv. (%)
ACM	1.24e5 \pm 4.86e3	2.81e4 \pm 3.54e3	77.34	3.31e20 \pm 1.32e20	3.29e18 \pm 3.08e18	99.01
ACM*	3.65e5 \pm 3.32e3	1.47e4 \pm 2.54e3	95.97	1.9e15 \pm 1.32e15	9.8e15 \pm 0.98e15	-415.79
IMDb	5.86e5 \pm 1.96e4	3.23e5 \pm 1.34e5	44.81	2.94e23 \pm 6.29e22	4.58e22 \pm 3.25e22	84.42
IMDb*	1.37e5 \pm 2.23e2	1.43e4 \pm 1.98e2	89.56	1.9e20 \pm 2.88e18	7.8e17 \pm 1.32e17	99.59

For node classification on heterogeneous datasets, the class labels are as follows: For IMDb*, predict the genre of the movie nodes, and for ACM*, predict the area of a paper. As with the homogeneous versions, rule enhancement does not lead to substantive improvements on these datasets, because the rules are not informative for node classification in these datasets.

Table 5: AUC and F1 Score for link prediction on heterogeneous ACM and IMDb (higher is better).

Dataset	Model	AUC	F1 Score
ACM*	VGAE+R	0.976 \pm 0.004	0.9184 \pm 0.011
	VGAE+	0.979 \pm 0.003	0.9123 \pm 0.011
IMDb*	VGAE+R	0.774 \pm 0.006	0.632 \pm 0.008
	VGAE+	0.769 \pm 0.011	0.615 \pm 0.014

A.3 NODE CLASSIFICATION BASELINE METHODS

Table 6 compares the rule-enhanced VGAE+R with the following node classification baselines. We focused on baselines that are similar to generative models in that they aim to support multiple prediction tasks. The baselines apply to homogeneous graphs only, so we homogenized ACM and IMDb (Mahmoudzadeh *et al.*, 2024) and omitted UW.

Generalizable Graph Masked AutoEncoder (GiGaMAE) (Shi *et al.*, 2023) introduces a novel graph encoder based on aligning different node embeddings that respectively encode structural and feature information. **MVGRL** is an inductive self-supervised approach for learning representations of nodes and graphs by contrasting different structural views of graphs (Hassani and Khasahmadi, 2020). \mathcal{G}^2P_{xy} (Zhang *et al.*, 2023) generates proxy nodes to support classification. For all methods we used the authors' code to train a node classifier and generate class labels.

Dataset	Model	AUC	F1-score
Cora	VGAE+R	0.965 \pm 0.013	0.887 \pm 0.016
	GiGaMAE	0.920	0.856
	\mathcal{G}^2P_{xy}	0.921	0.781
	MVGRL	0.888	0.886
CiteSeer	VGAE+R	0.903 \pm 0.008	0.794 \pm 0.042
	GiGaMAE	0.842	0.798
	\mathcal{G}^2P_{xy}	0.850	0.781
	MVGRL	0.807	0.710
Computers	VGAE+R	0.915 \pm 0.022	0.827 \pm 0.047
	GiGaMAE	0.941	0.770
	\mathcal{G}^2P_{xy}	0.680	0.578
	MVGRL	0.983	0.816
Photo	VGAE+R	0.991 \pm 0.003	0.972 \pm 0.002
	GiGaMAE	0.963	0.569
	\mathcal{G}^2P_{xy}	0.773	0.513
	MVGRL	0.963	0.960
ACM	VGAE+R	0.761 \pm 0.084	0.525 \pm 0.014
	GiGaMAE	0.823	0.440
	\mathcal{G}^2P_{xy}	0.742	0.661
	MVGRL	0.708	0.803
IMDb	VGAE+R	0.829 \pm 0.006	0.697 \pm 0.008
	GiGaMAE	0.890	0.457
	\mathcal{G}^2P_{xy}	0.654	0.541
	MVGRL	0.788	0.653

Table 6: Node classification results comparing rule-enhanced graph generation against baselines.

756 A.4 FORMULA LEARNING
757

758 In principle, any Markov Logic Network structure learning method can be used with our moment-
759 matching training objective. We deployed the Factorbase system (Qian and Schulte, 2015) for several
760 reasons.

761

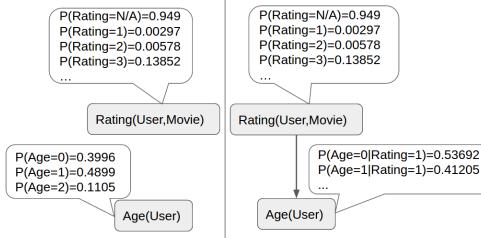
- 762 1. Interpretability: The first phase of Factorbase uses Bayesian network structure learning
763 method to discover a *causal graph* that provides a perspicuous visual representation of all
764 associations learned from the data.
- 765 2. Scalability: Factorbase scales to larger and more complex datasets than other MLN structure
766 learning method, on the order of 100K nodes.
- 767 3. Quality: Research has shown that the formulas discovered by Factorbase support high
768 quality inferences in relational prediction tasks.

769 Factorbase has three main phases.

770

- 771 1. Causal Graph Discovery.
- 772 2. Rule Extraction from the learned causal graph.
- 773 3. Moralization: convert learned rules to conjunctions.

774 Both rule extraction and moralization are computationally straightforward linear-time operations.
775 Moralization is a method for converting learned rules to conjunctions. Previous research in statistical-
776 relational learning (Kazemi *et al.*, 2014; Khosravi *et al.*, 2012) has shown that moralization is a
777 strong method for converting learned rules to useful features for generative graph models. Note
778 that therefore *our matrix multiplication algorithm can be applied to any set of learned rules after*
779 *moralization*. This means that our algorithm for rule enhancement can be applied to any set of
780 learned rules, not only those obtained from MLN structure learning. We next explain in the phases of
781 Factorbase formula discovery and illustrate the results on our dataset.



785 Figure 5: Example First-Order Causal Graphs: left = B_1 with graph \mathcal{G}_1 , right = B_1^+ with graph \mathcal{G}_1^+ .
786

787

788

789

790

791

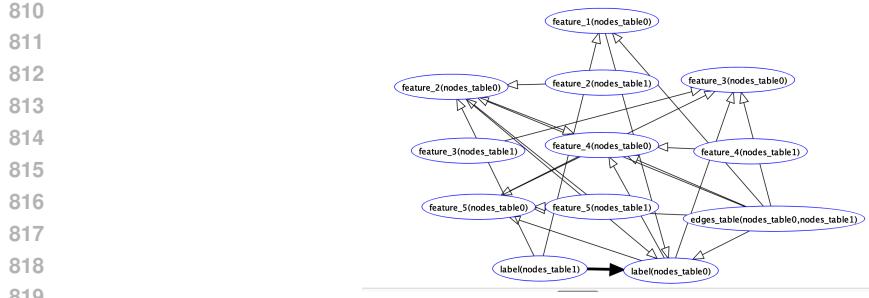
792

793

794

795 **Causal Graph Discovery** A **causal graph (CG) structure** is a directed acyclic graph G (DAG)
796 whose nodes comprise a set of random variables Pearl (2000). The interpretation is that the parents
797 of a node represent its direct causes Pearl (2000). A **causal Bayesian network** B is a structure G
798 together with a set of parameter values of the form $P(\text{child_value}|\text{parent_values})$, which specify
799 the distribution of a child node given an assignment of values to its parent node. A first-order causal
800 graph Wang *et al.* (2008); Kimmig *et al.* (2014) (FOCG) is a CG whose nodes are first-order terms.
801 The CG parameters specify the distribution of a child node given an assignment of values to its parent
802 node. Figure 5 shows two parametrized FOCGs. The right FOCG connects the rating of a movie
803 to the age of the rater. In the left FOCG, ratings are independent of ages. The process of structure
804 learning searches for statistically significant connections between first-order terms to introduce or
805 remove edges (Schulte and Qian, 2018; Schulte and Gholami, 2017).

806 We show the causal graphs learned by Factorbase for three datasets. We find that many of the learned
807 rules capture intuitively plausible domain constraints, such as homophily: if one paper cites another,
808 then they are likely from the same research area. For example in the graph for the Cora dataset,
809 the parents of the target label of a paper (node) are paper features 1 and 2, the citation relationship
between a paper and the target paper (denoted “edges_table”), and the label of the citing paper. The



820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Figure 6: The causal graph for the Cora dataset. We have highlighted the homophily edge that shows that if paper 0 cites paper 1, then the label of paper 0 correlates with the label of paper 1.

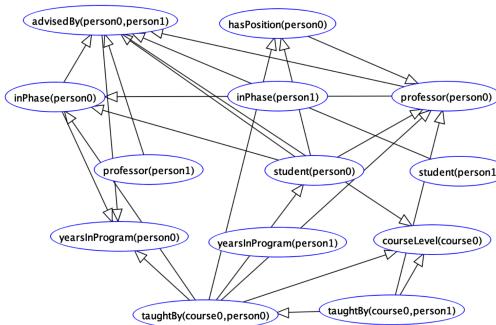


Figure 7: The causal graph for the UW dataset.

graph defines a rule for each combination of the 4 parent nodes, and each of the 7 possible child node values (paper classes).

ACM and CiteSeer are citation networks like Cora with a similar graph, which we omit. Figure 7 shows the causal graph for the UW dataset. The graph captures a number of relationships that make sense in the university domain. For example whether a person teaches a course correlates with whether they have a position.

Figure 8 shows the causal graph for the IMDb dataset. The graph captures many correlations between features of movies and actors. An interesting aspect of the graph is that for the target label (genre of the movie), its only parents are other features of the movie to be classified (features 1,2,4). This suggests that relational features, such as the features of actors who appear in the movie, should not add information beyond movie features. We verified this directly by building a classifier based on movie features only, which performed better than the GNN that uses relational features.

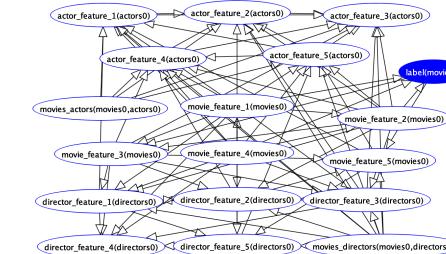


Figure 8: The causal graph for the IMDb dataset.

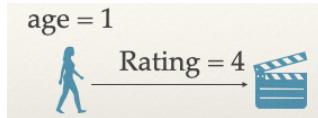


Figure 9: The FO conjunction $Age(User) = 1$, $Rating(User, Movie) = 4$ can be viewed as a two-node motif. The conjunction is obtained from the rule $Age(User) = 1 \rightarrow Rating(User, Movie) = 4$ by moralization.

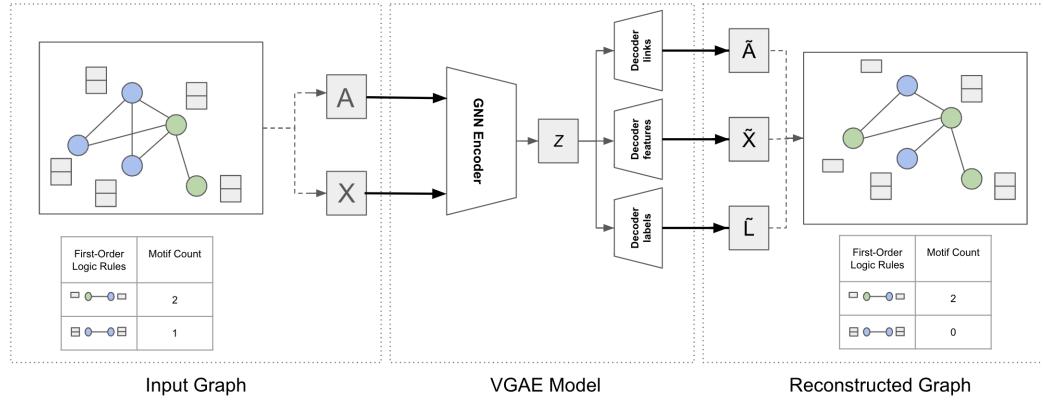


Figure 10: Encoder-Decoder Training Architecture for the VGAE+ Model.

Rule Extraction from Causal Graphs A rule is of the form $B \rightarrow H$ where the body B is an FO conjunction and the head H is a single FO literal. An example rule is

$$Age(User) = 1 \rightarrow Rating(User, Movie) = 4.$$

This rule expresses the knowledge that the age level of a user influences their ratings.

A single rule $B \rightarrow H$ is defined by a combination $parent_values \rightarrow child_value$, for each child node value and possible combination of parents values (Khosravi *et al.*, 2012). For example, the causal graph of Figure 5(right) defines the rule

$$Rating(User, Movie) = 3 \rightarrow Age(User) = 1.$$

Given 6 possible rating values and 5 age levels, the link $Rating(User, Movie) \rightarrow Age(User)$ defines $6 \times 5 = 30$ rules.

As the Factorbase system can output many rules, we use

$2n(B, H) \ln(n(H|B)/n(H)) - \ln(n(H)$ as a *rule quality metric* for pruning. The conditional count is given by $n(H|B) = n(H, B)/n(B)$. This metric computes the increase in the log-probability of the head given the body, relative to the prior probability of the head, together with a BIC-type correction for sample size (Schulte and Gholami, 2017). The quality metric can be interpreted as a positive local BIC model selection score. We keep all rules whose quality metric is above 0. Rule pruning reduces the number of rules for scalability, and also simulates the impact of a domain expert selecting the most important rules.

Moralization: From rules to conjunctions Most rule learners are based on *discriminative* learning, building on classification techniques to search for bodies that predict the head. A question researched in SRL is how to convert a set of rules to a set of graph features/statistics that support *generative* graph modelling. The recommended answer is *moralization*: convert each rule to a conjunction $\phi = (B, H)$ (Domingos and Richardson, 2007, 12.5.3), (Kazemi *et al.*, 2014). Figure 9 illustrates how moralization converts a rule to a conjunction, and how a conjunction represents a motif.

A.5 DETAILS ON THE VGAE+R MODEL

Figure 10 shows the VGAE+R architecture. The graph **encoder** $q_\phi(z|X, A)$ is implemented by a GNN that takes as input an attribute graph and returns latent node embeddings. For compatibility with

baseline methods, the encoder does not receive node labels as input, but adding them is straightforward. Following Mahmoudzadeh *et al.* (2024), we used a multi-layer graph attention network (GAT) and an RGCN (Schlichtkrull *et al.*, 2018) for heterogeneous datasets. The encoders were configured in the same way as Mahmoudzadeh *et al.* (2024).

The decoders generate links, node features, and node labels independently as follows.

$$p_{\eta}(\mathbf{A}|\mathbf{z}) = \prod_{r=1}^T \prod_{u,v} p_{\eta_r}(\mathbf{A}_r[u,v]|\mathbf{z}[u], \mathbf{z}[v]) \quad (5)$$

$$p_{\psi}(\mathbf{X}|\mathbf{z}) = \prod_u p_{\psi}(\mathbf{X}[u]|\mathbf{z}[u]) \quad (6)$$

$$p_{\phi}(\mathbf{L}|\mathbf{z}) = \prod_u p_{\phi}(\mathbf{L}[u]|\mathbf{z}[u]), \quad (7)$$

Jaeger and Schulte (2020) provide a strong theoretical foundation for the independent decoder model. Following Mahmoudzadeh *et al.* (2024), we use a stochastic blocks model for the link decoder Equation (5), and MLPs for the feature and label decoders Equations (6) and (7). When training a model for graph generation, we use the training objective Equation (2), without the node labels. When training a model for node classification, the encoder does not see the node labels, but the decoder has access to the training node labels to evaluate the node label term Equation (7). At test time, the trained encoder is applied to the available graph information to produce node embeddings for each test node, and then the trained decoder is applied to output class probabilities.

Hyperparameters We used the ADAM optimizer for training, with default hyperparameter values. For *graph generation* we obtained the best results for both the VGAE+ and the VGAE+R model by setting all ELBO hyperparameters α, β, γ to 1, similar to Simonovsky and Komodakis (2018). The motif loss weight λ was also set to 1 except for Computers, where $\lambda = 2$ yielded better results. Both models were trained for 100 epochs on all datasets.

For *node classification*, for the VGAE+ baseline model with $\lambda = 0$, we follow Mahmoudzadeh *et al.* (2024) and use Bayesian optimization to fix the ELBO hyperparameters α, β, γ . For the VGAE+R model, after fixing the ELBO hyperparameters, we set the motif loss weight λ empirically based on a validation set. We found that different datasets require different training regimes to build good node classifiers. Specifically, the number of training epochs were as follows for both VGAE+ and VGAE+R models: 700 for Cora and CiteSeer, 1000 for IMDb, Computers, ACM, Photo, and 100 for UW.

For the learning curves, we trained the model for 1000 epochs at each sample size on the Citeseer dataset. To obtain standard deviations, we initialized training with five different seeds for node classification, and three different seeds for graph generation.

Computing Resources The experiments were conducted using a GPU cluster. The compute resources varied based on dataset size. For large datasets such as Computers and Photos, experiments were run on NVIDIA A100 GPUs with 80GB VRAM, 64GB RAM, and 16 CPU threads. For IMDB and ACM, NVIDIA A40 GPUs with 48GB VRAM, 64GB RAM, and 16 CPU threads were used. For smaller datasets such as Cora, Citeseer, and UW, experiments were conducted on NVIDIA GeForce GTX 1080 Ti GPUs. Each dataset required approximately 20GB of storage for generated graphs. Given the training regime described, generating measurements for one dataset took approximately 4 to 5 hours.

A.6 FIRST-ORDER SEMANTIC LOSS VS. PROPOSITIONAL SEMANTIC LOSS

In this section we show how the semantic loss Equation (4) with the distance function

$$|\ln n_i(D) - \ln E_{\theta}[n_i|\mathbf{z}]| \quad (8)$$

reduces to the semantic loss function of Xu *et al.* (2018) in the case of a propositional formula ϕ_i . For a given graph, a propositional formula is either true or false in the graph. Xu *et al.* give the

example of an "exactly-one" constraint that says that each node is assigned exactly to exactly one class. Translating into our notation, a propositional formula has an instance count of 1 if it is satisfied in a graph, and 0 otherwise:

$$n_i(\mathcal{G}) \leq 1 \text{ for propositional } \phi_i \quad (9)$$

The basis idea of Xu *et al.* is to view a propositional formula as a constraint that a model should satisfy. There the semantic loss function should maximize the probability of the formula under the model. The probability of the formula is the probability of the graphs that satisfy it. The steps in the proof are as follows.

$$p_{\theta}(\phi_i | \mathbf{z}) = \sum_{\mathcal{G}} P_{\theta}(\mathcal{G} | \mathbf{z}) n_i(\mathcal{G}) = E_{\theta}[n_i | \mathbf{z}] \quad (10)$$

$$-\ln p_{\theta}(\phi_i | \mathbf{z}) = -\ln E_{\theta}[n_i | \mathbf{z}] \quad (11)$$

$$|\ln n_i(D) - \ln E_{\theta}[n_i | \mathbf{z}]| = |0 - \ln E_{\theta}[n_i | \mathbf{z}]| = |-\ln p_{\theta}(\phi_i | \mathbf{z})| = -\ln p_{\theta}(\phi_i | \mathbf{z}) \quad (12)$$

Equation (10) holds because due to the zero-one condition (9) the probability of a formula is the same as the expected instance count, which immediately implies Equation (11). For Equation (12), since formula ϕ_i is assumed true in *all* graphs, in particular it will be true in the observed graph D . Therefore $n_i(D) = 1$. The last equality holds because for $p_{\theta} \leq 0$, we have $-\ln p_{\theta}(\phi_i | \mathbf{z}) \geq 0$, so $-\ln p_{\theta}(\phi_i | \mathbf{z}) = |-\ln p_{\theta}(\phi_i | \mathbf{z})|$. The leftmost term in Equation (12) is our first-order semantic loss, and the rightmost is the propositional first-order semantic loss of Xu *et al.*, which establishes our claim.

A.7 EXPANDED FIRST-ORDER LOGIC DEFINITIONS

We add to the definitions in the main body to introduce concepts we need in our proofs and in the full description of matrix multiplication algorithm. We make this section self-contained for ease of reference. A positive **relationship literal** is of the form $R(U, V)$. A **negative** relationship literal is of the form $\neg R(U, V)$. A generic relationship literal (positive or negative) is denoted as $\ell(U, V)$. A **ground** relationship literal is of the form $\ell(U = u, V = v)$ where u and v are two node indices. Similar to specifying arguments for variables in a programming language, grounding specifies arguments for node variables. Positive and negative unary literals are defined similarly.

For a positive ground relationship literal $\ell(U = u, V = v) = R(U = u, V = v)$, the indicator $I_{\mathcal{G}}(\ell(U = u, V = v)) = 1$ if the two nodes u and v are linked by edge type R in graph G . For a negative ground relationship literal, $\ell(U = u, V = v) = \neg R(U = u, V = v)$, we have $I_{\mathcal{G}}(\neg R(U = u, V = v)) = 1 - I_{\mathcal{G}}(R(U = u, V = v))$.

A conjunction is a list of literals. Intuitively, a conjunction is a template for a motif or frequently occurring subgraph. The indicator function specifies which nodes satisfy the literal/conjunction. Our formal definitions are as follows.

A **conjunction** ϕ comprises three elements:

1. A list $\ell_1(U_1, V_1), \dots, \ell_P(U_P, V_P)$ comprising P relationship literals where U_i and V_i are node variables.
2. A list $\ell_1(W_1), \dots, \ell_Q(W_Q)$ comprising Q unary literals, where W_i is a node variable.
3. A set of equality constraints EQ of the form $D_k = E_k$ for any two node variables D_k and E_k that appear in the list of relationship literals or unary literals. Formally, EQ is a set of unordered pairs of node variables.

This definition is equivalent to the definition in the main paper: all node variables are assumed to occur exactly once in a conjunction, and the equality constraints specify which node variables must be mapped to the same node indices. Representing equality constraints in an explicit list facilitates the statement of our matrix multiplication algorithm.

A conjunction with P relationship literals $\ell_1(U_1, V_1), \dots, \ell_P(U_P, V_P)$ is a **chain conjunction** if there is a permutation π of the literals such that the equality constraints comprise $V_{\pi(i-1)} = U_{\pi(i)}$

1026 for $i = 2, \dots, P$. A conjunction ϕ has $2P + Q$ parameters (i.e., node variables). Specifying a
 1027 list of $2P + Q$ node indices as arguments to the conjunction returns a **grounded conjunction**. A
 1028 grounded chain conjunction corresponds to a path in the graph where each consecutive pair of nodes
 1029 is connected by an edge.

1030 The indicator function for a grounded conjunction is given by:
 1031

$$I_{\mathcal{G}}(\ell_1(U_1 = u_1, V_1 = v_1), \dots, \ell_P(U_P = u_P, V_P = v_P), \\ \ell_1(W_1 = w_1), \dots, \ell_Q(W_Q = w_Q)) \\ = \prod_{i=1}^P I_{\mathcal{G}}(\ell_i(U_i = u_i, V_i = v_i)) \prod_{j=1}^Q I_{\mathcal{G}}(\ell_j(W_j = w_j))$$

1039
 1040 **Conjunction Counts.** For compactness, write a grounding as $\langle \mathbf{U} = \mathbf{u}, \mathbf{V} = \mathbf{v}, \mathbf{W} = \mathbf{w} \rangle$ so
 1041 the indicator function returns a 0/1 value for $I_{\mathcal{G}}(\langle \mathbf{U} = \mathbf{u}, \mathbf{V} = \mathbf{v}, \mathbf{W} = \mathbf{w} \rangle, EQ)$. A grounding
 1042 $\langle \mathbf{U} = \mathbf{u}, \mathbf{V} = \mathbf{v}, \mathbf{W} = \mathbf{w} \rangle$ is **valid** for a set of equality constraints EQ if for any two assignments
 1043 $D = d$ and $E = e$ we have $d = e$ if and only if $(D = E) \in EQ$. Thus node variables constrained to
 1044 be equal must be assigned the same node, and otherwise must be assigned different nodes. We write
 1045 $Valid_{EQ}$ for the set of valid groundings. The **instance count** for a conjunction ϕ in a graph \mathcal{G} returns
 1046 the number of valid groundings that satisfy the conjunction:
 1047

$$n_{\phi}(\mathcal{G}) = \sum_{\langle \mathbf{u}, \mathbf{v}, \mathbf{w} \rangle \in Valid_{EQ}} I_{\mathcal{G}}(\langle \mathbf{U} = \mathbf{u}, \mathbf{V} = \mathbf{v}, \mathbf{W} = \mathbf{w} \rangle)$$

1051 Here, we evaluate the indicator function for each combination of $\langle \mathbf{u}, \mathbf{v}, \mathbf{w} \rangle$, and sum up the values
 1052 for all combinations to obtain the desired count of satisfying groundings.
 1053

1054 A.8 PROOF OF PROPOSITION 2

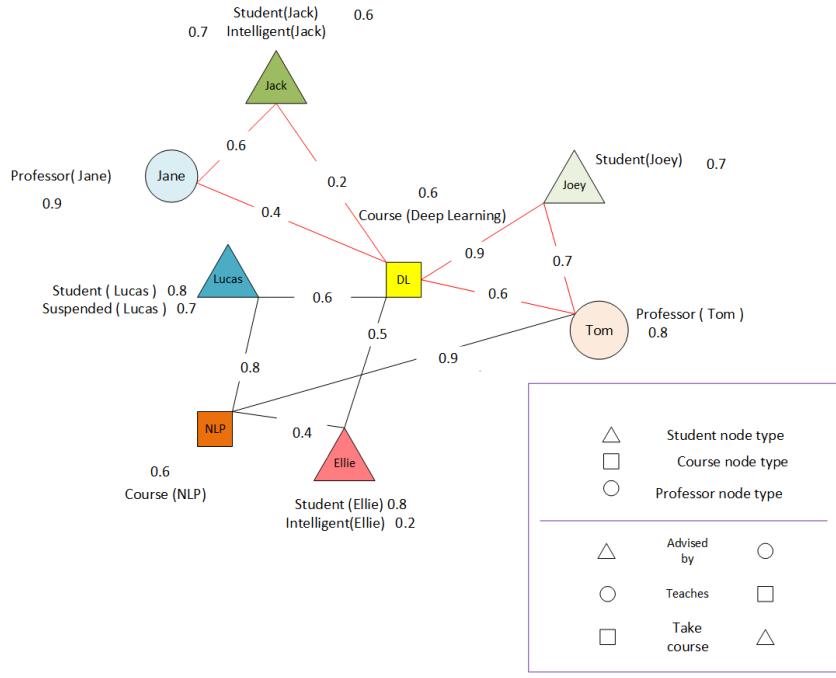


Figure 11: An example expected graph corresponding to Figure 4.

The output of the VGAE+ model is an expected graph like Figure 11. The following proposition states that the expected counts can be computed based on a expected graph. We use the full first-order logic definitions of Appendix A.7.

Proposition 2. *The expected conjunction count given a set of node embeddings can be computed as the conjunction count in the expected graph: $E_{\mathcal{G} \sim P(\mathcal{G}|\mathbf{z})}[n_{\phi}(\mathcal{G})] = n_{\phi}(\tilde{\mathcal{G}}_{\mathbf{z}})$*

Proof. Without loss of generality, assume the conjunction is of the form $\ell_1(U_1 = u_1, V_1 = v_1), \dots, \ell_P(U_P = u_P, V_P = v_P), \ell_1(W_1 = w_1), \dots, \ell_Q(W_Q = w_Q)$ with equality constraints EQ . Define the random variables $l_i^{uv}, i = 1, \dots, P$ to return the indicator value $I_{\mathcal{G}}(\ell_i(U_i = u, V_i = v)$ and $l_j^w, j = 1, \dots, Q$ to return the indicator value $I_{\mathcal{G}}(\ell_j(W_j = w))$. Then

$$\begin{aligned}
 & E_{\mathcal{G} \sim P(\mathcal{G}|\mathbf{z})}[n_{\phi}(\mathcal{G})] \\
 &= E\left[\sum_{(\mathbf{u}, \mathbf{v}, \mathbf{w}) \in \text{Valid}_{EQ}} \prod_{i=1}^P I_{\mathcal{G}}(\ell_i(U_i = u_i, V_i = v_i)) \right. \\
 &\quad \left. \prod_{j=1}^Q I_{\mathcal{G}}(\ell_j(W_j = w_j))\right] \\
 &= E\left[\sum_{(\mathbf{u}, \mathbf{v}, \mathbf{w}) \in \text{Valid}_{EQ}} \prod_{i=1}^P l_i^{\mathbf{u}_i \mathbf{v}_i} \prod_{j=1}^Q l_j^{\mathbf{w}_j}\right] \\
 &= \sum_{(\mathbf{u}, \mathbf{v}, \mathbf{w}) \in \text{Valid}_{EQ}} E\left[\prod_{i=1}^P l_i^{\mathbf{u}_i \mathbf{v}_i} \prod_{j=1}^Q l_j^{\mathbf{w}_j}\right] \\
 &= \sum_{(\mathbf{u}, \mathbf{v}, \mathbf{w}) \in \text{Valid}_{EQ}} \prod_{i=1}^P E[l_i^{\mathbf{u}_i \mathbf{v}_i}] \prod_{j=1}^Q E[l_j^{\mathbf{w}_j}] \\
 &= \sum_{(\mathbf{u}, \mathbf{v}, \mathbf{w}) \in \text{Valid}_{EQ}} \prod_{i=1}^P p_{\tilde{\mathcal{G}}_{\mathbf{z}}}(\ell_i(U_i = \mathbf{u}_i, V_i = \mathbf{v}_i)) \\
 &\quad \prod_{j=1}^Q p_{\tilde{\mathcal{G}}_{\mathbf{z}}}(\ell_j(W_j = \mathbf{w}_j)) = n_{\phi}(\tilde{\mathcal{G}}_{\mathbf{z}})
 \end{aligned} \tag{13}$$

Equation (13) follows because the expectation of a product of independent random variables is the product of their expectations. The random variables $l_i^{\mathbf{u}_i \mathbf{v}_i}$ and $l_j^{\mathbf{w}_j}$ are independent because the (in)equality constraints ensure that in a valid grounding, no two different literals are ground to the same ground literal. And conditional on the node embeddings \mathbf{z} , any two different ground literals are independent. \square

A.9 MATRIX MULTIPLICATION METHOD

A.9.1 EXAMPLE FOR EXPECTED INSTANCE COUNT

Figure 12 illustrates the matrix multiplication method for the expected graph in our example.

$$\begin{bmatrix} 0 & 0 \\ 0.6 & 0 \\ 0 & 0 \\ 0 & 0.7 \end{bmatrix} \times \begin{bmatrix} 0.4 & 0 \\ 0.6 & 0.9 \end{bmatrix} \times \begin{bmatrix} 0.6 & 0.2 & 0.5 & 0.9 \\ 0.8 & 0 & 0.4 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0.144 & 0.048 & 0.12 & 0.216 \\ 0 & 0 & 0 & 0 \\ 0.756 & 0.084 & 0.462 & 0.378 \end{bmatrix}$$

Figure 12: The matrix multiplication sequence for our example conjunction and Figure 11 graph.

1134
1135

A.9.2 FULL SPECIFICATION OF MATRIX MULTIPLICATION METHOD

1136
1137
1138

Intuitively, a chain conjunction is a template for a motif or frequently occurring subgraph. The indicator function specifies which nodes satisfy the literal/conjunction. Our formal definitions are as follows.

1139
1140
1141
1142
1143
1144
1145
1146
1147

The input to our counting algorithm is a chain conjunction $\{\ell_1(U_1, V_1), \dots, \ell_P(U_P, V_P), \ell_1(W_1), \dots, \ell_Q(W_Q), EQ\}$ and an input graph \mathcal{G} . The first step is to process the unary literals by masking adjacency matrix entries of nodes that do not satisfy all unary literals. The second step is to define inductively a sequence of matrices such that the instance count of the conjunction can be computed as the entry sum of the matrix product. We use $A \circ B$ to denote the element-wise matrix (Hadamard) product and I for the identity matrix of the appropriate dimension. A positive relationship literal $R(U, V)$ is **associated with** \mathbf{A}_r , the adjacency matrix for relation R . A negative relationship literal $\neg R(U, V)$ is associated with $\neg \mathbf{A}_r$ where $\neg \mathbf{A}_r[u, v] = 1 - \mathbf{A}_r[u, v]$ for all node indices u, v .

1148
1149
1150
1151
1152
1153
1154
1155

Step 1: Unary Literals Consider binary relationship literal $\ell_i(U, V)$ with associated $m \times n$ adjacency matrix $A_i(\mathcal{G})$. We search for every unary literal $\ell(W)$ where $(U = W) \in EQ$. For each such literal, we create a binary vector T of size m such that $T[w] := I_{\mathcal{G}}(\ell(W = w))$. Thus the entry $T[w]$ masks all the nodes that do not satisfy the unary literal. We apply the mask to the w row of matrix A_i , setting $\bar{A}_i[w, :] = A_i[w, :] \circ T[w]$, where $A(w, :)$ represents the entire w row of matrix A . If the w entry of T is zero, the entire row of \bar{A}_i is set to 0. If the w entry of T is one, the entire row of A_i is copied to \bar{A}_i .

1156
1157
1158
1159

Similarly, if a unary literal $\ell(W)$ exists where $(V = W) \in EQ$, we mask the corresponding column entries in the adjacency matrix A_i , and repeat the masking process for all such unary literals. We refer to the adjacency matrix that incorporates the unary functor constraints as the *masked adjacency matrix* \bar{A}_i .

1160
1161
1162
1163

Step 2: Binary Literals A chain conjunction is centered if all equality constraints for the binary literals (other than the chain constraints) involve the first node variable, that is they are of the form $U_1 = E_k$. For a centered chain, we define a sequence of matrix multiplications as follows.

1164
1165
1166
1167
1168

1. For a single literal conjunct $\phi = \ell(U, V)$ with associated masked matrix \bar{A} , let

$$O_1(\phi) = \begin{cases} \bar{A}, & \text{if } U = V \notin EQ \\ \bar{A} \circ I, & \text{if } U = V \in EQ \end{cases}$$

1169
1170
1171
1172

$\bar{A} \circ I$ agrees with \bar{A} on the diagonal and is 0 off-diagonal.

2. Inductively, consider a conjunction ϕ of length $k+1$ in the form of $\phi = \phi', \ell_{k+1}(U_{k+1}, V_{k+1})$ where $\phi' = \ell_1(U_1, V_1), \dots, \ell_k(U_k, V_k)$ is a conjunction of length k . Let

1173
1174
1175

$$O_{k+1}(\phi) = \begin{cases} O_k(\phi') \bar{A}_{k+1}, & \text{if } U_1 = V_{k+1} \notin EQ \\ (O_k(\phi') \bar{A}_{k+1}) \circ I, & \text{if } U_1 = V_{k+1} \in EQ \end{cases} \quad (14)$$

1176
1177

A.9.3 CORRECTNESS PROOF (PROPOSITION 3)

1178
1179
1180
1181
1182
1183

We next formulate the proposition that for every chain conjunction, there is a corresponding sequence of matrix multiplication operations such that: for every input graph \mathcal{G} , applying the operation sequence to the graph edge label tensor returns the instance count. In this formulation, we use the following facts: 1) Every ground positive (negative) relationship literal corresponds to a link present (absent) in the graph. 2) A grounded chain conjunction corresponds to a path in the graph where each consecutive pair of nodes is connected by a present/absent link.

1184
1185
1186
1187

Proposition 3. Let $\{\ell_1(U_1, V_1), \dots, \ell_P(U_P, V_P), \ell_1(W_1), \dots, \ell_Q(W_Q), EQ\}$ be a chain conjunction of length k .

1188
1189

1. For an input graph \mathcal{G} , the (u, v) -th entry of O_k counts the number of groundings of ϕ in \mathcal{G} where $U_1 = u$ and $V_P = v$. Therefore $n_{\phi}(\mathcal{G}) = \sum(O_k(\phi))$.

1188 2. For an expected graph $\tilde{\mathcal{G}}_z$, the (u, v) -th entry of O_k counts the expected number of ground-
 1189 ings of ϕ where $U_1 = u$ and $V_P = v$. Therefore $n_\phi(\tilde{\mathcal{G}}_z) = \sum(O_k(\phi))$.
 1190

1191 *Proof.* We give the proof for clause 1, counting observed counts in an input graph \mathcal{G} . The argument
 1192 for expected counts computed from an expected graph is exactly parallel.
 1193

1194 Base case, $k = 1$. If $\phi = \{\ell(U, V)\}$, then the conjunction count is the number of pairs (u, v) such that
 1195 (i) both groundings $U = u$ and $V = v$ satisfy all unary literals, and (ii) $I_{\mathcal{G}}(\ell(U = u, V = V)) = 1$.
 1196 All and only such pairs have the entry $\bar{\mathbf{A}}[u, v] = 1$ in the masked adjacency matrix associated with
 1197 $\ell(U, V)$.

1198 Case 1: $(U = V) \notin EQ$. Then the number of satisfying groundings is simply given by $\sum(\bar{\mathbf{A}})$.
 1199

1200 Case 2: $(U = V) \in EQ$. Then the satisfying groundings are of the form $U = u, V = u$, so their
 1201 count is given by the matrix trace of $\bar{\mathbf{A}}$, or equivalently $\sum(\bar{\mathbf{A}} \circ I)$. This establishes the base case.
 1202

1203 Inductive Step: Assume the proposition holds for k and consider the matrix O_{k+1} computed by Equa-
 1204 tion (14). By the inductive hypothesis, the (u, v) -th entry of O_k counts the number of instantiations
 1205 of length k between vertices u and v that satisfy ϕ' . Now, the number of instantiations of length $k+1$
 1206 between u and w equals the number of instantiations of length k from vertex u to each vertex v that
 1207 has ℓ_{k+1} relation with w . The non-zero entries of column w of masked matrix $\bar{\mathbf{A}}_{k+1}$ represent vs
 1208 related by ℓ_{k+1} to w . So, (u, w) -th entry of $O_k \bar{\mathbf{A}}_{k+1}$ gives the number of instantiations between u
 1209 and w satisfying the centered conjunction and all equality constraints except possibly $U_1 = V_{k+1}$.
 1210 Therefore for the case where $U_1 = V_{k+1} \notin EQ$, the matrix O_{k+1} satisfies the inductive hypothesis.
 1211 For the case where $U_1 = V_{k+1} \in EQ$, we observe that the number of instantiations of length $k+1$
 1212 from node u to w equals the (u, u) diagonal entry of $O_k \bar{\mathbf{A}}_{k+1}$ or equivalently, $(O_k \bar{\mathbf{A}}_{k+1}) \circ I$. Thus
 1213 the total number of satisfying groundings is given by $\sum(O_{k+1}(\phi))$ in either case, which establishes
 1214 the inductive hypothesis. \square

1215 Extensions

1216 • Our counting method is based on a **sorting algorithm**. A sorting algorithm is a procedure
 1217 that takes a set of relationship literals

$$1218 \ell_1(U_1, V_1), \dots, \ell_P(U_P, V_P)$$

1219 and determines if there exists a permutation π such that the literals can be arranged to form
 1220 a *chain conjunction*. Specifically, it seeks to satisfy the equality constraints given by

$$1221 V_{\pi(i-1)} = U_{\pi(i)} \quad \text{for } i = 2, \dots, P.$$

1222 Example

1223 Consider the following conjunction of relationship literals:

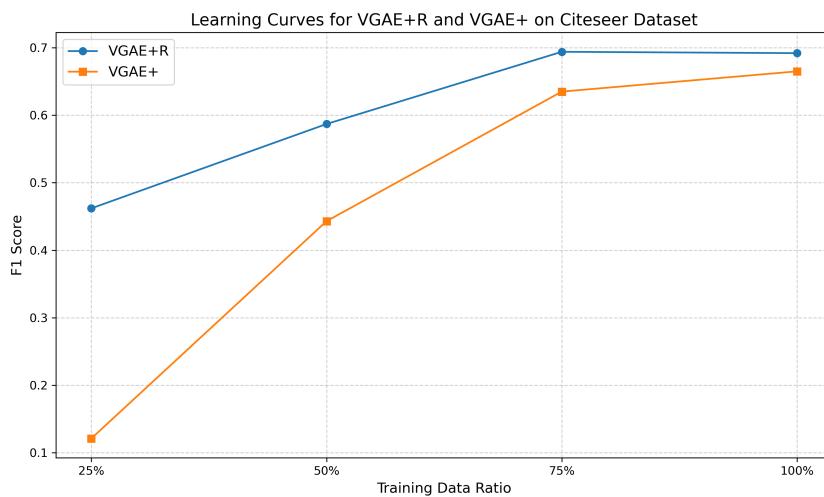
$$1224 \begin{aligned} & \text{AdvisedBy(Student, Professor),} \\ & \text{TaughtBy(Course, Professor),} \\ & \text{Registered(Student, Course)} \end{aligned}$$

1225 This set of relationships is not a chain conjunction because there is no permutation of the
 1226 literals that satisfies the necessary chain equality constraints. However, we can transform
 1227 this into a chain conjunction using the reverse relations:
 1228

$$1229 \begin{aligned} & \text{AdvisedBy(Student, Professor),} \\ & \text{Teaches(Professor, Course),} \\ & \text{TakeCourse(Course, Student)} \end{aligned}$$

1230 In this case, the literals can be rearranged to form a chain conjunction, satisfying the equality
 1231 constraints. Here *Teaches* is the reverse of *TaughtBy* and *TakeCourse* is the reverse of
 1232 *Registered*.

1233 • Our algorithm and proof can be extended to the case of *nested conjunctions*, which have
 1234 no crossing equalities. Say that two variable equalities $U_{k_1} = V_{k_2}$ and $U_{k_3} = V_{k_4}$ **cross** if
 1235 $k_1 < k_3 < k_2$ and $k_2 < k_4$. A nested chain is composed of centered chains, so our matrix
 1236 multiplication algorithm can be used to recursively compute instance counts.

1242 A.10 GNN-BASED GRAPH REALISM METRIC FOR EVALUATING GRAPH GENERATION
12431244 How to quantitatively assess generated graphs has been studied in recent papers O’Bray *et al.* (2022);
1245 Thompson *et al.* (2022); Shirzad *et al.* (2022). The general approach proceeds in two stages:
12461247 1. For a graph \mathcal{G} , extract a real-valued **descriptor** vector $\phi(\mathcal{G})$.
1248 2. Measure the similarity $\mu(\mathcal{G}, \hat{\mathcal{G}})$ of an observed graph \mathcal{G} and a generated graph $\hat{\mathcal{G}}$ by applying
1249 a distance/kernel on their real-valued descriptors vectors $\phi(\mathcal{G})$ and $\phi(\hat{\mathcal{G}})$.
12501251 The similarity of a set of observed graphs and a set of generated graphs can be quantified as the
1252 similarity of their descriptor sets using Maximum Mean Distance (MMD). The SOTA descriptor
1253 function utilizes a *reference embedding network* GNN \mathcal{E} . The embedder \mathcal{E} is obtained from random
1254 weights and is therefore independent of any of the models under evaluation.
12551256 We adapt the SOTA GNN-based approach to the setting of learning from a single training graph D as
1257 follows. We compare the training graph to generated expected graphs $\tilde{\mathcal{G}}_1, \dots, \tilde{\mathcal{G}}_m$. An expected graph
1258 $\tilde{\mathcal{G}}_i$ is generated by sampling a node embedding \mathbf{z}_i from the prior distribution $p(\mathbf{z})$, then applying
1259 the decoder model eq. (5) to \mathbf{z}_i . Following Thompson *et al.* (2022), we apply an embedder \mathcal{E} with
1260 random weights to the training graph resp. generated expected graphs to obtain embeddings e resp.
1261 $\hat{e}_1, \dots, \hat{e}_m$. The random GNN option does not require multiple training graphs. The message-passing
1262 mechanism of GNNs naturally extends to weighted graphs, so we can apply the GNN embedder to
1263 expected graphs directly. To quantify the similarity of the generated embeddings $\hat{e}_1, \dots, \hat{e}_m$ to the
1264 training graph embedding e , we utilize the MMD metric with a linear kernel, which is recommended
1265 by Thompson *et al.* (2022). We used their code to compute the MMD metric results.
12661267 A.11 LEARNING CURVES
12681269 We report a learning curve experiment to examine the effect of rule knowledge on data efficiency.
1270 The idea is to simulate the impact of a domain expert providing the model with a strong set of rules.
1271 After learning an informative set of rules on the entire training graph, we sample 20% of node labels
1272 as test labels and reserve the other 80% as training node labels. Then we sample $x\%$ of the training
1273 node labels for training the VGAE with and without rules. We report the predictive accuracy on the
1274 test labels, after training the VGAE with and without rules on $x = 25\%, 50\%, 75\%, 100\%$ of training
1275 labels. The models are tested on the remaining $100 - x\%$ of nodes. UW is too small to obtain a
1276 meaningful learning curve.
12771294 Figure 13: Learning curve for the CiteSeer dataset.
1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

Figure 14: Learning curve for the Cora dataset.

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

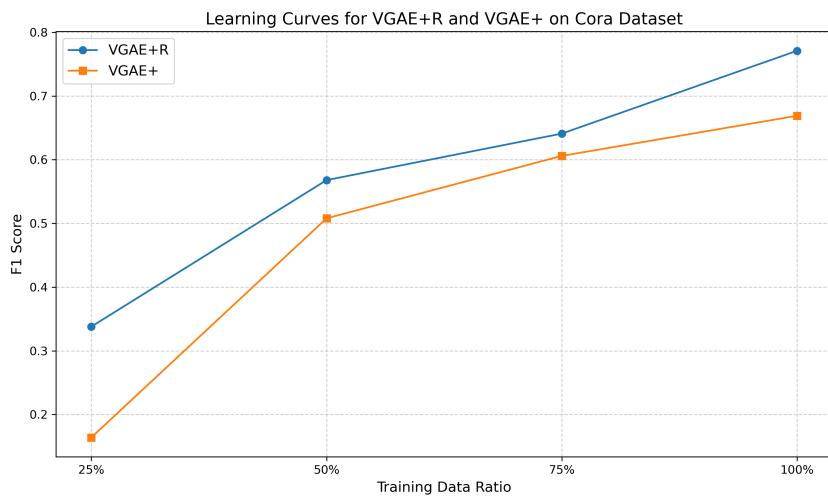


Figure 14: Learning curve for the Cora dataset.

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

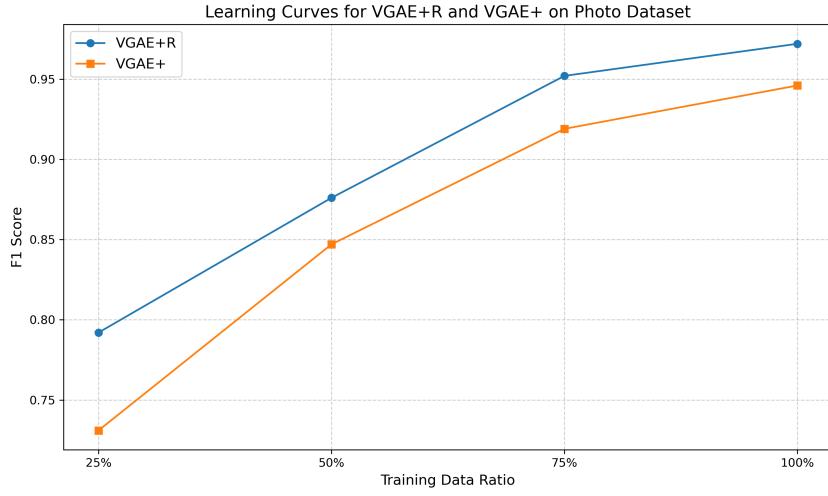


Figure 15: Learning curve for the Photo dataset.

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

A.12 LOSS CURVES

In this section we show that rule matching has a big impact on training, by in effect initializing the GGM model in a part of weight space that encodes the rule knowledge.

A.12.1 LABEL LOSS CURVES

In this section, we compare the label loss component for each model across different datasets. As shown in Figures 19, 20, 21, 22, and 23, the label loss for VGAE+R is generally lower than that for VGAE+ across most datasets, suggesting that VGAE+R may yield better accuracy in node classification.

A.12.2 TOTAL LOSS CURVES

In this section, we present the total loss curves for both the VGAE+ and VGAE+R models across multiple datasets. While it is not possible to directly compare the loss values between the two models, the downward trend in loss during training for both models indicates successful convergence. Figures

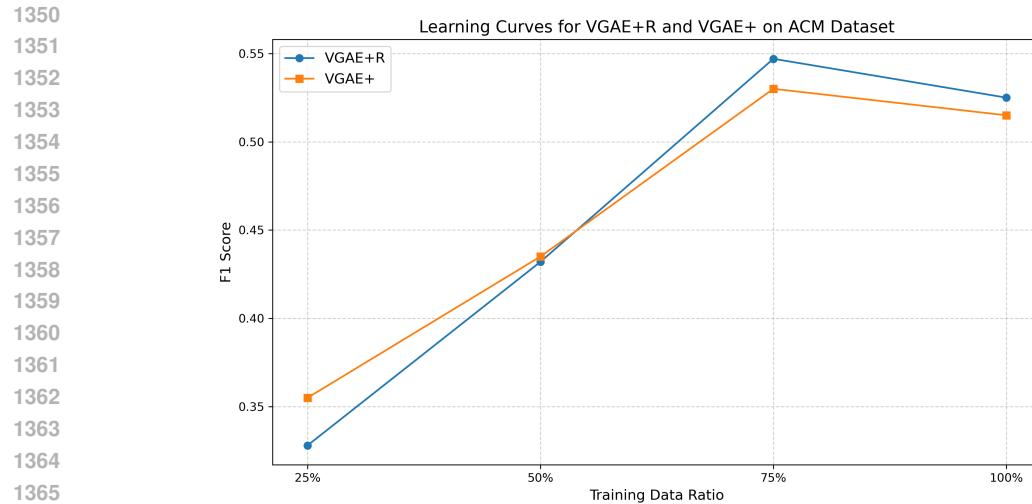


Figure 16: Learning curve for the ACM dataset.

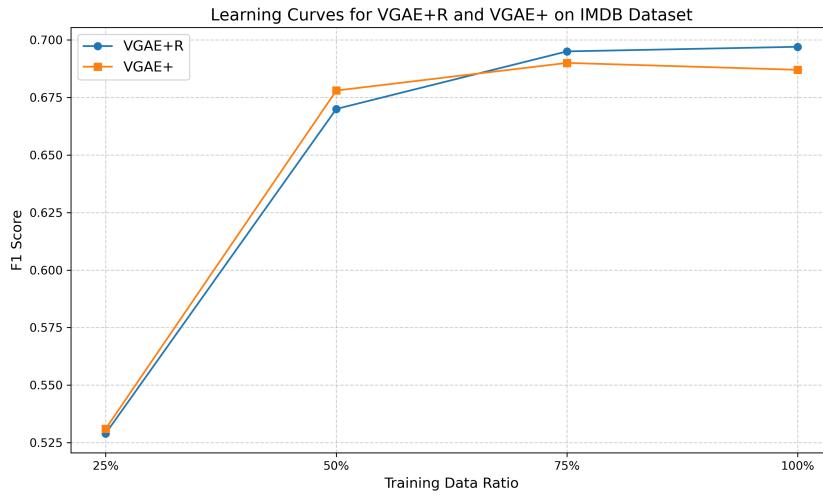


Figure 17: Learning curve for the IMDB dataset.

24, 25, 26, 27, and 28 illustrate the total loss for each dataset, confirming the models' progress throughout the training process.

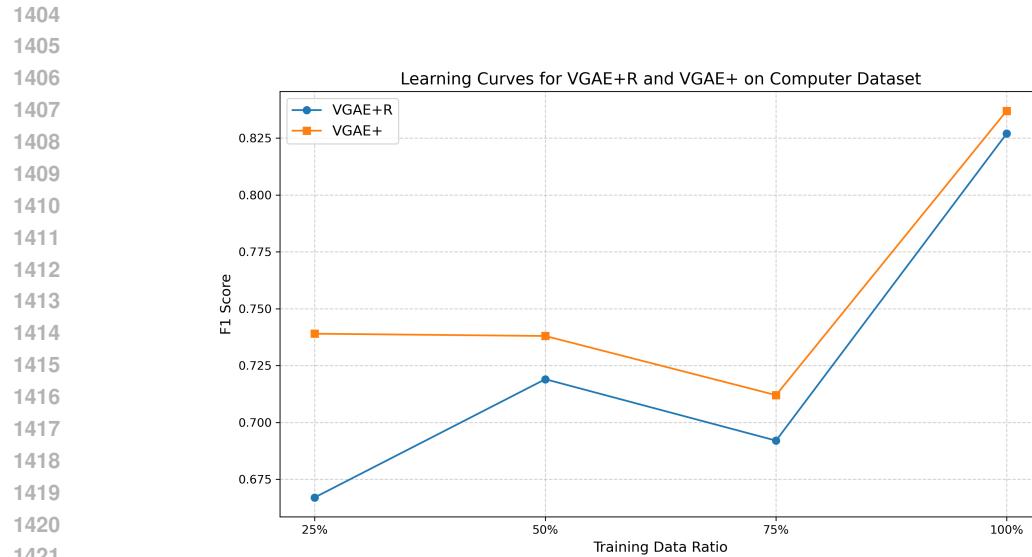


Figure 18: Learning curve for the Computers dataset.

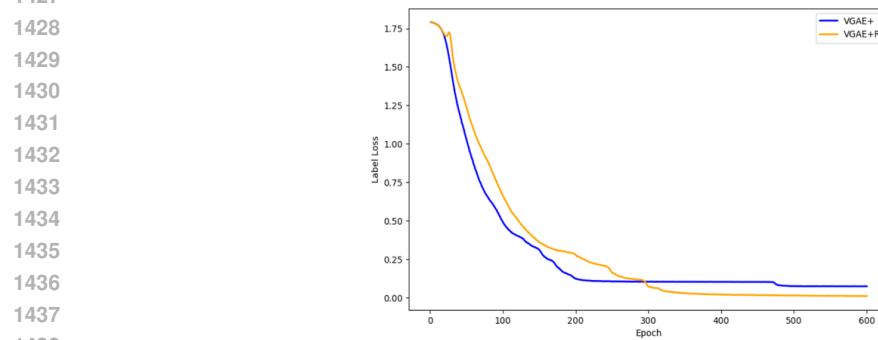


Figure 19: Label loss component for CiteSeer dataset during model training

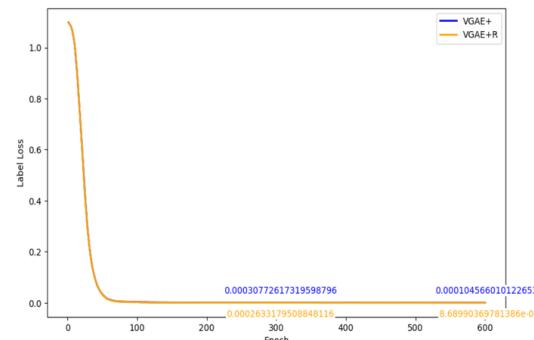


Figure 20: Label Loss component for ACM dataset during model training

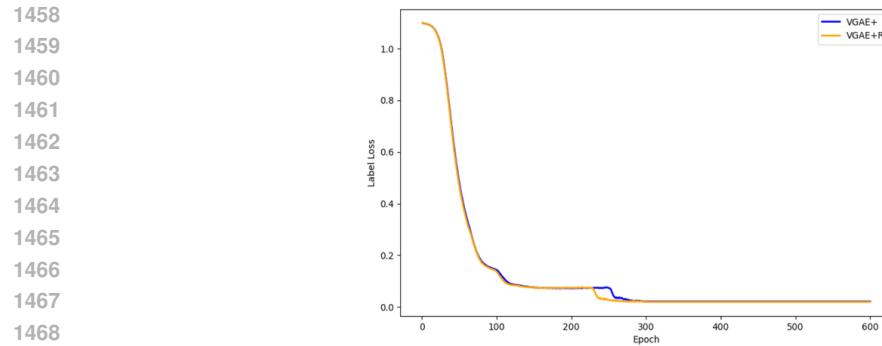


Figure 21: Label Loss component for IMDb dataset during model training

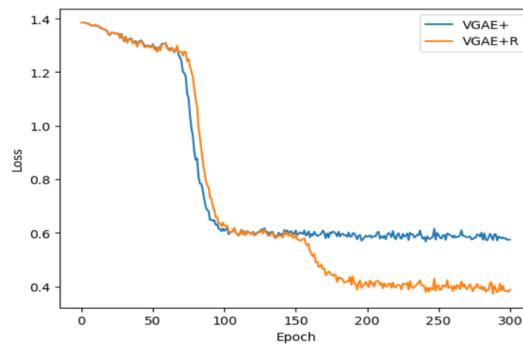


Figure 22: Label Loss component for UW dataset for person node type during model training

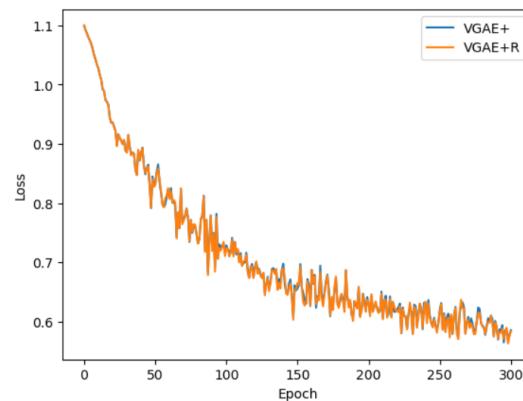


Figure 23: Label Loss component for UW dataset for course node type during model training

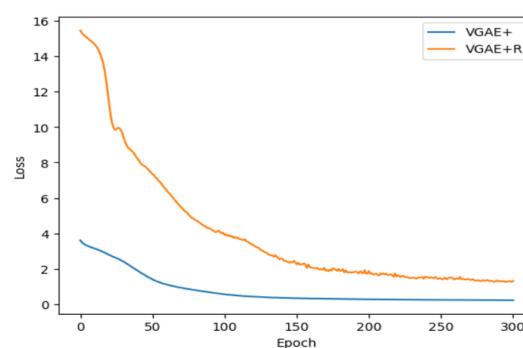


Figure 24: Total loss for Cora dataset during model training

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525

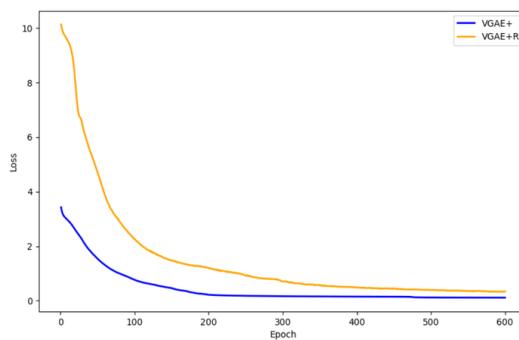


Figure 25: Total Loss for CiteSeer dataset during model training

1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543

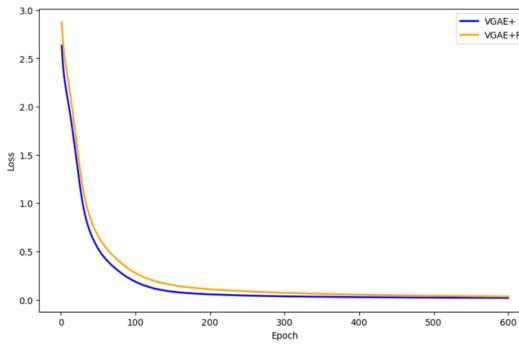


Figure 26: Total Loss for ACM dataset during model training

1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

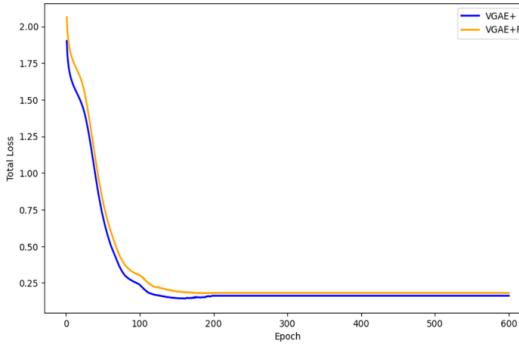
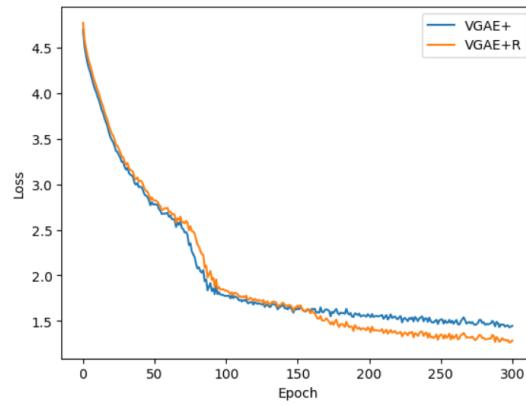


Figure 27: Total Loss for IMDb dataset during model training

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598



1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Figure 28: Total Loss for UW dataset during model training

1620
 1621 Table 7: Graph quality comparison of VGAE+ and VGAE+R on six datasets using MMD metrics
 1622 (degree, clustering, 4-orbit, spectral, diameter). Lower values indicate generated graphs are closer to
 1623 observed ones; VGAE+R shows consistent improvements.

Dataset	Metric	VGAE+	VGAE+R
CiteSeer	Degree MMD	0.752	0.604
	Clustering MMD	0.733	1.672
	4-Orbit MMD	0.549	0.538
	Spectral MMD	0.506	0.431
	Diameter MMD	2.000	1.877
Cora	Degree MMD	0.768	0.707
	Clustering MMD	1.680	1.648
	4-Orbit MMD	1.400	1.375
	Spectral MMD	0.514	0.461
	Diameter MMD	1.979	1.944
IMDB	Degree MMD	0.756	0.521
	Clustering MMD	1.950	1.870
	4-Orbit MMD	0.599	0.523
	Spectral MMD	0.516	0.389
	Diameter MMD	1.894	1.760
ACM	Degree MMD	0.770	0.664
	Clustering MMD	1.930	1.880
	4-Orbit MMD	0.756	0.692
	Spectral MMD	0.571	0.524
	Diameter MMD	1.944	1.955
Photos	Degree MMD	0.727	0.547
	Clustering MMD	1.760	1.810
	4-Orbit MMD	1.090	1.260
	Spectral MMD	0.606	0.399
	Diameter MMD	1.941	1.305
Computers	Degree MMD	0.756	0.227
	Clustering MMD	1.952	1.867
	4-Orbit MMD	0.788	0.767
	Spectral MMD	0.516	0.326
	Diameter MMD	1.894	0.706

A.13 GRAPH REALISM EVALUATION

1660 Our main metric of graph quality is the GNN-based graph realism MMD measure, which is the
 1661 current state-of-the-art method for comparing generated graphs with observed graphs. This metric
 1662 was introduced in prior work (Thompson *et al.*, 2022) and relies on a reference GNN R to embed
 1663 entire graphs. Importantly, R is independent of the models under evaluation. In our experiments, we
 1664 used a reference GNN with random weights, as recommended by Thompson *et al.* (2022), ensuring
 1665 that no domain-specific information was encoded. A pre-trained reference GNN could also be used,
 1666 but we did not adopt that setting in this paper.

1667 For completeness, we also report statistic-based MMD measures (degree, clustering, 4-orbit, spectral,
 1668 diameter), which have been widely used in earlier work on auto-regressive graph generation such as
 1669 GraphRNN. These complementary metrics show consistent benefits from incorporating first-order
 1670 rules.

1671 Table 7 presents the performance of VGAE+ (baseline) and VGAE+R (rule-enhanced) across six
 1672 benchmark datasets. Across both GNN-based and classical MMD measures, lower values indicate
 1673 closer alignment between generated and observed graphs, and VGAE+R achieves lower scores in all
 but one setting (clustering on Citeseer), demonstrating the positive effect of rule-based enhancement.

1674
 1675 Table 8: Count Distance between rule values in the test set and generated graphs. Lower values are
 1676 better.

Dataset	VGAE+	VGAE+R
Cora	1403.530	18.020
CiteSeer	459.560	24.760
IMDB	25762.900	1082.700
ACM	474.360	118.900
Photo	6046.740	1212.110
Computers	29567.100	1006.970
UW	763257.950	744808.390

1685
 1686 Table 9: Runtime and memory usage of VGAE+ and VGAE+R across benchmark datasets.

Dataset	#Nodes	#Rules	VRAM (GB)	Runtime VGAE+	Runtime VGAE+R	GPU
Cora	2708	138	12.2	0m 22.9s	0m 44.7s	GTx 1080 Ti
CiteSeer	3327	193	11.7	1m 34.2s	2m 18.9s	Titan X
IMDB	12772	31	38.8	3m 36.7s	4m 08.5s	A40 (48 GB)
ACM	8993	62	41.2	2m 07.5s	2m 34.4s	A40 (48 GB)
Photos	7650	207	80.0	1m 36.1s	2m 40.4s	A100 (80 GB)
Computers	13752	58	79.5	4m 30.0s	5m 24.2s	A100 (80 GB)
UW	410	111	0.175	0m 15.0s	0m 16.0s	GTx 1080 Ti

1695
 1696 A.14 COUNT DISTANCE EVALUATION BASED ON PRIOR EMBEDDINGS

1697 For the Count Distance metric, prior work on VAE-based graph generation has often evaluated fit to
 1698 the training or test data using the ELBO as an indirect measure of generation quality (Simonovsky
 1699 and Komodakis, 2018). In our setting, Count Distance similarly measures how well generated graphs
 1700 reproduce rule instance counts observed in the data. One might expect a neural GGM to implicitly
 1701 match motif counts as part of modeling the training distribution, but our results show that a standard
 1702 VGAE does not. Adding our explicit semantic loss substantially reduces this discrepancy.

1703
 1704 we also report results when sampling directly from the prior $p(z)$. As shown in Table 8, the semantic
 1705 loss improves not only fit to training data but also pure generation under $p(z)$. Lower values indicate
 1706 closer alignment between generated and observed rule counts, and VGAE+R consistently achieves
 1707 much lower distances than VGAE across all datasets.

1708 A.15 SCALABILITY AND RUNTIME ANALYSIS

1709 Our core algorithm relies on dense matrix multiplications over probabilistic adjacency matrices. As
 1710 discussed in Section 5, this raises natural concerns about scalability. In this appendix, we provide
 1711 additional details on the computational resources required and the observed runtime overhead of the
 1712 semantic loss.

1713 Table 9 summarizes, for each benchmark graph, the number of nodes, number of rules, peak GPU
 1714 memory usage, runtime for 100 training epochs with VGAE+ and VGAE+R, and the GPU model
 1715 used. Storage needs for generating graphs ranged from 1GB for the smallest dataset to 70GB for the
 1716 largest, and end-to-end experiments (training + generation + evaluation) took between 4 and 5 hours
 1717 for the biggest dataset.

1718 Modern GPUs render dense matrix multiplications surprisingly efficient: thousands of cores execute
 1719 multiply-add operations in parallel, while optimized libraries such as cuBLAS tile large matrices into
 1720 on-chip shared-memory blocks. Tensor Cores and fused multiply-add instructions further accelerate
 1721 throughput, often at reduced precision. As a result, the additional multiplications from our semantic
 1722 loss add only a modest wall-clock overhead.

1723 For example, runtime on the UW graph increases by just 1 second (15s to 16s). For mid-sized graphs
 1724 such as ACM and IMDB, the slowdown is about 20% and 15%, respectively. Larger graphs such as
 1725 Photos incur slowdowns of $1.95\times$ and $1.67\times$, yet all runs complete in under six minutes. Even the

1728

1729

Table 10: Robustness of VGAE+R to noisy/incomplete rules on the Cora dataset.

1730

1731

1732

Condition	Degree	Clust.	4-Orbit	Spectral	Diam.	CountDist (train)	CountDist (test)	Graph Realism	AUC (%)	F1 (%)
50% Rules Deleted	0.733	1.640	1.398	0.517	1.914	58991.850	35.190	1.745e20	94.5	85.0
VGAE+R (full rules)	0.707	1.648	1.375	0.461	1.944	26800.000	18.000	6.840e17	96.5	88.0
Baseline VGAE+	0.768	1.680	1.400	0.514	1.979	51400.000	1403.000	1.400e19	86.0	69.0

1733

1734

13k-node Computers graph finishes in 5m 24s on an A100 GPU. On average, VGAE+R adds only a 1.4 \times overhead while yielding substantial improvements in rule compliance and graph quality.

1735

1736

It is common practice to evaluate new objectives for graph generative models in settings that require a full dense adjacency matrix. Examples include GraphVAE (Simonovsky and Komodakis, 2018) and the more recent Digress diffusion model (Vignac *et al.*, 2023). These evaluations remain meaningful because many graph generation benchmarks consist of small to medium-sized graphs, such as molecules and proteins. A general lesson in the field is that all-at-once methods have fast training and generation for small to medium graphs, while scaling to very large graphs typically requires autoregressive approaches (Hamilton, 2020).

1737

1738

1739

1740

1741

1742

1743

A.16 ROBUSTNESS TO NOISY OR INCOMPLETE RULES

1744

1745

Almost all rules we use are non-deterministic, meaning they allow for exceptions (e.g., “if X works in city Y , then X lives in city Y ,” which may not always hold). This flexibility is part of the power of first-order rules, which can hold in a graph to a degree rather than absolutely (Domingos and Richardson, 2007). If noise refers to uninformative rule bodies, we prune such rules during preprocessing, which increases robustness. If the rule set is incomplete—missing important rules—the system degrades gracefully toward the standard GGM likelihood. In the extreme case of an empty rule set, our objective reduces exactly to the standard VGAE loss. Since our implementation derives rules from a first-order Bayesian network that represents the full joint domain distribution (Schulte and Qian, 2015), the resulting rule sets are likely close to complete.

1746

1747

1748

1749

1750

1751

1752

1753

1754

Table 10 reports results on the Cora dataset under three settings: (1) deleting the top 50% of rules, (2) using the full VGAE+R rule set, and (3) the baseline VGAE+. Metrics include generation quality (MMD measures), count distance on train/test graphs, graph realism ($\times 10^n$), and classification accuracy (AUC, F1). Results confirm that pruning rules degrades performance, but VGAE+R remains robust compared to the baseline VGAE+.

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781