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Abstract
Mathematical Information Retrieval (MIR) is the
task of retrieving information from mathemati-
cal documents and plays a key role in various
applications, including theorem search in mathe-
matical libraries, answer retrieval on math forums,
and premise selection in automated theorem prov-
ing. However, a unified benchmark for evaluating
these diverse retrieval tasks has been lacking. In
this paper, we introduce MIRB (Mathematical
Information Retrieval Benchmark) to assess the
MIR capabilities of retrieval models. MIRB in-
cludes four tasks—semantic statement retrieval,
question-answer retrieval, premise retrieval, and
formula retrieval—spanning a total of 12 datasets.
We evaluate 13 retrieval models on this bench-
mark and analyze the challenges inherent to MIR.
We hope that MIRB provides a comprehensive
framework for evaluating MIR systems and helps
advance the development of more effective re-
trieval models tailored to the mathematical do-
main.1

1. Introduction
Mathematical Information Retrieval (MIR) (Dadure et al.,
2024; Zanibbi et al., 2025) focuses on retrieving mathemati-
cal content such as definitions, theorems, and proofs from a
mathematical corpus. MIR has many practical applications.
For instance, mathematicians working with Lean (de Moura
et al., 2015; de Moura & Ullrich, 2021) often need to ver-
ify whether a particular theorem exists in mathlib4, Lean’s
mathematical library. In this case, the MIR query can be
either a natural language or formal statement, and the cor-
pus consists of declarations in mathlib4. Another example
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<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.
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https://kaggle.com/datasets/fbb7c83309a3fa4fd4927928e537da8a
f6be21c617f60de21f0ba7d20d5ff94d

is students searching for similar questions or answers on
Mathematics Stack Exchange to help them solve problems.
Here, the user’s question serves as the query, and the corpus
includes all question and answer posts on the forum. MIR is
also an essential component in automated theorem proving,
in both natural and formal languages. For example, Natural-
Prover (Welleck et al., 2022) is a natural language theorem
prover that uses stepwise beam search to sample proofs,
retrieving multiple references from a corpus of ProofWiki
definitions and theorems to support reliable tactic generation.
Similarly, ReProver (Yang et al., 2023) is a formal theorem
prover for Lean that performs best-first search; at each step,
it retrieves premises from mathlib4 using the current proof
state as the query, and feeds the retrieved premises into a
tactic generator. This retrieval step is often referred to as
premise retrieval. In summary, MIR plays a crucial role in a
wide range of mathematical applications.

MIR differs from standard text retrieval in that both queries
and documents often contain mathematical formulas. These
formulas are highly structured, and their semantic meaning
typically remains unchanged under variable substitution,
even though their textual representations differ. This struc-
tural property poses unique challenges for retrieval models,
which must adapt to the specific characteristics of mathe-
matical language. Due to the importance of MIR, several
competitions have been organized to evaluate different MIR
systems. For example, ARQMath (Zanibbi et al., 2020; Man-
souri et al., 2021; 2022), held at the Conference and Labs of
the Evaluation Forum (CLEF) from 2020 to 2022, includes
two main tasks: answer retrieval and formula retrieval, with
both queries and corpora sourced from Mathematics Stack
Exchange. Similarly, the NTCIR series (Zanibbi et al., 2016)
features a formula+keyword search task over corpora drawn
from arXiv and Wikipedia. However, existing MIR datasets
are limited in both task diversity and domain coverage, and
are scattered across different sources. To the best of our
knowledge, there is no unified benchmark that consolidates
all major MIR tasks and datasets for a comprehensive evalu-
ation of retrieval models.

To address this gap, we introduce MIRB (Mathematical
Information Retrieval Benchmark), a comprehensive bench-
mark designed to assess retrieval models on a wide range
of MIR tasks across various domains and languages. MIRB
covers four main tasks: Semantic Statement Retrieval, Ques-
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tion Answer Retrieval, Premise Retrieval, and Formula Re-
trieval, across 12 datasets in diverse mathematical domains
and languages. We evaluate 13 retrieval models on this
benchmark and observe that all models perform worse on
reasoning-based tasks compared to semantic-based tasks.
Moreover, applying cross-encoder rerankers generally leads
to performance degradation. These results highlight that cur-
rent retrieval models still have much room for improvement
in handling MIR tasks.

The rest of the paper is organized as follows. We review the
related works on retrieval benchmarks, retrieval models and
mathematical information retrieval in Section 2. Section 3
describe the tasks included in MIRB and the details of the
dataset construction process. Experimental results of the
evaluated retrieval models are presented in Section 4, and
the paper concludes in Section 5.

2. Related Work
2.1. Retrieval Benchmarks

Existing retrieval benchmarks can generally be divided
into two categories: (1) general-purpose benchmarks that
span diverse domains and tasks, such as BEIR (Thakur
et al., 2021), MTEB (Muennighoff et al., 2023), MMTEB
(Enevoldsen et al., 2025), C-MTEB (Xiao et al., 2024b)
and MAIR (Sun et al., 2024); and (2) domain-specific or
task-specific benchmarks that focus on a particular domain
or retrieval task. For example, ChemTEB (Kasmaee et al.,
2024) includes a retrieval benchmark for chemistry, while
CodeSearchNet (Husain et al., 2019), CosQA (Huang et al.,
2021), XcodeEval (Khan et al., 2024), and CoIR (Li et al.,
2024) target code retrieval. LONGEMBED (Zhu et al.,
2024) is designed for long-context retrieval. The bench-
marks most closely related to our work are RAR-b (Xiao
et al., 2024a) and BRIGHT (SU et al., 2025), both of which
include reasoning-based retrieval datasets covering com-
monsense reasoning, mathematics, and code. In RAR-b’s
question-answer retrieval task, relevant documents directly
answer the query, while BRIGHT focuses on retrieving doc-
uments that either assist in answering the query or use the
same theorem as the one in the query. Our work differs from
these benchmarks in three aspects: (1) we focus exclusively
on the mathematics domain; (2) we include both seman-
tic retrieval tasks (Semantic Statement Retrieval, Formula
Retrieval) and reasoning-based tasks (Question-Answer Re-
trieval, Premise Retrieval), whereas RAR-b and BRIGHT fo-
cus solely on reasoning-based retrieval; (3) within reasoning-
based retrieval, we include the task of premise retrieval in
both natural and formal language, which is not covered in
either RAR-b or BRIGHT.

2.2. Retrieval Models

The development of retrieval models has advanced beyond
the classic BM25 algorithm (Robertson et al., 1995; Robert-
son & Zaragoza, 2009), which relies on sparse vector repre-
sentations and measures lexical similarity between queries
and documents. Modern approaches leverage deep neu-
ral networks to encode queries and documents into dense
vectors, enabling relevance assessment based on semantic
similarity. A widely adopted training paradigm for these
dense retrieval models (Neelakantan et al., 2022; Wang
et al., 2022; Su et al., 2023; Xiao et al., 2024b) involves pre-
training on large-scale unsupervised data using contrastive
loss, followed by fine-tuning on smaller labeled datasets. In
terms of architecture, earlier models commonly employed
bidirectional encoders, but recent studies (Wang et al., 2024;
Meng* et al., 2024; Meng et al., 2024; Lee et al., 2025)
have demonstrated that decoder-only language models can
achieve superior performance. Moreover, the training data
for retrieval models can be augmented with synthetic data
generated by large language models (Wang et al., 2024;
Muennighoff et al., 2024; Lee et al., 2024).

2.3. Mathematical Information Retrieval.

Classical mathematical information retrieval methods often
rely on tree-based representations to capture the structural
information of mathematical formulas, such as the Sym-
bol Layout Tree(Zanibbi & Blostein, 2012) and the Oper-
ator Tree (Gao et al., 2016). A representative approach is
the structure search used in Approach0 (Zhong & Zanibbi,
2019; Zhong et al., 2020), which computes structural sim-
ilarity by identifying the largest common subexpressions
and matching maximum subtrees. More recent methods
combine structure-based search with dense retrieval models
(Kane et al., 2022; Zhong et al., 2022a;b; 2023), allowing
systems to handle both the semantic similarity of text and the
structural similarity of formulas. In general, dense retrievers
such as text embedding models are more robust to invalid
LaTeX formulas and to formulas written in alternative for-
mats, whereas traditional structure based methods often fail
at the parsing stage if the LaTeX syntax is incorrect.

3. The MIRB Benchmark
We present MIRB, a benchmark designed to evaluate the
mathematical information retrieval capabilities of retrieval
models. It comprises four tasks: Semantic Statement Re-
trieval, Question-Answer Retrieval, Premise Retrieval and
Formula Retrieval. Dataset statistics are provided in Table 1.
The following four subsections describe each task and the
corresponding dataset construction in detail.
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MIRB

4 tasks

12 datasets

Semantic Statement Retrieval

Premise Retrieval Formula Retrieval

Question-Answer Retrieval

Informalized Mathlib4 Retrieval

Query natural language query
Docs informalized mathlib4 statements 

MSE Dup. Question Retrieval

Query MSE question
Docs MSE questions 

MO Dup. Question Retrieval

Query MO question
Docs MO questions

ARQMath-Task-1

Query MSE question
Docs MSE answer posts

Stacks

Query math theorem
Docs proofs in the Stacks Project

ProofWiki

Query math theorem
Docs proofs in ProofWiki

NaturalProofs

Query math theorem
Docs theorems, definitions and other statements

LeanDojo

Query Lean 4 proof state
Docs mathlib4 declarations

MAPL

Query Isabelle proof state
Docs Isabelle declarations

HolStep

Query HOL conjecture
Docs HOL declarations

ARQMath-Task-2

Query math formula + context
Docs math formulae in MSE

NTCIR-WFB

Query math formula
Docs math formulae in Wikipedia

Figure 1. Overview of tasks and datasets in MIRB.

3.1. Semantic Statement Retrieval

Semantic Statement Retrieval is the task of retrieving se-
mantically similar statements or questions given a math
query, which itself is a mathematical statement or ques-
tion. This task is motivated by real-world scenarios such
as searching for theorems in mathematical libraries—for
example, users of Lean often need to look up theorems in
mathlib4. One instance of this task is Informalized Math-
lib4 Retrieval, where the goal is to retrieve relevant mathlib4
theorems based on informal mathematical queries. Another
instance is Duplicate Question Retrieval, which involves re-
trieving questions labeled as duplicates on math forums like
Mathematics Stack Exchange (MSE) and Math Overflow
(MO). This task is inspired by the CQADupStack dataset
(Hoogeveen et al., 2015). A key challenge in this task is
identifying semantically equivalent questions that may differ
in phrasing or notation but express the same mathematical
meaning. We construct two datasets for this purpose: MSE
Duplicate Question Retrieval and MO Duplicate Question
Retrieval. The details of all three datasets are discussed in
the following paragraphs.

Informalized Mathlib4 Retrieval. We use the evaluation
dataset from (Gao et al., 2024). The original dataset contains
both formal and informal queries; in this work, we focus
only on the informal queries, retaining 40 out of the original

50. The retrieval corpus consists of informalized mathlib4
statements. Relevance is graded on a three-level scale, with
the criteria defined in the original paper. An example query
and its relevant document are shown in Table 2.

MSE Dup. Question Retrieval. The task of Duplicate
Question Retrieval involves retrieving questions that are du-
plicates of a given input question. We construct our dataset
using the Mathematics Stack Exchange Data Dump (2024-
09-30)2. We begin by extracting all question posts and
removing those containing figures, links, or tables. Next,
we build an undirected graph where an edge connects two
questions if they are marked as duplicates in the data dump.
We compute the transitive closure of this graph to ensure
that if question A is a duplicate of B and B is a duplicate
of C, then A is also considered a duplicate of C. From each
connected component in the graph, we randomly sample
one question to serve as a query. The remaining questions
constitute the initial corpus, which we further refine. To
mitigate the issue of false negatives—questions that are
duplicates but not labeled as such—we adopt a dynamic cor-
pus approach similar to the LeetCode dataset in BRIGHT
(SU et al., 2025). Specifically, we extract the tags for each
question from the data dump. For a query Q with tag set

2https://archive.org/download/stackexchange 20240930/stack
exchange 20240930/math.stackexchange.com.7z
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Table 1. Statistics of the datasets. We report the number of queries and documents in each dataset. Avg. D / Q denotes the average number
of relevant documents per query. Average Word Length refers to the mean number of words per query or per document. Examples
from five representative datasets (Informalized Mathlib4 Retrieval, MSE Dup. Question Retrieval, ARQMath-Task-1, NaturalProofs,
NTCIR-WFB) are included in the main text, while examples from the remaining datasets are provided in the appendix.

Test Avg. Word Length

Task Dataset Relevancy #query #corpus Avg. D / Q Query Document Example

Semantic Statement Retrieval Informalized Mathlib4 Retrieval (Gao et al., 2024) 3-level 40 124,254 7.23 10.38 41.60 Table 2
MSE Dup. Question Retrieval Binary 25,116 1,350,505 1.78 97.22 116.42 Table 3
MO Dup. Question Retrieval Binary 225 108,301 1.08 100.78 144.53 Table 11

Question-Answer Retrieval
ARQMath-Task-1 (Zanibbi et al., 2020; Mansouri et al., 2021; 2022) 4-level 78 33,369 100.79 125.15 120.40 Table 4
ProofWiki Binary 1,099 15,763 1.03 48.37 196.87 Table 12
Stacks Binary 776 10,423 1.00 55.47 171.07 Table 13

Premise Retrieval

NaturalProofs (Welleck et al., 2021) Binary 2,060 40,806 3.94 49.51 62.32 Table 5
LeanDojo (Yang et al., 2023) Binary 4,109 180,944 2.33 106.28 30.18 Table 14
MAPL (Mikuła et al., 2024) Binary 4,000 493,029 7.07 43.53 30.15 Table 15
HolStep (Kaliszyk et al., 2017) Binary 1,411 3,973 22.82 34.33 28.84 Table 16

Formula Retrieval NTCIR-WFB (Zanibbi et al., 2016) 3-level 39 1,994 38.95 2.72 2.93 Table 6
ARQMath-Task-2 (Zanibbi et al., 2020; Mansouri et al., 2021; 2022) 4-level 76 9,969 63.18 122.25 5.61 Table 17

Table 2. Informalized Mathlib4 Retrieval example.

Query Relevant Document

Let L/K be a Galois
extension, F be an
intermidiate field, then
L{σ∈Gal(L/K)|σx=x,∀x∈F} =
F

Fixed Field of Fixing Sub-
group Theorem: For a
Galois field extension E/F
with an intermediate field
K, the fixed field of the sub-
group fixing K is equal to
K.

T (Q), we exclude a candidate question Q′ from its corpus
if the tag overlap satisfies |T (Q)∩T (Q′)|

|T (Q)| ≥ 0.5. This ensures
that, aside from the ground-truth duplicates, most questions
in the corpus are not on the same topic as the query, thus
reducing the risk of unlabeled duplicates appearing as false
negatives.

MO Dup. Question Retrieval. The construction of the
MO Duplicate Question Retrieval dataset follows the same
procedure as for the MSE dataset. We use the MathOverflow
Data Dump (2024-09-30)3. After cleaning the question
posts, applying transitive closure to the graph, and filtering
the corpus, we obtain 225 queries and 108,301 documents.

3.2. Question-Answer Retrieval

Question-Answer Retrieval focuses on retrieving relevant
answers or proofs for a given mathematical question. The
main challenge lies in understanding the underlying math-
ematical intent of the question and identifying documents
that provide accurate and precise answers—an objective that
goes beyond simple semantic similarity. We include three
datasets for this task: ARQMath-Task-1, ProofWiki, and

3https://archive.org/download/stackexchange 20240930/stack
exchange 20240930/mathoverflow.net.7z

Table 3. MSE Dup. Question Retrieval example.

Query Relevant Document

Example of divisor D such
that degD > 0 and
ℓ(D) = 0 It is easy to see
that if a divisor D on a pro-
jective curve C over a field
K has negative degree,
then ℓ(D) = dimK{f ∈
K(C) | div(f) +D ≥ 0}
is zero. However, I sup-
pose that the converse is
not true. Can someone
give me the simplest ex-
ample of a divisor D on
some curve C satisfying
deg(D) > 0 but ℓ(D) =
0?

Does the dual of a line bun-
dle with no sections have
a section? Let L → X be
a holomorphic line bundle
over a compact complex
manifold. Suppose L is
non-trivial and has no non-
trivial sections. Let me
ask the following (hope-
fully not entirely trivial)
question: Does the dual L∗

have a non-trivial section?
A special case of this is
when L is the dual of an
ample line bundle. Obvi-
ously ample line bundles
have sections, but the dual
does not.

Stacks, which are discussed in the following paragraphs.

ARQMath-Task-1. ARQMath-Task-1 (Zanibbi et al.,
2020; Mansouri et al., 2021; 2022) is an answer retrieval
task, where the goal is to retrieve relevant answer posts
from Mathematics Stack Exchange (MSE) between 2010
and 2018, given a query question posted after 2019. The
task was held over three years, with the query sets consisting
of MSE questions from 2019, 2020, and 2021, respectively.
We use ARQMath-3-Task-1 as the test set. The ARQMath-
3-Task-1 dataset contains 78 queries, with an average of
446.8 annotated answers per query. Relevance is graded on
four levels, and readers may refer to (Mansouri et al., 2022)
for the detailed relevance criteria. The evaluation metric is

4
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Table 4. ARQMath-Task-1 example.

Query Relevant Document

Confusion about the for-
mula of the area of a
surface of revolution Be-
fore I read the formula
of the area of revolution
which is

∫
2πy ds, where

ds =

√
1 + dy

dx

2
, I thought

of deriving it myself. I
tried to apply the same
logic used for calculat-
ing the volume of revolu-
tion (e.g.,

∫
πy2dx). My

idea is to use many tiny
hollow cylinders (inspired
from the shell method),
each has a surface area of
(2πy)(dx): 2πy is the cir-
cumference of the cylin-
der, and dx is the height
of the cylinder Their prod-
uct is the surface area of
the hollow (e.g., empty
from the inside) cylinder.
With this logic, the area
is
∫
2πydx. Where is my

mistake? Also it’s confus-
ing why for the volume it
was enough to partition the
object using cylinders and
for areas not.

You should review the for-
mula for the surface area
in the case of a surface of
revolution (e.g. here). The
surface area of the surface
obtained by rotation the
graph of y = f(x) about
the x-axis on the interval
[x1, x2], is given by:

2π
∫ x2

x1
y

√
1 + (y′)

2 dx =

2π
∫ x2

x1
f(x)√

1 + (f ′(x))
2 dx Now

if f(x) = cosh(4x)
4 ,

then f ′(x) = sinh(4x)
so rotation on [−1, 1]

gives: π
2

∫ 1

−1
cosh(4x)√

1 + sinh2(4x) dx You
can simplify (a lot). Can
you take it from here? I
also need to know how
would one go about rotat-
ing this about the y-axis,
but have no idea where to
start. The link from above
also covers the formula for
rotation about the y-axis.

nDCG-prime, introduced in (Sakai & Kando, 2008), which
excludes unjudged documents from the ranked list. As a
result, we adopt a dynamic corpus approach, where the cor-
pus for each query consists only of its associated annotated
documents.

ProofWiki. ProofWiki is a mathematical library contain-
ing definitions, axioms, theorems, and their corresponding
proofs. In the ProofWiki Question-Answer Retrieval task,
the queries are theorems from ProofWiki, and the corpus
consists of proofs sourced from the same platform. The
objective is to retrieve the correct proof(s) for a given the-
orem. Since some theorems in ProofWiki have multiple
proofs, the average number of relevant documents per query
is greater than one. We use the theorems from the test set
of the ProofWiki dataset in NaturalProofs (Welleck et al.,
2021) as queries, and include all proofs from the dataset,
not just those associated with the queries, as the retrieval

Table 5. NaturalProofs example.

Query Relevant Document

If H is an open covering of
a closed and bounded sub-
set S of the real line, then
S has an open covering H̃
consisting of finitely many
open sets belonging to H.

no point of Sc is a limit
point of S.

corpus.

Stacks. The Stacks Project is a mathematical library fo-
cused on algebraic stacks and algebraic geometry. Similar
to the ProofWiki Question-Answer Retrieval task, Stacks
Question-Answer Retrieval aims to retrieve the correct proof
for a given theorem in the Stacks Project. We use theo-
rems from the test set of the Stacks dataset in NaturalProofs
(Welleck et al., 2021) as queries, and include all proofs from
the dataset as the retrieval corpus.

3.3. Premise Retrieval

Premise retrieval is the task of retrieving definitions, theo-
rems, and lemmas that are useful for proving a target theo-
rem or advancing the current proof state. This task plays a
crucial role in automated theorem proving, where the ability
to efficiently identify relevant mathematical premises can
greatly influence the success of the proof process (Mikuła
et al., 2024; Yang et al., 2023). We include four datasets for
this task: one natural language premise retrieval dataset, Nat-
uralProofs (Welleck et al., 2021), and three formal premise
retrieval datasets: LeanDojo (Yang et al., 2023) for Lean,
MAPL (Mikuła et al., 2024) for Isabelle, and HolStep
(Kaliszyk et al., 2017) for HOL Light. The details of these
four datasets are discussed in the following paragraphs.

NaturalProofs. NaturalProofs (Welleck et al., 2021) is a
natural language premise retrieval dataset, where the goal is
to retrieve definitions, lemmas, and theorems that are useful
for proving a given query statement. It consists of four
subsets: ProofWiki, Stacks, Real Analysis, and Number
Theory. In the ProofWiki subset, the query is a theorem
from ProofWiki, the corpus includes all definitions, lemmas,
and theorems in the library, and the relevant documents are
those used in the proof of the query theorem. The other
three subsets follow a similar formulation. We evaluate each
subset separately and report the average of their scores as
the final result for the NaturalProofs dataset.

LeanDojo. LeanDojo (Yang et al., 2023) provides a
premise retrieval dataset for Lean, where the goal is to
retrieve useful premises from mathlib4 to advance a given

5
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Table 6. NTCIR-WFB example.

Query Relevant Document

L(λ, α, s) =∑∞
n=0

exp(2πiλn)
(n+α)s .

g(s) =
∑∞

n=1
a(n)
ns

Lean 4 proof state. In this task, the query is a proof state, the
corpus consists of all mathlib4 declarations, and the relevant
documents are the premises used in the next tactic step. We
follow the novel_premises data split from the original
benchmark, in which each proof in the test set uses at least
one premise not seen during training.

MAPL. MAPL (Mikuła et al., 2024) is a premise retrieval
dataset for Isabelle. The task is similar to that of Lean-
Dojo premise retrieval, where the goal is to retrieve useful
premises to advance the current proof state. In MAPL, the
query is an Isabelle proof state and the corpus consists of
premises expressed in Isabelle’s formal language. The origi-
nal dataset comprises a collection of (state, premise) pairs,
which we split into train, dev, and test sets following a strat-
egy similar to the novel_premises split in LeanDojo.
Specifically, each proof state in the test set uses at least one
premise that does not appear in the training set.

HolStep. HolStep (Kaliszyk et al., 2017) is a dataset based
on HOL Light proofs. Each file in the original dataset con-
tains a single conjecture along with the dependencies used
in its proof. We treat the conjectures as queries and aggre-
gate all dependencies across the dataset to form the retrieval
corpus. The task is to retrieve the relevant dependencies for
a given conjecture.

3.4. Formula Retrieval

Formula retrieval focuses on retrieving mathematical expres-
sions that are relevant to a given query formula, optionally
incorporating the formula’s surrounding context. This task
requires a deep understanding of the semantic meaning of
mathematical formulas. We evaluate this task using two
datasets: NTCIR-12 Wikipedia Formula Browsing (WFB)
(Zanibbi et al., 2016) and ARQMath-Task 2 (Zanibbi et al.,
2020; Mansouri et al., 2021; 2022).

NTCIR-WFB. The NTCIR-12 Wikipedia Formula
Browsing task involves retrieving relevant formulas given a
query formula. The corpus consists of mathematical formu-
las extracted from Wikipedia articles. Relevance is graded
on a three-level scale, with detailed criteria provided in
(Zanibbi et al., 2016). Similar to ARQMath-Task-1, we
adopt a dynamic corpus approach, where each query is eval-
uated against only its associated annotated documents.

ARQMath-Task-2. ARQMath-Task-2 (Zanibbi et al.,
2020; Mansouri et al., 2021; 2022) is a formula retrieval
task, where the goal is to retrieve relevant formulas from
MSE posts given a query formula along with its context (i.e.,
the question post in which it appears). We use ARQMath-3-
Task-2 as the test set, which contains 76 queries and an av-
erage of 63.18 annotated relevant documents per query. The
task defines four levels of relevance, with criteria detailed
in (Mansouri et al., 2022). Similar to ARQMath-Task-1,
we adopt a dynamic corpus approach, where each query’s
corpus consists only of its annotated documents.

4. Experiments
In this section, we evaluate the performance of 13 retrieval
models on MIRB. The experimental setup is described in
SubSection 4.1, and the comparison of model performance
is presented in SubSection 4.2.

4.1. Experiment Setup

We evaluate four groups of retrieval models. For the sparse
model, we test BM25. For open-source models with fewer
than 1 billion parameters, we include gte-large-en-v1.5 (Li
et al., 2023), UAE-Large-V1 (Li & Li, 2024), and bge-large-
en-v1.5 (Xiao et al., 2024b). For open-source models with
more than 1 billion parameters, we evaluate gte-Qwen2-
1.5B-instruct (Li et al., 2023), e5-mistral-7b-instruct (Wang
et al., 2024), NV-Embed-v2 (Lee et al., 2025), gte-Qwen2-
7B-instruct (Li et al., 2023), SFR-Embedding-2 R (Meng*
et al., 2024), and GritLM-7B (Muennighoff et al., 2024).
For proprietary models, we evaluate Cohere-embed-english-
v3.04, text-embedding-3-large 5, and voyage-3-large6.

For dense models, we compute the cosine similarity between
the query embedding and the corpus embeddings, and return
a ranked list of documents. Model configurations, including
the maximum context length for queries and documents, as
well as whether instructions are prepended to the queries,
are provided in Table 7. The instructions used are listed
in Table 8. Following prior work (Thakur et al., 2021; SU
et al., 2025), we report nDCG@10 as the main evaluation
metric.

4.2. Results

Main Results The results are shown in Table 9. BM25
underperforms compared to dense retrievers, and there is a
clear performance gap between small models (fewer than
1B parameters) and larger models (around 7B). voyage-3-
large outperforms all other models, achieving an average

4https://huggingface.co/Cohere/Cohere-embed-english-v3.0
5https://platform.openai.com/docs/models/text-embedding-3-

large
6https://huggingface.co/voyageai/voyage-3-large
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Table 7. Model configuration. Max |Q| and Max |D| is the maximum context length we set for each model. The instruction column
denotes whether we prepend instructions to the query.

Size Max |Q| Max |D| Instruction

Sparse model

BM25 - - - No

Open-source models (<1B)

gte-large-en-v1.5 434M 8192 8192 No
UAE-Large-V1 335M 512 512 Yes
bge-large-en-v1.5 335M 512 512 Yes

Open-source models (>1B)

gte-Qwen2-1.5B-instruct 1.78B 4096 4096 Yes
e5-mistral-7b-instruct 7.11B 4096 4096 Yes
NV-Embed-v2 7.85B 32768 32768 Yes
gte-Qwen2-7B-instruct 7.61B 4096 4096 Yes
SFR-Embedding-2 R 7.11B 4096 4096 Yes
GritLM-7B 7.24B 4096 4096 Yes

Proprietary models

Cohere-embed-english-v3.0 - 512 512 No
text-embedding-3-large - 8192 8192 No
voyage-3-large - 32000 32000 Yes

Table 8. Instructions used for different datasets are applied to all models that utilize instructions, except for UAE-Large-V1 and bge-large-
en-v1.5. For these two models, the instruction used is: ”Represent this sentence for searching relevant passages:”

Dataset Instruction

Informalized Mathlib4 Retrieval Given a mathematical query, retrieve relevant theorems.

MSE Dup. Question Retrieval Given a math question, retrieve questions that are duplicates of the given oneMO Dup. Question Retrieval

ARQMath-Task-1 Given a math problem, retrieve its solution.

ProofWiki Given a math theorem, retrieve its proof.Stacks

NaturalProofs Given a math theorem, retrieve useful references, such as theorems, lemmas, and definitions, that are useful for proving the given theorem.

LeanDojo Given a Lean 4 proof state, retrieve the declarations that are useful for proving it.

MAPL Given an Isabelle proof state, retrieve the declarations that are useful for proving it.

HolStep Given a HOL conjecture, retrieve the declarations that are useful for proving it.

NTCIR-WFB Given a math formula, retrieve relevant formulas.

ARQMath-Task-2 Given a math formula and its context, retrieve relevant formulas.

nDCG@10 score of 54.54 and ranking first on 7 out of the
12 datasets. Among the evaluated tasks, models generally
perform better on semantic retrieval tasks such as Seman-
tic Statement Retrieval and Formula Retrieval, while their
performance degrades on reasoning-oriented tasks, espe-
cially Premise Retrieval. Unlike Question-Answer Retrieval,
where the solution or part of it appears in the document,
Premise Retrieval requires identifying relevant mathemati-
cal statements such as lemmas or theorems that are not part
of the answer but are useful for constructing a proof. For
formal premise retrieval datasets like LeanDojo, MAPL, and
HolStep, embedding models often struggle because they are
not extensively pre-trained on large corpora of formal lan-
guage data. As a result, they are unfamiliar with the notation
and syntax of formal languages, and are even less capable
of identifying the underlying logical connections between
the query state and potential premises. Consequently, even

models that perform well on Question-Answer Retrieval
(e.g., voyage-3-large) show poor performance on Premise
Retrieval. To improve performance on this task, models
need to be trained on premise retrieval datasets across dif-
ferent formal languages.

Results of Reranking Applying rerankers to retrieval re-
sults is generally expected to improve performance. To
assess their effectiveness on mathematical retrieval tasks,
we evaluate two rerankers: bge-reranker-v2-m3 (Chen
et al., 2024) and jina-reranker-v2-base-multilingual7. Each
reranker computes a relevance score for the concatenated
query and document pair, and then reranks the top 10 re-
trieved documents accordingly. We apply them to the top
five models in MIRB: voyage-3-large, SFR-Embedding-2 R,

7https://huggingface.co/jinaai/jina-reranker-v2-base-
multilingual
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Table 9. The performance of retrieval models in MIRB. We report nDCG@10 for all datasets. Avg. denotes the average score across
datasets. The best score for each dataset is highlighted in bold.

Semantic Statement Retrieval Question-Answer Retrieval Premise Retrieval Formula Retrieval Avg.
Informalized Mathlib4 Retrieval MSE Dup. Question Retrieval MO Dup. Question Retrieval ARQMath-Task-1 ProofWiki Stacks NaturalProofs LeanDojo MAPL HolStep NTCIR-WFB ARQMath-Task-2

Sparse model

BM25 31.49 22.85 44.01 24.83 57.35 35.49 24.14 6.91 15.27 25.88 66.03 32.46 32.23

Open-source models (<1B)

gte-large-en-v1.5 38.05 46.76 68.04 37.78 66.49 32.26 28.42 3.73 8.78 29.15 68.83 59.87 40.68
UAE-Large-V1 40.43 41.11 67.44 31.66 54.81 28.17 27.85 4.64 5.59 30.17 71.92 55.50 38.27
bge-large-en-v1.5 41.99 41.70 67.40 31.02 56.36 30.25 27.53 5.45 6.84 30.51 73.76 55.22 39.00

Open-source models (>1B)

gte-Qwen2-1.5B-instruct 55.17 43.13 67.73 41.97 77.83 52.56 27.46 8.40 18.64 28.05 72.96 53.56 45.62
e5-mistral-7b-instruct 57.33 51.14 71.31 46.46 77.29 39.85 32.14 10.80 15.41 30.27 78.48 57.93 47.37
NV-Embed-v2 59.48 55.00 78.47 47.34 83.08 58.56 37.21 12.27 16.58 32.77 73.22 70.00 52.00
gte-Qwen2-7B-instruct 40.38 38.40 61.77 44.74 77.02 49.35 30.08 11.53 17.46 28.16 77.52 54.68 44.26
SFR-Embedding-2 R 60.98 58.52 81.32 51.15 85.07 54.94 34.67 11.83 17.07 30.76 75.69 65.48 52.29
GritLM-7B 54.09 53.05 78.60 46.35 81.59 55.89 32.92 10.68 19.53 30.80 74.22 66.56 50.36

Proprietary models

Cohere-embed-english-v3.0 42.00 42.96 61.00 38.05 66.00 32.33 28.99 6.96 13.95 29.72 73.27 54.51 40.81
text-embedding-3-large 49.38 52.35 76.74 45.79 81.95 56.14 31.33 11.34 19.94 31.02 73.06 70.18 49.93
voyage-3-large 57.36 60.33 82.87 52.45 91.69 62.62 32.74 13.02 17.77 32.68 76.91 74.00 54.54

NV-Embed-v2, GritLM-7B and text-embedding-3-large, to
assess whether reranking improves performance. The re-
sults, shown in Table 10, indicate that reranking generally
leads to a decline in performance. In a few cases, slight
improvements are observed: for example, jina-reranker-
v2-base-multilingual raises the score of voyage-3-large
on ARQMath-Task-1 from 52.45 to 53.03, and improves
SFR-Embedding-2 R on NTCIR-WFB from 75.69 to 76.13.
These results suggest that rerankers trained on general text
retrieval tasks may not transfer effectively to mathematical
retrieval.

5. Conclusion
In this paper, we introduce MIRB, a comprehensive bench-
mark designed to evaluate the mathematical information
retrieval capabilities of retrieval models. MIRB comprises
four tasks: Semantic Statement Retrieval, Question-Answer
Retrieval, Premise Retrieval, and Formula Retrieval. These
tasks span both semantic-based and reasoning-based re-
trieval settings. We evaluate 13 retrieval models and observe
that while their performance on semantic-based retrieval is
moderate, they perform poorly on reasoning-based tasks.
Additionally, applying cross-encoder rerankers does not
lead to performance improvements. We hope that MIRB
will facilitate future research in mathematical information
retrieval and support the development of more effective
retrieval models tailored to mathematics.

Impact Statement
We introduce a unified benchmark for mathematical infor-
mation retrieval, aiming to encourage the development of
more effective retrieval models. We hope this benchmark
helps advance search engines and automated theorem prov-
ing systems by driving progress in math-specific retrieval
capabilities.
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A. Dataset Examples
In this section, we present examples of datasets from MIRB that are not included in the main text.

Table 11. MO Dup. Question Retrieval example.

Query Relevant Document

On finite subsets of set of integers, which lies in its
sum-set , whose sum of elements equals 0 Let n > 1
be an integer and S ⊆ Z be such that |S| = n and
S ⊆ S+S := {a+ b : a, b ∈ S} ; then does there exist
T ⊆ S with 1 ≤ |T | ≤ n/2 such that

∑
a∈T = 0 ?

Existence of a zero-sum subset Some time ago I heard
this question and tried playing around with it. I’ve
never succeeded to making actual progress. Here
it goes: Given a finite (nonempty) set of real num-
bers, S = {a1, a2, . . . , an}, with the property that for
each i there exist j, k (not necessarily distinct) so that
ai = aj + ak (i.e. every element in S can be written
as a sum of two elements in S, note that this condition
is trivially satisfied if 0 ∈ S as then every x ∈ S can
be written as x+ 0). Must there exist {i1, i2, . . . , im}
(distinct) so that ai1 + ai2 + · · · + aim = 0? ETA: A
possible reformulation can be made in terms of graphs.
We can take the vertex set {1, . . . , n} and for each equa-
tion ai = aj + ak in S add an edge [ij] and its ”dual”
[ik]. The idea is to find a cycle in this graph, whose dual
is a matching.

Table 12. ProofWiki example.

Query Relevant Document

Fortissimo Space is not Weakly Countably Compact Let
$T = \struct S, \tau p$ be a Fortissimo space. Then
$T$ is not weakly countably compact.

It suffices to show that T has an infinite subset without
limit points. Consider the set S \ { p }. Let x ∈ S. We
have: {{begin-eqn}} {{eqn — l = \paren {S \setminus
\paren {S \setminus \set p} } \cup \set x — r = \set p
\cup \set x — c = }} {{eqn — r = \set {p, x} — c = }}
{{end-eqn}} By definition, x is a limit point of S \{ p }
iff { p, x } is not a neighborhood of x. By definition
of Fortissimo space, { p, x } is open in T . Hence it is
a open neighborhood of x. Therefore x is not a limit
point of S \ { p }. Since x is arbitrary, S \ { p } has no
limit points. Hence T is not weakly countably compact.
{{qed}}

B. Computing Resources
We conduct our experiments on eight NVIDIA A800 (80G) GPUs. For the sparse model BM25, evaluation on our benchmark
takes approximately one hour. For small models with fewer than one billion parameters, evaluation requires around six GPU
hours. The 1.5B model takes about 36 GPU hours, while the 7B models require about 64 GPU hours. Each proprietary
model is evaluated in under 25 hours.
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Table 13. Stacks example.

Query Relevant Document

spaces-morphisms-lemma-birational Let S be a scheme.
Let X and Y be algebraic space over S with |X| and
|Y | irreducible. Then X and Y are birational if and
only if there are nonempty open subspaces U ⊂ X and
V ⊂ Y which are isomorphic as algebraic spaces over
S.

Assume X and Y are birational. Let f : U → Y and
g : V → X define inverse dominant rational maps from
X to Y and from Y to X . After shrinking U we may
assume f : U → Y factors through V . As g ◦ f is
the identity as a dominant rational map, we see that the
composition U → V → X is the identity on a dense
open of U . Thus after replacing U by a smaller open
we may assume that U → V → X is the inclusion of
U into X . By symmetry we find there exists an open
subspace V ′ ⊂ V such that g|V ′ : V ′ → X factors
through U ⊂ X and such that V ′ → U → Y is the
identity. The inverse image of |V ′| by |U | → |V | is
an open of |U | and hence equal to |U ′| for some open
subspace U ′ ⊂ U , see Properties of Spaces, Lemma
\ref{spaces-properties-lemma-open-subspaces}. Then
U ′ ⊂ U → V factors as U ′ → V ′. Similarly V ′ → U
factors as V ′ → U ′. The reader finds that U ′ → V ′ and
V ′ → U ′ are mutually inverse morphisms of algebraic
spaces over S and the proof is complete.

Table 14. LeanDojo example.

Query Relevant Document

R : Type u
M : Type v
inst†² : CommRing R
inst†¹ : AddCommGroup M
inst†: Module R M
B : BilinForm R M
f g : Module.End R M
hf : IsSkewAdjoint B f
hg : IsSkewAdjoint B g
⊢ IsAdjointPair B B (f * g) (g * f)

theorem neg mul neg (a b : α) : -a * -b = a * b

Table 15. MAPL example.

Query Relevant Document

proof (prove)
using this:
length ps = length vs
left nesting f \\¡noteq¿ left nesting g
is const (fst (strip comb f))
goal (1 subgoal):
1. match (list comb f ps) (list comb g vs)
= None

list induct2: fixes xs :: ”’c list” and ys :: ”’d list” and P ::
”’c list ¡Rightarrow¿ ’d list ¡Rightarrow¿ bool” assumes
”length xs = length ys” and ”P [] []” and ” ¡And¿x xs
y ys. ¡lbrakk¿length xs = length ys; P xs ys ¡rbrakk¿
¡Longrightarrow¿ P (x # xs) (y # ys)” shows ”P xs ys”
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Table 16. HolStep example.

Query Relevant Document

ABSOLUTELY INTEGRABLE CONVOLU
TION LINF L1 —- (!bop. (!f. (!g. (!x. (((bilin-
ear bop) /\ (((measurable on f) UNIV) /\ ((bounded
((IMAGE f) UNIV)) /\ ((absolutely integrable on g)
UNIV)))) ==¿ ((absolutely integrable on (\y. ((bop (f
((vector sub x) y))) (g y)))) UNIV))))))

BILINEAR SWAP —- (!op. ((bilinear (\x. (\y. ((op y)
x)))) = (bilinear op)))

Table 17. ARQMath-Task-2 example.

Query Relevant Document

Formula:
∫

1
(x2+1)n dx Context:

∫
1

(x2+1)n dx Let be
n ∈ Z+. Compute the following integral:∫

1

(x2 + 1)
n dx

I obtained that for
n = 1

the value of the integral is

tan−1 x+ C

and for
n = 2

x

(
1

2 (x2 + 1)
+

tan −1

2x

)
+ C

How to do the rest of the cases?

In =
∫

1
(x2−1)n dx
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