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ABSTRACT

The hallucination of code generation models hinders their applicability to systems
requiring higher safety standards. One critical bottleneck in addressing code
hallucination is the difficulty of identifying the functional correctness of generated
code, due to its unnatural form. We address this core bottleneck by automatically
generating unit tests using dynamic code analysis tools, leveraging the executable
nature of code. Accordingly, we propose selective code generator that abstains
from uncertain generations – based on the functional correctness evaluated by
generated unit tests – to theoretically control the correctness among non-abstained
answers, i.e., the false discovery rate. Finally, we propose to use generated unit
tests in evaluation as well as in learning for precise code evaluation, calling this
paradigm FuzzEval. We demonstrate the efficacy of our method along with the
controllability of code hallucination and reasonable selection efficiency.

1 INTRODUCTION

Large language models (LLMs) are recently proven to be performant in various tasks, includ-
ing question-answering, summarization, mathematical reasoning, and algorithmic problem-solving
(Brown et al., 2020; Li et al., 2022; Touvron et al., 2023; Ahn et al., 2024). Along with language
generation, code generation is closely related but has its own benefit as a core task for addressing
many applications, including mathematical solving via program of thought, security patch generation,
and general program development (Chen et al., 2023b; Hossain et al., 2024; Kim et al., 2025).

Recent development on large code models have primarily focused on enhancing model performance
(DeepSeek-AI, 2025; OpenAI et al., 2025) – thereby indirectly controlling the functional hallucination.
However, direct control methods to address functionality hallucination in code generation, i.e., a
situation where generated code does not satisfy a desired functionality, remain unexplored.

In contrast to hallucination control in code, heuristic and certified methods for hallucination control in
natural language generation have been extensively studied beyond enhancing the model performance.
For example, the language hallucination is heuristically measured by generating multiple answers and
checking the consensus among them (Manakul et al., 2023; Kuhn et al., 2023). As more sophisticated
methods, hallucination is carefully controlled by certified methods, including conformal prediction
(Vovk et al., 2005) and selective prediction (Geifman & El-Yaniv, 2017), providing certified ways to
mitigate language hallucination (Quach et al., 2024; Mohri & Hashimoto, 2024; Lee et al., 2024).

We claim that a critical bottleneck in mitigating code hallucination mainly stems from the intricacy of
identifying functional equivalence between two code snippets due to the un-natural form of code. In
natural language, textual entailment (Bowman et al., 2015) is the main building block in measuring
the semantic correctness of an answer, i.e., an answer is correct if a question-associated context entails
the answer. Given this definition on the correctness between two sentences, humans can manually
annotate entailment labels to learn entailment-predicting models (Williams et al., 2018). However,
this is challenging in code as it is not easy for humans to decide whether one code entails another due
to its complex, un-natural structure for obtaining entailment labels. This can be partially mitigated
by constructing a few unit tests (Chen et al., 2021; Austin et al., 2021; Cassano et al., 2022) and
executing it to check discrepancies in output, while limited to a small number of unit tests.

To address these challenges, we extend on prior programming language literature to re-define
entailment for code generation. We further exploit the executable property of code by automatically
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Figure 1: Overview of our proposed selective code generation. We leverage an abstaining option
to selectively generate code to control the rate of hallucination in an FDR. Our selective generator
learns a selection function by leveraging dynamic code analysis tools to automatically generate unit
tests and use them as a calibration set for the selection function and also as a test set for evaluation.

generating unit tests through code analysis tools. In particular, we leverage fuzzing methods (Miller
et al., 1990), one of practical code analysis tools, to automatically generate unit tests.

Given the code entailment definition and generated unit tests, we propose certified selective code
generation for code hallucination control. This includes a learning algorithm of a selective generator
for code, a post-processor of an original generator, which provides a controllability guarantee on
the rate of hallucination in a false discovery rate (FDR), i.e., a learned selective generator provides
a desired or minimum level of hallucination. The learning algorithm mainly leverages fuzzing for
checking the correctness of code in a self-supervised manner for supervised learning in selective code
generators. Finally, we leverage fuzzing for code evaluation as well as selective generator learning.
We claim that automatically generated unit tests provide rigorous evaluation, calling this evaluation
paradigm FuzzEval to distinguish from HumanEval (Chen et al., 2021).

To summarize, the main contribution of our work lies in the selective generation learning algorithm
that controls the hallucination rate. We demonstrate the efficacy of our learning algorithm over
open and closed code generators under diverse experiment setups, including four code generators,
four datasets, four programming languages, and diverse baselines. Our results demonstrate the
hallucination-controllability with reasonable efficiency, and further demonstrate the benefits of
automatically generated unit tests. We release code for our algorithm and evaluation dataset.

1.1 RELATED WORK

We introduce tightly related work here. See additional related work in Appendix A.

Execution Based Code Correctness Evaluation. Popular code generation benchmarks, such as
HumanEval (Chen et al., 2021), APPS (Hendrycks et al., 2021), or MBPP (Austin et al., 2021)
evaluate the functional correctness of a generated code snippet by executing unit tests. However,
generating unit tests for such evaluation purposes is a costly task. Automated unit test generations
has been explored in recent work. LLMs itself has been used to improve unit tests (Alshahwan
et al., 2024). EvalPlus (Liu et al., 2023) and SemCoder (Ding et al., 2024) adopt a type-aware input
mutation strategy based on LLM-generated seed, while Mercury (Du et al., 2024) leverages LLMs
to generate random test case generators for evaluation split. Our work complements these work by
generating unit tests via dynamic analysis tools, e.g., fuzzing tool, that have been extensively studied
and validated within the computer security community, to explore execution paths.

Previous works that leverage unit tests for evaluation commonly use the pass@k metric to assess
functional correctness (Liu et al., 2023; Ding et al., 2024). EvalPlus (Liu et al., 2023) reports a drop
in pass@k metric with larger test suites indicating that the metric is sensitive to the number and
quality of unit tests. Furthermore, pass@k cannot consider partially correct or incorrect programs.
Our work addresses this by introducing the FDR-CE metric with a statistical guarantee.

Selective Generation. Selective prediction abstains from answering if a model is not confident
of the answer, from which it controls the risk at a desirable level. This method can be applicable
to various tasks. Selective classification for deep learning (Geifman & El-Yaniv, 2017) considers
classification tasks. Selective text generation (Lee et al., 2024) is applied to a language generation
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task by introducing textual entailment to control hallucination. We extend selective generation for
code by leveraging an executable property of code, while still having hallucination controllability.

2 PROBLEM

We consider a learning problem in code generation and see Appendix B for its preliminary. In
particular, we learn a code generator to control code hallucination in the perspective of functional
correctness where the generator abstains from answering if it is not certain on the correctness of the
generated code. LetW be a set of tokens,W∗ := ∪∞i=0Wi, X :=W∗ be a set of input prompts for a
code generator, Y :=W∗ be a set of code snippets, D be a distribution that depends on prompt and
code pairs X × Y along with other random sources, and G : X → Y be a code generator.

To control the hallucination rate of a code generator G, we consider the following selective generator

Ŝ : X → Y ∪{IDK} (Geifman & El-Yaniv, 2017; Lee et al., 2024): Ŝ(x) :=
{
G(x) if ŝ(x) = 1

IDK otherwise
,

where IDK is a short-hand for “I don’t know” and ŝ : X → {0, 1} is a selection function. Here, we
consider a setup that the target code generator G is given and we learn a selection function ŝ.

We mainly learn the selective generator under the independent and identically distributed (i.i.d.)
assumption by controlling a false discovery rate (FDR) for code. In particular, we consider the risk
definition of a selective generator Ŝ via an FDR with a relation R, i.e.,

RR(Ŝ) := P

{
(Ŝ(x),y) /∈ R

∣∣∣ Ŝ(x) ̸= IDK
}
, (1)

where the probability is taken over (x,y) ∼ D. Here, we measure the ratio of failure, i.e., the ratio
that generated code G(x) does not have a relation R with correct code y, among not-abstaining cases.

Given the learning objective in the FDR, we find a learning algorithm A for Ŝ such that given a
calibration set Z with |Z| = n, the learned selective generator Ŝ := A(Z) controls a desired risk
level ε with probability at least 1 − δ, i.e., P {RR(A(Z)) ≤ ε} ≥ 1 − δ, where the probability is
taken over Z ∼ Dn. Here, the main challenges include designing a correctness relation R for code
generation and finding a learning algorithm with the above PAC-style controllability guarantee, while
maximizing selection efficiency, i.e., P{Ŝ(x) ̸= IDK}.

3 METHOD: SELECTIVE CODE GENERATION

We introduce a novel definition of code entailment in Section 3.1, followed by a risk definition in
Section 3.2. Section 3.3 and 3.4 present the bounds for the code entailment. Our FDR-controlling
algorithm is described in Section 3.5, followed by its controllability guarantee in Section 3.6. Lastly,
we highlight the importance of evaluation via fuzzing in Section 3.7.

3.1 CODE ENTAILMENT

Measuring the functional correctness of a generated code snippet is a challenging task. In particular,
the functionality of generated code is evaluated using only a limited set of manually chosen unit tests
(Chen et al., 2021). We re-define the concept of code entailment that leverages dynamic code analysis
tools to define the functional correctness. To compensate for the lack of unit tests in determining
code entailment, unit tests and expected outputs are extracted from a dynamic code analysis tool.

Let U and V be a set of input and output states for all code snippets, respectively. A dynamic code
analysis tool F : Y × U → U × V returns a pair of input and output states for a given code snippet
y by executing a code snippet y with a seed input s ∈ U , randomly drawn from a distribution over
seed inputs DU , i.e., (u,v) = F(y, s), where s ∼ DU and y(u) = v. Here, we assume that y is a
deterministic code snippet for notational simplicity, but our results maintain with stochastic code
by fixing the random seed of F . As mentioned above, the analysis tool F facilitates learning and
evaluation with code by providing an automatic way to generate a huge number of unit tests. We then
introduce the definition of α-code entailment by leveraging the dynamic code analysis tool F .
Definition 1 (α-code entailment). A code snippet y ∈ Y α-entails ŷ ∈ Y in F and DU if

Py {ŷ(u) = v} ≥ 1− α, (2)
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where the probability is taken over s ∼ DU , (u,v) = F(y, s), and we call Py {ŷ(u) = v} an
expected functional correctness of ŷ with respect to y, F , and DU .

We formally re-define the concept of probabilistic tests originally introduced by Massalin (1987).
Our definition differs from prior work, Claessen & Hughes (2000); McKeeman (1998); Chen &
Su (2015), which focuses on identifying counter examples for program inequivalence. Also, our
definition differs slightly from program equivalence definitions in Jakobs & Wiesner (2022); Lahiri
et al. (2012); Felsing et al. (2014), as we use α to accommodate different code generator quality and
enhance practicality.

In code generation, the α-code entailment provides a foundation for measuring functional correctness.
In particular, to measure the functional correctness between two code snippets y and ŷ, we need
to check whether two code snippets y and ŷ have the same output state for all input states. To
check this bidirectional equivalence relation, we first consider the one-directional definition via code
entailment by checking whether code ŷ satisfies all input and output pairs for code y following
Definition 1. By considering entailment from y to ŷ and vice versa, we can eventually define the
functional equivalence of code. In this paper, instead of analyzing the bidirectional equivalence, we
only consider the one-directional relaxed notation of correctness via code entailment, which suffices
for code generation, e.g., we can say that ŷ is correct if it contains all functionalities of y along with
other functionalities. The example of α-entailment is presented in Table 7.

3.2 FALSE DISCOVERY RATE VIA CODE ENTAILMENT

We define a relation for the FDR risk in (1) via α-code entailment. We first denote the set of
α-entailment code snippets of y by Eα(y), i.e., Eα(y) := {ȳ | Py{ȳ(u) = v} ≥ 1− α} , which
approximately corresponds to the set of all code snippets that has the most functionalities of y. By
the definition of the code-entailment, ŷ ∈ Eα(y) implies that y α-entails ŷ.

Using the same definition of Eα(y), we further define the correctness relation between two code
snippets as follows: Rα := {(ŷ,y) | ŷ ∈ Eα(y)} . Then, from (1), we define the FDR with code
entailment relation Rα (FDR-CE). Equivalently, we use the following FDR-CE definition: Rα(Ŝ) :=

P{Ŝ(x) /∈ Eα(y) | Ŝ(x) ̸= IDK}. Here, the probability is taken over (x,y) ∼ DX×Y , where
DX×Y is a distribution over X × Y .

3.3 CODE ENTAILMENT ESTIMATION

In natural languages, an entailment relation between two sentences can be easily obtained by human
annotators. However, identifying functionalities between two code snippets by humans (i.e., deciding
whether Ŝ(x) /∈ Eα(y) or not) are challenging due to the un-natural form of programming languages.
We overcome this challenge with dynamic analysis tool that exploits an executable property of code.

Inspired by Lee et al. (2024), we estimate Eα and use it as a pseudo-labeling function as the exact
Eα is difficult to obtain. In particular, given a true code snippet y and a generated code snippet ȳ,
recall the expected functional correctness Py{ȳ(u) = v}. Considering that the input-output pairs
(u,v) are independently drawn from the seed distribution DU by F , we estimate the lower bound
of the expected functional correctness by using the standard binomial tail bound. Specifically, let
the lower binomial tail bound L̂ of Py{ȳ(u) = v} be L̂(y, ȳ, ny, εE) := L̂Binom(k̂;ny, εE), where
ny is the number of samples, Sy ∼ D

ny

U , and k̂ :=
∑

(u,v)∈{(u,v)|s∈Sy,F(y,s)=(u,v)} 1(ȳ(u) = v).

Here, L̂Binom is the lower standard binomial tail bound, where F (k;n, θ) be a cumulative distribution
function of a binomial distribution with n trials and success probability θ, and L̂Binom(k;n, δ) :=
sup {θ ∈ [0, 1] | 1− F (k;n, θ) ≤ δ} ∪ {0}. Then, due to its definition, the lower bound holds with
high probability (Clopper & Pearson, 1934) as follows: P{L̂(y, ȳ, ny, εE) ≤ Py{ȳ(u) = v}}} ≥
1− εE , where the probability is taken over Sy ∼ D

ny

U .

Importantly, we carefully choose reasonably small unit test size ny for a given y via Algorithm 1.
In particular, sample size for the binomial tail bound is usually given, but we can generate as many
samples as we wish by executing a dynamic code analysis tool F . Here, the number of samples
should depend on the difficulty in evaluating the correctness of generated code ŷ, i.e., as the generated
code is ambiguous to check the α-code entailment, we need more samples to be certain. To this end,
we increase the unit test size ny until the lower bound L̂ of an expected functional correctness is
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larger than 1 − α (Line 3) to achieve the expected correctness as well. If the sample size exceeds
maximum size nmax, the algorithm returns nmax (Line 7).

From this lower bound L̂, we define an estimated entailment set as follows:

Êα,εE (y) :=
{
ȳ
∣∣∣ L̂(y, ȳ, ny, εE) ≥ 1− α

}
. (3)

Intuitively, code ȳ ∈ Êα,εs(y) likely satisfies ȳ ∈ Eα(y), meaning y α-entails ŷ with high
probability. Thus, the FDR-CE based on the estimated entailment set is defined as Rα,εE (Ŝ) :=

P{Ŝ(x) /∈ Êα,εE (y)|Ŝ(x) ̸= IDK}. Here, the probability is taken over (x,y, ny) ∼ DX×Y×N and
Sy ∼ D

ny

U , where we simply denote the distribution associated to (x,y, ny,Sy) by D. It is a good
alternative for the original FDR-CERα(Ŝ). In the following, we connectRα andRα,εE in learning.

3.4 FALSE DISCOVERY RATE BOUND

We consider the upper bound of the FDR-CE Rα(Ŝ), which leverages the estimated entailment
set. Specifically, from Lemma 2, we have Rα(Ŝ) ≤ PDŜ

{e = 0, ê = 1} + Rα,εE (Ŝ). Here,
e := G(x) ∈ Eα(y), ê := G(x) ∈ Êα,εE (x), and PDŜ

{·} = P{· | Ŝ(x) ̸= IDK}, where the
probability is taken over (x,y, ny,Sy) ∼ D. This intuitively suggests that the FDR-CE over the
exact entailment set can be approximated by the FDR-CE over the estimated entailment set along
with its false entailment rate (FER). Moreover, the FER is related to the correctness of the binomial
tail bound, controlled by εE . This implies the following key lemma. See Appendix H for a proof.

Lemma 1. For any α, εE ∈ (0, 1), and Ŝ, we haveRα(Ŝ) ≤ εE +Rα,εE (Ŝ).

Next, we use this bound to provide an algorithm for Ŝ, controlling this upper bound at a desired level.

3.5 FDR-CE CONTROL ALGORITHM

We propose a selective generator learning algorithm for code that controls the FDR-CE. In particular,
we consider a scalar-parameterization of the selection function ŝ, i.e., ŝ(x) := 1 (f(x, G(x)) ≥ τ) ,
where τ ∈ R. While the scoring function can, in general, be any function that quantifies the confidence
on generated code, we employ the standard length-normalized log-probability for generated tokens as
the default choice, i.e., f(x, G(x)) =

∑
i ln pi / |G(x)|, where pi is the probability by G to generate

the i-th token. Then, our algorithm searches Ŝ that closely controls the upper bound in Lemma 1
within εS by solving the following optimization problem:

min
τ∈R

τ subj. to εE + ÛBinom(k̂; |Ẑ|, δS/⌈log2 |Z|⌉) ≤ εS , (4)

where Z ∼ Dn, Ẑ := {(x,y, _) ∈ Z | f(x, G(x)) ≥ τ}, k̂ :=
∑

(x,y,_)∈Ẑ 1(G(x) /∈ Êα,εE (y)),

and ÛBinom is the upper binomial tail bound, similarly defined as the lower bound L̂Binom. Here, the
algorithm also returns Û := εE + ÛBinom(·), the upper bound of the FDR-CE for the optimal τ̂ .
We denote the algorithm solving (4) by ASCG and see Algorithm 2 for its implementation details.
Appendix N.1 includes guidelines on user-specified parameter selection.

At a high level, the algorithm essentially finds a selective code generator (parametrized by τ ) that
minimizes τ , to maximize the selection efficiency of the selective generator, under the constraint
of controlling the FDR-CE by a desired level εS . If the minimization is not feasible, the algorithm
returns a selective generator that controls the minimum FDR-CE, indicated by Û .

Dynamic Code Analysis via Fuzzing. We consider any dynamic analysis tool F : Y × U → U × V
to generate a unit test (u,v) for a given seed s by executing code y. We adopt a fuzzing method that
are popularized due to its simplicity and efficacy in finding bugs. This method is usually used for
exploiting a certain execution to trigger bugs but we rather use it for exploring wider execution paths.
In particular, we randomly sample a binary stream from distribution DU and use it as a seed s ∼ DU
to arbitrarily assign an input state for code, e.g., randomly initializing input parameters for a function
call. The initial state typically fails to lead to an interesting execution path; therefore, fuzzing method
mutates the input seed to explore wider execution paths; e.g., Atheris (Google, 2020) mutates an
input to increase code coverage. During this repeated execution of code, multiple input and output
state pairs are generated, and we randomly select one of them as our final pair (u,v) for each seed s.
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Figure 2: The box plots of the FDR-CE and selection efficiency for various LLMs (δS = 0.1,
εS = 0.3, εE = 0.05, α = 0.35). See Appendix 4(a) for results with CodeLlama 13B Instruct.

Table 1: Comparison results of SCG against baseline methods on different datasets with GPT-4o
(α = 0.35, δS = 0.1, εE = 0.05 for all datasets). The FDR-CE satisfying the desired guarantees and
the highest efficiency among methods that comply with the FDR-CE guarantees are marked in bold.

Methods w/o Selective Generation w/ Selective Generation

τ = −∞ SCG-EM SCG-MANUAL SCG-SMALL SCG-H SCG

APPS-F (εS = 0.3)
1 - PASS@1(↓) 0.436±0.012 0.020±0.098 0.293±0.014 0.226±0.015 0.282±0.020 0.227±0.017

FDR-CE(↓) 0.431±0.011 0.020±0.099 0.291±0.014 0.226±0.015 0.280±0.020 0.224±0.018

EFFICIENCY(↑) 1.000±0.000 0.000±0.000 0.497±0.014 0.339±0.012 0.463±0.019 0.337±0.011

MBPP-F (εS = 0.4)
1 - PASS@1 0.299±0.022 0.000±0.000 0.258±0.040 - 0.301±0.028 0.304±0.032

FDR-CE 0.294±0.027 0.000±0.000 0.254±0.041 - 0.296±0.029 0.300±0.032

EFFICIENCY 1.000±0.000 0.001±0.003 0.499±0.038 - 0.997±0.004 0.996±0.006

HUMANEVAL-F (εS = 0.3)
1 - PASS@1 0.185±0.058 0.000±0.000 0.142±0.080 - 0.156±0.165 0.069±0.173

FDR-CE 0.207±0.064 0.000±0.000 0.156±0.086 - 0.145±0.123 0.049±0.111

EFFICIENCY 1.000±0.000 0.008±0.017 0.492±0.080 - 0.578±0.401 0.164±0.118

MERCURY-F (εS = 0.3)
1 - PASS@1 0.174±0.018 0.000±0.000 0.138±0.024 - 0.169±0.017 0.170±0.020

FDR-CE 0.170±0.019 0.000±0.000 0.133±0.022 - 0.164±0.019 0.165±0.020

EFFICIENCY 1.000±0.000 0.001±0.002 0.504±0.033 - 0.998±0.003 0.998±0.002

3.6 CONTROLLABILITY GUARANTEE

Our algorithmASCG controls an FDR-CE of a learned selective generator. This is a direct consequence
of selective prediction (Geifman & El-Yaniv, 2017; Lee et al., 2024). See a proof in Appendix I.

Theorem 1. For any εS ∈ (0, 1), δS ∈ (0, 1), α ∈ (0, 1), f , F , DU , and D, we have P{Rα(Ŝ) ≤
Û} ≥ 1− δS , where the probability is taken over Z ∼ Dn and (Ŝ, Û) := ASCG(Z).

This means that ASCG finds a selective code generator satisfying a desired FDR-CE εS (if εS ≥ Û )
or minimum level Û (if Û > εS), without having human-feedback on code entailment labels.

3.7 FUZZEVAL: EVALUATION VIA FUZZING

We suggest to use automatically generated unit tests in evaluation as well. Traditionally, identifying
the functional equivalence desired code and generated code in code generation have relied on manually
obtained unit tests, e.g., HumanEval (Chen et al., 2021). But, as desired code gets complex so the
number of its execution path exponentially increases, manually getting an enough number of unit
tests is challenging. To address this bottleneck, we propose to use fuzzing, a dynamic code analysis
tool, to automatically generate unit tests of given code, calling this evaluation paradigm FuzzEval.

4 EXPERIMENTS

We demonstrate the efficacy of our selective code generation on open and closed LLMs in an
algorithmic solving task. See Appendix M for additional experiments.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0.2 0.3 0.4 0.5
S

0.0

0.1

0.2

0.3

0.4

0.5

FD
R-

CE

FDR-CE
Efficiency

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

(a) Varying εS

0.1 0.2 0.3 0.4 0.5
0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

FD
R-

CE

FDR-CE
Efficiency

0.20

0.25

0.30

0.35

0.40

0.45

Ef
fic

ie
nc

y

(b) Varying α

Normalized Sequence Lowest Verbalized
0.0

0.2

0.4

0.6

0.8

1.0

FD
R-

CE

FDR
Efficiency

S = 0.2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ef
fc

ie
nc

y

(c) Varying Scoring Functions

Figure 3: The FDR-CE results for GPT-4o with varying parameters and scoring functions. We use
εS = 0.3, δS = 0.1, α = 0.35, and εE = 0.05 for Figure 3(a) and 3(b) and εS = 0.2, δS = 0.1, α =
0.15, and εE = 0.05 for Figure 3(c)

Table 2: Comparison results of before and after applying SCG on various code generators, including
CODET(Chen et al., 2023a), LDB(Zhong et al., 2024), and SFS(Light et al., 2025) with GPT-3.5-
Turbo. We use α = 0.4, δS = 0.1, εE = 0.01 for all datasets; we set εS = 0.35 for HumanEval-f
and εS = 0.45 for MBPP-f. For HumanEval-f, we utilized a full dataset, whereas for MBPP-f, we
constructed a new dataset using the union of subsets released by the authors of baseline methods. The
FDR-CE satisfying the desired guarantees are marked in bold.

Methods Base Model Chen et al. (2023a) Zhong et al. (2024) Light et al. (2025)

wo/ SCG w/ SCG wo/ SCG w/ SCG wo/ SCG w/ SCG wo/ SCG w/ SCG

MBPP-F
1 - PASS@1 (↓) 0.488±0.039 0.081±0.184 0.488±0.037 0.214±0.190 0.441±0.033 0.000±0.000 0.464±0.038 0.021±0.101

FDR-CE (↓) 0.490±0.038 0.081±0.184 0.492±0.038 0.215±0.191 0.447±0.032 0.140±0.344 0.466±0.040 0.021±0.101

EFFICIENCY (↑) 1.000±0.000 0.010±0.023 1.000±0.000 0.076±0.077 1.000±0.000 0.002±0.004 1.000±0.000 0.007±0.034

HUMANEVAL-F
1 - PASS@1 (↓) 0.341±0.069 0.136±0.131 0.290±0.072 0.123±0.142 0.230±0.074 0.000±0.000 0.254±0.070 0.026±0.102

FDR-CE (↓) 0.330±0.064 0.134±0.127 0.287±0.074 0.114±0.136 0.235±0.082 0.120±0.325 0.247±0.072 0.025±0.100

EFFICIENCY (↑) 1.000±0.000 0.275±0.118 1.000±0.000 0.125±0.130 1.000±0.000 0.004±0.012 1.000±0.000 0.065±0.234

4.1 SETUP

Dataset. We considered datasets with coding problems, where each problem has a correct canonical
solution. We chose APPS (Hendrycks et al., 2021), Mercury (Du et al., 2024), HumanEval (Chen et al.,
2021), and MBPP (Austin et al., 2021) for our task. Each dataset consists of Python programming
questions, canonical code solutions, and few unit tests. Each Python programming question is
provided to an LLM as a prompt to generate code, and then the generated code is measured for its
functionality by running the unit tests.

We construct APPS-f, Mercury-f, HumanEval-f, and MBPP-f, where for each dataset, we replace the
built in unit tests from each problem to automatically generated unit tests via fuzzing for both learning
and evaluation. In particular, each question consists of constraints to inputs. We manually post-
processed python programming questions and their solutions of each datasets such that the solution
code can be easily callable by a fuzzing tool while satisfying the input constraints of questions.
Among the post-processed code, we conducted fuzzing and extracted at least 600 input-output pairs
as our unit tests for calibration and its evaluation. Additional details can be found on Appendix G.

LLMs. We used three closed LLMs, i.e., GPT-4o (OpenAI, 2024), Gemini 1.5 Pro (Team et al.,
2024), GPT-4.1 (OpenAI, 2025) and two open LLM, i.e., CodeLlama 13B-instruct (Rozière et al.,
2024) and Deepseek-R1 (DeepSeek-AI, 2025). Here, we use the following default parameters unless
specified: εS = 0.3, δS = 0.1, α = 0.35, εE = 0.05, and nmax = 150.

Method. We consider seven baseline methods SCG-EM (Geifman & El-Yaniv, 2017), SCG-manual,
SCG-small, SCG-H, CodeT (Chen et al., 2023a), LDB (Zhong et al., 2024), and SFS (Light et al.,
2025) to compare with our method SCG.

• SCG-EM (Geifman & El-Yaniv, 2017): This baseline is a conventional selective predictor method
that compares the generated code and solution code, without measuring its functional correctness.

• SCG-manual: This baseline is a simple selective generator that selects the upper k% of scores for
a threshold τ to highlight the importance of controlling the FDR-CE.
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Table 3: Comparison results of SCG against baseline methods on different programming languages
with GPT-4.1 (α = 0.35, δS = 0.1, εE = 0.05, εS = 0.3 for all programming languages). We
selected a subset of problems (5359 instances) from the APPS-f dataset that conform to the standard
input/output format for executing unit tests. The FDR-CE satisfying the desired guarantees and the
highest efficiency among methods that comply with the FDR-CE guarantees are marked in bold.

Methods w/o Selective Generation w/ Selective Generation

τ = −∞ SCG-EM SCG-MANUAL SCG-SMALL SCG-H SCG

CPP (εS = 0.3)
1 - PASS@1 (↓) 0.386±0.012 0.000±0.000 0.228±0.018 0.226±0.019 0.278±0.021 0.232±0.019

FDR-CE (↓) 0.382±0.013 0.000±0.000 0.225±0.018 0.225±0.017 0.270±0.021 0.228±0.019

EFFICIENCY (↑) 1.000±0.000 0.000±0.001 0.499±0.018 0.498±0.017 0.680±0.020 0.513±0.019

JAVA (εS = 0.3)
1 - PASS@1 (↓) 0.383±0.013 0.000±0.000 0.240±0.017 0.228±0.019 0.286±0.020 0.227±0.020

FDR-CE (↓) 0.379±0.013 0.000±0.000 0.237±0.017 0.223±0.019 0.282±0.019 0.222±0.022

EFFICIENCY (↑) 1.000±0.000 0.000±0.000 0.502±0.019 0.483±0.019 0.672±0.021 0.485±0.018

JAVASCRIPT (εS = 0.3)
1 - PASS@1 (↓) 0.374±0.014 0.000±0.000 0.221±0.016 0.227±0.025 0.278±0.020 0.227±0.022

FDR-CE (↓) 0.368±0.014 0.000±0.000 0.215±0.016 0.223±0.025 0.274±0.018 0.222±0.023

EFFICIENCY (↑) 1.000±0.000 0.000±0.000 0.500±0.018 0.518±0.020 0.673±0.015 0.517±0.020

PERL (εS = 0.3)
1 - PASS@1 (↓) 0.457±0.015 0.000±0.000 0.305±0.017 0.205±0.034 0.274±0.029 0.218±0.037

FDR-CE (↓) 0.453±0.015 0.000±0.000 0.302±0.016 0.207±0.033 0.270±0.027 0.207±0.035

EFFICIENCY (↑) 1.000±0.000 0.000±0.001 0.499±0.019 0.182±0.031 0.397±0.028 0.186±0.029

• SCG-small: This is our method but only using unit tests, provided by the APPS dataset to show
the efficacy of generated unit tests via fuzzing. We sampled 21 test cases for each problem to apply
our algorithm. See Appendix E for additional details.

• SCG-H: This baseline is a heuristic of our method omitting false entailment rate (FER) as in
Lemma 1. It searches for a selective generator as in (4) with εE = 0.

Scoring Function. To analyze the effect of calibration on our method SCG, we consider four different
scoring functions. The detailed explanations on the scoring functions are provided in Appendix F.

Evaluation. We evaluate our method along with baselines based on the empirical counterpart of the
FDR-CE and selection efficiency from a test set Zt ∼ Dntest in (8) and (9), respectively. Interestingly,
FDR-CE and 1-PASS@1 (Chen et al., 2021) over on selected samples by SCG may be asymptotically
equivalent when α→ 0 and ny →∞ for PASS@1 (See Appendix K for discussion).

4.2 RESULTS

We demonstrate the efficacy of our method SCG on different models, datasets, and programming
languages. In addition, we highlight the benefits of fuzzing, and analyze the effect of calibration.

4.2.1 CONTROLLABILITY AND SELECTION EFFICIENCY

Figure 2 shows that SCG controls the FDR-CE. To this end, we conducted random experiments. We
ran the experiment 50 times by randomly splitting the calibration set and test set at 8:2 ratio each time.
The whisker on each box plot denotes the range between δS and 1− δS percentile of the distributions.

SCG-manual may perform better than our method depending on the choice of k. However, manually
selecting an appropriate k for different situations is a challenging task. SCG-small bounds the
FDR-CE successfully. However, this method demonstrates lower efficiency compared to our method.
The result stems from a lack of unit tests to correctly infer expected functional correctness, illustrating
the advantage of fuzzing in learning. SCG-H shows that it is not able to bound a desired FDR-CE, as
it ignores an estimation error for inferring expected functional correctness.

Our method shows how it successfully bounds desired FDR-CEs on diverse models (Figure 2), diverse
parameters (Figure 3, Figure 5), diverse datasets (Table 1), diverse methods (Table 2), and diverse
programming languages (Table 3). In Figure 2, 3, and 5, this is shown by upper whisker bar lying
below the desired FDR-CE in dotted line, while Table 1, 2, 3, the results are indicated by bold text.
Table 5 shows qualitative results of our method that accepts correct code and rejects uncertain code.
Note that poorly performing model, e.g., CodeLlama in Figure 4(a), may not find a selective generator
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with a desired FDR-CE εS . This is an expected result due to an un-calibrated scoring function (Lee
et al., 2024), as discussed in Section 4.2.4.

4.2.2 BENEFIT OF FUZZING IN LEARNING AND EVALUATION

We empirically show the benefit of fuzzing in learning. As shown in Figure 5(b), the FDR-CE bound
(in the top of whisker) gets tighter to a desired FDR-CE level without violating it as smaller εE
requires a larger amount of unit tests, thus providing a precise estimation on expected functional
correctness. This shows that generated unit tests by fuzzing helps to provide a tighter FDR-CE
guarantee, meaning higher selection efficiency.

Additionally, we demonstrate that automatic unit test generation is beneficial in rigorous evaluation.
As shown in Figure 5(c), the FDR-CE decreases as the number of unit tests for evaluation increases.
Recalling that α-entailment is determined by comparing the lower bound of expected functional
correctness with 1− α as in Definition 1, the lower bound gets tighter as we use more unit tests to
evaluate code. The tighter lower bound results in more accurate comparison and evaluation, thus
reducing the FDR-CE. This shows that fuzzing has a benefit of reducing the evaluation error.

4.2.3 COMPARISON AND EXTENSION OVER PRIOR WORK

Table 4: FDR-CE and efficiency for
DeepSeek-R1 (DeepSeek-AI, 2025)

εS FDR-CE Efficiency

wo/ SCG
- 0.234±0.012 1.000±0.000

w/ SCG
0.15 0.043±0.048 0.076±0.085

0.20 0.132±0.015 0.515±0.032

0.25 0.183±0.016 0.778±0.020

0.30 0.233±0.011 0.995±0.004

We compare our method SCG, with prior code gener-
ation baselines and demonstrate that these baselines
can be extended through our approach to provide
additional functionality guarantees. As further dis-
cussed in Appendix A, improvements in functional-
ity – inherently reducing functional hallucination –
can be broadly categorized into two approaches: (1)
enhancing the model performance during training or
fine-tuning (OpenAI et al., 2025; DeepSeek-AI, 2025)
or (2) employing post-filtering methods (Chen et al.,
2023a; Zhong et al., 2024; Light et al., 2025). In
this work, we focus on comparison with post-filtering
methods, as SCG post-processes the generated code
to control hallucinations but training and finetuning based methods are orthogonal to this work.

Table 2 compares SCG with prior post-filtering methods. In particular, SCG controls the hallucination
and achieves lower FDR-CE than prior methods depending on the choice of εS . Furthermore, Table 2,
4, Figure 3(a), demonstrate the applicability of our method in a model- and method-agnostic manner
across diverse experiment setups, including integration with finetuning methods (e.g., DeepSeek
GRPO, OpenAI RLHF) and compatibility with post-processing methods.

4.2.4 EFFECT OF SCORING FUNCTION AND CALIBRATION

We demonstrate the effect of calibration on our method SCG. As shown in Figure 3(c), the choice of
scoring function affects whether FDR-CE can be successfully bounded to the desired εS . In particular,
fverb in Figure 3(c) fails to properly bound the FDR-CE. Furthermore, CodeLlama in Figure 4(a),
fails to find a selective generator with a desired εS , due to an un-calibrated scoring function (Lee
et al., 2024). Thus, the model finds a minimum FDR-CE by returning Û in this case. These results
underscore the importance of selecting appropriate scoring functions for the efficacy of our method.

5 CONCLUSION

This paper considers the code hallucination problem. In particular, we define the concept of code
entailment based on automatically generated unit tests via fuzzing, one of dynamic code analysis tools.
Given this, we propose a learning algorithm for selective code generators to theoretically control
the hallucination in the FDR of selective generators. We further leverage fuzzing to automatically
generate unit tests for learning and evaluation purposes, enabling the large-scale collection of unit
tests. Lastly, we demonstrate the controllability of the proposed selective generator and its selection
efficiency over open and closed code generators under different experiment setups.

Limitations. The proposed method controls the rate of hallucination, but its selection efficiency
heavily depends on the quality of code generation models, requiring improvement for code generators.
Moreover, the i.i.d. assumption for the FDR controllability guarantee limits its applicability in
distribution-shifting environments.
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A EXTENDED RELATED WORK

Code Generation and Hallucination. Code generation is the task of generating a program that
satisfies given functional specifications. The main challenge for this task is the generation of
functionally incorrect code, often referred to as code hallucination in the previous literature Tian et al.
(2024); Zhang et al. (2025).

Recent work mostly focused on improving the functionality itself. DeepSeek-R1 DeepSeek-AI (2025),
OpenAI-IOI OpenAI et al. (2025) leverages reinforcement learning based finetuning, resulting in
highly performant code generation model. CodeT Chen et al. (2023a), TiCoder Fakhoury et al. (2024),
3DGen Fakhoury et al. (2025), MPSC Huang et al. (2024), S*Li et al. (2025), and CodeRL Le et al.
(2022) rank generated solutions during the inference or evaluation phase to determine which outputs
to adopt. AlphaCode Li et al. (2022) leverages both finetuning and a ranking mechanism to improve
performance. The key distinction of our work lies in directly controlling the rate of falsely generated
code (FDR-CE), making the underlying code generator more trustworthy. Furthermore, our work is
applicable on top of each method providing an upper bound on the FDR-CE (e.g., DeepSeek result in
Figure 2(c) shows that our method can provide additional statistical guarantee when applied on top of
GRPO based finetuning DeepSeek-AI (2025)).

The methods mentioned above leveraged unit tests to improve performance. The ranking-based
method Chen et al. (2023a); Fakhoury et al. (2024; 2025); Huang et al. (2024); Li et al. (2025); Le
et al. (2022) leverage unit tests to rank sampled solutions and select the best code, whereas finetuning
based methods DeepSeek-AI (2025); OpenAI et al. (2025) leverage unit tests to provide execution
feedback for reinforcement learning. Unlike prior work, our method leverages unit tests to determine
α-code entailment and applying selective generation learning algorithm.
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B PRELIMINARY

We introduce preliminaries on textual entailment for measuring correctness between two answers,
selective generation to control the rate of hallucination, and dynamic code analysis via fuzzing for
learning and evaluating functional correctness of code snippets.

Textual Entailment. In natural languages, textual entailment is a concept of evaluating semantic
relation between two sentences by checking an entailment relation (Bowman et al., 2015). In
particular, denoting two sentences by a premise and a hypothesis, we say that a premise entails a
hypothesis if the hypothesis is true given the premise. Otherwise, we say the premise contradicts the
hypothesis.

This textual entailment has been used to measure semantic correctness between a question and an
answer in learning language models Mohri & Hashimoto (2024); Lee et al. (2024). If a generated
answer entails a true one, we can consider the generated answer as true in textual entailment. In
evaluating correctness of generated answers in natural language processing, introducing textual
entailment is crucial as a simple, traditional exact match, i.e., the generated answer and the true
one is exactly the same, does not measure the semantic relation between two answers. However,
in code generation, there is no notion of entailment to check the semantic correctness between two
code snippets. We overcome this hurdle by introducing code entailment for measuring functional
correctness, leveraging executable properties of code.

Dynamic Code Analysis via Fuzzing. Computer programs suffer from undefined behaviors, called
bugs, e.g., crash by buffer overflow. To find the bugs, security researchers have been extensively
developed static and dynamic code analysis tools, e.g., CodeQL (Semmle, 2019), AFL (Zalewski,
2014), and Atheris (Google, 2020).

The dynamic analysis tools exploit the executable property of code to find bugs, while the static
analysis tools inspect code without execution. We mainly focus on more informative dynamic analysis
tools. In particular, fuzzing, a representative class of methods for dynamic code analysis, generates
the input of a given program, called seed, executes the program with the input, and checks whether
undefined behaviors can be observable. Given the observation, fuzzing methods randomly mutate the
input of programs to explore wider execution paths or exploit execution paths toward targeted code.
In this paper, we re-purpose fuzzing methods for identifying functionality of code, instead of finding
bugs in code by generating the input and output pairs of code.

Selective Generation. Language models suffer from generating hallucinated facts. Recently, certified
ways to control the rate of hallucination in language models are proposed (Quach et al., 2024; Mohri
& Hashimoto, 2024; Lee et al., 2024). Among them, selective generation, which extends traditional
selective classification (Geifman & El-Yaniv, 2017), provides a way to control the rate of hallucination
defined in terms of a false discovery rate with entailment (FDR-E) that leverages textual entailment to
measure the correctness of two answers. In particular, a selective generator Ŝ(x) given a question x
returns a generated answer G(x) from a language model or abstains from answering by returning “I
don’t know” (IDK). The FDR-E of this selective generator with respect to a true answer y is defined
as R(Ŝ) := P{Ŝ(x) /∈ E(y) | Ŝ(x) ̸= IDK}. Here, E is an entailment set that contains entailing
answers, i.e., E(y) := {ȳ | ȳ entails y} (where a reverse relation is also valid), so Ŝ(x) ∈ E(y)

means that Ŝ(x) entails y. In semi-supervised selective generation (Lee et al., 2024), a learning
algorithm leverages an estimated entailment set Ê learned from the handful of entailment labels,
where Ê is used as a pseudo-labeling function for entailment labels. Based on the estimated entailment
set, the following surrogate of the FDR-E is considered: R̂(Ŝ) := P{Ŝ(x) /∈ Ê(y) | Ŝ(x) ̸= IDK}.
The algorithm leverages the relation between R(Ŝ) and R̂(Ŝ) to bound R(Ŝ), as shown in the
following lemma.

Lemma 2. (Lee et al., 2024) R(Ŝ) is decomposed in R(Ŝ) := PDŜ
{e = 0, ê = 1} − PDŜ

{e =

1, ê = 0}+R̂(Ŝ), wherePŜ{·} := P{· | Ŝ(x) ̸= IDK}, e := 1(Ŝ(x) ∈ E(y)), and ê := 1(Ŝ(x) ∈
Ê(y)).

By controlling the upper bound of three decomposed terms inR(Ŝ) at a desired level, the algorithm
learns a selective generator Ŝ. We leverage this framework to learn Ê via generated unit tests via
dynamic code analysis tools.
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C QUALITATIVE RESULT OF OUR METHODS

Table 5: Qualitative results of our selective code generator with GPT-4o (εS = 0.3, δS = 0.1,
εE = 0.05, and α = 0.15). The accepted generated code is α-entailment with the score of −0.05,
meaning high certainty, where the code is also semantically correct. The rejected code is not α-
entailment with the score of −53.87, meaning low certainty probably due to the complexity of the
question. In particular, it returns a wrong answer, 2, for an input, [1,1,0,1,0,0,0,1,0,1,0,0,1,1,0,1],
where an expected answer is 14, due to the inequality in “count > max_count” that does not
follow the tie instruction. Note that the contents are manually truncated for presentation purposes.

Question Canonical Solution Generated Code Selection
(ours)

You are given an array
to sort but you’re
expected to start
sorting from a specific
position of the array
(in ascending order)
and optionally you’re
given the number of
items to sort.

def sect_sort(lst, start, length=0):
end = start + length \

if length else \
len(lst)

return lst[:start] + \
sorted(lst[start:end]) + \
lst[end:]

def sect_sort(array, start, length=0):
if length == 0:

end = len(array)
else:

end = start + length

array[start:end] = \
sorted(array[start:end])

return array

Accept

Given an array
containing only zeros
and ones, find the
index of the zero that,
if converted to one,
will make the longest
sequence of ones. ...
Return the last index
if there are multiple
results.

def replace_zero(arr):
m,im,i,lst = 0, -1, -1, (’’.join
(map(str,arr)).split(’0’))
for a,b in zip(lst,lst[1:]):

i += len(a) + 1
candidate = len(a)+len(b)+1
if m <= candidate:

im, m = i, candidate
return im

def replace_zero(arr):
max_count = 0
max_index = -1
count = 0
last_zero_idx = -1
consecutive_count_before_zero = 0

for i in range(len(arr)):
if arr[i] == 1:

count += 1
else:

count = i - last_zero_idx
last_zero_idx = i

if count > max_count:
max_count = count
max_index = last_zero_idx

return max_index

Reject

D ALGORITHM

Algorithm 1 Unit tests size computation.

1: procedure COMPUNITTESTSIZE(α, εE ,y, ȳ, nmax)
2: ny ← 0

3: while L̂(y, ȳ, ny, εE) < 1− α do
4: s ∼ DU
5: (u,v)← F(y, s)
6: ny ← ny + 1
7: if ny ≥ nmax then
8: break ▷ break for infeasible cases
9: end if

10: end while
11: return ny
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Algorithm 2 Selective Code Generator Learning

1: procedure LEARNSCG(f,Z, G, α, εE , δS)
2: Z′ ← SORTf (Z) ▷ Increasing order of f(xi, G(xi))
3: (i, i)← (1, |Z|)
4: for i = 1 to ⌈log2 |Z|⌉ do
5: imid ← ⌈ i+i

2 ⌉
6: τ

(i)
S ← f(ximid , G(ximid)) ▷ Choose a candidate τ

7: Ẑ(i) ←
{
(x, _) ∈ Z′ | f(x, G(x)) ≥ τ

(i)
S

}
▷ Build a selected calibration set by τ

(i)
S

8: k̂(i) ←
∑

(x,y,_)∈Ẑ(i) 1

(
G(x) /∈ Êα,εE (y)

)
▷ Count false discoveries.

9: Û (i) ← ÛBinom

(
k̂(i), |Ẑ(i)|, δS/⌈log2 |Z|⌉

)
▷ Bound the FDR-CE.

10: if εE + Û (i) ≤ εS then
11: i← imid ▷ Keep τ

(i)
S that controls a desired FDR-CE.

12: else
13: i← imid
14: end if
15: end for
16: return τ

(i)
S , εE + Û (i)

E SCG-SMALL DETAIL

This is our method but only using unit tests, provided by the APPS dataset to show the efficacy of
generated unit tests via fuzzing. In particular, the APPS dataset provides an average of 21 unit tests
per problem. However, the number of unit tests varies across the APPS dataset, and some problems
lack unit tests. As it is difficult to directly apply our method to the original dataset, we sampled 21
test cases for each problem from generated unit tests via fuzzing to apply our algorithm. To support
the validity of this baseline method, we provide additional experiments on Appendix M.3 regarding
the quality of unit tests. Lastly, it is worth noting that this baseline is only applicable to APPS dataset,
due to insufficient number of unit tests in other datasets to determine code entailment and obtain
meaningful results.

F SCORING FUNCTIONS

Here, we denote pi as the probability by a code generator G to generate the i-th token.

• Length-normalized log-probability fnorm: This method collects the log-probability each token
used to generate a code then normalize by the number of tokens, i.e., fnorm(x, G(x)) =

∑
i ln pi

|G(x)| .
We use fnorm as the default scoring function unless specified.

• Lowest log-probability fmin: This method collects the log-probability of each generated tokens
then selects the lowest value, i.e., fmin(x, G(x)) = mini ln pi.

• Sequence log-probability fseq: This method collects the log-probability of each token to calculate
the probability of generated code, i.e., fseq(x, G(x)) =

∑
i ln pi.

• Verbalized probability Tian et al. (2023), Spiess et al. (2024) fverb: The model used for
code generation is prompted to produce a confidence value, with the prompt pconf(G(x)),
i.e., fverb(x,G(x)) = G(pconf(G(x))).

G DATASETS AND MODELS

We use four datasets, APPSHendrycks et al. (2021), MBPPAustin et al. (2021), HumanEvalChen
et al. (2021), and MercuryDu et al. (2024), for calibration and evaluation. We use five large language
models (LLMs), GPT-4o, GPT-4.1, Gemini-1.5 Pro, CodeLlama 13B Instruct, and DeepSeek-R1 for
code generation.
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To determine code entailment of the generated code, we specifically selected datasets that provide a
solution to the problem. For each problem, unit tests were generated using a dynamic analysis tool.
The following Table 6 shows the result of the dynamic code analysis for each datasets.

To enhance the efficiency of execution path exploration, we manually post-processed each solution
on the datasets for compatibility with the dynamic analysis tool. Although manual post-processing
is not a mandatory step, it results in additional computational time and overhead for dynamic code
analysis. During this step, we also excluded problems either lacking solution or containing errors.

Table 6: The result of dynamic analysis for each dataset. We excluded problems that had errors in the
original problem or with solutions that were difficult to analyze dynamically.

Dataset Original Dataset Solution-problem Error Dynamic Analysis Error (e.g., Atheris timeout)

APPS 10,000 1,274 307
MBPP 974 - 35
HumanEval 164 - 1
Mercury 1,889 - 279

H PROOF OF LEMMA 1

Recall that e := 1(G(x) ∈ Eα(y)), ê := 1(G(x) ∈ Êα,εE (x)), where e denotes whether y α-entails
G(x) and and ê denotes the predicted result of α-entailment.

Additionally, we have the following due to Lemma 2:

Rα(Ŝ) = P{e = 0, ê = 1 | Ŝ(x) ̸= IDK} −P{e = 1, ê = 0 | Ŝ(x) ̸= IDK}+Rα,εE (Ŝ)

≤ P{e = 0, ê = 1 | Ŝ(x) ̸= IDK}+Rα,εE (Ŝ),

where the probability is taken over x, y, ny, and Sy.

We, then, bound the first term P{e = 0, ê = 1 | Ŝ(x) ̸= IDK}. In particular, suppose that x, y, and
ny which satisfies e = 0 and Ŝ(x) ̸= IDK are given. Here, ny is determined using Algorithm 1 and
recall that Sy ∼ D

ny
u denoting ny input-output pairs from dynamic code analysis tool F .

Then, we have the following:

PSy

{
ê = 1

∣∣∣ e = 0, Ŝ(x) ̸= IDK
}

= PSy

{
G(x) ∈ Êα,εE (y)

∣∣∣ G(x) /∈ Eα(y)
}

= PSy

{
L̂(y, G(x), ny, εE) ≥ 1− α

∣∣∣ Py{G(x)(u) = v} < 1− α
}

≤ PSy

{
L̂(y, G(x), ny, εE) > Py{G(x)(u) = v}

∣∣∣ Py{G(x)(u) = v} < 1− α
}

≤ εE ,

where the last inequality holds due to the confidence level of the binomial tail bound L̂.
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From this, letting F be e = 0 ∧ Ŝ(x) ̸= IDK1, we have the following:

P

{
e = 0, ê = 1

∣∣∣ Ŝ(x) ̸= IDK
}
= P

{
ê = 1

∣∣∣ e = 0, Ŝ(x) ̸= IDK
}
P

{
e = 0

∣∣∣ Ŝ(x) ̸= IDK
}

≤ P
{
ê = 1

∣∣∣ e = 0, Ŝ(x) ̸= IDK
}

=

∫
1 {ê = 1} p (x,y, ny,Sy | F ) dx,y, ny,Sy

=

∫
1 {ê = 1} p (Sy | x,y, ny, F ) p (x,y, ny | F ) dx,y, ny,Sy

=

∫
PSy

{
ê = 1

∣∣∣ e = 0, Ŝ(x) ̸= IDK
}
p (x,y, ny | F ) dx,y, ny

≤
∫

εE · p (x,y, ny | F ) dx,y, ny

= εE ,

as claimed.

I A PROOF OF THEOREM 1

We use the same proof techniques used in Geifman & El-Yaniv (2017) and Lee et al. (2024). Here,
we add the proof for completeness.

First, from Lemma 1 and the binomial tail bound, we have the following point bound for any Ŝ,
εE ∈ (0, 1), and δS ∈ (0, 1):

Rα(Ŝ) ≤ εE + ÛBinom(k̂; |Ẑ|, δS/⌈log2 |Z|⌉) (5)
with probability at least 1− δS/⌈log2 |Z|⌉, where the probability is taken over Z ∼ Dn with a fixed
n. Here, k̂, Ẑ, and Z are as defined in Section 3.5, and ÛBinom is the standard binomial tail upper
bound.

Let H be a data-dependent set of selective generators, parameterized by τ , with a fixed size
m, i.e., |H| = m (where m = ⌈log2 n⌉ in our case) and HεS := {Ŝ ∈ H | Rα(Ŝ) >

εE + ÛBinom(k̂; |Ẑ|, δS/m)}, which is also data-dependent. Recall that τ̂ and Û are the output
of our Algorithm 2. Then, we have the following:

PZ

{
Rα(Ŝ) > Û

}
≤ PZ

{
∃Ŝ ∈ HεS ,Rα(Ŝ) > εE + ÛBinom(k̂; |Ẑ|, δS/m)

}
≤

m∑
j=1

PZ

{
Rα(Ŝj) > εE + ÛBinom(k̂; |Ẑj |, δS/m)

}
(6)

=

m∑
j=1

n∑
ij=0

PZ

{
Rα(Ŝj) > εE + ÛBinom(k̂j ; |Ẑj |, δS/m), |Ẑj | = ij

}
=

m∑
j=1

n∑
ij=0

PZ

{
Rα(Ŝj) > εE + ÛBinom(k̂j ; |Ẑj |, δS/m)

∣∣∣ |Ẑj | = ij

}
PZ

{
|Ẑj | = ij

}
≤

m∑
j=1

n∑
ij=0

δS
m
PZ

{
|Ẑj | = ij

}
(7)

= δS ,

where (6) holds due to a union bound and (7) satisfies due to the point bound in (5). This completes
the proof.

1Note that the probability of the event F is positive unless G is “always-correct” (i.e., y α-entails G(x) for
all x and y).
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J EMPIRICAL EVALUATION METRICS

We evaluate our method along with baselines based on the empirical FDR-CE, i.e., ̂FDR-CE, and
empirical selection efficiency, i.e., ŜelEff, where Zt ∼ Dntest is a test set, as follows:

̂FDR-CE :=

∑
(x,y,_)∈Zt

1

(
Ŝ(x) /∈ Êα,εtE

(y) ∧ Ŝ(x) ̸= IDK
)

∑
(x,_)∈Zt

1

(
Ŝ(x) ̸= IDK

) and (8)

ŜelEff :=
1

|Zt|
∑

(x,_)∈Zt

1(Ŝ(x) ̸= IDK). (9)

We chose εtE = 0.01≪ εE for estimating a true α-entailment set Eα.

K RELATIONSHIP BETWEEN PASS@1 AND FDR-CE

Given an instance (x,y) in the dataset, suppose there are ny given unit tests provided. Here, ny

is result of Algorithm 1. When evaluating a dataset with PASS@1, a generated code snippet is
considered correct if it passes all ny unit tests.

As α→ 0, if y α-entails the generated code G(x), then ny must tend toward∞. Thus, y exhibits
expected functional correctness approaching 1. Therefore, with high probability, any finite set of ny

unit tests will be successfully executed without a failed test.

Conversely, if a generated code snippet successfully executes ny unit tests as ny →∞, then with
high probability, y will α-entail the generated code G(x).

Therefore, 1−PASS@1 and FDR-CE may be asymptotically equivalent as α→ 0 and ny →∞.

The empirical result is presented at Table 1 and 3
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L ALPHA-ENTAILMENT CODE EXAMPLE

Table 7: α-entailment example with α = 0.3. The solution code accurately simulates the exact
problem scenario, while the generated code simplifies the logic and therefore misses corner cases by
missing the α fraction of unit tests generated from the solution code.

Question

n people are standing in a line to play table tennis.
At first, the first two players in the line play a game.
Then the loser goes to the end of the line, and the winner
plays with the next person from the line, and so on.
They play until someone wins k games in a row.
This player becomes the winner. For each of the
participants, you know the power to play table tennis,
and for all players these values are different. In a
game the player with greater power always wins.
Determine who will be the winner.

(a) Canonical Solution

tmp = list(map(int, input().split()))
n, k = tmp[0], tmp[1]
a = list(map(int, input().split()))

cur = a[0]
w = 0
OK = False

for i in range(1, 10000):
op = a[i]
if cur > op:

a.append(op)
w += 1

else:
cur = op
a.append(cur)
w = 1

if w >= k:
OK = True
break

if OK:
print(cur)

else:
print(max(a))

(b) Generated Solution

def find_winner(n, k, powers):
current_player_index = 0
current_wins = 0
max_power = powers[0]

if k > n:
print(max(powers))
return

for i in range(1, n):
if powers[current_player_index] > powers[i]:

current_wins += 1
else:

current_player_index = i
current_wins = 1

if current_wins == k:
print(powers[current_player_index])
return

print(max_power)

# Read input
n, k = map(int, input().split())
powers = list(map(int, input().split()))

find_winner(n, k, powers)
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M ADDITIONAL EXPERIMENTS

M.1 VARYING MODEL
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(a) CodeLlama 13B Instruct

Figure 4: The box plots of the FDR-CE and selection efficiency for CodeLlama 13B Instruct. We set
δS = 0.1, εS = 0.3, εE = 0.05, and α = 0.35. SCG fails to find a selective generator with a desired
FDR-CE due to uncalibrated scoring function.

M.2 VARYING PARAMETER

We present FDR-CE and efficiency experiments with varying δS , varying εE , and varying number of
unit tests in Figure 5.
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(a) Varying δS
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(b) Varying εE
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(c) Varying eval. unit tests

Figure 5: The FDR-CE results for GPT-4o with varying parameters (εS = 0.3, δS = 0.1, α = 0.35,
and εE = 0.05). Each figure shows FDR-CE bound is satisfied for each settings. This is shown by
upper whisker bar lying below the desired FDR-CE in the dotted line. Figure 5(b) shows benefit of
fuzzing in learning and Figure 5(c) show benefit of fuzzing in evaluation.

M.3 UNIT TEST

We add an evaluation study on FuzzEval, showing benefits of added unit tests and flexibility of
α-code entailment. We measure the performance of generators with conventional pass@1 metric
with various α. Table M.3 demonstrates that more through evaluation is achievable with test cases
generated by a fuzzing tool. Furthermore, pass@1 result with relaxed α-setting implies the necessity
of incorporating α in FuzzEval.
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Table 8: Pass@1 of each generator with original dataset and generated unit tests. We measured the
performance of each code generators with pass@1 on original datasets along with added unit tests in
FuzzEval. We also measured α to show flexibility. Note that we excluded problems that encountered
error during the generation process.

Code Generator Model without additional unit tests with additional unit tests

pass@1 pass@1 pass@1 (α = 0.1) pass@1 (α = 0.3) pass@1 (α = 0.5)

GPT-4o 0.515 0.483 0.526 0.577 0.589

Gemini-1.5 Pro 0.526 0.480 0.523 0.566 0.578

CodeLlama-13B-Instruct 0.051 0.048 0.059 0.073 0.075

M.4 LLM-GENERATED UNIT TEST

Unit tests generated via other techniques also could be used in SCG. To support our claim, we
conducted experiments utilizing unit test sets generated with the assistance of LLM. We applied SCG
on HumanEval+ Liu et al. (2023) and MBPP+Liu et al. (2023), which are publicly available datasets
augmented with LLM-based method. Table 9 demonstrates the result of our method.

Table 9: We used GPT-4o as the model. The parameters are set as α = 0.2, δS = 0.1, εS = 0.25, εE =
0.05. The FDR-CE satisfies the desired bound (εS) which demonstrates that our method is applicable
on different datasets with test generated with the assistance of LLMs.

Dataset pass@1 FDR-CE Efficiency

MBPP+ 0.720 0.121 ± 0.112 0.423 ± 0.446

HumanEval+ 0.848 0.056 ± 0.044 0.979 ± 0.029

M.5 EXPERIMENT SETUP

We used 4 NVIDIA A100 80GB with 128 CPUs for code generation. We used the same environment
for fuzzing and calibration.
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N DISCUSSION

N.1 GUIDELINES FOR PARAMETER SELECTION

Our algorithm has user-specified parameters, εS , δS , α, εE , and nmax. The εS and δS are the main
parameters that encode user’s desired on the performance on the selective generator, where the smaller
values are better.

The α encodes a degree of the correctness of a generator, where α = 0 is the ideal value. But,
assuming that there is no perfect generator that exactly returns correct code, this never achieves. We
recommend to choose some small value on this on evaluating current state-of-the-art generators.

The εE and nmax are associated to the number of generated unit tests via dynamic code analysis tools,
where the ideal value of εE is zero and nmax is infinity. The larger number of unit tests is definitely
preferred but it sacrifices the running time of dynamic code analysis tools and evaluation.
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