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Abstract

Multimodal Entity Linking (MEL) is an es-001
sential technology in numerous applications.002
Existing methods depend on designing com-003
plex multimodal interaction modules and re-004
quire extensive domain-specific training data.005
As the traditional pretrain-finetune paradigm006
evolves towards prompt engineering with large007
language models (LLMs), investigating prompt008
engineering-based MEL approaches becomes009
increasingly vital. However, using LLMs010
with straightforward instructions presents chal-011
lenges in MEL tasks. These include context-012
unfaithful fine-grained entity selection and the013
overlooking of key details due to information014
overload. To this end, this paper introduces a015
novel two-level reflection framework for MEL016
tasks, named SMCR. In this framework, an017
LLM is used for entity selection. To address018
context-unfaithfulness, we implement seman-019
tic consistency reflection based on LLM’s self-020
feedback. To simplify the complexity of im-021
age utilization and alleviate information over-022
load, we introduce modality consistency re-023
flection. This approach iteratively integrates024
visual clues through external feedback. Ex-025
perimental results on two established public026
MEL datasets show that our solution achieves027
state-of-the-art performance. Further analy-028
sis confirms the effectiveness of our proposed029
modules. Our code is available at https://030
anonymous.4open.science/r/SMCR-1215.031

1 Introduction032

Entity linking, the task of mapping ambiguous men-033

tions in text to standard entities in a given knowl-034

edge base (KB, e.g., Wikipedia) (Shen et al., 2014).035

It serves as a pivotal technology in various applica-036

tions including knowledge graph population (Lin037

et al., 2020), question answering (Shah et al., 2019;038

Longpre et al., 2021), and recommendation sys-039

tems (Deldjoo et al., 2020). Given the prevalence040

of multimodal contexts (images and texts) in real-041

world scenarios, recent studies (Wang et al., 2022b;042
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Figure 1: Typical examples of the MEL Task. (a) Im-
ages play a crucial role in disambiguation; (b) A bad
case demonstrating fine-grained hallucinations in large
language models.

Yao et al., 2023) suggest incorporating images to 043

enhance entity disambiguation, leading to the emer- 044

gence of Multimodal Entity Linking (MEL). 045

Existing MEL methods are all based on the 046

pretrain-finetune paradigm, often requiring com- 047

plex multimodal interaction modules for feature 048

extraction (Dongjie and Huang, 2022; Luo et al., 049

2023) or additional domain-specific pretraining 050

data (Wang et al., 2023). This poses significant bar- 051

riers in practical applications. With the emergence 052

of Large Language Models (LLMs, e.g., ChatGPT), 053

an increasing body of research (Zhao et al., 2023; 054

Chen et al., 2023) demonstrates their exceptional 055

performance in knowledge-intensive tasks. Thus, 056

employing LLMs with several demonstrations as 057

alternatives to traditional methods has emerged as 058

a practical solution for various tasks. Exploring 059

prompt engineering-based MEL methods holds crit- 060

ical importance. 061

However, employing existing LLMs for MEL 062

tasks presents several challenges. Firstly, these 063

models often produce hallucinations that are not 064

contextually grounded. For instance, as illustrated 065

in Figure 1 (b), the mention “Maglev trains” should 066

link to the entity “Maglev”. However, between 067

“Maglev” and “Shanghai maglev train”, LLMs tend 068
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to select the more specific entity “Shanghai maglev069

train”, despite the absence of supporting context.070

Secondly, there’s the issue of information overload.071

For the mention images, we employ a series of072

image-to-text models to generate multi-faceted tex-073

tual descriptions. Feeding all these descriptions074

to the LLM simultaneously imposes a significant075

information burden (Xi et al., 2023), causing the076

LLMs to overlook critical information and make077

incorrect inferences.078

To address the above problems, this paper079

introduces an innovative approach known as080

LLM-based Semantic and Modality Consistency081

Reflections (denoted as SMCR) for MEL task. Ini-082

tially, we adopt an LLM (e.g., GPT-3.5), with care-083

fully crafted prompts to select a candidate entity084

from the KB for a given mention. Subsequently,085

semantic consistency reflection is designed to eval-086

uate the semantic granularity between the entity087

and mention, thereby determining the necessity088

of re-selection. Finally, the approach introduces089

a modality consistency reflection, involving inter-090

modal consistency verification and visual iterative091

feedback, to decide if further selection based on092

visual clues is required. Our method effectively093

addresses the aforementioned challenges through094

three key characteristics. 1) Semantic Consistency095

Reflection. Direct selection without verification096

may lead to results unfaithful to the context. We097

emphasize the LLM’s focus on mention context098

for choosing entities through semantic consistency099

reflection. 2) Inter-Modal Consistency Verification.100

We propose an innovative utilization of images.101

Initially, the LLM selects candidate entities based102

on textual modality, then uses the visual modal-103

ity for verification. This approach, as opposed to104

combining text and image modalities for selection,105

simplifies the task and reduces the noise inputted106

to the LLM, allowing it to concentrate solely on107

the textual context, while leaving complex image108

information to specialized models (e.g., CLIP (Rad-109

ford et al., 2021)). 3) Visual Iterative Feedback. In110

scenarios necessitating image clues, we employ111

four rounds of iteration invoking various image-to-112

text models, fully exploiting images from diverse113

perspectives and avoiding information overload.114

Contributions. The contributions of this paper115

are summarized as follows:116

• We propose a novel approach for image uti-117

lization. Using visual modality to verify tex-118

tual results and iteratively integrating image119

clues when text clues are partially absent. This 120

method simplifies the complexity of fusing 121

image and text information. 122

• We present the SMCR framework, designed 123

to address the issues of context-unfaithfulness 124

and information overload encountered in 125

LLMs when applied to MEL tasks. To our 126

knowledge, this is the first work to propose 127

prompting LLMs for MEL tasks. 128

• Experimental results show that our model 129

achieves state-of-the-art performance, attain- 130

ing a top-1 accuracy of 90.58% (+ 2.6%) on 131

WikiMEL and 80.57% (+ 1.5%) on WikiDi- 132

verse. Notably, our method requires no train- 133

ing and is easily transferable. 134

2 Related Works 135

Multimodal Entity Linking. The existing works 136

can be divided into two categories: 1) Similarity- 137

ranking based entity linking (Gan et al., 2021; 138

Wang et al., 2022a; Yao et al., 2023) and 2) Gen- 139

erative entity linking (De Cao et al., 2020; Wang 140

et al., 2023). The first category involves a two-step 141

process. Initially conducting candidate retrieval 142

(Yamada et al., 2016; Ganea and Hofmann, 2017) 143

to obtain a set of top-k candidate entities closest to 144

the mention, followed by entity re-ranking. These 145

methods focus on learning the multimodal features 146

of mentions and entities. For instance, Wang et al., 147

2022a employ co-attention at both token and phrase 148

levels to construct visual-guided textual features 149

and textual-guided visual features, ultimately ob- 150

taining a joint multimodal representation through 151

gated fusion. Typically, the similarity between en- 152

tities and mentions is simply obtained through the 153

cosine similarity (Wang et al., 2022b). Consider- 154

ing the topical coherence of mentions appearing 155

in the same context, some studies (Le and Titov, 156

2018; Yang et al., 2023a) propose joint disambigua- 157

tion for multiple mentions. However, this type of 158

method requires designing complex multimodal in- 159

teraction modules. Meanwhile, the context of a 160

mention may not precisely describe the mention 161

itself, posing challenges in learning its multimodal 162

features. The second category centers on training 163

generative language models to encode the multi- 164

modal context of mentions. Target entity names 165

are directly decoded using constrained generation 166

(De Cao et al., 2020) techniques. This demands 167

profound background knowledge, necessitating ex- 168
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tensive domain-specific training data. For example,169

Wang et al., 2023, collected additional multimodal170

data from BLINK and Wikipedia KB for pretrain-171

ing.172

LLM-based Reflection. Large Language Mod-173

els (LLMs) have been extensively employed in var-174

ious NLP tasks. However, their performance is175

hindered by issues such as hallucinations and un-176

faithful reasoning. A proposed solution to these177

challenges involves incorporating reflection steps178

(Pan et al., 2023). The sources of feedback for179

reflection are categorized into two types: 1) Self-180

provided feedback by the LLM (Shinn et al., 2023)181

and 2) Feedback injected through external means182

(Peng et al., 2023). The first category leverages183

the LLM itself for both evaluation and refinement,184

such as SELFCHECK (Miao et al., 2023) and185

SELF-REFINE (Madaan et al., 2023). It is typ-186

ically iterative, continuing until the output meets187

certain criteria or is interrupted in cases of model188

stagnation. The second category utilizes various189

external tools to assess and provide feedback on190

LLM-generated content, such as separately trained191

models (Akyürek et al., 2023), additional domain-192

specific knowledge (Peng et al., 2023), and other193

tools (Welleck et al., 2022). Feedback through ex-194

ternal means offers greater flexibility, introducing195

information not inherent in LLMs and identifying196

errors that the LLMs themselves may not detect.197

In our framework, semantic consistency reflection198

falls under the first category. Modality consistency199

reflection, where external feedback mechanisms in-200

fuse visual information into LLMs, is an example201

of the second category.202

3 Overview203

In this section, we first formalize the task of multi-204

modal entity linking and then outline our proposed205

framework for the task.206

3.1 Task Formulation207

Multimodal entity linking is the task of align-208

ing mentions within multimodal contexts to their209

respective entities in a KB. Formally, given210

{(m,Tm, Im)}, where m denotes a mention, Tm211

is the textual context surrounding m, and Im is212

the image context for m, MEL aims to predict a213

standard entity for each mention: (m, e) (e ∈ E),214

where E is the entity set in the KB.215

3.2 Framework 216

As depicted in Figure 2, our framework mainly 217

has the following four steps: 1) Target Entity Se- 218

lection. 2) Semantic Consistency Reflection (SCR). 219

3) Inter-Modal Consistency Verification. 4) Visual 220

Iterative Feedback. Steps 3) and 4) together form 221

the Modality Consistency Reflection (MCR). 222

• Target Entity Selection. With refined one- 223

shot CoT, we employ a large language model 224

(e.g., GPT-3.5-turbo) to select the most proba- 225

ble candidate entity from KB for the mention. 226

• Semantic Consistency Reflection. For the 227

entity selected in step 1, we continue utiliz- 228

ing the LLM, in conjunction with constrastive 229

CoT, to verify its semantic consistency with 230

the mention in its original context, and deter- 231

mining whether a reselection of the candidate 232

entity is warranted. 233

• Inter-Modal Consistency Verification. For 234

the selected entity that passes step 2, we fur- 235

ther check its consistency with the mention 236

image. If consistent, it is outputted as the final 237

result. 238

• Visual Iterative Feedback. If the selected en- 239

tity does not align with the mention image, we 240

extract information from the image and feed 241

it back to step 1. Then, combining this visual 242

feedback, we reselect the candidate entity and 243

initiate a new iteration cycle. In each itera- 244

tion, we gradually leverage different facets of 245

the image information to prevent information 246

overload. 247

4 Methodology 248

In this section, we provide the details of the four 249

key steps involved in our SMCR framework. 250

4.1 Target Entity Selection 251

Given a mention and mention context, the purpose 252

of this step is to select a candidate entity for the 253

mention from the KB. In this paper, we employ an 254

LLM (e.g., GPT-3.5-turbo) with ICL to achieve this 255

purpose. Specifically, we first follow existing work 256

(Wang et al., 2022b,a) to retrieve Top-K candidate 257

entities along with their descriptions from the KB 258

(e.g., Wikipedia). Based on the mention, mention 259

context, and candidate entities with descriptions, 260

we construct the input for LLM. This input com- 261

prises four components: instructions, ICL, the data 262
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Figure 2: Our framework consists of four key steps. (1) Target Entity Selection. (2) Semantic Consistency Reflection
(SCR). (3) Inter-Modal Consistency Verification. and (4) Visual Iterative Feedback. Steps (3) and (4) together form
the Modality Consistency Reflection (MCR). The left column shows the details of each step.

dictionary, and the output format specification. In263

the instruction, we provide the task role and the264

definition of the multimodal entity linking task. In265

the ICL, we employ a one-shot CoT (Wei et al.,266

2022) as an example to demonstrate the steps of267

reasoning, where the CoT is initially generated by268

the LLM and then manually refined. CoT consists269

of three steps: 1) Analyze the mention and context,270

2) Compare the mention with each candidate entity,271

and 3) Select the most relevant candidate entities.272

The sample data is presented in a dictionary format,273

with keys including “mention”, “mention context”,274

and “candidate entities”. Finally, we specify the275

output format, i.e., “⟨|ANSWER|⟩:⟨your answer⟩”276

for the LLM, where “⟨your answer⟩” is selected277

from the candidate entities. Upon inputting this278

input into the LLM, we obtain the candidate entity279

from its response.280

The purely textual input described above is only281

used in the initial execution of this step. In subse-282

quent iterations, image information is integrated to283

assist the LLM in selecting candidate entities. The284

integration of text and image inputs differs from285

text-only inputs in two aspects: Firstly, in the CoT,286

an additional step utilizing visual information is287

inserted following the first step, titled “Analyze the288

mention image information and identify helpful de-289

tails”. Secondly, in the data dictionary, we add a290

new key, i.e., “mention imginfo”.291

4.2 Semantic Consistency Reflection 292

This step aims to determine whether the candidate 293

entity identified in the previous step aligns with the 294

mention at the textual semantic level. If there is 295

consistency, we proceed to the next step; otherwise, 296

we return to the first step to re-select a candidate 297

entity. In this step, we maintain the semantic con- 298

sistency reflection within the same LLM dialogue 299

window used in the previous step. The continuity 300

of the dialogue window provides contextual infor- 301

mation beneficial for this task, enhancing model 302

performance. 303

More specifically, we first replace the mention 304

in its original context with the selected entity to 305

obtain a Replaced Mention Context. Then, given 306

both Mention Context and Replaced Mention Con- 307

text, we construct the input for LLM, maintaining 308

the same components as in 4.1. It is important 309

to specifically note that in the ICL, we provide 310

constrastive CoT for both consistency and incon- 311

sistency assessments. Finally, we feed this input 312

into the LLM to analyze whether the semantics re- 313

main consistent before and after the replacement. 314

When the assessment is “YES” (signifying seman- 315

tics consistency), we move forward to the next step. 316

If not, the reasons for inconsistency are added to 317

the historical dialogue record, and we repeat the tar- 318

get entity selection process. This iterative approach 319

4



continues until the selected entity is verified as con-320

sistent, or it reaches a predefined loop limit. In the321

latter scenario, the last selected entity is chosen as322

the output.323

4.3 Inter-Modal Consistency Verification324

For the selected entity that passes SCR, we fur-325

ther assess its alignment with the mention image326

through Inter-Modal Consistency Verification. If it327

passes the verification, this entity is then output as328

the final result; otherwise, we proceed to the next329

step, incorporating image information for further330

entity selection.331

Given the description De of the selected candi-332

date entity e and the mention image Im, we first333

encoder them into vectors using the text and image334

encoders of the CLIP model (Radford et al., 2021).335

Then, we employ a dot product to compute the336

cosine similarity between the above two vectors.337

Finally, we establish a predefined threshold to de-338

termine whether the selected entity aligns with the339

mention image. The above process is formulated340

as:341

score(De, Im) = EncT (De) · EncI(Im), (1)342
343

assessment =

{
1 score(De, Im) > θ

0 score(De, Im) < θ
(2)344

Here, EncT and EncI represent the text and im-345

age encoders, respectively, and θ is the pre-defined346

threshold. If the assessment is “1”(YES), the se-347

lected entity is output as the final result. Otherwise,348

we proceed to the next step.349

4.4 Visual Iterative Feedback350

In response to a “NO” output from the previous351

step, we incorporate visual information to refine352

our selection of the entity. This paper utilizes vari-353

ous image-to-text models to generate multi-faceted354

descriptions for a given image, which include OCR355

text, image captions, dense captions, and image356

tags. To prevent information overload, we itera-357

tively apply these different types of descriptions.358

Specifically, upon inputting mention image, an359

image-to-text model is initially invoked to gener-360

ate an image description (e.g., “a group of men in361

wheelchairs...”). This description is then integrated362

as additional visual context into step 1, as detailed363

in Section 4.1. Subsequently, we execute step 1364

again to re-select an entity, thereby initiating a new365

iteration cycle. During this cycle, we continue to366

use Inter-Modal Consistency Verification to assess367

Table 1: The statistics of datasets.

Dataset Train Valid Test
WikiMEL 18,092 2,585 5,169
WikiDiverse 13,205 1,552 1,570

if the selected entity aligns with mention image, 368

deciding whether to utilize other facets of image 369

clues. We employ four distinct models — “OCR”, 370

“Image Captioning”, “Dense Captioning”, and “Im- 371

age Tagging” — in a specific sequence determined 372

on the WikiDiverse validation set, iterating up to 373

four rounds. If the entity still fails the Inter-Modal 374

Consistency Verification after all iterations, we re- 375

vert to the entity initially selected. 376

5 Experiments 377

In this section, we conduct comprehensive exper- 378

iments to evaluate our proposed method on two 379

widely-recognized public MEL datasets. Further- 380

more, extensive analyses are presented to offer 381

deeper understanding of the framework. 382

5.1 Experimental Setup 383

Datasets. In this study, we employ two datasets, 384

namely WikiMEL(Wang et al., 2022a) and WikiDi- 385

verse(Wang et al., 2022b) for evaluation. WikiMEL 386

collects data from Wikipedia’s entity pages, with 387

its primary entity type being Person. It uses Wiki- 388

data as its target KB. We followed the original pro- 389

vided method (Wang et al., 2022a) for candidate 390

retrieval. Wikidiverse is built by Wikinews, cov- 391

ering 7 types of entities(i.e., Person, Organization, 392

Location, Country, Event, Works, and Misc). It uti- 393

lizes Wikipedia as its target KB. Following existing 394

work (Wang et al., 2023), we conduct experiments 395

using the top-10 candidate entities provided by the 396

dataset, and assign the label “nil” when the men- 397

tion’s target entity is not included in the candidate 398

set. The statistics of two datasets are concluded in 399

Table 1. We use the same test set as existing works 400

for evaluation. 401

Baseline. We compare our proposed method with 402

various state-of-the-art (SOTA) methods, which 403

are divided into two groups: (1) Text-only meth- 404

ods, which include BERT (Kenton and Toutanova, 405

2019), BLINK (Wu et al., 2020), and GPT-3.5- 406

Turbo1. (2) Visual-text fusion methods, which 407

include CLIP (Radford et al., 2021), DZMNED 408

1https://platform.openai.com/docs/models/
gpt-3-5
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Table 2: Main results on WikiMEL and WikiDiverse.
The values in “()” indicate the standard deviation of the
results.

Model Top-1 Accuracy (%)
WikiMEL WikiDiverse

Text
BERT 31.7 69.6
BLINK 30.8 70.9
GPT-3.5-Turbo 77.1 63.9
GPT-3.5-Turbo (CoT) 79.9 77.1
Text+Vision
CLIP 79.8 50.5
DZMNED 78.8 56.9
GHMFC 43.6 46.0
LXMERT 20.6 78.6
DRIN 65.5 51.1
MMEL 71.5 -
GDMM-base 68.0 79.1
GDMM-large 72.4 78.7
MIMIC 88.0 63.5
SMCR 90.58 (0.23) 80.57 (0.69)

(Moon et al., 2018), LXMERT (Wang et al., 2022b),409

GHMFC (Wang et al., 2022a), GDMM(base/large)410

(Wang et al., 2023), MMEL (Yang et al., 2023a),411

MIMIC (Luo et al., 2023) and DRIN (Xing et al.,412

2023).413

Metrics. Following existing works (Wang et al.,414

2022a; Yang et al., 2023a), our evaluation employs415

the Top-1 accuracy metric.416

Implementations. Within the applied frame-417

work, we utilize the OpenAI API, specifying the418

model as “gpt-3.5-turbo-16k-0613”, with the tem-419

perature set to 0 and other parameters remain-420

ing at their default settings. We employ the421

same One-shot CoT and Contrastive CoT across422

all samples. To ensure reliability in our results,423

we conduct three repeated experiments and cal-424

culate the standard deviation. For the candidate425

retrieval in section 4.1, we set k = 10. The426

CLIP model used in Section 4.3 is referred to as427

CLIP_ViT_bigG_14_laion2B_39B_b160k. We set428

the θ to 29 based on the WikiDiverse validation set429

and apply it across all datasets. In Section 4.4, for430

the applied image-to-text models, we reference ex-431

isting work (Yang et al., 2023b), employing the lat-432

est models from Azure Cognitive Services APIs2,433

including Image Captioning, Dense Captioning,434

Image Tagging, and OCR models.435

2https://portal.azure.com/#view/Microsoft_Azure_Project-
Oxford/CognitiveServicesHub//̃ComputerVision

Table 3: The Ablation Study of SMCR on WikiMEL and
WikiDiverse. 4.2, 4.3, 4.4 correspond to the sections in
this paper.

Model Top-1 Accuracy (%)
WikiMEL WikiDiverse

SMCR 90.58 (0.23) 80.57 (0.69)

w/o CoT 88.20 66.18
w/o 4.2 87.48 79.30
w/o 4.3 86.65 78.22
w/o 4.4 86.26 77.96
w/o 4.2, 4.3 81.51 77.32
w/o 4.2, 4.4 79.96 77.07
w/o 4.3, 4.4 86.26 77.96
w/o 4.2, 4.3, 4.4 79.94 77.07

5.2 Main Results 436

In this section, we present a comparative analysis 437

of our proposed method against all baseline ap- 438

proaches on WIKIMEL and WikiDiverse datasets. 439

The results are detailed in Table 2. 440

Based on the experimental results, we can draw 441

the following observations and conclusions. 1) 442

Without any component training, our method out- 443

performs the current state-of-the-art (SOTA) ap- 444

proaches on two datasets, demonstrating the effec- 445

tiveness of our method. Specifically, on WikiMEL 446

and WikiDiverse, we achieve the top-1 accuracy 447

of 90.58% and 80.57%, respectively, marking im- 448

provements of 2.6% and 1.5% over previous SOTA 449

methods. 2) The proposed framework significantly 450

enhances LLM performance in the MEL task, par- 451

ticularly evident in SMCR’s significant improve- 452

ments (13.5% and 16.7%) over the direct applica- 453

tion of GPT-3.5-Turbo. 3) Compared to the WikiDi- 454

verse (80.57%), our method performs better on 455

WikiMEL (90.58%). This is due to the greater 456

prevalence of “nil” target labels in WikiDiverse, 457

making it a more challenging task to infer the “nil” 458

than identifying the correct entity. 4) The “GPT-3.5- 459

Turbo + CoT” method, using only textual modal- 460

ity, already achieves high accuracy scores on both 461

datasets. This reaffirms our perspective that in the 462

MEL tasks, information provided by the textual 463

modality is predominant. Mention images typi- 464

cally strengthen textual information, yet they serve 465

to supplement missing clues in rare instances. 466

5.3 Ablation Experiment 467

This section presents comprehensive ablation stud- 468

ies to validate the effectiveness of each component 469

in our proposed framework. Firstly, we performed 470

ablations on the key steps of the framework, with 471
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Table 4: The Ablation Study on the image-to-text mod-
els presented in Section 4.4. (ocr: OCR text, cap: Cap-
tion, den: Dense Captions, tag: Tags)

Model Top-1 Accuracy (%)
WikiMEL WikiDiverse

SMCR 90.58 (0.23) 80.57 (0.69)

w/o ocr 90.25 79.94
w/o cap 90.23 80.38
w/o den 90.52 80.45
w/o tag 90.38 80.51
w/o ocr, cap 89.77 79.75
w/o ocr, den 90.08 80.06
w/o ocr, tag 89.92 80.19
w/o cap, den 89.77 80.38
w/o cap, tag 89.84 80.38
w/o den, tag 90.25 80.45
w/o ocr, cap, den 88.90 79.87
w/o ocr, cap, tag 89.07 79.75
w/o ocr, den, tag 89.50 80.06
w/o cap, den, tag 88.93 79.87
w/o all 86.26 77.96

the results presented in Table 3. These results show472

that removing any step led to a decline in model473

performance, thereby demonstrating the effective-474

ness of all steps in our framework. Subsequently,475

ablations were conducted on the four image-to-text476

models in Step 4.4, summarized in Table 4. All four477

models utilized in this step contributed positively478

to the iterative process.479

5.4 Detailed Analysis480

In this section, we analyze the important compo-481

nents within our framework in detail with in-depth482

case study.483

Improvements analysis for SCR. To investigate484

the error types effectively mitigated by SCR, we485

analyzed improved samples from the WikiDiverse486

test set after SCR integration, as shown in Fig-487

ure 3, categorizing them into four error types: 1)488

Fine-Grained Hallucination. In the absence of sup-489

porting contextual information, the LLM selects an490

erroneous entity with finer granularity. 2) Blurred491

Span. The LLM fails to focus distinctly on the men-492

tion’s span, resulting in either span expansion or493

misplaced attention. 3) Part of Speech Confusion.494

The selected entity misaligns with the mention’s495

grammatical role in the text. 4) Others. Other sce-496

narios of noted improvement. We provide cases for497

the first three types of errors in Figure 5.498

What visual clues does our framework show ef-499

fective improvement ? We analyzed 200 random500

samples from the WikiDiverse test set. Following501

37.50%

12.50%

29.17%

20.83% Fine-Grained Hallucination

Blurred Span

Part of Speech Confusion

Others

Figure 3: Improvements Decomposition for SCR.

Wang et al., 2022b; Li et al., 2023, we categorize 502

the visual clues into three types: 1) Object: images 503

showing the entity directly, 2) Scene & Property: 504

images depicting associated environments or prop- 505

erties, and 3) Others: additional significant clues. 506

Examples of the first two types are in Figure 4. As 507

shown in Table 5, we observe: 1) Compared to the 508

one-time infusion of all image information (w/o 509

VIF), the iterative use of images shows a primary 510

improvement in Scene & Property. This might 511

be due to the iterative method highlighting finer- 512

grained clues. 2) In comparison to scenarios with- 513

out visual (w/o Visual), SMCR perform better on 514

Object clues. This underscores our method’s effi- 515

cacy in employing images. 516

Visual clues Object Scene & Property

Image

Mention Context
A Shadow is prepared 

for flight over Iraq.

Bathum coming to a stop 

following his downhill ride. 

Pred (T) Shadow Downhill mountain biking

Pred (T+V) = GT AAI RQ-7 Shadow Downhill (ski competition)

Figure 4: Examples of the two types of visual clues.

Table 5: Model performance under different visual
clues. (w/o VIF: utilizing images Without Visual It-
erative Feedback, w/o Visual: Without using images, a:
Object, b: Scene Property, c: Others)

Model Top-1 Accuracy (%)
a (54) b (109) c (37) total (200)

SMCR 87.04 82.57 75.68 82.50
w/o VIF 85.19 76.15 78.38 79.00
w/o Visual 79.63 78.90 75.68 78.50

Efficacy of visual iterative feedback in mitigat- 517

ing information overload. To thoroughly inves- 518

tigate the effects of iterative use of images, we 519

conduct experiments on the WikiDiverse validation 520

set. The results are shown in Figure 6. “Round 0-4” 521
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Error Type Fine-Grained Hallucination Blurred Span Part of Speech Confusion

Image

Mention Context

Maglev trains can 

accelerate to high speeds 

as they run suspended in 

the air

Pujols hit a home run in 

Sunday's baseball game 

between the Anaheim 

Angels and the Toronto 

Blue Jays. 

Egyptian army soldiers 

monitor protests over the 

weekend. 

Bart writing "HDTV is 

worth every cent" in the 

"chalkboard gag.". 

An Iraqi competitor and 

an unnamed member of 

the United States 

delegation chat.

Pred (w/o SCR) Shanghai maglev train
1997 Anaheim Angels 

season
Egyptian Army Bart Simpson Iraqis

Pred (w SCR) = GT Maglev Los Angeles Angels Egypt
The Simpsons opening 

sequence
Iraq

Figure 5: Three types of error cases that can be effectively addressed through semantic consistency reflection.

79.22%

80.54%

81.16% 81.32%
81.71%

80.31%

76.0%

78.0%

80.0%

82.0%

Round 0 Round 1 Round 2 Round 3 Round 4 All Info

T T + V

Figure 6: Comparing iterative versus single-use image
information processing.

denote the iterative process in our framework and522

the “All Info” denote a single infusion of images.523

We calculate the overall Top-1 accuracy after each524

iteration. From the results, we can see that a one-525

time infusion of images offers a minimal increase526

(1.09%), whereas iterative methods yield consis-527

tent incremental improvements, demonstrating the528

efficacy of iterative feedback.529

79.15%

81.32%
81.55%

81.71% 81.78%

79.0%

80.2%

81.4%

82.6%

0 1 2 3 4

Total Top1-acc

Iterations of SCR

Figure 7: Analysis of convergence iterations for SCR.

Analysis of convergence iterations for SCR.530

Figure 7 illustrates the convergence iterations of531

semantic consistency reflection on the WikiDiverse532

validation set. From the results, two observations533

can be made: 1) The overall top1-accuracy tends534

to converge by the third iteration. Therefore, we535

set the iteration limit of SCR to 3 rounds. 2) The536

most significant improvement is observed in the 537

first round. This indicates that under the guidance 538

of our framework, the LLM begins to pay signif- 539

icant attention to the mention context for entity 540

selection after making an initial error. 541

81.47%

81.71%

81.71%

81.71%

81.4%

81.5%

81.6%

81.7%

Total Top1-acc

Figure 8: Analyzing the ranking of the four Image-to-
Text Models in MCR.

Analyzing the ranking of the four Image-to-Text 542

Models in MCR. Figure 8 illustrates the perfor- 543

mance of all permutations of the four image-to-text 544

models applied in Section 4.4 on the WikiDiverse 545

validation set. From the results, we observe that the 546

impact of different permutations on the final results 547

is minimal. Consequently, we simply select the 548

“ocr-cap-den-tag” sequence for implementation. 549

6 Conclusion 550

This paper proposes a novel LLM-based two- 551

level reflection framework for the task of MEL. 552

The framework enhances the context-awareness 553

of LLMs through semantic consistency reflection, 554

thereby preventing issues of context-unfaithfulness. 555

The modality consistency reflection specifically fa- 556

cilitates the integration of image and iteratively em- 557

ploys images to alleviate information overload. Ex- 558

perimental results on WikiMEL and WikiDiverse 559

demonstrate that our approach achieves SOTA per- 560

formance, with additional detailed analyses that 561

validate the effectiveness of each component. 562
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Limitations563

The approach of utilizing prompt engineering for564

multimodal entity linking can be conveniently565

adapted to practical application scenarios. De-566

spite its advantages, several non-negligible defi-567

ciencies persist. Firstly, the utilization of the Ope-568

nAI API may encounter limitations in certain sce-569

narios, such as the absence of internet connectivity570

or constraints imposed by the pricing structure of571

the API. Additionally, the invocation of the API572

might raise concerns regarding data confidential-573

ity. Secondly, in real-world scenarios, it’s more574

common for a mention to be absent from the desig-575

nated Knowledge Base (KB). For such instances of576

predicting non-existence, there is substantial room577

for improvement in our method. Lastly, integrating578

candidate retrieval dynamically with our approach579

still requires significant effort. We believe that580

with continued expansion of our framework, it will581

evolve into a more comprehensive solution in the582

future.583
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