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ABSTRACT

Increase in data, size, or compute can lead to sudden learning of specific capa-
bilities by a neural network—a phenomenon often called “emergence”. Beyond
scientific understanding, establishing the causal factors underlying such emergent
capabilities is crucial to enable risk regulation frameworks for AI. In this work,
we seek inspiration from study of emergent properties in other fields and propose
a phenomenological definition for the concept in the context of neural networks.
Our definition implicates the acquisition of general regularities underlying the data-
generating process as a cause of sudden performance growth for specific, narrower
tasks. We empirically investigate this definition by proposing an experimental
system grounded in a context-sensitive formal language, and find that Transform-
ers trained to perform tasks on top of strings from this language indeed exhibit
emergent capabilities. Specifically, we show that once the language’s underlying
grammar and context-sensitivity inducing regularities are learned by the model,
performance on narrower tasks suddenly begins to improve. We then analogize our
network’s learning dynamics with the process of percolation on a bipartite graph,
establishing a formal phase transition model that predicts the shift in the point of
emergence observed in our experiments when intervening on the data regularities.
Overall, our experimental and theoretical frameworks yield a step towards better
defining, characterizing, and predicting emergence in neural networks.

1 INTRODUCTION

Modern neural networks, e.g., large language models (LLMs) (Gemini Team, 2023; OpenAI, 2023;
Anthropic, 2023; Touvron et al., 2023), exhibit a broad spectrum of capabilities, allowing them to
serve as the “foundation” for downstream, application-specific systems (Bommasani et al., 2022;
Ahn et al., 2022; Driess et al., 2023; Schick et al., 2024). As these models scale, either via addition of
more data, parameters, or compute, an intriguing behavior is at times observed: until a certain critical
scale is reached, there are capabilities that the model does not exhibit; however, beyond this point,
such capabilities suddenly “emerge” (Wei et al., 2022; Srivastava et al., 2022; Brown et al., 2020; Yu
et al., 2022; Steinhardt, 2023; Pan et al., 2022; Anil et al., 2023; Kirsch et al., 2022; He et al., 2024;
Elhage et al., 2021; Tigges et al., 2024). More specifically, the performance of the model on a task
or benchmark meant to evaluate said capabilities witnesses substantial growth in performance, even
though the overall training loss undergoes minimal, if any, improvements (Arora & Goyal, 2023;
Du et al., 2024). Empirical evidence in fact suggests that, at times, several capabilities can emerge
simultaneously (Wei et al., 2022; Wei, 2022).

Beyond developing a better scientific understanding of neural networks, understanding emergent
capabilities is crucial to enable risk-centric regulation frameworks for AI, which assume a system’s
capabilities can be preemptively conjectured (NIST, 2023; EU Council, 2024; OSTP, 2023; Kaminski,
2023). To this end, recent work has made attempts at identifying factors that decide whether a
capability will emerge. For example, Okawa et al. (2023) and Arora & Goyal (2023) implicate the
underlying compositional structure of a capability as the cause for its sudden learning. Hoffmann et al.
(2023) argue capabilities that involve interactions between specialized components within a model
are likely to yield sudden performance improvements once the correct interaction mechanism is
learned; e.g., the interaction between the previous token and copy attention heads to enable in-context
learning (Elhage et al., 2021; Singh et al., 2024; Reddy, 2023). Meanwhile, Schaeffer et al. (2023)
argue emergent abilities are an artifact of poorly defined, discontinuous evaluation metrics, claiming
that models undergo continuous, persistent improvements during training. Recent work has however
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demonstrated that even continuous metrics can witness sudden improvements, with such changes
co-occurring with the model’s learning of a new capability (Chen et al., 2024; Du et al., 2024). This
undermines the claim that emergent capabilities are merely an artifact of evaluation protocols.

Taken together, the orthogonal explanations and disparate results above have resulted in emergence
becoming an unclear phenomenon in machine learning. At its core, however, we claim that the
concept has never been defined in prior work (see App. B for a detailed related work). This has
arguably led to distinct mechanisms causing sudden changes in model performance to all be labeled
as “emergence”. What is the phenomenology that this term is meant to capture in the context of neural
networks? Is it merely a sudden increase in performance with scale, or broader than that? Given
a reasonable definition, can we show, even if in a simplified system, that emergent capabilities are
commonplace? Can we use this simplicity to better understand what drives their sudden learning?
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Figure 1: Emergence as phases of learning.
Emergence is a well-characterized phenomenon in
natural sciences (Anderson, 1972; Newman et al.,
2001; Newman, 2003) and deeply entangled with
the notion of phase changes, i.e., when change in
some control variable (e.g., temperature) yields
systematic changes in a system’s underlying reg-
ularities (e.g., formation of hexagonal configura-
tions in a crystal) and simultaneously affects sev-
eral of its properties. We argue for a similar charac-
terization of emergence in machine learning: iden-
tifying systematic changes in a model’s behavior
that influence its downstream abilities and lead to
sudden performance improvements. For example,
learning a language’s syntax will affect all down-
stream capabilities where coherent, grammatically
correct generations are necessary.

This work. To address the questions above, we
propose a phenomenological definition for emer-
gence and try to understand what drives it in a
toy task of learning formal languages (Chom-
sky, 1956; Cagnetta & Wyart, 2024; Liu et al.,
2023a; Wen et al., 2023; Liu et al., 2022a; Fried-
man et al., 2023; Jain et al., 2023; Merrill et al.,
2023). Specifically, we argue three characteris-
tics should be observed to claim a capability is
emergent (see Def. 1): beyond (i) sudden perfor-
mance improvement for a specific task, we claim
emergence is more likely to represent a meaning-
ful concept if (ii) performance on several tasks
improves simultaneously and (iii) there are pre-
cise regularities underlying the data-generating
process learned by the model at the point of
emergence. The intuition, borrowed from the
study of emergence in other fields (see Fig. 1),
is that if multiple tasks witness improvement in
performance, there is likely some shared struc-
ture to them and the model learns this structure
at the point of emergence. For example, when
in-context learning emerges in LLMs, the model
learns that past context helps disambiguate the
next token better (Elhage et al., 2021)—a regu-
larity present in natural language. This leads to
in-parallel improvement in several downstream
tasks’ performance (Wei et al., 2022; Wei, 2022;
Lu et al., 2023); thus, in-context learning can be
deemed an emergent capability under the scope
of our definition. In this sense, understanding
emergence can be formalized as a study of identi-
fying which data-regularities the model learns at
the point of sudden learning of a set of capabil-
ities, and understanding why those regularities
are relevant to said capabilities. Adopting this perspective, we make the following contributions.

• Formal Languages as an Experimental System for Studying Emergence. We define a proba-
bilistic context-sensitive grammar (PCSG) with type constraints that allow an entity or a subject in
a sentence (e.g., man) to be seen in the context of only a predefined set of properties (e.g., walk).
We train models to perform minimalistic reasoning tasks over samples of this language and find
their data scaling curves simultaneously show sudden learning across several metrics.

• Learning of general data regularities underlies simultaneous jumps in specific metrics. We
find points of sudden change for metrics evaluating individual tasks correlate with the model
learning two relevant regularities that underlie our formal language: grammatical rules and type
constraints. Despite the simplicity of our setup, we claim learning of such data-regularities is what
leads to sudden growth in the performance of narrower tasks in large-scale models.
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• A percolation model predicts the scaling of when capabilities emerge. We propose a formal
model grounded in the theory of graph percolation (Cohen et al., 2002) that captures our experimen-
tal observations, and show that if we can describe the regularities the model is learning at the point
of emergence, a predictive theory for sudden learning can (at times) be constructed—analogous to
theories of phase transitions in physics; see Fig. 1.

2 A PHENOMENOLOGICAL DEFINITION OF EMERGENCE

To analyze emergence, we first establish what we mean by the term for the purpose of this work.
Specifically, we define emergence in a phenomenological manner, i.e., by assembling the characteristic
properties associated with scaling curves claimed to depict emergent learning. We emphasize our
definition is merely a definition for emergence, and does not necessarily represent all possible
perspectives (Luccioni & Rogers, 2023). For example, often model capabilities that arise despite any
explicit supervision are called emergent in self-supervised learning (Caron et al., 2021; Ziyin et al.,
2022). As our goal is to analyze the effects of scaling, regardless of supervision protocol used, we do
not try to capture this property.
Definition 1. (Emergence of a capability.) We say a capability C is emergent with scaling along a
relevant axis (e.g., amount of data, compute, parameters) if:

• discontinuous improvement occurs in the performance of a task where C is required;
• multiple tasks simultaneously show discontinuous performance improvement; and
• the model learns regularities underlying the data generating process such that discontinuous

progress in C’s learning directly correlates with the learning of said regularities.

The definition above assigns a broader meaning to emergence than mere sudden performance im-
provement on a narrow task: it argues there should be precise regularities underlying the data that
are learned by the model, yielding downstream effects on several capabilities and hence sudden im-
provements in performance of several tasks. Note that we intentionally leave the notion of ‘regularity’
informal in the definition. The salient property of a regularity is that if a model learns it, downstream
tasks should become easier to perform. For example, a fine-grained notion of a data regularity can
be learning of context-sensitivity, which can aid in-context learning (Reddy, 2023; Edelman et al.,
2024; Olsson et al., 2022); a more coarse-grained regularity can include the model learning the
syntactical rules of a language that help it with generation of coherent language and hence with any
task where coherence is important (Chen et al., 2024). In this sense, what is emergent is the learning
of a regularity, and what is observed is a change in the model’s capabilities. Hypothesizing what this
regularity is by identifying shared characteristics of a set of tasks that simultaneously show sudden
learning, one can likely develop an evaluation meant to precisely gauge learning of the corresponding
regularity and hence infer at what point an independent training run will show sudden improvements.

We note the intuition for Def. 1 comes from prior work in the fields of complex systems and
physics (Anderson, 1972; Newman et al., 2001; Newman, 2003), from where the term has sought
its inspiration in recent machine learning literature (Steinhardt, 2023; Wei et al., 2022). Therein,
emergence describes the scenario where rapid changes occur in a system’s properties as some control
parameter is varied. A range where the system’s properties change relatively smoothly is called a
phase, and a change of phase with a change in the control variable is called a phase transition. A
crucial step in studying emergence in physics is identifying an order parameter—a measure that
captures the formation of some specific regularity in the system such that the development of this
regularity is what alters the system’s properties and drives a phase transition. For example, in Fig. 1a,
a system of particles transitions through phases (solid, liquid, gas) as the temperature is changed; the
formation of a crystalline structure with the decrease in temperature can be identified by analyzing
the bond-orientation order parameter, while the liquid-to-gas transition can be described by a jump in
particle density. We argue that we must similarly define order parameters for studying emergence in
neural networks as well, i.e., we must develop evaluation measures that are focused towards detecting
the learning of specific data regularities that are generally of use to several downstream capabilities.

3 FORMAL LANGUAGES AS AN EXPERIMENTAL SYSTEM FOR EMERGENCE

Having defined our perspective on emergence, we now define a toy experimental system that allows
us to precisely study the concept in a controlled setting. We note that our focus will be on emergence
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Figure 2: Grammar and type constraints to define our formal language. (a) We use a PCFG
to define our language’s grammar (shown rules are examples; see App. F.3 for precise details).
The grammar’s terminals are parts-of-speech from English and yield symbolic sentences that can
be populated by tokens from the language’s vocabulary. (b) Akin to natural language, wherein
properties of an entity constrain sentences seen in a dataset corresponding to that entity, we define
constraints (called type constraints) on our language that restrict which tokens can be seen together in
a sentence. These constraints map entities to descriptive or relative properties, hence restricting which
descriptive adjectives and verbs are valid for an entity. (c) Once a symbolic sentence is sampled from
the grammar, we populate it with tokens from the language while respecting the type constraints.
Training on string from this language in fact shows that the model deems sentences that do not respect
type constraints to be extremely unlikely (see App. F.2).

under data scaling in an online learning scenario (i.e., a sample is unlikely to be seen multiple times).
To this end, we follow recent work on understanding language modeling and use formal languages to
define our experimental setup (Allen-Zhu & Li, 2023; Jain et al., 2023; Murty et al., 2023; Valvoda
et al., 2022; Liu et al., 2023a; 2022a). As discussed in detail next, the formal language we use in this
work is (minimally) context-sensitive, with underlying syntactical rules defined using a probabilistic
context-free grammar (PCFG) and context-sensitivity enabled through posthoc type constraints. The
grammar and type constraints serve as two regularities that underlie our language, and, as we show in
Sec. 5, their learning bottlenecks learning of other, narrower capabilities.

Definition 2. (Grammar.) A PCFG, denoted G, is a randomized process that generates strings using
two sets of symbols: terminals (T) and non-terminals (NT). A string σ is a sequence of terminals,
ending with a special end-of-string symbol (EOS), e.g., σ = t1t2 . . . EOS. The grammar includes
production rules (denoted R), which define how non-terminals can be expanded. Specifically, a rule
has the form A → α, where A ∈ NT (the left-hand side) and α (the right-hand side) is a sequence
of symbols from T ∪ NT. The process begins with a special start symbol (S ∈ NT). To generate a
string, the PCFG repeatedly applies production rules: a non-terminal is replaced by the sequence
on the right-hand side of a randomly chosen rule with that non-terminal on the left-hand side. This
process continues until all non-terminals are replaced by terminals, producing a string σ. The set of
all strings the grammar can generate is denoted as Σ. A string σ is called grammatical if σ ∈ Σ.

See Fig. 2 (a) for a visualization and App. C.1 for a more detailed treatment of PCFGs in general.
The terminal symbols used in our work include standard parts-of-speech from English, specifically:
subjects, objects, verbs, adjectives, adverbs, conjunctions, determiners, and prepositions. Multiple
short phrases can be combined together via conjunctions and verbs to form longer sentences (e.g.,
a verb can connect a subject phrase and an object phrase). Overall, the grammar G yields symbolic
strings that are solely comprised of parts of speech (see Fig. 2 (a)); e.g., our grammar might yield
a symbolic string like adjective subject adverb verb preposition adjective
object. We next map these strings to our language.

Let V denote the vocabulary of our language L. Each token v ∈ V has a part-of-speech t := part(v)
associated with it. Thus, one can define a context-free language by simply sampling a symbolic string
σ from G, and then replacing symbols therein with tokens from the vocabulary that match the sampled
parts (e.g., a subject symbol may be replaced by the token man). For example, the example string
above can be resolved as Tall man slowly walked to short building. However,
natural language is rich with constraints defined by the physical properties of an entity, which thereby
restrict which tokens are seen in the context of which other tokens, hence yielding context-sensitivity.
For example, one does not expect to see a sentence Tall telephone slowly walked to
short building, since the entity telephone is neither expected to be tall nor the ability
to walk. We develop an abstraction for such constraints by representing them as a bipartite graph
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(see Fig. 2 (b,c)). In the following, we often use the term ‘entities’ to jointly refer to subjects and
objects. We also use the term ‘descriptors’ to refer to adjectives that modify entities, reserving the
term ‘adjectives’ for ones that do not.
Definition 3. (Type Constraints Graph.) Let a property k be a binary variable; the set of all
properties is denoted K. Properties can be either descriptive (used to define descriptors; e.g., tall)
or relative (used to define verbs; e.g., walk). A concept class C is defined via the set KC ⊂ K that
denotes which properties are valid for that class. When the properties in KC take values, we get an
entity e from the class, denoted as e ∈ C. The set of all possible entities is denoted E. The type
constraints graph G := (E, K, I) is a bipartite graph over entities and properties in the language
whose edges I denote whether an entity e ∈ E possesses property k ∈ K.

As an example, consider the class of Humans, which includes entities connected to properties like
tall, right-handed, etc.; an entity from Humans will be assigned a subset of these properties.
When sampling sentences from our formal language, the type constraints will restrict which tokens
can be seen together, i.e., which descriptors and verbs go with an entity, hence yielding context-
sensitivity and making L a probabilistic context-sensitive language. Given two randomly sampled
entities from the same class, they can be expected to share a subset of properties, giving a signal to
the model trained on L that these entities are related (i.e., they belong to the same class).

4 LEARNING TASKS AND EXPERIMENTAL SETUP

Conditional:  [man, walked]  “tall man slowly walked to small library.”

Unscramble:   [library, walked, …, to, slowly]  “tall man slowly walked to small library.”

Task Input Output
Free:      [null]      “tall man slowly walked to small library.” 

Figure 3: Task definitions. Our model is trained and evalu-
ated on three types of tasks. (i) Free generation: the model
generates sentences with correct grammar. (ii) Unscrambling:
the model is provided with a set of words and must reorder
them to form valid sentences. (iii) Conditional generation:
model is given a set of entities or properties and must gen-
erate valid sentences using them. Note that examples in the
figure are merely indicative. See App. C.1 for details.

Having described our language L,
now we briefly discuss our experimen-
tal setup (see App. E for details). We
train a GPT architecture model (An-
drej Karpathy, 2023) with the stan-
dard autoregressive language model-
ing objective. Data is sampled “on-
line”, i.e., we sample a fresh batch of
strings every iteration from L. Un-
less mentioned otherwise, L is con-
stituted of |E| = 900 entities and
|K| = 18000 properties, equally and
disjointly distributed over |C| = 10
classes, and with edges connecting en-
tities to p = 0.15 fraction valid properties of a class in a uniformly random manner; results ablating
these settings are in App. F. Before being fed into the model for training or evaluation, strings sampled
from the language are restructured into a format that enables the specification of particular tasks (see
Fig. 3). Specifically, we train the model to learn the following tasks with 80/10/10% splits.

• Free generation: Produce a valid string, i.e., one that respects the grammar and type constraints.
• Unscrambling: A string is sampled from L and randomly permuted; the model is expected to

unscramble it. This task is known to show sudden learning in LLMs (Wei et al., 2022).
• Conditional Generation: A set of tokens corresponding to entities or properties are shown to the

model, which is expected to generate a string combining these tokens in a valid manner.

Evaluation Protocols. Given an input x, which may correspond to any of the three tasks above,
denote the model output as f(x). Let 1(.) be an indicator variable that evaluates to 1 if its input is
logically true. We often decompose evaluations according to strings of two types: (i) descriptive,
i.e., ones that describe that an entity possesses a descriptive property, and (ii) relative, i.e., ones that
demonstrate a subject, object, and verb can be combined to create a valid sentence. We track several
metrics throughout training to avoid confounding from discontinuous scores (Schaeffer et al., 2023).

• Grammaticality/Type Check. Grammaticality involves checking whether model output follows
the underlying grammar G, i.e., 1(f(x) ∈ Σ); several other evaluations stress-testing how ac-
curately the model learns the grammar, e.g., by assessing likelihoods of invalid sentences (see
App. F.3–F.5). Type checks involve first extracting subjects, objects, and properties from the
sentence and then evaluating whether this set of tokens is allowed in the context of each other. We
decompose type checks as descriptive (do entities and descriptors match), relative (do subject,
object, and verb match), and all (product of all constraints, including adjectives and adverbs).
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• Exact Match / Per Token Accuracy. Used for evaluating unscrambling. Assume the ground-truth
unscrambled sentence y has l tokens. We compare whether the model output exactly matches the
ground-truth

(
Πl

i=11(yi = f(x)i)
)

or the per-token match ratio
(
1/l

∑l
i=1 1(yi = f(x)i)

)
.

• Conditions Satisfied. Used for evaluating conditional generation. If the model is expected to
produce a sentence with m conditioning tokens {vc1 , . . . , vcm}, we analyze how many of those
tokens are present in f(x), i.e., we evaluate 1/m

∑m
i=1 1(vci ∈ f(x)).

• Average Probability of Valid Tokens. Used for evaluating descriptive type constraints in free
generation and unscrambling. Specifically, we sample a sentence from L that remarks on an
entity possessing a property (i.e., a descriptive sentence), and then evaluate the probability of
the property being the next token when this sentence is inputted to the model. For example, let
x = The fire was large. We evaluate Pr (1(f(x)1 = large)|x−1), where x−1 denotes
the sentence up to the last token and f(x)1 denotes the first token predicted by the model.

Other Evaluations. We perform several other evaluations, e.g., analyzing likelihoods of sentences
that do not follow grammar or type constraints to check how well the model follows our language;
comparing the distribution of lengths and parse tree depth for model’s generations with the language’s;
analyzing grammaticality and type check accuracy for unscrambling and conditional generation; rank
of property predictions; and the evolution of attention maps across time. See App. F for these results.

5 RESULTS: EMERGENT CAPABILITIES IN FORMAL LANGUAGE LEARNING

We now evaluate (i) whether our setup demonstrates emergence (see Def. 1), and (ii) whether we
can extract insights into the mechanisms of what leads to emergence (all results are averaged over
3 seeds). While experiments below are for a specific setup, in App. F we show that our claims
consistently generalize to an extremely broad array of setups and metrics. In the following, we often
use the terms “phase” and “phase change”; see discussion around Def. 1 for context on these terms.

5.1 PHASES OF LANGUAGE AND CAPABILITIES ACQUISITION

We plot the model’s performance as a function of training iterations. Since we are in an online
learning, constant stepsize setting, this analysis corresponds to studying the effects of data scaling.
Results are reported in Fig. 4 and show there are three phases to the learning dynamics.

Phase 1: Grammar acquisition. We find the model first learns to produce grammatically correct
sentences, as measured by the grammaticality measure defined in Sec. 4. This process is relatively
rapid, as we see the model starts generating grammatically accurate sentences in a short period of
approximately 100 iterations; attention heads also rapidly evolve and reflect the parse structure of a
sentence (see App. F.5) In this regime, however, the narrower tasks of unscrambling and conditional
generation exhibit poor performance. However, precisely when grammaticality improves, we find
that per-token accuracy starts to improve. This indicates that the model learning a broad regularity
underlying the data (i.e., grammar) impacts learning of narrower capabilities.

Phase 2: Acquisition of relative type constraints. At around 1000 iterations, we find there is a
sudden increase in the model’s performance on relative types from essentially zero to perfect accuracy;
precisely at this point, we find the loss for all tasks, especially free generation, shows a sudden drop.
Interestingly, we find this sudden improvement occurs precisely at the point where the model reaches
its maximum performance on grammaticality for the first time. That is, as soon as the first regularity
underlying the data is learned, the model rapidly learns the next relevant regularity of relative
type constraints. Improvement occurs in descriptive constraints as well (and hence the overall Type
Check performance), but hovers around slightly above 0.1. This is expected, since with |C| = 10
classes, if a model produces grammatically correct sentences, it will achieve a random performance
of 1/|C| = 0.1 on descriptive type checks. This also implies that the model is primarily relying on its
syntactical knowledge and does not respect descriptive type constraints much.

During this phase, we see that shortly after the phase change, there is a sudden increase in performance
for both unscrambling and conditional generation, across all metrics. These tasks’ losses also show
another loss drop occurs at this point; though the drop seems smoother in the total loss, likely due
to averaging effects (Michaud et al., 2023). As shown in Fig. 4e, we find that this performance
improvement is driven by sentences that require primarily correctness of grammar and relative type
constraints, i.e., knowledge of which descriptors are associated with an entity is not necessary to
perform well on these sentences. This also explains the loss drop seen in Fig. 4: once grammar and
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(b) (c)(a)

(d)

(e)

Figure 4: Learning of regularities in the data drives emergent capabilities. For a detailed discus-
sion, see main text. (a) Grammaticality and Type Check evaluations as a function of iterations (or,
equivalently, data). We see phases in the learning dynamics corresponding to emergent acquisition
of regularities underlying our language: grammar, relative type constraints, and descriptive type
constraints, shaded gray, pink, and green respectively. (b, c) Performance on Unscrambling and
Conditional Generation. After a slight delay from phase boundaries, we see sudden improvements
in the performance of individual tasks. (d) Learning curves. Loss also shows sudden changes at
phase boundaries corresponding to the learning of regularities present in the data. (e) Performance
on descriptive/relative sentences. Decomposing by sentence type, we find a sublinear growth in
descriptive type checks drives performance boost on descriptive sentences for the unscrambling task.

relative type constraints are learned, the model learns to use them to solve inputs that do not require
knowledge of descriptive properties, leading to a sudden improvement in both loss and accuracy.

Phase 3: Learning of descriptive type constraints. During Phase 2, we find that the model’s per-
formance on descriptive type checks witnesses minimal improvement. However, as training proceeds,
the model enters a third phase at whose boundary we see a sudden change of slope from a saturation
region to approximately proportional growth in the performance of descriptive type checks with
log-amount of data/iterations (i.e., sublinear growth). With a slight delay, we see a similar effect kicks
in for the unscrambling and condition generation tasks as well, which start to show approximately
linear improvement with log-amount of data/iterations. Zooming in at this point (see inset plots in
Fig. 4), we see there is in fact a small, but nevertheless noticeable, loss drop in the unscrambling
and condition generation tasks. We emphasize that since the model has seen merely an order of 104
iterations up to this point, if we assume the model can perfectly learn in only a few observations
that some entity and a property can be seen together in a sentence, then our experimental setting
can on average see only up to 15% performance (which matches the observed performance) and
20% at best (see App. E.0.1; the argument is that only a subset of pairs is shown during training,
restricting maximum performance). However, as the model enters and progresses through the third
phase, it shows a much larger rate of improvement and reaches ∼30–35% performance, indicating it
is generalizing beyond the pairs of entities and properties it has seen together during training. If the
model were simply relying on memorized knowledge, the observed performance would be infeasible.

We thus claim that the model is implicitly inferring, based on the regularity of type constraints
that underlies our data, which properties and entities constitute a valid context. This suggests a
memorization effect is at play during Phase 2, and the end of this phase corresponds to a transition
from a memorizing to a generalizing solution.

5.2 EFFECT OF NUMBER OF DESCRIPTIVE PROPERTIES ON LANGUAGE ACQUISITION

Given the above picture of a model’s learning dynamics, we next ask how the phase boundaries
change with an increase in the number of properties |K| (see Fig. 5). We intentionally scale only
the number of descriptive properties and hypothesize the learning of both grammar and relative

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

103 104 105

Iterations

0.10

0.15

0.20

0.25

0.30

0.35
Type Check (Desc.)

14800
16400

18000
19600

21200
22800

24400
26000

27600
29200

30800
32400

34000
35600

37200
38800

103 104 105

Iterations

0.0

0.1

0.2

0.3

0.4
Unscramble (Desc.)

103 104 105

Iterations

0.0

0.2

0.4

0.6

0.8

1.0
Type Check (Rel.)

103 104 105

Iterations

0.0

0.1

0.2

0.3

Unscramble (Rel.)

Figure 5: Effect of Scaling number of descriptive properties. Scaling descriptive properties in
our language, we find relative type checks and unscrambling performance for relative sentences are
essentially unaffected by the number of properties. Meanwhile, both descriptive type checks and
unscrambling performance for descriptive sentences show a change in performance and delay in
transition points. Interestingly, we find the geometry of performance curves is extremely consistent;
for descriptive type checks, this geometry indicates a memorization to generalization picture.

type constraints to not be affected by this change. We relegate grammar learning to appendix (see
App. F.2), which, as expected, is not affected by |K| since it is an entirely independent data-regularity
from type constraints. However, we see that even relative type constraints’ learning is not affected by
the increase in descriptive properties, indicating the model deems them (justifiably) to be independent
regularities. Focusing on descriptive type constraints then, we see performance curves for descriptive
type checks and unscrambling performance on descriptive sentences are indeed affected, achieving
higher values for fewer properties (i.e., the easier task). We further make two more interesting
observations. (i) The point of transition from memorization to generalization is delayed as we
increase the number of properties. This is most prominently seen in the delay in the transition point
where the ability to unscramble descriptive sentences emerges. (ii) We find the geometry of these
performance curves are extremely similar to the geometry we observed for our base setting studied in
Sec. 5.1, indicating despite the increase in difficulty of the task, the same learning dynamics are at
play. We devote the next section to formulate a hypothesis justifying these observations.

6 A PERCOLATION MODEL OF EMERGENCE

(a) (b)

Figure 6: Casting the ability to compose unseen
entities and properties as percolation on a bi-
partite graph. (a) When only a fraction of the
concept classes are included in the dataset and
the edge density is low, nodes (e.g., entities and
properties) form many disconnected clusters, indi-
cated by different colors (left). As more concept
classes are added (dashed edges) to the bipartite
graph, the small clusters begin to merge (middle).
With a sufficient number of edges, a macroscopic
number of nodes become connected, forming a sin-
gle cluster (right). (b) Our formalism establishes
this transition as a second-order phase transition,
where the size of the largest cluster increases non-
linearly as the fraction of connected node pairs is
scaled. Shown curves are from simulations on bi-
partite graphs with the number of nodes equal to
the number of entities and properties in our formal
language experiments (see Sec. 4 or App. E).

We next propose a framework for modeling the
emergence of capabilities that require a model
to compose unseen entities and descriptive prop-
erties, e.g., learning descriptive type constraints,
which, beyond allowing a model to produce ac-
curate free generations, will aid with narrower
tasks like conditional generation and unscram-
bling. We argue the relevant data-regularity to
analyze for this purpose is the concept class: if a
model understands what entities and properties
belong to a concept class, regardless of whether
they have been seen together in a string, it will
deem their co-occurrence valid. We thus develop
an abstraction for concept classes as bipartite
graphs, casting their learning as a problem of
percolation on such graphs (see also App. D.1).

6.1 MATRIX REPRESENTATION OF DATA

Recall that a concept class is defined as a set of
entities that are expected to have shared prop-
erties (see Def. 3). The question is whether
upon sub-sampling pairs of entities and proper-
ties from a concept class, can the model learn
that, in fact, all pairs of entities and properties
are valid and compose the concept class. For
instance, in the case of a concept class such as
human, the set of entities can include humans with different genders (e.g., man) as well as human-
associated entities such as a lawyer (see Fig. 2). The corresponding properties for the human
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concept class will be, for example, walk, jump, tall. A man, being human, is expected to
have all these properties, although strings specifying these properties for a lawyer may be rare or
even absent in the training data. We are interested in the case where the data, such as strings, includes
examples of these pairs of entities and properties. We can represent this by a matrix whose rows
and columns represent the entities and the properties, and the matrix values indicate the quantity or
density of data available for each composition, such as an entity-descriptor pairing.

Definition 4. (Concept Density Matrix.) Let D be an |E| × |K| matrix with real-valued entries
between 0 and 1, inclusive. Each entry Dek represents the density for the entity and property pair
(e, k) (e.g., the amount of data that represents the specific composition), where e ∈ {1, ..., |E|} and
k ∈ {1, ..., |K|} are the indices of the entities and properties, respectively.

For example, consider the case where there are three values of entities and properties (|E| = |K| = 3),
with entities (rows) being {Man, Lawyer, Telephone}, and properties (columns) being {Walk,
Stoic, Ring}. The corresponding D can be: A common composition such as Man walking will
lead to a value of 1 at the intersection of Man and Walk, i.e., D00 = 1, where Dij denotes element
at row-i and column-j. Conversely, a highly unlikely composition like Lawyer ringing will be
absent in the dataset, and will be represented by a zero at the respective matrix position, i.e., D12 = 0.
We can also assume for example that Man ringing or a Telephone walking are rare, which
yields D13 = D31 = 0. We next introduce the concept propagation matrix to model the inference
of novel entity-feature combinations from the incomplete data represented in D.

Definition 5. Concept Propagation Matrix. An n-th order concept propagation matrix (n ≥ 0) is
defined as T (n) = (DDT )nD = CnD, where C := DDT .

The concept propagation matrix can be intuitively understood using a bipartite graph, as shown in
Figure 6a. A bipartite graph in this case is a sub-graph of the type constraints graph (see Def. 3 and
Fig. 2), where one set of nodes represents entities while the other represents properties, and edges
indicate the presence of entity-feature pairings in the training data. The strength of connectivity of
the graph directly corresponds to the values in the concept composition propagation matrix, T (n).
Specifically, if two concepts are connected by a path of minimal length 2k + 1 (i.e., the shortest path
between them alternates between the two sets k times), the corresponding entry in T (n) becomes
non-zero only for n ≥ k. That is, the number of propagation steps n required for the object and
feature pair to be associated is determined by the minimal number of hops needed to connect the
two nodes in the graph. Conversely, if two nodes belong to disconnected regions of the graph, their
composition remains fundamentally unlearnable, regardless of the order of propagation, indicating
that composition is not valid. This is reflected by the corresponding entry in T (n) remaining zero
for all n. In the bipartite graph, this amounts to having two distinct clusters that are connected
within themselves but not across each other. For example, in the case where the concepts represented
by the first and third rows belong to disconnected regions of the graph, and consequently, their
composition (e.g., Lawyer ringing) cannot be achieved even after an infinite number of hops
between nodes. We call such a situation learning of a concept class: the system understands that Man
and Laywer are both humans, whereas Telephone is not. Our experiments show that the model
deems sentences composing entities and properties from incorrect classes to be much less likely than
the correct ones (see Fig. F.3), i.e., the model indeed learns the structure of concept classes.

6.2 PERCOLATION TRANSITION ON DESCRIPTIVE CONSTRAINTS

Using the bipartite graph framework, the generalization, or the learning of the concept class, can be
defined as the situation where a large cluster of entity-property connected pairs arises despite the
sparse concept density matrix. A critical aspect to examine is the proportion of the inference matrix
values where T (∞)

ek is non-zero, out of the total possible pairs |E| × |K|. This particular scenario aligns
with the bond percolation problem on a bipartite graph. In bond percolation, we investigate how
the largest connected cluster’s size varies with the probability p of each edge (bond) being present.
In a typical setting, there exists a critical threshold value, p = pc, called the percolation threshold.
Below this threshold (p < pc), the graph typically exhibits a disconnected phase characterized by the
absence of extensively connected clusters, with most nodes either isolated or part of smaller clusters.
Above this threshold (p > pc), the graph transitions to a connected phase, significantly increasing
the likelihood of a vast connected component spanning a large portion of the graph. This shift from
a predominantly disconnected state to one with a macroscopic cluster is a defining characteristic
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Figure 7: Scaling of point of emergence matches with our theory. We replot the result from Fig. 5
by rescaling the x-axis with a power of the number of descriptive properties; see App. G.1 for further
discussion on the intuition underlying this visualization. For Average probability of generating a
valid descriptive property given some object in context under free generation and descriptive type
check accuracy, we see a 0.5 exponent scaling yields a collapse of the transition point—this matches
the toy model of percolation posited in Sec. 6.2. We also see a very clear scaling of the point where
the ability to unscramble descriptive sentences starts to emerge, but with an exponent of 1.5.

of the percolation process, and this transition sharpens as the number of components in the system
increases. (see Fig. 6b for a schematic). In a setting where connecting edges are selected randomly
on the graph with probability p, the percolation threshold is obtained as pc ≃

√
1/|E||K| for large |E|

and |K| (see App. D.2 for a derivation). This means that when around
√
|E||K| edges are connected,

there is a qualitative change in the growth of the cluster size. For p > pc, the number of nodes
included in the connected cluster becomes macroscopic, i.e., the probability a randomly selected
pair of entity and property are connected becomes finite. We posit that the percolation threshold
corresponds to the point at which our Transformer generalizes from the sparse learning of pairs to a
complete representation of concept classes. Since increasing the iterations through online learning
should amount to increasing p (i.e., seeing more combinations in data), the iteration at which the
transition occurs in the model performance should be proportional to

√
|E||K|. When the number of

seen pairs surpasses this threshold, the model can infer novel compositions, even for entity-property
pairs not explicitly present in the training data.

We next check whether the theoretically posited scaling manifests in our experiments with formal
language learning. Specifically, we plot again the various performances of the model as a function
of iterations divided by the square root of the number of properties (i.e., number of entities is kept
constant). Results are shown in Fig. 7. We find that indeed there is a growth trend in the descriptive
type check metric and the average probability scores of free generation of descriptive sentences that
occur at iterations proportional to

√
|K|. This is in contrast to the first large growth that is observed

in these evaluations, which seems to be occurring at iteration numbers that do not depend on |K|
(see Fig. 5 and Fig. 53), likely because this step corresponds to the point where the model learns
about syntax, which requires a constant amount of data irrespective of the number of properties (see
Fig. 18). We also analyzed the scaling of the transition point for the narrower task of unscrambling
upon change in the number of properties. Here, we found a different scaling of |K|3/2. We so far do
not have an explanation for this scaling, but since the task involves the composition of entities and
properties too, we expect a transition and scaling effect to occur for unscrambling as well; however,
learning the precise circuit to perform unscrambling over the learned grammar and type constraints
will yield a delay (as was seen in experiments) that likely has some interaction with the complexity
of the language. We leave explaining this scaling for future work.

7 CONCLUSION

In this work, we propose a phenomenological definition for emergence that implicates learning
of general regularities underlying the data-generating process as the source of rapid performance
improvements on narrower tasks. Building on this definition, we propose a formal language that
involves two precisely defined regularities—grammar and type constraints—and a set of narrowly
defined tasks on its strings. We define “order parameters” for these regularities, finding (i) they
describe precise phases in the learning dynamics of a Transformer trained on the language and (ii) the
model suddenly acquires capabilities corresponding to the narrower scope tasks close to said phases’
boundaries. To explain these results, we propose a model that analogizes learning of type constraints
to the problem of graph percolation, and argue it should show a transition point scaling that is of the
order of

√
|E||K|. Our results show a strong qualitative match with this hypothesis.
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A FURTHER DISCUSSION AND FUTURE WORK

In this work, we take inspiration from other fields (e.g., physics and complex systems) and propose
a phenomenological definition for emergence of capabilities in neural networks. Specifically, the
definition argues that at the point of emergence, the model learns general regularities underlying
the data-generating process which are instrumental to the learning of specific, narrower capabilities;
acquisition of such regularities then leads to sudden performance improvement on several tasks (often
with some delay). While relatively informal, this definition brings the notion of emergence in the
context of neural networks closer to its meaning in physics, wherein the formation of systematic
regularities is known to drive phase changes that involve sudden changes in the system’s properties.
Characterizing these phase changes requires hypothesizing what the regularity is, and defining an
“order parameter” that can help gauge its change. Drawing on this definition and perspective, we
then propose an experimental setup that involves learning of a formal language with two precisely
defined regularities in the data—grammar and type constraints (what properties are valid in the
context of what entities)—and a set of narrowly defined tasks. Defining order parameters for these
regularities (grammaticality and type checks), we find there indeed are phases in the model’s learning
dynamics, and the model suddenly acquires capabilities corresponding to the narrower scope tasks
(unscrambling and conditional generation) close to these phase boundaries. Interestingly, the learning
curves show a rather distinct geometry that remains consistent as we alter the number of properties in
our language.

To explain these results, we propose a model that analogizes learning of type constraints in the formal
language learning task to the problem of graph percolation. Drawing on the theory of percolation on
bipartite graphs, which shows phase transitions in the formation of connected components on a graph,
we argue this problem is similar to learning of concepts classes or type constraints in our setting, and
hence should show scaling of the point of emergence where the model starts to follow descriptive
type constraints that is of the order of

√
|E||K|. Our results show a strong qualitative match with

this hypothesis. We also find an extremely clean scaling for other tasks’ transition point, e.g., for
unscrambling’s results on descriptive sentences; explaining these results is left for future work.

While our goal in this work was primarily demonstrative, i.e., to develop a bridge with other fields
studying emergence, we believe several exciting avenues now open up. For example, given that the
whole point of the theory of phase transitions is that we can predict the point of emergence, can we
draw on this rich literature to propose models for explaining and predicting emergent capabilities in
neural networks? Can we go beyond the toy task of formal language learning studied in this work
and analyze a more naturalistic setting? For example, can we identify data-regularities underlying
emergent capabilities in open-source models, e.g., Pythia checkpoints (Biderman et al., 2023), and
demonstrate that our proposed perspective enables prediction of when capabilities emerge in LLMs?
To begin, we can perhaps focus on capabilities that require similar knowledge acquisition and its
compositional generalization on a downstream task.

B RELATED WORK

Explaining emergence. Focusing on the sudden learning characteristic of emergent capabilities, a few
recent works have tried to explain the factors driving this phenomenon. For example, compositionality
has been implicated for having a “multiplicative” effect on a model’s performance, where the argument
is that a model cannot perform well on a compositional task until the abilities needed to perform
individual tasks involved in that composition are acquired (Okawa et al., 2023; Arora & Goyal, 2023;
Yu et al., 2023; Srivastava et al., 2022; Wei et al., 2022; Hoffmann et al., 2022; Gokhale, 2023);
when they are acquired, performance suddenly grows. A few papers have also shown that learning of
specific capabilities (i.e., ones not compositional in nature) can be sudden (Chen et al., 2024; Nam
et al., 2024; Kirsch et al., 2022; He et al., 2024; Michaud et al., 2023; Cui et al., 2024).

Grokking vs. Emergence. We focus on the effect of data scaling on a model’s capabilities; often
called ‘learning curve’ or ‘data scaling’ analysis (Viering & Loog, 2022; Blumer et al., 1989; Bousquet
et al., 2021; Seung et al., 1992; Watkin et al., 1993; Amari, 1993; Haussler et al., 1994). On surface,
this might look similar to the seemingly related phenomenon of grokking (Power et al., 2022; Liu
et al., 2023b; Žunkovič & Ilievski, 2022; Murty et al., 2023; Barak et al., 2022; Edelman et al., 2023;
Nanda et al., 2022), wherein a model’s performance on a task rapidly improves long after it has fit the
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training data. However, we emphasize that we focus on an online learning setting in our experiments,
i.e., a given sample is unlikely to be seen multiple times during training. Emergence is generally
studied in such online learning scenarios. Since there is no distinction between train versus test data
in such a setting, we argue mechanistic explanations of grokking identified in past work that involve
a perfect training data memorization phase (Nanda et al., 2023; Liu et al., 2022b) are unlikely to help
explain our results of emergence under data scaling in an online learning scenario.

B.1 IS EMERGENCE A MIRAGE, EXPLAINED VIA USE OF POOR METRICS?

Schaeffer et al. (2023) argue emergent scaling curves are a consequence of poorly defined, discontin-
uous evaluation metrics, and the seemingly sudden learning goes away once partial, continuous credit
is given to the model. While a credible claim, we provide three arguments below to demonstrate it is
certainly not the complete story.

• Emergence with continuous metrics. There is significant evidence for emergent abilities in
neural networks that does not rely on use of discrete metrics at all. For example, in a recent
work, Gopalani et al. (2024) show a sudden performance increase in a regression setting with an
entirely continuous metric—specifically, mean square error. Phase transitions and corresponding
emergent abilities have been formally discussed in other relevant works, e.g., by Lu et al. (2024)
in regards to in-context learning and by Cui et al. (2024) in regards to positional code learning in a
histogram computation task. Meanwhile, Chen et al. (2024) show a sudden loss drop in BERT
training, which, again, is not a continuous metric. Similarly, Okawa et al. (2023) have shown
task compositionality can drive emergent abilities, with their follow-up work using continuous
metrics to demonstrate learning to compose yields emergent learning curves (Park et al., 2024).
Overall, given this substantial evidence, we believe the argument by Schaeffer et al. (2023) is
narrower in scope than what is claimed by the authors—it undermines and ignores legitimate cases
of emergence in neural network training.

– Relation to our work. In our work, we show performance improvements co-occur with loss
drops (Fig. 4), i.e., a continuous metric. Thus, we can comfortably say our results are not
confounded by Schaeffer et al.’s argument that poorly defined metrics drive emergence. In
fact, as we mention in Sec. 4, we also report several other (both continuous and discrete)
metrics that show sudden improvements, further providing evidence that our results are not
confounded by use of poorly defined metrics.

• Assumption on per-token power law scaling. To develop their claim, Schaeffer et al. (2023)
propose a toy theoretical model that involves the assumption that an individual token’s loss follows
power-law scaling. This assumption is too strong: the loss, when averaged across a large number
of tokens, indeed follows a power law (as popularly shown in literature on scaling laws); however,
individual token dynamics are in general drastically different, and in general extremely
unlikely to follow a power law scaling. In fact, this point was most recently demonstrated by
Schaeffer et al. (2024) themselves! In this follow-up work, the authors show that learning dynamics
of individual tokens corresponding to task output locations can show discontinuous progress. For
further evidence in this vein, see the papers by Michaud et al. (2023) and Du et al. (2024). We
thus believe that beyond the scope of their argument being narrower than original presented in
the paper, the underlying rationale behind Schaeffer et al.’s argument also involves a very strong
assumption.

– Relation to our work. In our work, we can concretely show Schaeffer et al.’s assumption
does not hold: e.g., in Figure 4, we show loss curves for individual tasks, finding that learning
dynamics of tokens corresponding to just these individual tasks (a subset of the overall tokens
in a sentence) does not follow a power law! Thus, we can again comfortably conclude that
Schaffer et al.’s assumption, which was too strong to begin with, does not hold in our setting
and hence their claims cannot explain our results.

• A “metric” must at least gauge progress towards learning of task. To demonstrate their claim
empirically, Schaeffer et al. (2023) propose several alternative metrics that turn a discontinuous
learning curve into a continuous one. However, we emphasize a metric is only useful if it captures
progress towards learning of the task. For example, if the structure of a task is ignored, it is
certainly easy to define arbitrary continuous metrics for a task; however, such metrics are unlikely
to help measure progress toward learning a task. As a precise example, consider the addition of
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two numbers, say 10 and 11, and the metric called token edit distance (Schaeffer et al., 2023) that
assesses the average distance between digits in the model’s output, denoted xy, from the ground
truth of 21; that is, (|x−2|+|y−1|)/2. For both xy = 22 and xy = 11, this metric equals 1; however,
clearly 22 is a better approximation for the ground truth of 21. That is, once we account for the
structure of the task, i.e., the fact that error in the most significant digit should be penalized more
than error in the least significant one, we see limitations in token edit distance as a metric for
assessing a model’s ability to add numbers. We argue claims relating emergence to sensitivity of
metrics can be confounded by use of metrics that do not respect the structure of the task, but give
the impression of continuous learning.

– Relation to our work. As a stress-test of our claims, we intentionally evaluate metrics that
do not respect the structure of the task; e.g., in our unscrambling task, we evaluate the metric
of per-token accuracy. This metric can be deemed equivalent to the token edit distance metric
proposed by Schaeffer et al. (2023), since it does not respect sentence order. Intriguingly, we
find that even this metric demonstrates sudden improvements in our experiments. The first
sudden improvement, corresponding to syntax acquisition, is easily visible; the latter sudden
improvement, corresponding to learning of type constraints, is only visible when zoomed.
This possibly indicates that even metrics that do not respect task structure show sudden
improvements, but the improvement is relatively marginal and hence not easily visible.

C DATA-GENERATING PROCESS: DEFINING OUR FORMAL LANGUAGE

Our data-generating process involves defining a formal language, sampling sentences from this
language, and then defining tasks to be performed upon these sentences (specifically, free generation,
unscrambling, or conditional generation). In this section, we discuss the precise details of how the
language is implemented.

C.1 DEFINING A GRAMMAR USING PCFGS

To define a grammar for our language, we use the framework of Probabilistic Context-Free Grammars
(PCFGs). To keep the paper self-contained, we provide a short primer on PCFGs below and then
discuss our precise version of it in detail. For a more thorough discussion on PCFGs, we refer the
reader to one of the several well-written tutorials (Collins, 2013) and books (Sipser, 1996).

C.1.1 SHORT PRIMER ON PCFGS

Broadly, a PCFG is defined via a 5-tuple G = (NT, T, R, S, P), where:

• NT is a finite set of non-terminal symbols.

• T is a finite set of terminal symbols, disjoint from NT.

• R is a finite set of production rules, each of the form A → αβ, where A ∈ NT and
α, β ∈ (NT ∪ T).

• S ∈ NT is the start symbol.

• P is a function P : R → [0, 1], such that for each A ∈ NT,
∑

α:A→α∈R P(A → αβ) = 1.

To generate a sentence from a PCFG, the following process is used. Pseudocode for this generation
process is provided in Algo. 1.

1. Start with a string consisting of the start symbol S.

2. While the string contains non-terminal symbols, randomly select a non-terminal A from the
string. Choose a production rule A → αβ from R according to the probability distribution
P(A → α).

3. Replace the chosen non-terminal A in the string with α, the right-hand side of the production
rule.

4. Repeat the production rule selection and expansion steps until the string contains only
terminal symbols (i.e., no non-terminals remain).
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5. The resulting string, consisting entirely of terminal symbols, is a sentence sampled from the
grammar.

Algorithm 1: Pseudocode for generating a sentence from a PCFG: Process to sample a
sentence from a given PCFG G.
def generate_sentence(G):

# Initialize the string with the start symbol S
string = [S]
# While the string contains non-terminal symbols
while any(is_nonterminal(symbol) for symbol in string):

# Select a non-terminal A from the string
A = select_nonterminal(string)
# Choose a production rule A → α according to P
rule = sample_rule(A,G.P )
# Replace A in the string with α
string = apply_rule(string, A, rule)

# Return the generated sentence composed of terminal symbols
return string

C.1.2 INSTANTIATING THE GRAMMAR UNDERLYING OUR LANGUAGE

While generally one directly samples sentences from a grammar, in this work, we define a grammar
that operates over symbols, i.e., whose terminals are variables that are not yet populated by any
specific values from the language’s vocabulary. We emphasize this is an unconventional manner for
defining a PCFG, as one would generally use a standard vocabulary of the language to directly define
terminal symbols. However, to enforce type constraints, we find this unconventional format aids in
making the implementation easier. Specifically, one can simply sample an entirely symbolic sentence,
and then enforce type constraints at the step when these symbols have to be populated.

Overall, our grammar, denoted G, is defined using the following.

• Terminal symbols: T = {Subj, Obj, Verb, Conj, lVerb, Desc, eAdj, dAdj, Adv, Prep}.

– Here, Subj is a symbol for a subject, Obj for an object, Verb for verbs, Conj for
conjunctions, lVerb for a linking verb, Desc for descriptors, eAdj for adjectives used
for entities, dAdj for adjectives used for descriptors, Adv for adverbs, and Prep for
prepositions.

• Non-terminal symbols: NT = {S, sNP, sT, oNP, oT, VP, vT, descT}.

– Here, S denotes the start symbol, sNP can be interpreted as a noun phrase with a subject
in it, sT as the immediate ancestor of the subject symbol, oNP as a noun phrase with an
object in it, oT as the immediate ancestor before the object symbol, VP as a verb phrase,
vT as the immediate ancestor of the verb symbol, and descT as the immediate ancestor
of a descriptor symbol.

• Production rules R:

S → sNP VP [1.0]

sNP → sT [0.8] | sNP Conj sNP [0.2]

VP → lVerb descT [0.4] | Verb Prep oNP [0.4] | VP Conj VP [0.2]
oNP → oT [0.7] | oT Conj oNP [0.3]

sT → eAdj Subj [0.8] | Subj [0.2]

oT → eAdj Obj [0.8] | Obj [0.2]

descT → dAdj Desc [0.8] | Desc [0.2]

Note that since non-terminals can appear on both left and right hand side of a rule, there is recursion
possible in our grammar and hence sentences can get very long. We restrict sentence lengths to
75, yielding a language where sentence lengths vary from 4–75 tokens. Probability over rules was
partially adapted from prior work by (Hupkes et al., 2020).
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Given the above, we can now sample symbolic sentences such as Subj lVerb Desc. We will populate
these symbols with tokens from our vocabulary V . As noted above, while in general this population
step would be performed as the final step of the grammar, to enforce type constraints and enable
context-sensitivity, we separate it from the grammar.

Implementation. To implement the grammar, we use the NLTK package (Bird et al., 2009), which
provides an easy interface to define PCFGs. Moreover, the package provides pre-implemented parsers
that help perform grammaticality checks, i.e., if our model produces a sentence f(x) for some input
x, we can simply use the parser to check whether f(x) is grammatically correct.

C.2 TYPE CONSTRAINTS

As described in the main paper, we instantiate a minimal notion of context sensitivity by constraining
when an entity is seen in the context of a property or verb. There are two subtle ways in which such
constraints will affect the generated sentences.

• Constraining properties. When a symbolic sentence with a descriptor is sampled, the
descriptor symbol will be populated with a property that is valid for the relevant entity in
the sentence.

• Constraining subjects and objects. Subjects and objects broadly distinguish entities (or,
to be precise, nouns) in a sentence. For properties that help define verbs (e.g., Walk), we
instantiate a notion of directionality that determines whether the entity can take the action
suggested by the verb corresponding to the property or whether the action can be taken upon
it. Accordingly, when a verb is selected, only a subset of subjects and objects that can take
and have the action of verb be taken upon them are left valid to form a sentence.

Overall, then, say we have a symbolic sentence. We populate the symbols in the sentence as follows.

• Check if there is a verb to populate. If so:
1. Randomly sample a verb from the vocabulary and fill it in.
2. Sample required number of entities that can occur on the right side of the verb, i.e., can

populate objects
3. Sample required number of entities that can occur on the left side of the verb, i.e., can

populate subjects

• Check if there are descriptor to populate. If so:
1. If the entities are not populated yet, populate them.
2. Use the parse tree for the symbolic sentence to identify property of which entity should

populate the descriptor.
3. Randomly sample a descriptor from the valid properties of said entity.

• Check if there are adjectives to populate. If so:
1. Identify whether the adjective corresponds to an entity or a property
2. Populate the adjective with a valid adjective from the group of adjectives reserved for

entities versus properties

• Check if there are adverbs, link verbs, prepositions, or conjunctions to populate. If so:
1. Sample an adverb, link verb, preposition, or conjunction from the vocabulary. We

intentionally do not make these parts context-sensitive, since the remaining parts are
sufficient to induce context-sensitivity and enable our experiments.

Pseudocode describing the process above is detailed in Algo 2.

C.3 DEFINING THE OVERALL CONTEXT-SENSITIVE LANGUAGE

Our language L is defined by first instantiating the underlying grammar as described in App. C.1
and then the type constraints in App. C.2. We note that since the grammar is a randomized process
and token roles are randomly filled by using the type constraints graph, the odds of seeing the same
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Algorithm 2: Pseudocode for populating a symbolic sentence: Fills in symbols while respect-
ing the type constraints.
def populate_sentence():

# Check if there is a verb to populate
if has_verb():

# Sample a verb from the vocabulary and fill it in
verb = sample_verb(vocabulary)
populate_verb(verb)
# Sample entities for the right side (objects)
objects = sample_entities(right)
# Sample entities for the left side (subjects)
subjects = sample_entities(left)

# Check if there are descriptors to populate
if has_descriptors():

# Populate entities if not already populated
if not entities_populated():

populate_entities()
# Use parse tree to identify which entity’s property to populate
entity = get_entity_for_descriptor(parse_tree)
# Sample a descriptor from the valid properties
descriptor = sample_descriptor(valid_properties, entity)
populate_descriptor(descriptor)

# Check if there are adjectives to populate
if has_adjectives():

# Identify if the adjective corresponds to an entity or a
property
role = identify_role(token)
# Sample a valid adjective based on the role
adjective = sample_adjective(role)
populate_adjective(adjective)

# Check if there are adverbs, link verbs, prepositions, or
conjunctions to populate
if has_adverbs_etc():

# Sample an adverb, link verb, preposition, or conjunction from
the vocabulary
word = sample_word(vocabulary)
populate_word(word)
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Figure 8: Adjacency matrix with time. As the model undergoes training, entities are seen in the
context of more properties. Recording whether a pair of object and property have been seen together,
we can get the adjacency matrix for a bipartite graph corresponding to entities and properties that
constitute the data-generating process, as shown in the plots. The red-dotted lines indicate class
boundaries. This matrix can be deemed as the adjacency matrix representation of the empirical type
constraints graph, and, as training goes on, it will get closer to the ground truth graph. Note that
several entities and properties will never be seen together, however, other entities from the class may
be paired with a property, allowing the model a signal to infer that the entities likely belong to the
same class.

sample multiple times are exceedingly low. Primary hyperparameters for defining L include number
of entities and number of properties, denoted |E| and |K|, respectively. Unless mentioned explicitly,
we fix these hyperparameters to 900 and 18000 respectively. In several experiments we do vary these
variables though. Thus, we also note that we are slightly abusing notations here and using L to refer
to a single language. In actuality, however, what we have is a family of languages with the same
grammar, but varying number of entities and properties. The vocabulary consists of entities (subjects
and objects), descriptors, verbs, adjectives, adverbs, prepositions, and conjunctions. All languages
we analyze have the same number of verbs (= 200), linking verbs (= 2), adjectives (= 20), adverbs
(= 20), prepositions (= 3), and conjunctions (= 2).

We also note that the type constraints graph merely describes which properties are valid for a class.
For a specific entity, only a fraction of these entities might be visible during training. Specifically, we
constrain the sampling process such that only 15% of valid properties of a class are actually associated
with an entity. However, as training occurs, the model gets to see several entities in the context
of several properties. Even though certain pairs will never be seen together due to the restriction
discussed above, two randomly sampled entities will still have a non-zero proportion of properties in
whose context they have both been seen, hence giving the model some signal that the entities have
shared characteristics (see Fig. 8). This is likely what leads to the percolation-like process we observe
in the main paper to come into play, and hence yields us a 0.5 power law scaling for the transition
point where model’s performance on generating sentences with descriptors or performing reasoning
tasks on sentences with descriptors starts to improve.

A few example sentences from the language are reported in Figs 9, 10. Note that there are a large
number of symbolic sentences possible; we merely report two of these to provide intuition. We also
reemphasize that naturalistic sentences used as examples in the main paper were to merely analogize
the structures our language is trying to capture. It is not difficult to see that the sentences in the
examples provided here have a similar structure and constraints as those naturalistic examples.
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Task: free generation
Input: null
Output: eAdj19 subj5 has pAdj7 descriptor1496

Task: unscrambling
Input: has eAdj19 descriptor1496 pAdj7 subj5
Output: eAdj19 subj5 has pAdj7 descriptor1496

Task: conditional generation
Input: subj5 descriptor1496
Output: eAdj19 subj5 has pAdj7 descriptor1496

Figure 9: Exemplars where an entity’s properties are described. Each box represents a different
task; specifically, free generation, unscrambling, and conditional generation.

Task: free generation
Input: null
Output: eAdj16 subj102 adv9 verb64 in eAdj1 obj41

Task: unscrambling
Input: eAdj16 subj102 adv9 verb64 in eAdj1 obj41
Output: eAdj16 subj102 adv9 verb64 in eAdj1 obj41

Task: conditional generation
Input: verb64 obj41
Output: eAdj16 subj102 adv9 verb64 in eAdj1 obj41

Figure 10: Exemplars where a subject and object are bound via a verb. Each box represents a
different task; specifically, free generation, unscrambling, and conditional generation.
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Figure 11: Viewing learning of descriptive type constraints as the problem of percolation on a
bipartite graph. Imagine entities and properties of a class represented as nodes of a bipartite graph.
As training proceeds (marked using large gray arrows in the figure), edges are added to this graph
to denote the model has seen sentences containing nodes connected by the edge, i.e., an entity and
a property. (a) At initialization, there will be no edges in the graph. (b) However, with time, edges
begin to get added (bold, colored edges). (c) With time, the model will see the same properties being
used for the different entities (dotted, colored edges). For ex., it may see that both a Woman and a
Student can Eat. This leads to a path of edges that connect entities and properties which have
not been seen by the model in a shared context (e.g., the model may be able to infer in panel (c) that
a Woman can Jump). (d) If enough properties are shared between different entities, the model can
infer that in fact all such entities belong to the same class and hence can be seen in the context of any
property that is valid for the class. This will yield the learning of the broader concept class structure,
as indicated by evolution of color of nodes and edges: from left to right, color is increasingly red,
indicating there is a path of edges that connects all entities and properties to each other. We analogize
this overall process to execution of the process of percolation on a bipartite graph: as edges are
added, we can define the existence of a valid path between two nodes to suggest that there is enough
information available to believe these nodes are related to each other; with enough edges, there is a
sudden transition that leads to the emergence of a large connected component in the graph, indicating
enough information is available to learn the structure of the class. This can enable generalization to
unseen combinations of entities and properties.

D LEARNING OF DESCRIPTIVE TYPE CONSTRAINTS AS PERCOLATION ON A
BIPARTITE GRAPH

We analogize learning of type constraints as a function of time to the addition of edges to a bipartite
graph whose nodes denote entities and properties; an edge denotes a given combination of entity and
property has been seen by the model during training. Consequently, as time goes on, more edges are
added to this graph, yielding a percolation phase transition once a critical edge density necessary for
achieving the transition is met. This transition leads to the emergence of a large connected component.
We claim this percolation process captures the dynamics of our model learning type constraints.
Below, we first discuss the analogy between percolation and learning of type constraints in some
detail (App. D.1), and then derive the scaling of the critical edge density needed for the percolation
phase transition (App. D.2). Latter forms the basis of our experiments in Sec. 6.2.

D.1 MORE DISCUSSION OF THE ANALOGY

Below, we discuss steps involved in the reasoning that help analogize learning of type constraints
with the problem of percolation phase transition on a bipartite graph. See Fig. 11 for a visualization.

Step 1: Defining the type constraints graph. Imagine a bipartite graph whose nodes on one side
are entities of a class (e.g., Man, Woman, Lawyer, Doctor, etc. forming the class of Humans);
meanwhile, the other set of nodes is the properties these entities can have (e.g., Walk, Talk, Eat,
Jump, etc. for class of Humans). We call this graph the type constraints graph (see also Figure 2b).
When sampling a sentence from our language to train our models, we use the type constraints graph
to constrain which entities and properties can be seen together in a sentence. While all entity-property
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combinations of a class form valid sentences, given the combinatorially many combinations, at a
given point of time, the model is unlikely to have seen (and hence learned) all possible combinations.
We can however test whether the model “knows” that an unseen combination of entities and properties
can form a valid sentence: if it does, the model has learned to combine an unseen entity and property
belonging to the same class.

Step 2: Analogizing what the model knows to percolation on a bipartite graph. At initialization,
the model does not know that an entity of a class can possess properties of that class. For example,
the model does not know that the entity Man can have the property of being Tall. As the model
undergoes training, it will see sentences connecting entities to properties valid for them; e.g., seeing
the sentence “That man is very tall” can lead to the model learning that the entity Man can be Tall.
We define the concept density matrix (Definition 4) to capture this dynamic at any given time. The
matrix entry corresponding to a pair of entities and properties is assigned the value of 1 at a given
time t if the model has seen this pair of entity and property in a sentence. This matrix can be deemed
as the adjacency matrix of a bipartite graph whose nodes, again, are entities and properties of a class,
and whose edges denote whether the model has the knowledge that an entity–property combination
can produce a valid sentence. As the model undergoes training, more edges are added to this graph
(see Figure 6, left panel). We argue this is reminiscent of the problem of bond percolation on a
bipartite graph, wherein edges are added to the graph one-by-one, and, at some critical edge density,
there is a phase transition that yields a large connected component covering a large proportion of
the graph. That is, there is the sudden emergence of a path between any two randomly selected
nodes of the graph. Beyond the point of transition, the rate of growth of this connected component is
approximately log-linear in edges added.

Step 3: Percolation as a model for predicting unseen combinations of entity–property pairs
can be composed to form a valid sentence. If the percolation analogy is correct, we expect the
transition point in our empirical results where the model starts to learn descriptive constraints in a
log-linear manner with respect to time to scale as a power-law of exponent 0.5 in the number of node
combinations of the graph (i.e., ∝

√
|E||K|). As results in Figure 7 show, this is indeed the case!

D.2 PERCOLATION THRESHOLD IN THE BIPARTITE GRAPH SETUP

For general bipartite graphs that are uncorrelated, meaning that they are completely described by
the degree distributions P1(k) and P2(k) for the entities and properties, respectively, the percolation
threshold is

pc =

√
⟨k⟩1⟨k⟩2

⟨k(k − 1)⟩1⟨k(k − 1)⟩2
. (1)

Here, ⟨·⟩i denotes the expected value with respect to Pi(k), and we require |E|⟨k⟩1 = |K|⟨k⟩2 for
consistency. The case of randomly selecting connecting edges as demonstrated in the main text
will correspond to starting from a complete bipartite graph, in which case P1(k) = 1k,|K| and
P2(k) = 1k,|E|, leading to pc =

√
1/(|E| − 1)(|K| − 1) ≃

√
1/|E||K|.

To derive Eq. (1) we use the generating function as explained in (Newman et al., 2001). Firstly, we
introduce the generating function for the degree distribution of two concepts, i = 1, 2:

G0
i (x) :=

∞∑
k=0

Pi(k)x
k (2)

The generating function can be used to calculate moments of the probability distribution, such as the
mean and variance, by taking derivatives:

dG0
i (x)

dx

∣∣∣∣
x=1

=

∞∑
k=0

kPi(k)x
k−1

∣∣∣∣∣
x=1

=

∞∑
k=0

kPi(k) = ⟨k⟩i (3)

d2G0
i (x)

dx2

∣∣∣∣
x=1

=

∞∑
k=0

k(k − 1)Pi(k)x
k−2

∣∣∣∣∣
x=1

=

∞∑
k=0

k(k − 1)Pi(k) = ⟨k(k − 1)⟩i. (4)

Here we denoted the average over the degree distribution of concept i as ⟨·⟩i.
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Another useful property of generating functions is that the generating function of the sum of the
degrees can be described by the power of generating functions. For example, the distribution of the
sum of degrees from two randomly selected nodes from sets i and j, denoted by P̃ij(k), will satisfy

∞∑
k=0

P̃ij(k)x
k = G0

i (x)G
0
j (x). (5)

With these properties in mind, we further introduce the generating function for the distribution of
outgoing edges from a node that we arrive at by following a randomly chosen edge:

G1
i (x) :=

∑∞
k=0 kPi(k)x

k−1∑∞
k=0 kPi(k)

=
G0′

i (x)

⟨k⟩i
. (6)

which can be obtained by noticing that the probability of the degree of a node arrived at from a
randomly chosen edge is proportional to kPi(k). The decreased power of x by one in the numerator
is to exclude the originally chosen edge.

We further introduce the generating function for the distribution of the number of concepts in i that
can be reached from a node in the concept j( ̸= i) that is connected to a randomly chosen edge as
G̃1

i (x), and the same when randomly choosing a node in concept j, G̃0
i (x). These functions satisfy

G̃0
i (x) = G0

i (G
1
j (x)) (7)

G̃1
i (x) = G1

i (G
1
j (x)). (8)

We also introduce the generating function for the distribution of the sizes of components in concept
i that are reached by choosing an edge, H1

i (x), and the same when choosing a node in concept i,
H0

i (x). These satisfy

H0
i (x) = xG̃0

i (H
1
j (x)) (9)

H1
i (x) = xG̃1

i (H
1
j (x)). (10)

Here, the key assumption is that there is no closed loop of edges in the network, which holds if the
fraction of connection is low and there is no cluster (i.e., sub-critical regime).

The average cluster size of concept i, i.e., the number of nodes in i that are connected with each other,
is then ⟨Si⟩ = H0′

i (1), which is

⟨Si⟩ = 1 +
G̃0′

i (1)

1− G̃1′
i (1)

, (11)

using the derivatives of Eqs. (9),10). The percolation threshold is when the denominator in the second
term of Eq. (11) becomes zero, so

G̃1′

i (1) = G1′

i (1)G1′

j (1) =
G0′′

1 (1)G0′′

2 (1)

⟨k⟩1⟨k⟩2
=

⟨k(k − 1)⟩1⟨k(k − 1)⟩2
⟨k⟩1⟨k⟩2

= 1 (12)

Now, when the connection of each a probability of connection p associated with each bond on top of
the original graph, the generating function of the degrees will become

G0
i (x; p) =

∞∑
k=0

∞∑
n=k

Pi(n)

(
n

k

)
pk(1− p)n−kxk (13)

=

∞∑
n=0

Pi(n)(px+ 1− p)n = G0
i (1 + (x− 1)p). (14)

From the first line to the second line, we used
∑∞

k=0

∑∞
n=k =

∑∞
n=0

∑n
k=0. We can then rewrite

Eq. (12) as

⟨k(k − 1)⟩p1⟨k(k − 1)⟩p2
⟨k⟩p1⟨k⟩

p
2

= p2
⟨k(k − 1)⟩1⟨k(k − 1)⟩2

⟨k⟩1⟨k⟩2
= 1, (15)

from which we obtain Eq. (1). Here we used ⟨k(k−1)⟩pi = G0′′

i (1; p) = p2G0′′

i (1) = p2⟨k(k−1)⟩i
and ⟨k⟩pi = G0′

i (1; p) = pG0′

i (1) = p⟨k⟩i.
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D.2.1 EXPONENT IN THE CLUSTER SIZE

The critical exponent associated with the number of nodes in the cluster for p > pc, S ∼ (p− pc)
β ,

is determined to be β = 1 when there is no specific structure in the graph. To see this, let us consider
that u = H0

i (1) is the probability that a node in i is included in a finite size cluster (i.e., not the large
connected cluster). Recall that H0

i (1) was the generating function of the number of nodes in concept
i included in the cluster in the subcritical regime (p < pc); we are here assuming that the statistics
will not change even in the supercritical regime (p > pc) when neglecting the large cluster. Then,
from Eqs. (9,10), we have

H0
i (1) = u = G̃0

i (H
1
j (1)) = G̃0

i (G̃
1
j (u)) (16)

= G0
i (G

1
j (G

0
j (G

1
i (u)))) =: f(u) (17)

which is a self-consistent equation.

By writing u = 1− ϵ, we have f(1− ϵ, p) = 1− ϵf ′(1, p) + ϵ2f ′′(1, p)/2..., where the derivative is
taken for u. Noticing that f ′(1, pc) = 1, we obtain the relation

ϵ = (p− pc)
∂2

∂u∂p
f(u, p)

∣∣∣∣
u=1,p=pc

[
1

2

∂3

∂u2∂p
f(u, p)

∣∣∣∣
u=1,p=pc

]
+ o(p− pc) + o(ϵ) (18)

∼ (p− pc), (19)

indicating β = 1.

As an interesting generalization, a classic result (Cohen et al., 2002) shows that even for the situation
where pc > 0, the power β can deviate from one. This corresponds to when the differential coefficients
in Eq. (18) diverge, corresponding to cases where the second or third moment being ill-defined. For
the case of Pi(k) ∼ k−γ with 3 < γ < 4, we can show that β = 1/(γ − 3).

D.2.2 TRANSITION BEHAVIOR FOR FINITE INFERENCE STEPS

The mapping of the inference scheme to the percolation problem becomes precise only in the context
of infinite inference steps. For a finite number of steps, denoted as n, the pertinent question is the
number of node pairs across the sets connected within 2n+ 1 edges. Using the average degrees ⟨k⟩1
and ⟨k⟩2 respectively, a node in the first set can reach approximately ⟨k⟩n+1

1 ⟨k⟩n2 nodes after 2n+ 1
steps. Hence, the approximate fraction of connected edges within 2n+ 1 steps is |E|⟨k⟩n+1

1 ⟨k⟩n2 .
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E EXPERIMENTAL DETAILS

Model architecture. We train a two-block Transformer based on the nanoGPT architecture (Andrej
Karpathy, 2023) using the standard autoregressive language modeling objective, i.e., next token
prediction. Each block contains two attention heads, an MLP, GELU activation, and processes /
produces 128 dimension representations. Both token and position embeddings are learned during
training.

Optimization setting. Models are trained using the Adam optimizer with 10−3 stepsize, batch-size
of 128, and 10−4 weight decay for 105 iterations (or until the run collapses due to cluster challenges;
e.g., power outages). Gradient clipping at norm of 1 is applied. No learning rate schedule is used.
Unless stated otherwise, results are averaged over three seeds.

Data configuration. Sentences are sampled “online”, i.e., we sample a fresh batch of data every
iteration by following the rules of the language. The language has M entities and N properties
uniformly distributed over C classes, with edges connecting properties sparsely and randomly
distributed over valid properties for a given object (specifically, only 15% connections are made).
We slightly abuse notations by using L to refer to our language, since in actuality we have a family
of languages with the same grammar, but varying number of entities and properties. We note that
since the grammar is a randomized process and token roles are randomly filled by using the type
constraints graph, the odds of seeing the same sample multiple times are exceedingly low.

Tokenization. We use a one-hot, manually defined tokenization scheme wherein each token is
associated with a unique token ID.

E.0.1 PERFORMANCE OF A MEMORIZING SOLUTION ON DESCRIPTIVE SENTENCES

As the model undergoes training, its accuracy at getting descriptive constraints right can, at max,
be the following: Acc = 0.1 + f ∗max

(
1, 0.25Bt|C|

|E||K|Rf

)
, where f is fraction of pairs from the type

constraints graph the model can see during training, 0.25 is approximately the proportion of randomly
sampled sentences that are descriptive in nature, B is batch-size, t is number of iterations, and R
is number of repetitions needed to internalize that an entity and property constitute a valid context.
Since we see the third phase in a regime where t ∼ 104, assuming at least 4 repetitions are necessary
for internalizing a pair, we have Acc ∼ 0.15.
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F FURTHER RESULTS: ROBUSTNESS ACROSS SETTINGS AND EVALUATIONS

In this section, we report several more metrics relevant to assess how well the model has internalized
the language and how well it is able to perform tasks on top of strings from the language. We report
results across several configurations as well. Rarely, but certainly sometimes, runs crashed due to
cluster issues. These configurations are not reported, or reported until the point of crash if sufficient
time had passed in training.

• Base setting: This is the setting used throughout the paper, i.e., with 10 classes and 900
entities.

• Varying number of properties: ranging from 14800—38800, in increments of 1600.
• Different class setting: we change number of classes to 2 and repeat all evaluations in this

setting.
• Different entities setting: we change number of entities to 1800 and repeat all evaluations in

this setting.

We specifically report the following results. Both in the main paper and in the results below, evaluation
metrics are averaged over 1000 randomly sampled strings.

• Loss / learning curves under different settings: App. F.1.
• Grammaticality and type checks under different settings: App. F.2.
• Negative log likelihoods of sentences from the langauge and their perturbed versions (e.g.,

where type constraints are not correct): App. F.3.
• How well does the model follow our language, where we analyze NLLs of sentences

generated by the model, distribution of length, and parse tree depth: App. F.4.
• Evolution of Attention maps: App. F.5.
• Further results on unscrambling: App. F.6.
• Further results on Conditional Generation: App. F.7. Conditional generation evaluations

turn out to be extremely time-expensive, with a single run taking approximately 4 days to
finish when conditional generation is evaluated (compared to 12 hours without). This is
likely a result of model generating extremely long sentences to compose conditioning tokens
that can involve multiple subjects, objects, and properties. We thus primarily focus on free
generation and unscrambling in the results reported in this section. We do provide results
for conditional generation in one more setting with 27600 properties to demonstrate that our
findings from the main paper (i.e., in the 18000 properties setting) generalize.
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F.1 LEARNING CURVES

We plot learning curves for different settings in this section. Results are reported for varying number
of properties, averaged over 3 seeds, and results for the base setting used in the main paper where
number of properties is fixed to be 18000. For the latter setting, we show the average run alongside
individual runs.

F.1.1 BASE SETTING WITH VARYING NUMBER OF PROPERTIES
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Figure 12: Learning curves with varying number of properties (base setting). As number of
properties are varied, we see the overall loss is substantially more continuous, but individual tasks
can see sudden learning. For example, in free generation, we see a sudden loss drop. This point is
precisely when the model learns to produce grammatically correct sentences. Very slightly after this
point, both tasks of unscrambling and conditional generation see improvement as well. There is a
second change of slope for these tasks between 103 to 7× 103 iterations, depending on the number
of properties. These points match match the moment where the model starts to improve in its Type
Check performance.
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Figure 13: Learning curves for setting with 18000 properties (base setting). We report this plot to
zoom into a specific configuration. As can be seen, there is some minimal variance across runs, but
mostly points of transition are in a similar range.
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F.1.2 CHANGING TO 1800 ENTITIES AND VARYING NUMBER OF PROPERTIES

We change the number of entities to 1800 (compared to base setting of 900) and report learning
curves under varying number of properties. See Figs. 14, 15.
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Figure 14: Learning curves with varying number of properties (1800 entities). As number of
properties are varied, we see the overall loss is substantially more continuous, but individual tasks
can see sudden learning. For example, in free generation, we see a sudden loss drop. This point is
precisely when the model learns to produce grammatically correct sentences. Very slightly after this
point, both tasks of unscrambling and conditional generation see improvement as well. There is a
second change of slope for these tasks between 103 to 7× 103 iterations, depending on the number
of properties. These points match match the moment where the model starts to improve in its Type
Check performance.
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Figure 15: Learning curves for setting with 18000 properties (1800 entities). We report this plot
to zoom into a specific configuration. As can be seen, there is some minimal variance across runs, but
mostly points of transition are in a similar range.
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F.1.3 CHANGING TO 2 CLASSES AND VARYING NUMBER OF PROPERTIES

We change the number of classes to divide entities and properties over to 2 (compared to base setting
of 10) and report learning curves under varying number of properties. See Figs. 16, 17.
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Figure 16: Learning curves with varying number of properties (2 classes). As number of
properties are varied, we see the overall loss is substantially more continuous, but individual tasks
can see sudden learning. For example, in free generation, we see a sudden loss drop. This point is
precisely when the model learns to produce grammatically correct sentences. Very slightly after this
point, both tasks of unscrambling and conditional generation see improvement as well. There is a
second change of slope for these tasks between 103 to 7× 103 iterations, depending on the number
of properties. These points match match the moment where the model starts to improve in its Type
Check performance.
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Figure 17: Learning curves for setting with 18000 properties (2 classes). We report this plot to
zoom into a specific configuration. As can be seen, there is some minimal variance across runs, but
mostly points of transition are in a similar range.
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F.2 GRAMMATICALITY AND TYPE CHECKS

As the model learns rules of our language, we can track how grammatical its sentences are and
whether they satisfy type constraints, as done in the main paper. We report similar results for different
settings in this section. Specifically, we report results for varying number of properties, averaged
over 3 seeds, and for the base setting used in the main paper where number of classes is fixed to be
18000. For the latter setting, we show the average run alongside individual runs.

For grammaticality, we merely use the NLTK parser to check whether the generated sentences by
the model under free generation are grammatically valid, i.e., they follow the rules of the grammar.

For Type Checks, we extract the subjects, objects, and any properties in the sentence to checks
whether they are valid under the type constraints graph (see Def. 3).

F.2.1 BASE SETTING WITH VARYING NUMBER OF PROPERTIES

We report results under varying number of properties with the base experimental setting. See
Figs. 18, 19.
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Figure 18: Grammaticality and Type Checks with varying number of properties (base setting).
As number of properties are varied, we see the grammar is learned around broadly the same time,
i.e., grammar learning is invariant to number of properties (as also seen in learning curves). For type
check, we see as soon as grammaticality reaches its maximum, relative constraints quickly improve,
leading to a boost in accuracy of all constraints evaluation (rightmost panel). Descriptive constraints
see a transition at this point as well, but then after a period of saturation (akin to a saddle point), start
to improve at an approximately linear rate (on log-log scale) until saturating again. These results
match the base setting shown in paper.

103 104 105

Iterations

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Grammaticality
seed 0
seed 1
seed 2
Average

103 104 105

Iterations

10 1

6 × 10 2

2 × 10 1

3 × 10 1

4 × 10 1
Type Check (Descriptive)

103 104 105

Iterations

10 2

10 1

100
Type Check (Relative)

103 104 105

Iterations

10 3

10 2

10 1

Type Check (All)

Figure 19: Grammaticality and Type Checks with 18000 properties (base setting). We report this
plot to zoom into a specific configuration, in particular the one used in main paper. As can be seen,
there is some minimal variance across runs, but mostly points of transition are in a similar range.
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F.2.2 CHANGING TO 1800 ENTITIES AND VARYING NUMBER OF PROPERTIES

We change the number of entities to 1800 (compared to base setting of 900) and report results under
varying number of properties. See Figs. 20, 21.
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Figure 20: Grammaticality and Type Checks with varying number of properties (1800 entities).
To demonstrate robustness of results, we increase number of entities in this experiment. We again
find that as number of properties are varied, the grammar is learned around broadly the same time,
i.e., grammar learning is invariant to number of properties (as also seen in learning curves). For type
check, we see as soon as grammaticality reaches its maximum, relative constraints quickly improve,
leading to a boost in accuracy of all constraints evaluation (rightmost panel). Descriptive constraints
see a transition at this point as well, but then after a period of saturation (akin to a saddle point), start
to improve at an approximately linear rate (on log-log scale) until saturating again. These results
match the base setting shown in paper.

103 104 105

Iterations

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Grammaticality
seed 0
seed 1
seed 2
Average

103 104 105

Iterations

10 1

Type Check (Descriptive)

103 104 105

Iterations

10 2

10 1

100
Type Check (Relative)

103 104 105

Iterations

10 3

10 2

10 1

Type Check (All)

Figure 21: Grammaticality and Type Checks with 18000 properties (1800 entities). We report
this plot to zoom into a specific configuration. As can be seen, there is some minimal variance across
runs, but mostly points of transition are in a similar range.
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F.2.3 CHANGING TO 2 CLASSES AND VARYING NUMBER OF PROPERTIES

We change the number of classes to divide entities and properties over to 2 (compared to base setting
of 10) and report results under varying number of properties. See Figs. 22, 23.
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Figure 22: Grammaticality and Type Checks with varying number of properties (2 classes). To
demonstrate robustness of results, we increase fewer classes in this experiment. We again find that as
number of properties are varied, the grammar is learned around broadly the same time, i.e., grammar
learning is invariant to number of properties (as also seen in learning curves). For type check, we
see as soon as grammaticality reaches its maximum, relative constraints quickly improve, leading
to a boost in accuracy of all constraints evaluation (rightmost panel). Descriptive constraints see a
transition at this point as well, but then after a period of saturation (akin to a saddle point), start to
improve at an approximately linear rate (on log-log scale) until saturating again. The results are less
prominent for this setting, but zooming in (see figure below) shows the claims do follows the base
setting shown in paper.
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Figure 23: Grammaticality and Type Checks with 18000 properties (2 classes). We report this
plot to zoom into a specific configuration. As can be seen, there is some minimal variance across
runs, but mostly points of transition are in a similar range.
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F.3 NEGATIVE LOG LIKELIHOOD OF SENTENCES FROM LANGUAGE AND THEIR PERTURBED
VERSIONS

In this section, we report negative log-likelihoods (NLL) assigned by the model to randomly sampled
sentences from the language during the course of training. To check how well the model is learning
the language, and not perhaps overfitting to some specific samples (we note this is unlikely to occur
in online learning, so this evaluation is just a sanity check but not crucial). To this end, we evaluate
the model assigned NLLs for following settings.

• Seen. This is essentially the training distribution. We define valid sentences from the
language by using the part of the type constraints graph that has connections between
entities and properties, and evaluate the model NLLs.

• Uniform. Since only a fraction of valid connections are shown to the model during training,
it is not necessary for it to generalize to other valid connections. To assess whether the
model can make such inferences, in this evaluation, we allow any valid connection between
entities and properties to be uniformly sampled. This is also the primary evaluation setting
for most experiments conducted in this work.

• Randomize values. Arguably, the model can overly generalize and even start deeming
sentences that do not satisfy the type constraints to be valid. To assess this, in this evaluation,
we ensure the sentence remains grammatically correct, but intentionally use entities and
properties that yield a sentence that does not follow type constraints.

• Randomize grammar. We simply sample a sentence and permute it to break the grammati-
cal rules, while, technically speaking, preserving type constraints since tokens seen in the
sentence are allowed to be in the same context.

Results are reported for varying number of properties, averaged over 3 seeds, and for the base setting
used in the main paper where number of classes is fixed to be 18000. For the latter setting, we
show the average run alongside individual runs. Broadly, our results show the following process is
underway as the model undergoes training.

1. First the model learns the grammar. At this point, Seen, Uniform, and Randomize Values all
see improved NLL. This is what we expect. Since a grammatically correct sentence does not
have to satisfy type constraints, in this first phase, the model is bound to show improved
NLL for sentences that respect vs. do not respect type constraints.

2. Then, there is a sudden improvement in NLL for both Seen and Uniform evaluations. At
precisely this point, the Randomize values evaluation hugely degrades. This implies that
once the model learns type constraints, it does not deem likely sentences that do not respect
them.

3. For the most part, the model never deems grammatically incorrect sentences to be likely.
However, there is a sudden, large degradation in NLLs for grammatically incorrect sentences
later in training.
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F.3.1 BASE SETTING WITH VARYING NUMBER OF PROPERTIES

We report results under varying number of properties with the base experimental setting. See
Figs. 24, 25.

103 104 105

Iterations

3.6 × 101

3.8 × 101

4 × 101

4.2 × 101

4.4 × 101

4.6 × 101

4.8 × 101

NL
L

Seen

103 104 105

Iterations

3.6 × 101

3.8 × 101

4 × 101

4.2 × 101

4.4 × 101

4.6 × 101

4.8 × 101
Uniform

103 104 105

Iterations

5 × 101

6 × 101
Randomize Values

103 104 105

Iterations

102

2 × 102

3 × 102

4 × 102

Randomize Grammar

14800
16400

18000
19600

21200
22800

24400
26000

27600
29200

30800
32400

34000
35600

37200
38800

Figure 24: NLL of sentences with different perturbations and varying number of properties
(base setting). See text in App. F.3 for a detailed discussion. Broadly, we see NLL of Seen evaluation
is very slightly better than Uniform.
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Figure 25: NLL of sentences with different perturbations for setting with 18000 properties (base
setting). We report this plot to zoom into a specific configuration. As can be seen, there is some
minimal variance across runs, but mostly points of transition are in a similar range.
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F.3.2 CHANGING TO 1800 ENTITIES AND VARYING NUMBER OF PROPERTIES

We change the number of entities to 1800 (compared to base setting of 900) and report results under
varying number of properties. See Figs. 26, 27.
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Figure 26: NLL of sentences with different perturbations and varying number of properties
(1800 entities). See text in App. F.3 for a detailed discussion. Broadly, these plots show results with
fewer classes show similar behavior as the base setting.
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Figure 27: NLL of sentences with different perturbations for setting with 18000 properties (1800
entities). We report this plot to zoom into a specific configuration. As can be seen, there is some
minimal variance across runs, but mostly points of transition are in a similar range.
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F.3.3 CHANGING TO 2 CLASSES AND VARYING NUMBER OF PROPERTIES

We change the number of classes to divide entities and properties over to 2 (compared to base setting
of 10) and report results under varying number of properties. See Figs. 28, 29.

103 104 105

Iterations

3.6 × 101

3.8 × 101

4 × 101

4.2 × 101

4.4 × 101

NL
L

Seen

103 104 105

Iterations

3.6 × 101

3.8 × 101

4 × 101

4.2 × 101

4.4 × 101
Uniform

103 104 105

Iterations

4 × 101

5 × 101

Randomize Values

103 104 105

Iterations

102

2 × 102

3 × 102

4 × 102

Randomize Grammar

14800
16400

18000
19600

21200
24400

27600
29200

30800
32400

34000
35600

37200 38800

Figure 28: NLL of sentences with different perturbations and varying number of properties (2
classes). See text in App. F.3 for a detailed discussion. Broadly, these plots show results with fewer
classes show similar behavior as the base setting.
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Figure 29: NLL of sentences with different perturbations for setting with 18000 properties (2
classes). We report this plot to zoom into a specific configuration. As can be seen, there is some
minimal variance across runs, but mostly points of transition are in a similar range.
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F.4 HOW WELL DOES THE MODEL FOLLOW THE GRAMMAR: DISTRIBUTION OF NLLS,
DEPTHS, AND LENGTHS

In this section, we analyze how well the model learns our language. Specifically, we let model
produce a sentence and then use the data-generating process (PCFG and our type constraints graph)
to analyze the max, min, and mean values of metrics listed below. Note that in the following, we
restrict evaluations to grammatically valid sentences only, i.e., only model generations that are
grammatically valid are used for this evaluation (else the NLL will be infinity). Since the model
produces grammatically sentences ≈90–95% of the time (see App. F.2), this conditioning leads to
filtering of only a very minimal number of generations.

• NLL. We analyze how likely the sentences generated by the model are under the data-
generating process.

– Note that if sentences from the grammar were used itself for this evaluation, min, max,
and mean values over a batch of 1000 sentences turn out to be 1.0, 7.63, and 68.2 for
the base setting; evaluations of model’s generations are within these ranges as well.

• Parse Tree Depth. We use the NLTK parser to compute the parse tree underlying our
model’s generated sentences and the tree’s depth.

– Note that if sentences from the grammar were used itself for this evaluation, min,
max, and mean values over a batch of 1000 sentences turns out to be 3, 4.78, and 15;
evaluations of model’s generations are within these ranges as well.

• Lengths. We compute the number of tokens in model’s generated sentences.
– Note that if sentences from the grammar were used itself for this evaluation, min,

max, and mean values over a batch of 1000 sentences turns out to be 4, 10, and 107;
evaluations of model’s generations are within these ranges as well.

F.4.1 BASE SETTING WITH VARYING NUMBER OF PROPERTIES

We report results under varying number of properties with the base experimental setting. See Fig. 30.

103 104 105

Iterations

101

NLL

max
mean
min

103 104 105

Iterations

100

101

Parse Tree Depth

103 104 105

Iterations

100

101

Lengths

14800
16400

18000
19600

21200
22800

24400
26000

27600
29200

30800
32400

34000
35600

37200
38800

Figure 30: Grammar characteristics of model generation as number of properties are varied
(base setting). See App. F.4 for a detailed discussion. Broadly, model generated sentences are in a
similar range as our language’s.
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F.4.2 CHANGING TO 1800 ENTITIES AND VARYING NUMBER OF PROPERTIES

We change the number of entities to 1800 (compared to base setting of 900) and report results under
varying number of properties. See Fig. 31.
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Figure 31: Grammar characteristics of model generation as number of properties are varied
(1800 entities). See App. F.4 for a detailed discussion. Broadly, model generated sentences are in a
similar range as our language’s.

F.4.3 CHANGING TO 2 CLASSES AND VARYING NUMBER OF PROPERTIES

We change the number of classes to divide entities and properties over to 2 (compared to base setting
of 10) and report results under varying number of properties. See Fig. 32.
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Figure 32: Grammar characteristics of model generation as number of properties are varied (2
classes). See App. F.4 for a detailed discussion. Broadly, model generated sentences are in a similar
range as our language’s.
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F.5 EVOLUTION OF ATTENTION MAPS

As the model acquires the grammar, we expect it to attend to specific parts of the context to predict the
next token. Given the simplicity of our model, we can expect the attention maps to be semantically
meaningful, especially after the points of emergence. To assess this, every 1000 iterations of
training, we record model’s attention maps in the base experimental setting on 100 sentences that are
either descriptive or relative in nature. Specifically, we define a symbolic sentence that define the
grammatical configuration of the sentence, and then sample values for individual tokens according to
their roles a 100 times. The attention maps are then recorded and averaged.

F.5.1 DESCRIPTIVE SENTENCES

Due to space constraints, we only report attention maps at iterations [0, 1000, 10000, 30000, 50000].
The primary motivation here is that around iteration 1000 is when the model first seems to learn
the grammar. Similarly, between 1000–10000, it starts to learn type constraints. Then, between
10000–50000, it starts to learn about descriptive properties.

(a) Initialization (b) 1000 iterations (c) 5000 iterations

(d) 10000 iterations (e) 30000 iterations (f) 50000 iterations

Figure 33: Evolution of attention maps for descriptive sentences. Since visualizing the evolution
across time is difficult, we pick a few salient points according to region identified as different phase
according to learning curves and visualize them. We find that indeed the first time the model sees
a sparse attention structure is around 1000 iterations of training, i.e., when it becomes accurate at
producing grammatically correct sentences. From 5–30000 iterations, the model learns to focus on
subject when producing next token, but the link verb and descriptive property do not pay substantial
attention to subject. However, there is a point after 30000 iterations post which the attention on
subject substantially increases; this is the range where other evaluation show a change in performance
as well.
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F.5.2 RELATIVE SENTENCES
Due to space constraints, we only report attention maps at iterations [0, 1000, 10000, 30000, 50000].
The primary motivation here is that around iteration 1000 is when the model first seems to learn the
grammar. Similarly, between 1000–10000, it starts to learn relative type constraints. We expect after
this range, the attention pattern to not change much—this is indeed what happens. We see the model

is basically improving the sharpness of its attention map (pay more attention to tokens that were
already being attended).

(a) Initialization (b) 1000 iterations (c) 5000 iterations

(d) 10000 iterations (e) 30000 iterations (f) 50000 iterations

Figure 34: Evolution of attention maps for relative sentences. Since visualizing the evolution
across time is difficult, we pick a few salient points according to region identified as different phase
according to learning curves and visualize them. We find that indeed the first time the model sees
a sparse attention structure is around 1000 iterations of training, i.e., when it becomes accurate at
producing grammatically correct sentences. Once the model learns relative type constraints (around
5000 iterations generally), we see the attention patterns essentially stabilizes and does not change
much; albeit, it does get sharper (more attention to the tokens that were already being attended).
Interestingly, we see object tokens paying large attention to verbs, i.e., objects are being selected by
analyzing which verbs came before them. We see some non-trivial dependence between verb and
the adverb preceding it, which itself solely attends to the subject token (i.e., it copies that token’s
representation); this could suffice to ensure the model gets verbs right for a subject.
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F.6 MORE RESULTS ON UNSCRAMBLING

In this section, we report several more results evaluating our models’ performance on unscrambling
under varying number of properties for the base setting, setting with increased number of entities, and
with only 2 classes to divide entities and properties over. We report results for the following metrics.

• Exact Match. Accuracy of the model for getting every token of the scrambled sentence into
its right position in the unscrambled version.

• Per Token Accuracy. This metric can be thought of as a smoother version of Exact Match,
i.e., it provides partial credit to the model as it learns to solve the task.

• Accuracy on Descriptive Sentences. In this evaluation, we compute the exact match
accuracy for sentences that are descriptive in nature, i.e., sentences wherein claims are made
about an entity possessing a property.

– We note that the precise way this evaluation is done is by restricting the sentence length
to the shortest sentences (≤ 6 tokens). This range is primarily constituted of sentences
that are descriptive in nature (≈94%).

• Accuracy on Relative Sentences. In this evaluation, we compute the exact match accuracy
for sentences that are primarily relative in nature, i.e., sentences wherein claims are made
about a subject relating to an object via a verb.

– We note that the precise way this evaluation is done is by restricting the sentence length
to the range of (7—9 tokens). This range is primarily constituted of sentences that are
relative in nature (≈85%).

• Grammaticality. Given the output generated by the model when it is fed in a scrambled
input, we evaluate whether the output is grammatically correct or not.

• Type Check. Given the output generated by the model when it is fed in a scrambled input,
we evaluate whether the output follows type constraints or not. We measure accuracy over all
constraints, i.e., we do not decompose this evaluation over descriptive / relative properties.
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F.6.1 BASE SETTING WITH VARYING NUMBER OF PROPERTIES

We report results under varying number of properties with the base experimental setting. See
Figs. 35, 36.

103 104 105

0.00

0.05

0.10

0.15

0.20

0.25
Exact Match

103 104 105

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Per Token Accuracy

103 104 105

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Descriptive Sentences

103 104 105

Iterations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Relative Sentences

103 104 105

Iterations

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Grammaticality

103 104 105

Iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Type Check

14800
16400

18000
19600

21200
22800

24400
26000

27600
29200

30800
32400

34000
35600

37200
38800

Figure 35: Results on unscrambling task as number of properties are varied (Base setting). See
App. F.4 for a detailed discussion on metrics used. Broadly, we see the results presented in the main
paper are consistent across varying number of properties: the model first witnesses improvement in
exact match because relative sentences start to improve, i.e., the grammar is learned, performance
then saturates, and then it finally starts improving again once descriptive sentences’ accuracy starts to
improve. We emphasize metrics assigning partial credit also show sudden changes, i.e., our results
are not sensitive to metrics used.
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Figure 36: Results on the unscrambling task for setting with 18000 properties (base setting). We
report this plot to zoom into a specific configuration. As can be seen, there is some minimal variance
across runs, but mostly points of transition are in a similar range.
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F.6.2 CHANGING TO 1800 ENTITIES AND VARYING NUMBER OF PROPERTIES

We change the number of entities to 1800 (compared to base setting of 900) and report results under
varying number of properties. See Figs. 37, 38.
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Figure 37: Results on unscrambling task as number of properties are varied (1800 entities).
See App. F.4 for a detailed discussion on metrics used. Broadly, we see the results presented in
the main paper are consistent across varying number of properties and a larger number of entities
compared to the base setting: the model first witnesses improvement in exact match because relative
sentences start to improve, i.e., the grammar is learned, performance then saturates, and then it finally
starts improving again once descriptive sentences’ accuracy starts to improve. We emphasize metrics
assigning partial credit also show sudden changes, i.e., our results are not sensitive to metrics used.
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Figure 38: Results on the unscrambling task for setting with 18000 properties (1800 entities).
We report this plot to zoom into a specific configuration. As can be seen, there is some minimal
variance across runs, but mostly points of transition are in a similar range.
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F.6.3 CHANGING TO 2 CLASSES AND VARYING NUMBER OF PROPERTIES

We report results under varying number of properties with the base experimental setting. See
Figs. 39, 40.
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Figure 39: Results on unscrambling task as number of properties are varied (Base setting). See
App. F.4 for a detailed discussion on metrics used. Broadly, we see the results presented in the main
paper are consistent across varying number of properties and fewer classes than the base setting: the
model first witnesses improvement in exact match because relative sentences start to improve, i.e.,
the grammar is learned, performance then saturates, and then it finally starts improving again once
descriptive sentences’ accuracy starts to improve. We emphasize metrics assigning partial credit also
show sudden changes, i.e., our results are not sensitive to metrics used.
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Figure 40: Results on the unscrambling task for setting with 18000 properties (2 classes). We
report this plot to zoom into a specific configuration. As can be seen, there is some minimal variance
across runs, but mostly points of transition are in a similar range.
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F.7 ANOTHER SET OF RESULTS WITH CONDITIONAL GENERATION

As mentioned before, Conditional generation evaluations turn out to be extremely time-expensive,
with a single run taking approximately 4 days to finish when conditional generation is evaluated
(compared to 12 hours without). This is likely a result of model generating extremely long sentences
to compose conditioning tokens that can involve multiple subjects, objects, and properties.

While we focus solely on free generation and unscrambling in the results reported in the sections
above, to demonstrate that our findings from the main paper (i.e., in the 18000 properties setting)
generalize to another setting, we provide results for similar to Fig. 5 in another setting with 27600
properties. Shown in Fig. 41, we can see our findings perfectly align with results from the main paper
and other results shown in the appendix: the model first learns the grammar, then type constraints,
and witnesses improvements on unscrambling and conditional generation tasks as these relevant
data-regularities are learned.

(b) (c)(a) P1 P2 P3 P1 P2 P3P1 P2 P3

Figure 41: Demonstration (27600 properties). We report this plot to zoom into a specific configura-
tion. As can be seen, there is some minimal variance across runs, but mostly points of transition are
in a similar range.
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G SCALING OF POINT OF EMERGENCE (AKA TRANSITION POINT)

In this section, we repeat experiments from the main paper for different settings to analyze how
the point of emergence (interchangeably called transition point or phase transition here) scales with
increase in number of properties in the language. We again report results for both unscrambling and
free generation tasks and also add several more metrics not reported in the main paper.

Before proceeding however, we further discuss our evaluation protocol wherein we rescale x-axis by
some power of number of properties in the language by connecting it back to the notion of phase
transitions and emergence in physics. We also clarify why we might at times need to rescale the
y-axis.

G.1 COLLAPSED CURVES HELP DEMONSTRATE SCALING OF THE TRANSITION POINT

Assume S denotes a control variable (e.g., edge density in our bipartite graph). Assume change in S
induces a phase transition in our system (e.g., the bipartite graph), as measured by sudden change in
the value of some order parameter M (e.g., ratio of largest cluster size to graph size). Further, say
the transition point Sc depends on some other property of the system ν (e.g., number of nodes in the
bipartite graph) via a power law relationship. That is, we have

Sc ∝ να.

Accordingly, if we tracked M as S is changed, we would find its value rapidly starts to change as
S/να → 1. As we change the value of ν, assume the value of M at the point of transition is some
constant value. Thus, if we plot M as a function of S/να, we would find the results “collapse” onto
each other at the point of transition. This is the intuition behind our experiments in the main paper:
as we expect a square-root dependence on the number of properties, if we divide the control variable
(training iterations) by

√
|K|, we should see the curves corresponding to languages with different

number of properties collapse onto each other. This argument however assumes we are tracking
the perfect order parameter with respect to which theory is defined. This need not be the case, as
discussed in the next section.

G.2 WHAT METRICS MAKE SENSE?

Note that the theory of percolation on a bipartite graph and its corresponding phase transition focuses
on the ratio of size of largest cluster in the graph to the overall graph size. That is, the theory of
gauging which nodes are member of the largest cluster and how do this metric increase with scaling
of edge density. By itself, however, standard metrics one would evaluate in tasks defined in this
work, e.g., accuracy, need not linearly correlate with the cluster size. This can affect the collapse
visualization discussed in App. G.1. To elaborate further, we build on the toy setup from above.

Say, the order parameter M is difficult to experimentally gauge—this is in fact the case for our
work, where describing and evaluating a notion of membership within largest cluster is difficult.
Accordingly, we must define alternative metrics that we expect to correlate with M. Denote this
alternative parameter as M′ and say M′ := M× νβ , i.e., another dependence on ν gets involved
in our experiments as we go from M to M′. Accordingly, if we track M′ as the rescaled control
variable S/να is varied, we will find that instead of collapsing onto a constant value, systems with
different values of ν have a different value for M′. However, importantly, we will see that the value
of M′ at this point itself follows a power law relationship M′ ∝ νβ . Accordingly, if we rescaled the
y-axis by dividing it by νβ , we would see the curves collapse onto each other again; that is, we will
see that

as
S
να

→ 1, we have
M′

νβ
→ O(1).

Thus, when using alternative metrics that are meant to correlate with the gold-standard metric (e.g.,
M′ instead of M in the discussion above), a rescaling of the y-axis according to some property of
the system may be needed to help induce a collapse of different experimental curves. As discussed in
the next section, this subtlety turns out to be extremely crucial for our work.
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G.3 EVALUATION METRICS FOR EVALUATING EMERGENCE IN OUR WORK

We find artifacts of the toy problem discussed in sections above in our experiments. Specifically,
the theory of percolation on bipartite graph focuses on largest cluster size as an order parameter.
However, it can be difficult to define a cheaply calculable metric that captures a notion of ‘largest
cluster’ and evaluates membership of properties and entities to the cluster in the context of a neural
network being trained on some data distribution. To circumvent this, we define several alternative
metrics that approximate the notion of largest cluster to an extent, but are not necessarily expected
to show perfect collapse of experimental curves when the x-axis is rescaled by some power of the
number of properties. However, if a mere rescaling of the y-axis by an independent variable (e.g., the
control in this experiment, i.e., number of properties) induces a collapse of experimental curves, then
we can be confident the transition point follows our expected scaling.

Evaluation Metrics. Having discussed the subtleties above, we now discuss the set of evaluation
metrics used in this paper to evaluate how the point of emergence (i.e., transition point) scales with
increase in number of properties. We analyze the following two tasks in this section: unscrambling
and free generation. We use some metrics which are specific to a given task and another batch that is
common to both, as discussed next.

• Unscrambling. Following metrics are reported solely for unscrambling and gauge model’s accu-
racy on the task. As the model learns which properties belong to which entities, we can expect it
to exploit that knowledge to reduce the hypothesis space for next-token predictions and get more
accurate on unscrambling. Hence, we expect accuracy to suddenly start increasing or at least for
its rate of increase to change once the model undergoes a percolation transition.

– Exact Match: Evaluate whether the model’s unscrambled sentence perfectly matches the
ground-truth.

– Per-Token Accuracy: Evaluate how many of the tokens from model’s unscrambled sentence
match the ground-truth.

– Descriptive Sentences Accuracy: Exact match accuracy for solely sentences that are
descriptive in nature. Similar to prior experiments, we simply filter sentences for length and
use ones with ≤ 6 tokens for this evaluation, since 94% such sentences are descriptive in
nature and this allows for easier batching and fast evaluation.

• Free Generation. Following metrics are reported solely for free generation. Similar to unscram-
bling, these metrics evaluate a model’s performance on the task of free generation, wherein the goal
is to produce a sentence that is grammatically valid and respect type constraints. We specifically
focus on type constraints in this section. Specifically, as the model learns which properties belong
to which entities, we can expect Type Check corresponding to descriptive sentences (see below)
will start to improve substantially. In contrast, for Type Checks of relative properties (i.e., validity
of verbs), we do not expect to see any effect of how many descriptive properties are there in the
language.

– Type Check (Descriptive): A type check evaluation, as discussed in main paper, that checks
whether descriptive properties associated with an entity by the model are in fact valid. We
expect the percolation phase change to affect this evaluation, yielding close to 0.5 scaling
with number of properties.

– Type Check (Relative): A type check evaluation, as discussed in main paper, that checks
whether relative properties associated with an entity by the model are in fact valid. We
expect the percolation phase change to not affect this evaluation, since it relies solely on the
grammar, and hence there should be no clear effect of scaling number of properties on this
metric.

– Type Check (All): A type check evaluation, as discussed in main paper, that checks whether
all properties and corresponding entities in a given sentence are allowed to be seen in each
other’s context. We expect the percolation phase change to affect this evaluation, since, unless
the model gets descriptive constraints right, this metric will be zero. However, there will be a
non-trivial proportion of sentences that do not have any descriptor tokens within them; we
expect improvement on these sentences to increase the overall metric, leading to a saturation
phase until the percolation transition kicks in and the model starts inferring which properties
are associated with which entity.
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• Common metrics. Following metrics are reported for both the unscrambling and free generation
tasks. These metrics assess whether the model deems a given property and an entity belong to
each other, regardless of whether it has seen them together as part of the same context. In this
sense, these metrics test a minimal notion of cluster membership, where the cluster is defined by
classes dividing the bipartite graph.

– Average Probability of Valid Tokens. Used for evaluating descriptive type constraints in
free generation and unscrambling. Specifically, we sample a sentence from L that remarks on
an entity possessing a property, and then evaluate probability of this property being the next
token when the sentence is inputted to the model. For example, let x = The fire was
large, we evaluate Pr (1(f(x)1, large)|x−1), where x−1 denotes the sentence up to the
last token and f(x)1 denotes the first token predicted by the model. The result is averaged
over 1000 sentences.

– Negative Log-Likelihood of Valid Sentences. For free generation, we sample a descriptive
sentence from the language and evaluate how likely the model deems this sentence, reporting
it as negative log-likelihood (NLL). Similarly, for unscrambling, we sample a random
descriptive sentence, scramble it, and then evaluate how likely the model deems the ground-
truth unscrambled version.

– Normalized Rank of Valid Tokens. This evaluation is similar to the average probability
evaluation above. However, we now compute the rank of randomly sampled descriptor token
instead of the probability associated by the model to this token. If the model knows which
properties go with an entity, the rank of tokens associated to said entity’s properties will
be low, indicating they are highly likely to be sampled. This metric scales as a function
of vocabulary size; hence, we divide it by the number of properties |K| and called that the
normalized rank.

– Percent Top-K. Similar to the rank metric above, this metric merely checks whether the rank
is less than some threshold; if so, it returns True, indicating the model understands that the
property being evaluated is valid for the given entity. We set the threshold to be equal to
number of properties associated with a class, i.e., |K|/C.

G.4 EXPERIMENTAL SETTINGS

We analyze the following settings, sweeping the number of properties in the range 14800—38800, in
increments of 1600.

• Base setting: This is the setting used throughout the paper, i.e., with 10 classes and 900
entities.

• Different class setting: we change number of classes to 2 and repeat all evaluations in this
setting.

• Different entities setting: we change number of entities to 1800 and repeat all evaluations in
this setting.
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G.5 SCALING IN THE UNSCRAMBLING TASK

G.5.1 BASE SETTING WITH VARYING NUMBER OF PROPERTIES

We report results under varying number of properties with the base experimental setting first. See
Fig. 42 for metrics specific to unscrambling, Fig. 43 for the common metrics that more closely capture
a notion of cluster membership, and Fig. 44 for different x-axis rescalings for the average probability
curves that demonstrate validity of claimed scaling of the transition point.
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Figure 42: Results on metrics specific to unscrambling (Base setting). We see a collapse of all
metrics under a 1.5 scaling exponent.
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Figure 43: Results on metrics designed to approximate cluster membership (Base setting). We
see an approximate collapse of inflection points in the normalized rank and percent top-K metrics
under a 0.5 scaling exponent. Average probability is expected to follow accuracy curves, yielding a
1.5 scaling exponent. Interestingly, NLL has a scaling exponent of 2.0.
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Figure 44: Average probability curves for different x-axis rescalings (Base setting). An exponent
of 1.5 induces the best collapse of experimental curves. Inset plots zoom in near transition point.
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G.5.2 CHANGING TO 1800 ENTITIES AND VARYING NUMBER OF PROPERTIES

We change the number of entities to 1800 (compared to base setting of 900) and report results under
varying number of properties. See Fig. 45 for metrics specific to unscrambling, Fig. 46 for the
common metrics that more closely capture a notion of cluster membership, and Fig. 47 for different
x-axis rescalings for the average probability curves that demonstrate validity of claimed scaling of
the transition point.
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Figure 45: Results on unscrambling task as number of properties are varied (1800 entities). We
see a collapse of all metrics under a 2.0 scaling exponent, indicating an effect of number of entities
possibly on the transition point. Arguably, this is expected since unscrambling is affected by both
number of entities and properties involved in the language.
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Figure 46: Results on unscrambling task as number of properties are varied (1800 entities). We
see an approximate collapse of inflection points in the normalized rank and percent top-K metrics
with a 0.5 scaling exponent. Average probability is expected to follow accuracy curves, yielding a 2.0
scaling exponent. NLL again shows a scaling exponent of 2.0, similar to base setting.
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Figure 47: Average probability curves for different x-axis rescalings (1800 entities). An exponent
between 1.5–2.0 induces the best collapse of experimental curves, similar to base setting. Inset plots
zoom in near transition point.
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G.5.3 CHANGING TO 2 CLASSES AND VARYING NUMBER OF PROPERTIES

We change the number of classes to 2 (compared to base setting of 10) and report results under
varying number of properties. See Fig. 45 for metrics specific to unscrambling, Fig. 46 for the
common metrics that more closely capture a notion of cluster membership, and Fig. 47 for different
x-axis rescalings for the average probability curves that demonstrate validity of claimed scaling of
the transition point.
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Figure 48: Results on unscrambling task as number of properties are varied (2 classes). We see
a collapse of all metrics under a 1.5 scaling exponent.
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Figure 49: Results on unscrambling task as number of properties are varied (2 classes). We see
an approximate collapse of inflection points in the normalized rank and percent top-K metrics with
a 0.5 scaling exponent. Average probability is expected to follow accuracy curves, yielding a 1.5
scaling exponent. NLL again shows a scaling exponent of 2.0, similar to other settings.
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Figure 50: Average probability curves for different x-axis rescalings (2 classes). An exponent of
1.5 induces a perfect collapse of experimental curves, similar to base setting. Inset plots zoom in near
transition point.
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G.6 SCALING IN THE FREE GENERATION TASK

G.6.1 BASE SETTING WITH VARYING NUMBER OF PROPERTIES

We report results under varying number of properties with the base experimental setting first. See
Fig. 51 for metrics specific to free generation, Fig. 52 for the common metrics that more closely
capture a notion of cluster membership, Fig. 53 for different x-axis rescalings for the average proba-
bility curves that demonstrate validity of claimed scaling of the transition point and its corresponding
variant in Fig. 54 where the y-axis is not rescaled to demonstrate the transition points align better
with our claimed scaling exponent.
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Figure 51: Results on metrics specific to unscrambling (Base setting). We see a collapse of
descriptive and all constraints metrics under a 0.5 scaling exponent; relative constraints are clearly
invariant to number of properties.
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Figure 52: Results on metrics designed to approximate cluster membership (Base setting).
We see all metrics show an approximate collapse under a 0.5 scaling exponent. Collapse is in the
inflection points for the normalized rank and percent top-K metrics.
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Figure 53: Average probability curves for different x-axis rescalings (Base setting). An exponent
between 0.5–1.0 can be expected to induce the best collapse for the metric of average probability;
results in Fig. 54 show the exponent is closer to 0.5.
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Figure 54: Average probability curves for different x-axis rescalings (Base setting). An exponent
of 0.5 better aligns the transition points.

G.6.2 CHANGING TO 1800 ENTITIES AND VARYING NUMBER OF PROPERTIES

We change the number of entities to 1800 (compared to base setting of 900) and report results under
varying number of properties. See Fig. 55 for metrics specific to free generation, Fig. 56 for the
common metrics that more closely capture a notion of cluster membership, Fig. 57 for different
x-axis rescalings for the average probability curves that demonstrate validity of claimed scaling
of the transition point and its corresponding variant in Fig. 58 where the y-axis is not rescaled to
demonstrate the transition points align better with our claimed scaling exponent.
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Figure 55: Results on metrics specific to unscrambling (1800 entities). We see a collapse of
descriptive and all constraints metrics under a 0.5 scaling exponent; relative constraints are clearly
invariant to number of properties.
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Figure 56: Results on metrics designed to approximate cluster membership (1800 entities).
We see all metrics show an approximate collapse under a 0.5 scaling exponent. Collapse is in the
inflection points for the normalized rank and percent top-K metrics.
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Figure 57: Average probability curves for different x-axis rescalings (1800 entities). An exponent
between 0.5–1.0 can be expected to induce the best collapse for the metric of average probability;
results in Fig. 58 show the exponent is closer to 0.5.
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Figure 58: Average probability curves for different x-axis rescalings (1800 entities). An exponent
of 0.5 better aligns the transition points.

G.6.3 CHANGING TO 1800 ENTITIES AND VARYING NUMBER OF PROPERTIES

We change the number of classes to 2 (compared to base setting of 10) and report results under
varying number of properties. See Fig. 59 for metrics specific to free generation, Fig. 60 for the
common metrics that more closely capture a notion of cluster membership, Fig. 61 for different
x-axis rescalings for the average probability curves that demonstrate validity of claimed scaling
of the transition point and its corresponding variant in Fig. 62 where the y-axis is not rescaled to
demonstrate the transition points align better with our claimed scaling exponent.
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Figure 59: Results on metrics specific to unscrambling (2 classes). We see a collapse of descriptive
and all constraints metrics under a 0.5 scaling exponent; relative constraints are clearly invariant to
number of properties.

57



3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2025

10 1 100 101 102 103

Iterations / |K|0.5

1.5

2.0

2.5

3.0

Avg. Probability × |K|1.1

100 101 102 103

Iterations / |K|0.5

1.37

1.38

1.39

1.40

1.41

1.42

1.43

1.44

1.45
NLL × |K| 0.04

10 1 100 101 102 103

Iterations / |K|0.5

0.3

0.4

0.5

0.6

0.7

0.8
Norm. Rank × |K| 0.2

10 1 100 101 102 103

Iterations / |K|0.5

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Percent Top-K × |K|0.1

14800
16400

18000
19600

21200
24400

27600
29200

30800
32400

34000
35600

37200 38800

Figure 60: Results on metrics designed to approximate cluster membership (2 classes). We see
all metrics show an approximate collapse under a 0.5 scaling exponent. Collapse is in the inflection
points for the normalized rank and percent top-K metrics.
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Figure 61: Average probability curves for different x-axis rescalings (2 classes). An exponent
between 0.5–1.0 can be expected to induce the best collapse for the metric of average probability;
results in Fig. 62 show the exponent is closer to 0.5.
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Figure 62: Average probability curves for different x-axis rescalings (2 classes). An exponent of
0.5 better aligns the transition points.
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(d) 27600 properties
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Figure 63: Bilinear Spline Fits. Working with the hypothesis that the model’s accuracy on unscram-
bling descriptive sentences undergoes first a saturation regime at low performance, before suddenly
changing slope and rapidly improving in performance, we fit bilinear splines to maximally explain
these results. The breakpoint identified using these fits is used to define the transition point scaling
curve in Fig. 64. One can easily see in these curves that the breakpoint is moving rightwards as the
number of properties are increased.

H ALTERNATIVE ANALYSIS OF SCALING OF TRANSITION POINT

2 × 104 3 × 104 4 × 104

Number of properties

2 × 104

3 × 104

4 × 104

Tr
an

sit
io

n 
po

in
t

Transition Point Scaling (averaged across 3 runs)
Slope: 1.40

Figure 64: Transition point scaling.
Working with the hypothesis that the
model’s accuracy on unscrambling de-
scriptive sentences undergoes first a satu-
ration regime at low performance, before
suddenly changing slope and rapidly im-
proving in performance, we fit bilinear
splines to maximally explain these re-
sults. The breakpoint identified using
these fits is used to define the transition
point scaling curve.

A more conventional analysis of how the transition points
scales involves simply identifying the transition point for
different experiments, collating the results, and fitting a
curve to the identified transition points. We chose the
collapse of experimental curves protocol over this method-
ology since, except for unscrambling, defining an algo-
rithmic objective for curve fitting is difficult. However,
at least for unscrambling, we can follow the more usual
pipeline and get the curve fits to see if they align with our
alternative protocol of collapse of experimental curves.

Setup. One can easily see that when the x-axis is log-
scaled, both average probability and descriptive sentences
accuracy show a scaling curve wherein there is first a
saturation at low performance, and then sudden (approx-
imately) linear growth. Exploiting this pattern, we can
simply fit a bilinear spline to minimize the mean square
error from the data and use the breakpoint of this spline
as an approximation to the transition point.

Results. We find a power law with an exponent of 1.4
explains the data fairly well (see Fig. 64). That is, the tran-
sition point, according to this method, scales as a power
law in number of properties with an exponent of 1.4. This
exponent is fairly close to the one identified using the
collapse protocol, i.e., 1.5.

For completeness, we also show a few of the Bilinear
spline fits for descriptive sentences’ accuracy as a function of data scaling in Fig. 63.
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