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Abstract

Multimodal Entity Linking (MEL) is an es-
sential technology in numerous applications.
Existing methods depend on designing com-
plex multimodal interaction modules and re-
quire extensive domain-specific training data.
As the traditional pretrain-finetune paradigm
evolves towards prompt engineering with large
language models (LLMs), investigating prompt
engineering-based MEL approaches becomes
increasingly vital. However, using LLMs
with straightforward instructions presents chal-
lenges in MEL tasks. These include context-
unfaithful fine-grained entity selection and the
overlooking of key details due to information
overload. To this end, this paper introduces a
novel two-level reflection framework for MEL
tasks, named SMCR. In this framework, an
LLM is used for entity selection. To address
context-unfaithfulness, we implement seman-
tic consistency reflection based on LLM’s self-
feedback. To simplify the complexity of im-
age utilization and alleviate information over-
load, we introduce modality consistency re-
flection. This approach iteratively integrates
visual clues through external feedback. Ex-
perimental results on two established public
MEL datasets show that our solution achieves
state-of-the-art performance. Further analy-
sis confirms the effectiveness of our proposed
modules. Our code is available at https://
anonymous. 4open.science/r/SMCR-1215.

1 Introduction

Entity linking, the task of mapping ambiguous men-
tions in text to standard entities in a given knowl-
edge base (KB, e.g., Wikipedia) (Shen et al., 2014).
It serves as a pivotal technology in various applica-
tions including knowledge graph population (Lin
et al., 2020), question answering (Shah et al., 2019;
Longpre et al., 2021), and recommendation sys-
tems (Deldjoo et al., 2020). Given the prevalence
of multimodal contexts (images and texts) in real-
world scenarios, recent studies (Wang et al., 2022b;
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Figure 1: Typical examples of the MEL Task. (a) Im-
ages play a crucial role in disambiguation; (b) A bad
case demonstrating fine-grained hallucinations in large
language models.

Yao et al., 2023) suggest incorporating images to
enhance entity disambiguation, leading to the emer-
gence of Multimodal Entity Linking (MEL).

Existing MEL methods are all based on the
pretrain-finetune paradigm, often requiring com-
plex multimodal interaction modules for feature
extraction (Dongjie and Huang, 2022; Luo et al.,
2023) or additional domain-specific pretraining
data (Wang et al., 2023). This poses significant bar-
riers in practical applications. With the emergence
of Large Language Models (LLMs, e.g., ChatGPT),
an increasing body of research (Zhao et al., 2023;
Chen et al., 2023) demonstrates their exceptional
performance in knowledge-intensive tasks. Thus,
employing LL.Ms with several demonstrations as
alternatives to traditional methods has emerged as
a practical solution for various tasks. Exploring
prompt engineering-based MEL methods holds crit-
ical importance.

However, employing existing LLMs for MEL
tasks presents several challenges. Firstly, these
models often produce hallucinations that are not
contextually grounded. For instance, as illustrated
in Figure 1 (b), the mention “Maglev trains” should
link to the entity “Maglev”. However, between
“Maglev” and “Shanghai maglev train”, LLMs tend
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to select the more specific entity “Shanghai maglev
train”, despite the absence of supporting context.
Secondly, there’s the issue of information overload.
For the mention images, we employ a series of
image-to-text models to generate multi-faceted tex-
tual descriptions. Feeding all these descriptions
to the LLM simultaneously imposes a significant
information burden (Xi et al., 2023), causing the
LLMs to overlook critical information and make
incorrect inferences.

To address the above problems, this paper
introduces an innovative approach known as
LLM-based Semantic and Modality Consistency
Reflections (denoted as SMCR) for MEL task. Ini-
tially, we adopt an LLM (e.g., GPT-3.5), with care-
fully crafted prompts to select a candidate entity
from the KB for a given mention. Subsequently,
semantic consistency reflection is designed to eval-
uate the semantic granularity between the entity
and mention, thereby determining the necessity
of re-selection. Finally, the approach introduces
a modality consistency reflection, involving inter-
modal consistency verification and visual iterative
feedback, to decide if further selection based on
visual clues is required. Our method effectively
addresses the aforementioned challenges through
three key characteristics. 1) Semantic Consistency
Reflection. Direct selection without verification
may lead to results unfaithful to the context. We
emphasize the LLM’s focus on mention context
for choosing entities through semantic consistency
reflection. 2) Inter-Modal Consistency Verification.
We propose an innovative utilization of images.
Initially, the LLM selects candidate entities based
on textual modality, then uses the visual modal-
ity for verification. This approach, as opposed to
combining text and image modalities for selection,
simplifies the task and reduces the noise inputted
to the LLM, allowing it to concentrate solely on
the textual context, while leaving complex image
information to specialized models (e.g., CLIP (Rad-
ford et al., 2021)). 3) Visual Iterative Feedback. In
scenarios necessitating image clues, we employ
four rounds of iteration invoking various image-to-
text models, fully exploiting images from diverse
perspectives and avoiding information overload.

Contributions. The contributions of this paper
are summarized as follows:

* We propose a novel approach for image uti-
lization. Using visual modality to verify tex-
tual results and iteratively integrating image

clues when text clues are partially absent. This
method simplifies the complexity of fusing
image and text information.

* We present the SMCR framework, designed
to address the issues of context-unfaithfulness
and information overload encountered in
LLMs when applied to MEL tasks. To our
knowledge, this is the first work to propose
prompting LLMs for MEL tasks.

* Experimental results show that our model
achieves state-of-the-art performance, attain-
ing a top-1 accuracy of 90.58% (+ 2.6%) on
WikiMEL and 80.57% (+ 1.5%) on WikiDi-
verse. Notably, our method requires no train-
ing and is easily transferable.

2 Related Works

Multimodal Entity Linking. The existing works
can be divided into two categories: 1) Similarity-
ranking based entity linking (Gan et al., 2021;
Wang et al., 2022a; Yao et al., 2023) and 2) Gen-
erative entity linking (De Cao et al., 2020; Wang
et al., 2023). The first category involves a two-step
process. Initially conducting candidate retrieval
(Yamada et al., 2016; Ganea and Hofmann, 2017)
to obtain a set of top-k candidate entities closest to
the mention, followed by entity re-ranking. These
methods focus on learning the multimodal features
of mentions and entities. For instance, Wang et al.,
2022a employ co-attention at both token and phrase
levels to construct visual-guided textual features
and textual-guided visual features, ultimately ob-
taining a joint multimodal representation through
gated fusion. Typically, the similarity between en-
tities and mentions is simply obtained through the
cosine similarity (Wang et al., 2022b). Consider-
ing the topical coherence of mentions appearing
in the same context, some studies (Le and Titov,
2018; Yang et al., 2023a) propose joint disambigua-
tion for multiple mentions. However, this type of
method requires designing complex multimodal in-
teraction modules. Meanwhile, the context of a
mention may not precisely describe the mention
itself, posing challenges in learning its multimodal
features. The second category centers on training
generative language models to encode the multi-
modal context of mentions. Target entity names
are directly decoded using constrained generation
(De Cao et al., 2020) techniques. This demands
profound background knowledge, necessitating ex-



tensive domain-specific training data. For example,
Wang et al., 2023, collected additional multimodal
data from BLINK and Wikipedia KB for pretrain-

ing.

LLM-based Reflection. Large Language Mod-
els (LLMs) have been extensively employed in var-
ious NLP tasks. However, their performance is
hindered by issues such as hallucinations and un-
faithful reasoning. A proposed solution to these
challenges involves incorporating reflection steps
(Pan et al., 2023). The sources of feedback for
reflection are categorized into two types: 1) Self-
provided feedback by the LLM (Shinn et al., 2023)
and 2) Feedback injected through external means
(Peng et al., 2023). The first category leverages
the LLM itself for both evaluation and refinement,
such as SELFCHECK (Miao et al., 2023) and
SELF-REFINE (Madaan et al., 2023). It is typ-
ically iterative, continuing until the output meets
certain criteria or is interrupted in cases of model
stagnation. The second category utilizes various
external tools to assess and provide feedback on
LLM-generated content, such as separately trained
models (Akyiirek et al., 2023), additional domain-
specific knowledge (Peng et al., 2023), and other
tools (Welleck et al., 2022). Feedback through ex-
ternal means offers greater flexibility, introducing
information not inherent in LLMs and identifying
errors that the LLMs themselves may not detect.
In our framework, semantic consistency reflection
falls under the first category. Modality consistency
reflection, where external feedback mechanisms in-
fuse visual information into LL.Ms, is an example
of the second category.

3 Overview

In this section, we first formalize the task of multi-
modal entity linking and then outline our proposed
framework for the task.

3.1 Task Formulation

Multimodal entity linking is the task of align-
ing mentions within multimodal contexts to their
respective entities in a KB. Formally, given
{(m, T, I,) }, where m denotes a mention, T,
is the textual context surrounding m, and I,,, is
the image context for m, MEL aims to predict a
standard entity for each mention: (m,e) (e € &),
where £ is the entity set in the KB.

3.2 Framework

As depicted in Figure 2, our framework mainly
has the following four steps: 1) Target Entity Se-
lection. 2) Semantic Consistency Reflection (SCR).
3) Inter-Modal Consistency Verification. 4) Visual
Iterative Feedback. Steps 3) and 4) together form
the Modality Consistency Reflection (MCR).

* Target Entity Selection. With refined one-
shot CoT, we employ a large language model
(e.g., GPT-3.5-turbo) to select the most proba-
ble candidate entity from KB for the mention.

* Semantic Consistency Reflection. For the
entity selected in step 1, we continue utiliz-
ing the LLM, in conjunction with constrastive
CoT, to verify its semantic consistency with
the mention in its original context, and deter-
mining whether a reselection of the candidate
entity is warranted.

* Inter-Modal Consistency Verification. For
the selected entity that passes step 2, we fur-
ther check its consistency with the mention
image. If consistent, it is outputted as the final
result.

* Visual Iterative Feedback. If the selected en-
tity does not align with the mention image, we
extract information from the image and feed
it back to step 1. Then, combining this visual
feedback, we reselect the candidate entity and
initiate a new iteration cycle. In each itera-
tion, we gradually leverage different facets of
the image information to prevent information
overload.

4 Methodology

In this section, we provide the details of the four
key steps involved in our SMCR framework.

4.1 Target Entity Selection

Given a mention and mention context, the purpose
of this step is to select a candidate entity for the
mention from the KB. In this paper, we employ an
LLM (e.g., GPT-3.5-turbo) with ICL to achieve this
purpose. Specifically, we first follow existing work
(Wang et al., 2022b,a) to retrieve Top-K candidate
entities along with their descriptions from the KB
(e.g., Wikipedia). Based on the mention, mention
context, and candidate entities with descriptions,
we construct the input for LLM. This input com-
prises four components: instructions, ICL, the data
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Figure 2: Our framework consists of four key steps. (1) Target Entity Selection. (2) Semantic Consistency Reflection
(SCR). (3) Inter-Modal Consistency Verification. and (4) Visual Iterative Feedback. Steps (3) and (4) together form
the Modality Consistency Reflection (MCR). The left column shows the details of each step.

dictionary, and the output format specification. In
the instruction, we provide the task role and the
definition of the multimodal entity linking task. In
the ICL, we employ a one-shot CoT (Wei et al.,
2022) as an example to demonstrate the steps of
reasoning, where the CoT is initially generated by
the LLM and then manually refined. CoT consists
of three steps: 1) Analyze the mention and context,
2) Compare the mention with each candidate entity,
and 3) Select the most relevant candidate entities.
The sample data is presented in a dictionary format,
with keys including “mention”, “mention context”,
and “candidate entities”. Finally, we specify the
output format, i.e., “(IANSWERI): (your answer)”
for the LLM, where “(your answer)” is selected
from the candidate entities. Upon inputting this
input into the LLM, we obtain the candidate entity
from its response.

The purely textual input described above is only
used in the initial execution of this step. In subse-
quent iterations, image information is integrated to
assist the LLM in selecting candidate entities. The
integration of text and image inputs differs from
text-only inputs in two aspects: Firstly, in the CoT,
an additional step utilizing visual information is
inserted following the first step, titled “Analyze the
mention image information and identify helpful de-
tails”. Secondly, in the data dictionary, we add a
new key, i.e., “mention imginfo”.

4.2 Semantic Consistency Reflection

This step aims to determine whether the candidate
entity identified in the previous step aligns with the
mention at the textual semantic level. If there is
consistency, we proceed to the next step; otherwise,
we return to the first step to re-select a candidate
entity. In this step, we maintain the semantic con-
sistency reflection within the same LLM dialogue
window used in the previous step. The continuity
of the dialogue window provides contextual infor-
mation beneficial for this task, enhancing model
performance.

More specifically, we first replace the mention
in its original context with the selected entity to
obtain a Replaced Mention Context. Then, given
both Mention Context and Replaced Mention Con-
text, we construct the input for LLM, maintaining
the same components as in 4.1. It is important
to specifically note that in the ICL, we provide
constrastive CoT for both consistency and incon-
sistency assessments. Finally, we feed this input
into the LLM to analyze whether the semantics re-
main consistent before and after the replacement.
When the assessment is “YES” (signifying seman-
tics consistency), we move forward to the next step.
If not, the reasons for inconsistency are added to
the historical dialogue record, and we repeat the tar-
get entity selection process. This iterative approach



continues until the selected entity is verified as con-
sistent, or it reaches a predefined loop limit. In the
latter scenario, the last selected entity is chosen as
the output.

4.3 Inter-Modal Consistency Verification

For the selected entity that passes SCR, we fur-
ther assess its alignment with the mention image
through Inter-Modal Consistency Verification. If it
passes the verification, this entity is then output as
the final result; otherwise, we proceed to the next
step, incorporating image information for further
entity selection.

Given the description D, of the selected candi-
date entity e and the mention image I,,, we first
encoder them into vectors using the text and image
encoders of the CLIP model (Radford et al., 2021).
Then, we employ a dot product to compute the
cosine similarity between the above two vectors.
Finally, we establish a predefined threshold to de-
termine whether the selected entity aligns with the
mention image. The above process is formulated
as:

score(De, I,) = Encr(De) - Enci(ILy), (1)

1 score(De, I,) > 0
assessment = )
0 score(D., In,) <6
Here, Encr and Ency represent the text and im-
age encoders, respectively, and 6 is the pre-defined
threshold. If the assessment is “1”(YES), the se-
lected entity is output as the final result. Otherwise,
we proceed to the next step.

4.4 Visual Iterative Feedback

In response to a “NO” output from the previous
step, we incorporate visual information to refine
our selection of the entity. This paper utilizes vari-
ous image-to-text models to generate multi-faceted
descriptions for a given image, which include OCR
text, image captions, dense captions, and image
tags. To prevent information overload, we itera-
tively apply these different types of descriptions.
Specifically, upon inputting mention image, an
image-to-text model is initially invoked to gener-
ate an image description (e.g., “a group of men in
wheelchairs...”). This description is then integrated
as additional visual context into step 1, as detailed
in Section 4.1. Subsequently, we execute step 1
again to re-select an entity, thereby initiating a new
iteration cycle. During this cycle, we continue to
use Inter-Modal Consistency Verification to assess

Table 1: The statistics of datasets.

Dataset Train Valid Test
WikiMEL 18,092 2,585 5,169
WikiDiverse 13,205 1,552 1,570

if the selected entity aligns with mention image,
deciding whether to utilize other facets of image
clues. We employ four distinct models — “OCR”,
“Image Captioning”, “Dense Captioning”, and “Im-
age Tagging” — in a specific sequence determined
on the WikiDiverse validation set, iterating up to
four rounds. If the entity still fails the Inter-Modal
Consistency Verification after all iterations, we re-

vert to the entity initially selected.

S Experiments

In this section, we conduct comprehensive exper-
iments to evaluate our proposed method on two
widely-recognized public MEL datasets. Further-
more, extensive analyses are presented to offer
deeper understanding of the framework.

5.1 Experimental Setup

Datasets. In this study, we employ two datasets,
namely WikiMEL(Wang et al., 2022a) and WikiDi-
verse(Wang et al., 2022b) for evaluation. WikiMEL
collects data from Wikipedia’s entity pages, with
its primary entity type being Person. It uses Wiki-
data as its target KB. We followed the original pro-
vided method (Wang et al., 2022a) for candidate
retrieval. Wikidiverse is built by Wikinews, cov-
ering 7 types of entities(i.e., Person, Organization,
Location, Country, Event, Works, and Misc). It uti-
lizes Wikipedia as its target KB. Following existing
work (Wang et al., 2023), we conduct experiments
using the top-10 candidate entities provided by the
dataset, and assign the label “nil” when the men-
tion’s target entity is not included in the candidate
set. The statistics of two datasets are concluded in
Table 1. We use the same test set as existing works
for evaluation.

Baseline. We compare our proposed method with
various state-of-the-art (SOTA) methods, which
are divided into two groups: (1) Text-only meth-
ods, which include BERT (Kenton and Toutanova,
2019), BLINK (Wu et al., 2020), and GPT-3.5-
Turbo!. (2) Visual-text fusion methods, which
include CLIP (Radford et al., 2021), DZMNED

1https: //platform.openai.com/docs/models/
gpt-3-5
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Table 2: Main results on WikiMEL and WikiDiverse.
The values in “()” indicate the standard deviation of the
results.

Table 3: The Ablation Study of SMCR on WikiMEL and
WikiDiverse. 4.2, 4.3, 4.4 correspond to the sections in
this paper.

Top-1 Accuracy (%)

Model WikiMEL _WikiDiverse
Text
BERT 31.7 69.6
BLINK 30.8 70.9
GPT-3.5-Turbo 77.1 63.9
GPT-3.5-Turbo (CoT) 79.9 77.1
Text+Vision
CLIP 79.8 50.5
DZMNED 78.8 56.9
GHMEFC 43.6 46.0
LXMERT 20.6 78.6
DRIN 65.5 51.1
MMEL 71.5 -
GDMM-base 68.0 79.1
GDMM-large 72.4 78.7
MIMIC 88.0 63.5
SMCR 90.58 (0.23) 80.57 (0.69)

(Moon et al., 2018), LXMERT (Wang et al., 2022b),
GHMFC (Wang et al., 2022a), GDMM(base/large)
(Wang et al., 2023), MMEL (Yang et al., 2023a),
MIMIC (Luo et al., 2023) and DRIN (Xing et al.,
2023).

Metrics. Following existing works (Wang et al.,
2022a; Yang et al., 2023a), our evaluation employs
the Top-1 accuracy metric.

Implementations. Within the applied frame-
work, we utilize the OpenAl API, specifying the
model as “gpt-3.5-turbo-16k-0613”, with the tem-
perature set to 0 and other parameters remain-
ing at their default settings. We employ the
same One-shot CoT and Contrastive CoT across
all samples. To ensure reliability in our results,
we conduct three repeated experiments and cal-
culate the standard deviation. For the candidate
retrieval in section 4.1, we set K = 10. The
CLIP model used in Section 4.3 is referred to as
CLIP_ViT_bigG_14_laion2B_39B_b160k. We set
the 0 to 29 based on the WikiDiverse validation set
and apply it across all datasets. In Section 4.4, for
the applied image-to-text models, we reference ex-
isting work (Yang et al., 2023b), employing the lat-
est models from Azure Cognitive Services APIs?,
including Image Captioning, Dense Captioning,
Image Tagging, and OCR models.

2https://portal.azure.com/#viNew/Microsoft_Azure_Project—
Oxford/CognitiveServicesHub//ComputerVision

Model Top-1 Accuracy (%)

WikiMEL  WikiDiverse
SMCR 90.58 (0.23) 80.57 (0.69)
w/o CoT 88.20 66.18
w/o 4.2 87.48 79.30
w/o 4.3 86.65 78.22
w/o 4.4 86.26 77.96
w/04.2,4.3 81.51 77.32
wlo 4.2, 4.4 79.96 77.07
wlo4.3,4.4 86.26 77.96
w/04.2,4.3,4.4 79.94 77.07

5.2 Main Results

In this section, we present a comparative analysis
of our proposed method against all baseline ap-
proaches on WIKIMEL and WikiDiverse datasets.
The results are detailed in Table 2.

Based on the experimental results, we can draw
the following observations and conclusions. 1)
Without any component training, our method out-
performs the current state-of-the-art (SOTA) ap-
proaches on two datasets, demonstrating the effec-
tiveness of our method. Specifically, on WikiMEL
and WikiDiverse, we achieve the top-1 accuracy
of 90.58% and 80.57%, respectively, marking im-
provements of 2.6% and 1.5% over previous SOTA
methods. 2) The proposed framework significantly
enhances LLM performance in the MEL task, par-
ticularly evident in SMCR’s significant improve-
ments (13.5% and 16.7%) over the direct applica-
tion of GPT-3.5-Turbo. 3) Compared to the WikiDi-
verse (80.57%), our method performs better on
WikiMEL (90.58%). This is due to the greater
prevalence of “nil” target labels in WikiDiverse,
making it a more challenging task to infer the “nil”
than identifying the correct entity. 4) The “GPT-3.5-
Turbo + CoT” method, using only textual modal-
ity, already achieves high accuracy scores on both
datasets. This reaffirms our perspective that in the
MEL tasks, information provided by the textual
modality is predominant. Mention images typi-
cally strengthen textual information, yet they serve
to supplement missing clues in rare instances.

5.3 Ablation Experiment

This section presents comprehensive ablation stud-
ies to validate the effectiveness of each component
in our proposed framework. Firstly, we performed
ablations on the key steps of the framework, with



Table 4: The Ablation Study on the image-to-text mod-
els presented in Section 4.4. (ocr: OCR text, cap: Cap-

tion, den: Dense Captions, tag: Tags)

Top-1 Accuracy (%)

Model WikiMEL  WikiDiverse
SMCR 90.58 (0.23) 80.57 (0.69)
w/o ocr 90.25 79.94
w/o cap 90.23 80.38
w/o den 90.52 80.45
w/o tag 90.38 80.51
w/o ocr, cap 89.77 79.75
w/o ocr, den 90.08 80.06
w/o ocr, tag 89.92 80.19
w/o cap, den 89.77 80.38
w/o cap, tag 89.84 80.38
w/o den, tag 90.25 80.45
w/o ocr, cap, den 88.90 79.87
w/o oct, cap, tag 89.07 79.75
w/o ocr, den, tag 89.50 80.06
w/o cap, den, tag 88.93 79.87
w/o all 86.26 77.96

the results presented in Table 3. These results show
that removing any step led to a decline in model
performance, thereby demonstrating the effective-
ness of all steps in our framework. Subsequently,
ablations were conducted on the four image-to-text
models in Step 4.4, summarized in Table 4. All four
models utilized in this step contributed positively
to the iterative process.

5.4 Detailed Analysis

In this section, we analyze the important compo-
nents within our framework in detail with in-depth
case study.

Improvements analysis for SCR. To investigate
the error types effectively mitigated by SCR, we
analyzed improved samples from the WikiDiverse
test set after SCR integration, as shown in Fig-
ure 3, categorizing them into four error types: 1)
Fine-Grained Hallucination. In the absence of sup-
porting contextual information, the LLM selects an
erroneous entity with finer granularity. 2) Blurred
Span. The LLM fails to focus distinctly on the men-
tion’s span, resulting in either span expansion or
misplaced attention. 3) Part of Speech Confusion.
The selected entity misaligns with the mention’s
grammatical role in the text. 4) Others. Other sce-
narios of noted improvement. We provide cases for
the first three types of errors in Figure 5.

What visual clues does our framework show ef-
fective improvement ? We analyzed 200 random
samples from the WikiDiverse test set. Following

20.83% = Fine-Grained Hallucination

Blurred Span

Part of Speech Confusion
29.17%

12.50% Others

Figure 3: Improvements Decomposition for SCR.

Wang et al., 2022b; Li et al., 2023, we categorize
the visual clues into three types: 1) Object: images
showing the entity directly, 2) Scene & Property:
images depicting associated environments or prop-
erties, and 3) Others: additional significant clues.
Examples of the first two types are in Figure 4. As
shown in Table 5, we observe: 1) Compared to the
one-time infusion of all image information (w/o
VIF), the iterative use of images shows a primary
improvement in Scene & Property. This might
be due to the iterative method highlighting finer-
grained clues. 2) In comparison to scenarios with-
out visual (w/o Visual), SMCR perform better on
Object clues. This underscores our method’s effi-
cacy in employing images.

Visual clues Object

Scene & Property

Image

S

E‘

A Sh:aldow is prepared
for flight over Iraq.

Shadow

Bathum coming to a stop
following his downhill ride.

Mention Context

Pred (T) Downhill mountain biking

Pred (T+V) =GT AAI RQ-7 Shadow Downhill (ski competition)

Figure 4: Examples of the two types of visual clues.

Table 5: Model performance under different visual
clues. (w/o VIF: utilizing images Without Visual It-
erative Feedback, w/o Visual: Without using images, a:
Object, b: Scene Property, c: Others)

Top-1 Accuracy (%)

Model a4  Db(109) c(37) total (200)
SMCR 87.04 8257 7568  82.50
wlo VIF 8519 7615 7838  79.00
wlo Visual 7963 7890 7568  78.50

Efficacy of visual iterative feedback in mitigat-
ing information overload. To thoroughly inves-
tigate the effects of iterative use of images, we
conduct experiments on the WikiDiverse validation
set. The results are shown in Figure 6. “Round 0-4”



Error Type Fine-Grained Hallucination

Blurred Span Part of Speech Confusion

Image

Pujols hit a home run in
Sunday's baseball game
between the Anaheim

Maglev trains can
accelerate to high speeds
as they run suspended in

Mention Context

ﬂg

An Iragi competitor and
an unnamed member of
the United States

Egyptian army soldiers  Bart writing "HDTV is
monitor protests over the worth every cent" in the

the air Angels and the Toronto weekend chalkboard gag. delegation chat.
Blue Jays.
Pred (w/o SCR)  Shanghai maglev train 1997 Ar;a:;;r: Angels Egyptian Army Bart Simpson Iragis
Pred (wSCR)=GT Maglev Los Angeles Angels Egypt The Simpsons opening Iraq

sequence

Figure 5: Three types of error cases that can be effectively addressed through semantic consistency reflection.
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Figure 6: Comparing iterative versus single-use image
information processing.

denote the iterative process in our framework and
the “All Info” denote a single infusion of images.
We calculate the overall Top-1 accuracy after each
iteration. From the results, we can see that a one-
time infusion of images offers a minimal increase
(1.09%), whereas iterative methods yield consis-
tent incremental improvements, demonstrating the
efficacy of iterative feedback.

o—Total Topl-acc

82.6%
orap  EL55% 81.71% 81';8%
81.4% - °
80.2%
79.15%
79.0% c
0 1 2 3 4

Iterations of SCR

Figure 7: Analysis of convergence iterations for SCR.

Analysis of convergence iterations for SCR.
Figure 7 illustrates the convergence iterations of
semantic consistency reflection on the WikiDiverse
validation set. From the results, two observations
can be made: 1) The overall topl-accuracy tends
to converge by the third iteration. Therefore, we
set the iteration limit of SCR to 3 rounds. 2) The

most significant improvement is observed in the
first round. This indicates that under the guidance
of our framework, the LLM begins to pay signif-
icant attention to the mention context for entity
selection after making an initial error.

o—Total Topl-acc 81.71% 81.71%

81.7% R!

81.71%

OO e OO Q ¥

81.6%

81.5%

81.4%

Figure 8: Analyzing the ranking of the four Image-to-
Text Models in MCR.

Analyzing the ranking of the four Image-to-Text
Models in MCR. Figure 8 illustrates the perfor-
mance of all permutations of the four image-to-text
models applied in Section 4.4 on the WikiDiverse
validation set. From the results, we observe that the
impact of different permutations on the final results
is minimal. Consequently, we simply select the
“ocr-cap-den-tag” sequence for implementation.

6 Conclusion

This paper proposes a novel LLM-based two-
level reflection framework for the task of MEL.
The framework enhances the context-awareness
of LLMs through semantic consistency reflection,
thereby preventing issues of context-unfaithfulness.
The modality consistency reflection specifically fa-
cilitates the integration of image and iteratively em-
ploys images to alleviate information overload. Ex-
perimental results on WikiMEL and WikiDiverse
demonstrate that our approach achieves SOTA per-
formance, with additional detailed analyses that
validate the effectiveness of each component.



Limitations

The approach of utilizing prompt engineering for
multimodal entity linking can be conveniently
adapted to practical application scenarios. De-
spite its advantages, several non-negligible defi-
ciencies persist. Firstly, the utilization of the Ope-
nAl API may encounter limitations in certain sce-
narios, such as the absence of internet connectivity
or constraints imposed by the pricing structure of
the API. Additionally, the invocation of the API
might raise concerns regarding data confidential-
ity. Secondly, in real-world scenarios, it’s more
common for a mention to be absent from the desig-
nated Knowledge Base (KB). For such instances of
predicting non-existence, there is substantial room
for improvement in our method. Lastly, integrating
candidate retrieval dynamically with our approach
still requires significant effort. We believe that
with continued expansion of our framework, it will
evolve into a more comprehensive solution in the
future.
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