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Abstract

The out-of-distribution (OOD) generalization
challenge is a longstanding problem in graph
learning. Through studying the fundamental
cause of data distribution shift, i.e., the changes
of environments, significant progress has been
achieved in addressing this issue. However, we
observe that existing works still fail to effectively
address complex environment shifts. Existing
practices place excessive attention on extracting
causal subgraphs, inevitably treating spurious sub-
graphs as environment variables. While spurious
subgraphs are controlled by environments, the
space of environment changes encompass more
than the scale of spurious subgraphs. Therefore,
existing efforts have a limited inference space
for environments, leading to failure under severe
environment changes. To tackle this issue, we
propose a negative inference graph OOD frame-
work (NeGo) to broaden the inference space for
environment factors. Inspired by the successful
practice of prompt learning in capturing under-
lying semantics and causal associations in large
language models, we design a negative prompt
environment inference to extract underlying en-
vironment information. We further introduce the
environment-enhanced invariant subgraph learn-
ing to effectively exploit inferred environment em-
bedding, ensuring the robust extraction of causal
subgraph in the environment shifts. Lastly, we
conduct a comprehensive evaluation of NeGo on
real-world datasets and synthetic datasets across
domains. NeGo outperforms baselines on nearly
all datasets, which verify the effectiveness of our
framework.
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1. Introduction
Graph Neural Networks (GNNs) have emerged as the
predominant approach for encoding graph data (Kipf &
Welling, 2016; Xu et al., 2018), delivering notable achieve-
ments in various research fields including molecular prop-
erty prediction (Jumper et al., 2021; Yang et al., 2022), rec-
ommendation systems (Wu et al., 2022b; Gao et al., 2022),
and traffic flow forecasting (Liang et al., 2018; Zhou et al.,
2020). However, as real-world data is evolving with com-
plex patterns, the challenge of data distribution shift has
become a major obstacle for GNNs (Gui et al., 2022; Ji
et al., 2022; Wang et al., 2023; Zhou et al., 2022b; Zou et al.,
2023; Sun et al., 2022c; 2024). Therefore, various studies
concentrate on improving the Out-Of-Distribution (OOD)
generalization ability of graph learning models (Chen et al.,
2024; 2022; Gui et al., 2024; Miao et al., 2022; Sui et al.,
2022; Li et al., 2022; Wu et al., 2022c; Sun et al., 2022b).

Recently, environment-centered invariant learning methods
achieved impressive OOD generalization performance with
the aim of inferring underlying environment factors in data
(Chen et al., 2024; Gui et al., 2024; Xia et al., 2023; Yuan
et al., 2023). Those efforts demonstrate that the changes
of environment are the fundamental reason for the shift of
data distribution (Grice & White, 1961; Liu et al., 2021;
Peters et al., 2016). However, existing approaches still lack
the ability to decouple causal subgraphs from complex en-
vironments. As shown in Fig. 1(a), we double the scale
of spurious substructures in the SPURIOUS-MOTIF(0.5),
and observe a significant decrease in the performance of
current methods when they are re-conducted on this modi-
fied dataset. The reason lies in that current methods, even
those claiming to model environments, focus much of their
attention on extracting causal subgraphs (Chen et al., 2022;
Wu et al., 2022a;c; Sun et al., 2021). This results in the
model being able to extract causal subgraphs only in known
environments, and failing in modeling unseen complex envi-
ronments. Therefore, this poses a challenging research ques-
tion: how to broaden the inference space of environments,
enabling model to handle complex environment shifts.

We argue that this limitation arises from the positive learning
paradigm that focuses solely on extracting causal subgraphs
as its primary objective. In contrast, negative inference
paradigm, modeling the sample space except the invariant
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Figure 1. The motivation of our work. (a) We double the scale of spurious substructures in the SPURIOUS-MOTIF(0.5) (Ying et al.,
2019), and observe a significant decrease in the performance of current methods when they are re-conducted on this modified dataset. (b)
The OOD methods, which treat spurious subgraphs as the environments, fail to address the shift of complex environments.

subgraph as environments, has the potential to broaden the
perception scope of environment. As shown in Fig. 1(b), the
positive inference can only infer the specific ladder, wheel,
and tree as environment variables, while the negative infer-
ence approach can model all variable space except the cycle
and house as environments. However, the inaccessibility of
environment information pose challenges to implementing
such negative inference. Specifically, (1) how to formu-
late the negative inference learning to achieve environment
awareness, and (2) how to fully utilize environment informa-
tion for facilitating causal invariant learning.

In this work, we propose a novel Negative inference Graph
OOD framework (NeGo). NeGo aims to achieve causal
invariant learning against complex environment shifts by a
negative inference. Firstly, we design a negative prompt
learning framework for inferring underlying environment
factors. Given a specific sample with label Y , we model all
extra-class samples as the environment space for this sample.
This design enables the model to capture a broader scale of
environments, no more limiting to in-sample spurious sub-
graphs. Secondly, we introduce an environment-enhanced
invariant learning strategy to effectively utilize inferred en-
vironment variables. Specifically, we design an interactive
decoding scheme that utilizes an attention-based residual
connection to encapsulate environment embedding into node
representations. Different from traditional approaches that
neglect the information of environment variables during
subgraph extraction (Chen et al., 2024; Gui et al., 2024),
our design incorporates the underlying environment patterns
into the process of invariant subgraph learning. Lastly, we
conduct a comprehensive evaluation of NeGo on real-world
datasets across domains, and synthetic datasets. NeGo out-
performs baselines on nearly all datasets. Our contributions
can be summarized as follows:

• We observe that existing environment-centered OOD prac-
tices encounter difficulties in handling complex environ-
ment shifts. Through a comprehensive investigation, we

identify that limited environment space for positive in-
ference is the main reason restricting the generalization
capacity of existing OOD approaches.

• We propose a novel invariant learning framework with
negative inference NeGo. To be specific, we design an
innovative environment inference strategy via negative in-
ference, which effectively broadens the inference space of
environment factors. Moreover, we introduce an attention-
based residual connection to offer our model with the
ability to resist complex environment shifts.

• We conduct extensive experiments on both synthetic and
real-world datasets with distribution shifts to evaluate the
performance of NeGo. The results from both visualiza-
tion and quantitative analysis indicate that our framework
successfully achieves accurate prediction in complex en-
vironmental scenarios.

2. Background
Preliminaries. A graph is denoted as G = (X ,A) ∈ G,
where G is the observed graph dataset. A ∈ RN×N repre-
sents the adjacency matrix and X ∈ RN×d denotes node
features, where N indicates the number of nodes and d is
the feature dimension. Each graph is associated with a cor-
responding label Y . From the perspective of causal theory,
the graph data can be partitioned into a spurious subgraph
GS and a causal subgraph GC , where GC directly deter-
mines its label Y . The spurious subgraph GS is controlled
by the spurious variable C, while the causal subgraphs GC

is controlled by the causal invariant factor C, as shown in
Fig. 4. Based on the different interdependencies among C,
S and Y , structural causal models (SCMs) can be further
classified into Full Informative Invariant Features (FIIF)
and Partially Informative Invariant Features (PIIF) (Ahuja
et al., 2021; Chen et al., 2022).

Problem definition. Our work aims to address the lim-
itations of existing approaches in handling complex data
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distribution shifts. We specifically focus on broadening the
inference scope of environments, enabling the network to
handle intricate scenarios of environment shifts. Addition-
ally, our framework is required to effectively tackle both
FIIF and PIIF challenges.

Environment inference with negative prompt. Our nega-
tive prompter is proposed to achieve a broader inference
scale of environments, which is inspired by the success of
prompt learning in language models (Brown et al., 2020;
Gao et al., 2020). Prompt learning is designed to capture
underlying semantic knowledge in language data, which
improves the generalization ability of models by introducing
appropriate prompt tokens to guide the network learn de-
sired answers (Rao et al., 2022; Sordoni et al., 2024; White
et al., 2023; Sun et al., 2023). For example, in the semantic
emotion classification task, the language model constructs
a template such as ”the emotion expressed by
this sentence is [class]”, where [class] is
trained to learn real label. In a similar way, our framework
can be viewed as constructing a set of text prompts such as
”the underlying environments of current
sample are [answer]”, where [answer] can be
guided to capture the real environment states.

Different from random data augmentation techniques (Han
et al., 2022; Li et al., 2021; Lu et al., 2024; Rong et al.,
2019; Wang et al., 2021; You et al., 2020; Zhao et al., 2021)
and distributionally robust optimization (DRO) methods
(Staib & Jegelka, 2019; Wu et al., 2024; Zhu et al., 2021),
our prompt-based approach not only broadens the scale of
environment inference but also deepens the understanding
of underlying data generation process. Existing methods
always expand the inference boundary of the model by in-
corporating stochastic perturbations. However, the intro-
duction of randomness prevents the model from capturing
the underlying semantics and hinders its ability to deepen
the understanding of generation process. In contrast, our
prompt-based approach allows us to deeply extract the un-
derlying casual correlation of variables, which is the reason
why we introduce the technique of prompt learning.

3. Related works
3.1. OOD Generalization.

Out-of-Distribution (OOD) generalization refers to the task
of adapting a model that has been trained on a specific distri-
bution to effectively process data from a potentially different
distribution. Various approaches can be employed for OOD
generalization, including data augmentation (Rong et al.,
2019; Wang et al., 2021; You et al., 2020), domain adapta-
tion (Wang & Deng, 2018), and causal invariant learning
(Sui et al., 2022; Wu et al., 2022c). Among them, causal
invariant learning demonstrates impressive performance in

various fields, due to its powerful interpretability (Chen
et al., 2022; Li et al., 2022; Miao et al., 2022; Wu et al.,
2022c). Most existing invariant learning methods focus on
extracting the causal subgraph to achieve invariant learning.
This strategy limits the inference space of the environments
to the dimension of spurious subgraphs, which hinders the
ability of models to capture the complex environment states.
In this work, we propose an invariant learning mechanism
based on negative inference to address this limitation.

3.2. Prompt Learning

Prompt learning is proposed in NLP models to infer under-
lying semantic and potential causal associations in linguistic
data. Many effective prompt methods have developed with
the introduction of large language models, including some
hand-crafted prompts (Brown et al., 2020), discrete prompts
(Gao et al., 2020; Shin et al., 2020), and learnable prompts
design (Li & Liang, 2021). In recent years, prompt learning
has also been developed in the graph learning field (Sun
et al., 2022a; Li et al., 2024; Sun et al., 2023; Zi et al., 2024).
Our approach is the pioneering effort to apply prompt learn-
ing to address the graph OOD generalization issue.

3.3. Comparisons to Existing Graph OOD Works

Environment-centered studies (Chen et al., 2024; Gui et al.,
2024; Li et al., 2022; Wu et al., 2022a; Yang et al., 2022) con-
sider that the data distribution shifts stem from the changes
of environments. Therefore, these practices enable the
model to withstand data distribution shifts by inferring en-
vironment variables. Concretely, the networks are often
trained with the objective of equipping models to effectively
handle mixed environments scenarios. However, this design
allows the networks to make narrow inference about the
environments, and makes the networks unable to handle
with distribution shifts in complex environments. We at-
tribute this limitation of inference scale to the shortcomings
of positive inference, which is proved both empirically and
theoretically. To this end, we propose a negative inference
mechanism to broaden the inference space for environments,
without relying on the mixed environments hypothesis. Our
approach, which represents a pioneering practice in utilizing
negative inference, is distinct from all existing practices in
this field.

4. Graph OOD generalization via environment
inference

Existing environment-centered practices aim to enable the
networks with the ability to resist data distribution shifts.
However, our empirical observations indicate that these
approaches are insufficient in handling complex environ-
ment shifts. To address this issue, we conduct a theoretical
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Figure 2. The architecture of NeGo. We implements an environment-enhanced graph learning framework in which the environment is
extracted through a negative prompt mechanism. The training process is guided by both a positive loss and a negative loss, aiming to
broaden the modeling space for the environment.

analysis of these methods, and identify that their failures
stem from the limited environment inference space by only
positively treating spurious subgraphs as environments. In
contrast, we propose a promising method based on negative
inference.

4.1. Limited Environment Cognitive Space for Positive
Inference

From the perspective of causal theory (Pearl, 2009; 2010),
the variables of generating the graph data include causal
subgraph GC and spurious subgraph GS , where GS is con-
trolled by environment variable E. As shown in Fig. 4,
GC → Y demonstrates a stable casual relationship from
GC to Y in the data generation process. Consequently, the
distribution shift between the training data and the test data
can be attributed to the shifts of environment E, which
can be formally expressed as Ptrain(G, E) ̸= Ptest(G, E).
Modeling environment variables becomes crucial for tack-
ling OOD generalization issue (Chen et al., 2024; Gui et al.,
2024; Xia et al., 2023; Yuan et al., 2023). With the observed
training dataset G, environment-centered approaches strive
to learn the distribution of the environment factor E,

P(E|G) = P(G, E)

P(G)
=

P(G|E)P(E)∫
E

P(G|E)P(E)dE
. (1)

The prior distribution P(E) and the likelihood P(G|E) =
N∏
i=1

P(Gi|E) make the numerator theoretically computable.

However, due to the uncertainty in the scale of environments
E, the denominator of Eq. 1 involving integration becomes
intractable. To tackle this issue, we impose a distribution
shift boundary based on following environment mixture
assumption.

Assumption 4.1. (Li et al., 2022) If K different environ-
ment labels can be extracted from the observed dataset G,

they are formulated by K independent D-dimensional Gaus-
sian distributions N (µi, I), where µi ∈ R1×D. Therefore,
environment variables can be modeled from a vector space
perspective, allowing us to approximate the environment
space by exploring the mixture space of vectors.

Given the Assumption 4.1, we can model the environments
codebook µ = (µ1, µ2, ..., µK) ∈ RK×D. This environ-
ment codebook serves as a proxy for the environment space,
representing the entire environment space through the mix-
ture of vectors.

Therefore, the scale of environments is modeled as a mix-
ing space of extracted environment variables. As a result,
the new data Gi is associated with the environment state
Ei ∼ N (ei · µ, I), where ei ∈ R1×K representing the
mixing weight. This indicates that the latent variables
e = (e1, e2, ..., eN ) ∈ RN×K be regarded as the proxy
factor for the environment variable E, directly determin-
ing the observed data G generation process. The posterior
probability of the environments P(E|G) is transformed into,

P(e|G) = P(G, e)
P(G)

=

N∏
i=1

P(ei)P(Gi|ei)

∑
e
P(e)

N∏
i=1

P(Gi|ei)
=

N∏
i=1

P(ei)∑
e
P(e)

.

(2)
The finite space of e allows for the approximation strategy
to be feasible. However, the limited scale of e may limit the
capacity of model to effectively counter complex environ-
ment shifts, which is verified by our empirical results. We
next delve into the reason contributing to this limitation. We
first present a definition of the basis and base environments
of the environment space, similar to the concepts of basis
and base vectors in the vector space.

Assumption 4.2. Let Eb = {E1, ..., EK} be the basis of
environment space, and each element Ei within it is referred
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to as the base environment. The linear combination of base
environments can completely describe the entire environ-
ment space.

Actually, the environment mixing assumption fundamen-
tally relies on the expectation that extracted environment
codebook can cover the basis Eb. However, we observe that
such goal cannot be achieved by existing methods. Given a
graph G, current environment-centered methods aim to de-
compose it into causal subgraph GC and spurious subgraph
GS . The spurious subgraph GS is inferred as the environ-
ment variable. Although GS is controlled by environment
factor (E → GS), the space of environment changes en-
compass more than the scale of spurious subgraphs. For
example, consider the substructure GC that is causally as-
sociated with one graph-level property l, but the variants
of such GC act as environment factors for other properties.
Existing methods fail to capture such other properties with
invariance.
Proposition 4.3. Given an observed graph dataset G, the
inference process, considering GS as the environment factor,
fails to capture the basis Eb that can represent the entire
environment space.

Proposition 4.3 indicates that the mixing of µ is unable
to encompass the entire environment space. Existing
environment-centered methods still have a narrow space
of the environments, which leads to incapability of network
to extract the causal graph from the complex environments.
Therefore, the limitations of existing works are attributed
to the narrow inference space of the model for environment
variables. Detailed proof can be found in Appendix D.1.

4.2. The Enhancement of Negative Inference

Negative inference has a major advantage in effectively ex-
panding the cognitive boundary of models. For example, the
positive inference can only infer the specific ladder, wheel,
and tree as environment variables, as shown in Fig. 1(b),
while the negative inference approach can infer all variable
space except the cycle and house as environments. While
the ultimate objective is to extract invariant subgraphs, the
negative inference mechanism prioritizes inferring the envi-
ronment space, empowering the model with the capability
to adapt to complex environment shifts. From the perspec-
tive of information theory, the training objective of negative
inference can be formalized as,

max I(E;GC |GY ) = max I(E;G −GC |Y )

= max I(E;G|GY )− I(E;GC |Y ),
(3)

where GY denotes the extra-class samples of the graph G
which is labeled as Y .
Proposition 4.4. The learning objective of negative in-
ference paradigm (Eq. 3) encompasses a broader cogni-

tive space for environments, with its upper limit being the
ground-truth environment distribution.

Proposition 4.4 emphasizes that the negative inference
paradigm enables a broader-scale environment inference
space by cooperatively modeling both intra-class spurious
subgraphs and extra-class samples. Detailed proof can be
found in Appendix D.2.

5. Graph Invariant Learning with Negative
Inference

In this section, we introduce a novel negative inference
graph OOD framework NeGo to address the limitation of
existing efforts in handling complex environments shifts.
Specifically, NeGo is developed to design a negative infer-
ence learning task to capture underlying environments, and
leverage inferred environment embeddings to enhance graph
invariant learning.

5.1. Negative Prompt Learning for Environment
Inference

Negative inference focuses on indirectly extracting invariant
subgraph by investigating the information beyond the causal
factors. This leads to the problem that the space of variables
beyond causal information is infinite-dimensional. Given
the insight from Theorem 4.4, we decouple the process of
modeling the environment through negative inference into
two components: the extraction of intra-class spurious sub-
graphs and the inference of extra-class samples. Modeling
spurious subgraphs is relatively straightforward and exten-
sively studied. The crucial challenge lies in achieving a
comprehensive understanding of extra-class sample space.

Formally, let the prior distribution of extra-class samples
for G be denoted as P(Y ), where G is with the label Y . We
introduce a variational estimate of the environment variables
denoted as Qϕ(E|G) (a.k.a., fϕ), where ϕ is the parame-
terized network. Denoting KL-divergence as KL(·||·), the
training of Qϕ is to implement the first term of Eq. 3, which
can be formalized as following optimization,

min
ϕ

E[KL(Qϕ(E|G))||P(GY )]. (4)

Inspired by the success of prompt learning in capturing un-
derlying semantic and causal associations in large language
models (Floridi & Chiriatti, 2020; Sordoni et al., 2024), we
introduce a negative prompter to achieve this goal. Specif-
ically, given a sample G belonging to class l, the negative
prompter treats all extra-class samples as environments. De-
signing appropriate prompt tokens to guide effective learn-
ing is the primary question that needs to be addressed when
employing the concept of prompt learning.

Given the proven efficacy of learnable prompts in various
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practices, we design class-specific learnable prompt tokens
P = [v(1),v(2), ...,v(L)], where v(i) ∈ R1×d and L is the
number of classes. The class-specific design manner aims to
capture the extra-class sample space for each graph, in order
to achieve the objective defined by Eq. 4. The negative
prompter fϕ(·) is guided to learn the prompt answers AN ∈
RL×d by interacting the encoded graph embedding ZG ∈
R1×d and the learnable prompts P ,

AN = fϕ(ZG,P ). (5)

The negative prompter fϕ is parameterized by a cross-
attention network in Transformer decoder (Vaswani et al.,
2017), where ZG is obtained by a GNN backbone encoder
hψ(·). For a sample G with label l, such negative prompts
answers AN should satisfy the following two properties:

• The prompts answers AN should produce a low match
with graphs whose labels are l.

• The prompts answers AN should produce a high match
with graphs whose labels are not l.

With the explanation in the language models, our negative
prompt mechanism involves designing prompt tokens to
learn the desired [answer] of ”the underlying
environments of current sample are
[answer]”. These two properties guide fϕ(·) to
learn a positive answer when interacting with each extra-
class sample and a negative answer when interacting with
each intra-class sample. Therefore, the training objective of
our negative prompt mechanism can be formulated as,

Lnega = E[KL(P(GY )||Qϕ(E|G))]

= −E[logPϕ(Ȳ |G,P )− logPϕ(Y |G,P )].
(6)

The environment variables we infer are class-specific, in
contrast to the global environment factors constructed by
previous methods. Our design is intuitively reasonable, as a
specific subgraph may be perceived by one class as causal in-
formation, while its minor variations are perceived by other
classes as environments. Moreover, it is worth noting that
we never overlook the inference of the environments (spuri-
ous subgraphs) within intra-class samples. Given that the
intra-class environments are always intertwined with causal
factors, we incorporate the inference of intra-class environ-
ment variables into the discovery of the causal subgraph,
which is provided in the next subsection.

5.2. Environment-enhanced Graph Invariant Learning

While inferring environment variables is a crucial step in
understanding the data generation process, the ultimate goal
of graph learning is to achieve casual invariant prediction.
Thus, the next challenge to address is the disentanglement of

the causal subgraph from environments. Existing methods
often neglect the design of a graph-tailored environment ex-
ploitation algorithm, which can lead to the failure in extract-
ing causal subgraphs when environment becomes complex
(Gui et al., 2024).

We propose an environment-enhanced invariant learning
mechanism that leverages perceived latent environment em-
beddings to achieve the extraction of causal subgraphs with
resistance to complex environment disturbances. Different
from the negative prompter that investigates the extra-class
sample space, we concentrate on the disentanglement of
causal invariant substructures within the intra-class samples
in this subsection.

Let the marginal distribution of the causal subgraph GC be
P(GC). We introduce a variational estimation of the sub-
graph extraction Qξ(GC |G,E) (a.k.a., gξ), where ξ is the
parameterized networks. The model can make casual invari-
ant predictions of the label distribution Pθ(Y |GC) (a.k.a.,
gθ), only when the causal graph is accurately extracted
from complex environments. The learning objective for
environment-enhanced graph invariant learning Pθ ◦Qξ(·)
is to implement the second term of Eq. 3, which can be
formalized as following optimization,

min
ξ,θ

E[KL(Qξ(GC |G,E)||P(GC))−logPθ(Y |GC)]. (7)

The environment embedding AN ∈ RL×d is inferred at
the graph level, but the extraction of substructures often
requires node-level operations. Therefore, the primary focus
of environment-enhanced invariant learning is to propagate
the perceived environment embedding AN to individual
nodes. We design an interaction-decoding module gξ1(·) to
address this issue.

Specifically, gξ1(·) consists of three families of learnable
parameters, i.e., WQ,WK ,WV ∈ Rd×d. gξ1(·) takes
the node-level representation Z ∈ RN×d encoded by
the GNN encoder hψ(·) and the environment embedding
AN ∈ RL×d obtained by negative prompt as inputs. Three
hidden state matrices are calculated by,

ZQ = ZWQ, AK = ANWK , AV = ANWV . (8)

The node embedding with environment information ob-
tained through residual connections is,

ZE = softmax(
ZQ(AK)T√

d
)AV +Z. (9)

We exploit a subgraph extractor GC = gξ2(ZE) to realize
invariant subgraph discovery. Then, GC is encoded by
hψ(·) to obtain the causal representation for prediction. This
representation is passed through an MLP layer gθ to model
the distribution of Y . Therefore, the training objective of
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environment-enhanced invariant learning is,

Lposi = −E[logPξ,θ(Y |GC)]

= −E[logPθ(Y |GC) + logPξ1,ξ2(GC |G,AN )].
(10)

5.3. Optimization Objective and Theoretical Analysis

Our NeGo achieves a graph learning framework with a
wider space of environment inference . This is accomplished
through two sequential approaches, first focusing on con-
structing the learning task for negative inference, and then
leveraging the environment embeddings obtained from neg-
ative inference to enhance graph causal invariant learning.
Thus, the training objective of our NeGo is,

L = Lnega + λ · Lposi, (11)

where λ is a hyperparameter, which is set to 1 in the im-
plementation. The training process of NeGo is provided
in Alg. 1. Note that the two sub-challenges addressed by
NeGo are not independent but closely interconnected. The
environment negative inference mechanism assists the net-
work in comprehending the distribution shift of data, while
the causal invariant learning with environment enhancement
empowers the network to accurately extract causal invariant
subgraphs even in complex environments. Thus, the former
serves as a foundation for the latter. This design reflects
the principle that understanding data generation process is
crucial to enhance the generalization of models. We also
provide theoretical evidence supporting the ability of NeGo
to effectively address both FIIF and PIIF under both cases
of H(GC |Y ) < H(GS |Y ) and H(GC |Y ) > H(GS |Y ).
Detailed proof can be found in Appendix D.3.

Theorem 5.1. Given the FIIF or PIIF assumptions under
both cases when H(GC |Y ) < H(GS |Y ) and H(GC |Y ) >
H(GS |Y ), the causal subgraph GC can be extracted by
optimizing Eq. 11.

6. Experiments
We evaluate the effectiveness of NeGo by answering the
following questions. Q1. Does our approach effectively
address the issue unresolved in existing works? Q2. Is
our framework sufficiently interpretable? Q3. Does each
component in our NeGo effectively enhance the generaliza-
tion capacity? Q4. Does our framework operate with high
efficiency?

6.1. Baselines

We choose four representative OOD methods and seven
graph-specific OOD approaches for comparison. The repre-
sentative OOD frameworks we select consist of ERM, IRM
(Arjovsky et al., 2019), V-Rex (Krueger et al., 2021), and

Algorithm 1 The training process of NeGo
Input: training data G, negative prompts P .
Initial: the GNN encoder hψ, the negative prompter fϕ,
environment-enhanced invariant learning mechanism gξ,
final predictor gθ, learnable prompt tokens P , the number
of epochs K.
for i = 1 to K do

ZG = hψ(G)
AN = fϕ(ZG,P )
ZQ = ZWQ, AK = ANWK , AV = ANWV

ZE = softmax(Z
Q(AK)T√

d
)AV

Y = gθ(GC), GC = g
2
(ZE +Z)

Optimizing:
Lnaga = E[KL(P(GY )||Qϕ(E|G))] =
−E[logPϕ(Ȳ |G,P )− logPϕ(Y |G,P )]
Lposi = −E[logPξ,θ(Y |GC)] = −E[logPθ(Y |GC)+
logPξ1,ξ2(GC |G,AN )]
min

ψ,ϕ,θ,ξ,P
L = Lnega + Lposi

end for
Return hψ , fϕ, gξ, gθ and P

IB-IRM (Ahuja et al., 2021). The Empirical Risk Minimiza-
tion (ERM) baseline is a vanilla GNN with ERM objective,
which is trained using the same settings with (Gui et al.,
2024). Graph OOD approaches includes DIR (Wu et al.,
2022c), GSAT (Miao et al., 2022), CAL (Sui et al., 2022),
CIGA (Chen et al., 2022), GIL (Li et al., 2022), LECI (Gui
et al., 2024) and GALA (Chen et al., 2024).

6.2. Datasets

We adopt two synthetic datasets with distribution shift and
six real-world scenario shift datasets from both molecular
and social science domains. Synthetic datasets include
GOOD-Motif (Wu et al., 2022c) and GOOD-CMNIST (Gui
et al., 2022). In molecular property prediction fields, we
select the scaffold and size splits of GOOD-HIV dataset
(Gui et al., 2022; Wu et al., 2018) and the assay and size
splits of DrugOOD LBAP-core-ic50 dataset (Ji et al., 2022).
We also choose two social sentiment graph datasets with
distribution shifts, including GOOD-SST2 and GOOD-
Twitter (Yuan et al., 2022). Detailed statistics on the number
of graphs in those datasets are provided in Tab. 6.

6.3. Result Comparison and Analysis

We comprehensively evaluate the OOD performance of
NeGo on both real-world and synthetic datasets to answer
Q1. Tab. 1 and 2 present the performance of NeGo on
chemical and sentiment graph datasets. Tab. 8 showcases
the performance of our framework on two synthetic datasets.
Compared to existing methods, our method achieves opti-
mal performance on almost all datasets. Besides, the per-
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Table 1. The ROC-AUC performance of NeGo on four real-world datasets in chemical research field. ID val and OOD val represent the
results of OOD test set using the in-distribution and out-of-distribution validation sets, respectively (Gui et al., 2024). The best results are
shown in bold and the second best results are underlined. * indicates statistical significance against the second-best results.

Model GOOD-HIV-scaffold GOOD-HIV-size DrugOOD-assay DrugOOD-size
ID val OOD val ID val OOD val ID val OOD val ID val OOD val

ERM 69.61±1.32 70.37±1.19 61.66±2.45 57.31±1.06 70.03±0.16 72.18±0.18 62.97±0.26 63.29±0.33
IRM 73.35±2.30 70.89±0.29 58.52±0.86 60.86±2.78 71.56±0.32 72.69±0.29 63.24±0.26 63.46±0.23
V-Rex 71.73±3.51 71.18±0.69 58.39±1.54 60.10±2.09 70.22±0.86 72.32±0.58 63.87±0.42 64.11±0.39
IB-IRM 67.56±2.31 66.25±0.93 57.45±0.74 56.65±1.22 69.34±0.48 71.32±0.76 64.03±0.61 64.59±0.70
DIR 65.84±1.71 68.59±3.70 59.69±1.59 60.85±0.52 67.29±0.73 69.70±0.65 63.85±0.65 64.73±0.54
GSAT 71.55±3.58 71.39±1.41 60.92±1.00 60.61±1.19 71.01±0.54 72.26±0.45 65.12±0.38 65.67±0.45
CAL 73.48±2.64 72.38±1.03 62.83±1.26 62.58±1.04 71.89±0.92 71.23±1.13 63.85±0.49 64.22±0.74
CIGA 66.25±2.89 71.47±1.29 58.24±3.78 62.56±1.76 67.68±1.14 70.54±0.59 64.14±0.66 64.83±0.79
GIL 70.89±1.60 70.23±1.23 61.74±1.76 61.29±1.34 70.45±0.89 70.73±1.36 64.91±0.51 65.43±0.64
LECI 74.04±0.65 74.43±1.69 64.83±2.59 65.44±1.78 72.67±0.46 73.45±0.17 65.93±0.43 66.49±0.60
GALA 73.85±1.10 74.02±1.34 63.99±1.54 64.45±2.26 72.83±0.73 73.23±0.29 65.23±0.72 65.84±0.52
NeGo 75.21±0.73* 75.87±1.02 65.23±1.74 65.92±1.82* 73.20±0.18* 73.94±0.25* 65.49±0.73 66.91±0.84*

Table 2. The accuracy of NeGo on two sentiment graph datasets,
where * indicates statistical significance against the second-best
results.

Model GOOD-SST2 GOOD-Twitter
ID val OOD val ID val OOD val

ERM 78.37±2.64 80.41±0.69 54.93±0.96 57.04±1.70
IRM 79.73±1.45 80.17±1.52 55.27±1.19 57.72±1.03
V-Rex 79.31±1.40 80.33±1.09 56.46±0.93 56.37±0.76
IB-IRM 78.93±1.23 80.22±0.55 54.23±1.21 56.73±1.02
DIR 77.65±0.71 81.50±0.55 55.32±1.85 56.81±0.91
GSAT 79.25±1.09 80.46±0.38 55.09±0.66 56.07±0.53
CAL 81.20±1.21 82.34±0.67 56.77±0.86 57.82±0.44
CIGA 80.37±1.46 82.93±0.75 57.51±1.36 57.19±1.15
GIL 81.43±1.02 83.31±0.50 58.21±1.24 57.82±1.18
LECI 82.93±0.22 83.44±0.27 59.35±1.44 59.64±0.15
GALA 82.60±0.66 82.98±0.42 59.03±0.65 60.45±1.36
NeGo 82.72±0.51 84.16±0.23* 60.82±0.22* 61.25±0.70*

formance of environment-centered OOD methods, such as
LECI and GALA, often achieves suboptimal or even op-
timal results on various datasets. This demonstrates the
effectiveness of modeling environment factors in addressing
data distribution shifts.

Table 3. The performance comparison (ID val) of NeGo on new
environment scenarios.

Model GSAT CAL CIGA LECI GALA NeGo
Acc.(%) 70.13 75.21 71.82 78.46 77.93 79.75

To futher validate the effectiveness of our NeGo in new
environment scenarios (nonlinear environment mixing), we
conduct additional experimental discussion. Considering
that the environments in SPURIOUS-MOTIF (Ying et al.,
2019) include five specific label-irrelevant base subgraphs
(wheel, tree, ladder, star, and path), we increase the envi-
ronment complexity by diversifying these base subgraphs.
Specifically, we randomly add connections to the base sub-
graphs in each sample, totaling 10% of the original edge

count. As shown in Tab. 3, we observe that the advantage of
our NeGo on common OOD datasets is persists in complex
environments, with a 1.29% performance improvement.

Moreover, we evaluate the performance of our framework
in the the complex environments scenario illustrated in Fig.
1(a). NeGo achieves 87.34% and 80.29% on the original
and adjusted dataset, respectively. There is only a minor
decrease in performance, suggesting that our method ef-
fectively tackles the limitations encountered by existing
methods in handling complex environments.

To answer the Q2, we visually represent the causal sub-
graphs extracted by NeGo on the modified dataset in Fig.
1(a). As depicted in Fig. 3, our method consistently extracts
the ground-truth subgraph. The visualized results further
validate the effectiveness of our proposed negative inference
method. By modeling extensive extra-class samples as en-
vironments, our approach offers undeniable advantages in
handling complex environment shifts.

6.4. Ablation Studies

To answer Q3, we investigate each component of NeGo.
Specifically, we conduct ablation studies to explore the ef-
fectiveness of negative prompter and interactive decoding
component. Tab. 4 shows that the performance drops sig-
nificantly when there is either no negative prompter or in-
teractive decoding component. NeGo-NoPro refers to the
framework that eliminates negative prompter and negative
loss, which causes the most performance drop. Therefore,
the negative inference mechanism plays a vital role in en-
hancing the capability of environment perception. This
further validates the rationale of our motivation for incorpo-
rating negative inference. NeGo-NoEnv indicates that the
casual subgraphs are extracted directly using node embed-
ding without integrating inferred environment information.

8



Enhancing Graph Invariant Learning from a Negative Inference Perspective

Figure 3. The causal subgraphs extracted by NeGo on the modified dataset in Fig. 1(a).

The performance decline emphasizes the significance of en-
vironment utilizing strategies overlooked by existing works.

Table 4. Ablation studies of NeGo.
Model DrugOOD(assay) GOOD(Twitter)
NeGo-NoPro 70.37 58.41
NeGo-NoEnv 71.71 59.17
NeGo 73.20 60.82

6.5. Efficiency Analysis

To address Q4, we explore the training efficiency of NeGo
from both theoretical and practical perspectives. The time
complexity of NeGo is O(|V| × d2 + |V| × d× h+ |E| ×
d), where |V| represents the number of nodes, |E| denotes
the number of edges, d is the feature dimension, and h
represents the number of cross-attention heads. Our method
has linear time complexity with high training efficiency.

We empirically compare the training efficiency of NeGo
with other baselines on DrugOOD-size dataset as shown
in Tab. 5. Compared with some earlier invariant learning
methods (DIR and GSAT), the minor increase in running
time of our menthod brings out the substantial performance
boost. Additionally, our approach demonstrates greater
competitiveness in both training efficiency and performance
compared to existing environment-centered methods.

Table 5. The training efficiency of NeGo with other baselines on
DrugOOD-size (s/epoch).

Models GSAT DIR CIGA LECI GALA NeGo
Time 51.6 52.6 54.2 59.1 62.3 58.7

7. Conclusion
In this work, we propose a negative inference graph OOD
framework NeGo to handle complex environment shift in
OOD scenarios. By inheriting the practices of prompt learn-
ing in large language models, we design a negative prompter
to model the environment on a larger scale. We then intro-
duce an environment-enhanced invariant learning strategy
to eliminate spurious subgraphs from the data. This strategy
effectively leverages the inferred environment variables to

enhance the ability to remove irrelevant information. Exten-
sive experiments on real-world datasets across domains and
synthetic datasets validate the effectiveness of NeGo.
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A. More Related works
A.1. OOD Generalization.

Out-of-Distribution (OOD) generalization learning refers to the task of adapting a model that has been trained on a specific
distribution to effectively process data from a potentially different distribution. This study holds significant importance
because the issue of data distribution shifts is a common occurrence in the real world. External factors, such as changes
in environmental conditions, technological advancements, or evolving user preferences, can lead to shifts in the data
distribution. Various approaches can be employed for OOD generalization, including data augmentation (Rong et al., 2019;
Wang et al., 2021; You et al., 2020), domain adaptation (Wang & Deng, 2018), and causal invariant learning (Sui et al., 2022;
Wu et al., 2022c). Jia et al. (Jia et al., 2024) innovatively proposes a mixup-based environment modeling framework, IGM,
to enhance graph invariant learning. IGM focuses on expanding the environment space through a mixing generation scheme,
while our NeGo aims to mine environmental space as much as possible from the novel perspective of negative learning.
Piao et al. creatively proposes a hierarchical environment inference paradigm to enhance graph invariant learning methods
(Piao et al., 2024). This work focuses on generating sample-level hierarchical environments to expand the modeling of the
environment space. Unlike this method, our NeGo focuses on class-level environment augmentation, collaborating with
extra-class environment modeling and inter-class invariant learning to achieve global inference of environment space.

Among them, causal invariant learning demonstrates impressive performance in various fields, due to its powerful inter-
pretability (Chen et al., 2022; Li et al., 2022; Miao et al., 2022; Wu et al., 2022c). Our NeGo is aligned with this research
line, as an environment-centered invariant learning method based on causal theory. However, in the field of graph learning,
most existing invariant learning methods focus on extracting the causal graph to achieve invariant learning. This strategy
limits the inference space of the environments to the dimension of spurious subgraphs, which hinders the ability of models
to capture the complex environment states. In this work, we propose an invariant learning mechanism based on negative
inference to address this limitation.

A.2. Prompt Learning

Prompt learning is proposed in NLP models to infer underlying semantic and potential causal associations in linguistic
data. Many effective prompt methods have developed with the introduction of large language models, including some
hand-crafted prompts (Brown et al., 2020), discrete prompts (Gao et al., 2020; Shin et al., 2020), and learnable prompts
design (Li & Liang, 2021). There have been various works on the interaction of computer vision and natural language
processing fields, e.g., text-to-image retrieval text-to-image retrieval (Wang et al., 2019), visual question answering(Antol
et al., 2015; Rao et al., 2022; Zhou et al., 2022a) and so on.

In recent years, prompt learning has also been developed in the graph learning field (Sun et al., 2022a; Li et al., 2024; Sun
et al., 2023; Zi et al., 2024). Our approach is the pioneering effort to apply prompt learning to address the challenge of graph
OOD generalization issue.

A.3. Comparisons to Existing Graph OOD Works

Environment-centered studies (Chen et al., 2024; Gui et al., 2024; Li et al., 2022; Wu et al., 2022a; Yang et al., 2022)
consider that the data distribution shifts stem from the changes of environments. Therefore, these practices enable the model
to withstand data distribution shifts by inferring environment variables. Concretely, the networks are often trained with
the objective of equipping models to effectively handle mixed environments scenarios. However, this design allows the
networks to make narrow inference about the environments, and makes the networks unable to handle with distribution
shifts in complex environments. We attribute this limitation of inference scale to the shortcomings of positive inference,
which is proved both empirically and theoretically. Therefore, we propose a negative inference mechanism to broaden the
inference space for environments, without relying on the mixed environments hypothesis.

Our approach, which represents a pioneering practice in utilizing negative inference, is distinct from all existing practices
in this field. DIR (Wu et al., 2022c) aims to identify causal patterns that are stable across different distributions and filter
out spurious patterns that are unstable. This work is a classic work in the early application of causal theory to address the
challenge of graph OOD generalization. It focuses on obtaining invariant subgraphs with a positive inference manner. GIL
(Li et al., 2022) aims to capture the invariant relationships between predictive graph structural information and labels in
a mixture of latent environments through jointly optimizing three mutually promoting modules. This method relies on
the mixing environment hypothesis and has limited inference space for environments. CIGA (Chen et al., 2022) build
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three Structural Causal Models (SCMs) to characterize the distribution shifts that could happen on graphs: one is to model
the graph generation process, and the other two are to model two possible interactions between invariant and spurious
features during the graph generation, i.e., FIIF and PIIF. This work provides a fresh perspective on existing research on
out-of-distribution generalization based on causality. However, it still falls within the framework of positive inference,
aiming to extract causal subgraphs. GALA (Chen et al., 2024) utilized proxy prediction mechanism to infer environment
label. It is worth noting that the negative samples mentioned in this work are different from our negative inference, and their
design is also to improve performance under the mixed environments hypothesis. Thus, it essentially follows a positive
inferring process for environment variables. LECI (Gui et al., 2024) primarily focused on spurious substructures space
to model the environment variables. Such environment inference strategy still relies on a positive inference with narrow
cognitive space of the environments. Unlike existing graph OOD researches that centers on environment awareness, our
work presents greater technical challenges, and targets scenarios that are more complex. G-Splice (Li et al.) focuses on linear
mixed scenarios with spurious structures, whereas our work aims to address the effectiveness of models in nonlinear mixed
scenarios. AIA (Sui et al., 2024) aims to model the environment factors in graph through the lens of data augmentation.
Unlike AIA that focuses only on modifications within spurious subgraphs inside samples, our NeGo is more concerned
with environment extraction in mixed scenarios at the class level. Thus, in scenarios where the spurious subgraphs within a
sample are highly complex, we believe that our method is more effective.

B. Detailed Datasets
• GOOD-Motif (Wu et al., 2022c) is a synthetic dataset designed for studying structure shifts. Each graph in the

dataset is created by connecting a base graph and a motif, where the label is determined by the motif. This accessible
ground-truth substructure brings a lot of convenience to the invariant subgraph learning with interpretability. This
dataset include five label-irrelevant base graphs (wheel, tree, ladder, star, and path) and three label-determining motifs
(house, cycle, and crane) are used to generate the graphs in the dataset. In environment-centered invariant learning,
such base graphs can be seen as environment factors and such motifs are be consider as the casual factors.

• GOOD-CMNIST (Gui et al., 2022) is a semi-synthetic dataset that has been purposefully created to evaluate node
feature shifts. It comprises graphs constructed from hand-written digits extracted from the MNIST database, with the
transformation applied using superpixel techniques (Monti et al., 2017).

• GOOD-HIV (Gui et al., 2022) is a compact and real-world molecular dataset that has been derived from (Wu et al.,
2018). It comprises molecular graphs, where atoms represent nodes and chemical bonds represent edges. The primary
task associated with this dataset is to predict a molecule’s potential for inhibiting HIV replication. Its distribution shift
scenario is developed into two, i.e., the scaffold, and the size of nodes in a molecular graph.

• DrugOOD(LBAP-core-ic50) (Ji et al., 2022) is utilized in the Ligand-based Affinity Prediction (LBAP) task, where
the core noise level and IC50 measurement type serve as domain features. Its distribution shift scenario is developed
into three, i.e., the scaffold, the size, and the assay.

• GOOD-SST2 (Yuan et al., 2022) is a real-world social sentiment dataset derived from natural language. This dataset
represents each sentence as a graph, where individual words are treated as nodes, and their corresponding word
embeddings serve as node features. The primary task in this dataset involves binary classification, aiming to predict the
sentiment polarity of each sentence.

• GOOD-Twitter (Yuan et al., 2022) is a real-world natural language sentiment dataset that shares the same transfor-
mation process as the SST2 dataset. The classification task of this dataset involves predicting one of three sentiment
polarities for each sentence. Similar to the GOOD-SST2 dataset, the sentence lengths are chosen as the domains.

C. Detailed Baselines
• DIR (Wu et al., 2022c) is an early work using causal theory to address the distribution shifts issue in graph data. This

work provides detailed theoretical proofs that demonstrate the feasibility of extracting invariant subgraph from graph
data.

• GSAT (Miao et al., 2022) employ information bottleneck theory to select causal subgraphs under onlythe FIIF
assumption. The proposed stochastic attention mechanism in this paper is highly robust in extracting casual subgraphs,
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Table 6. Statistics on the number of graphs in the datasets.
Dataset Training ID validation ID test OOD validation OOD test
GOOD-HIV-Scaffold 24682 4112 4112 4113 4108
GOOD-HIV-Size 26169 4112 4112 2773 3961
GOOD-SST2-Length 24744 5301 5301 17206 17490
GOOD-Twitter-Length 2590 554 554 1785 1457
GOOD-CMNIST-Color 42000 7000 7000 7000 7000
GOOD-Motif-Basis 18000 3000 3000 3000 3000
GOOD-Motif-Size 18000 3000 3000 3000 3000
DrugOOD-assay 34179 11314 11683 19028 19032
DrugOOD-size 36597 12153 12411 17660 16415

Table 7. Comparison of existing methods on addressing OOD generalization issue.
Methods SCMs Inferred Environment Space
DIR FIIF Spurious subgraphs
GSAT FIIF Spurious subgraphs
CIGA FIIF & PIIF Spurious subgraphs
GALA FIIF & PIIF Spurious subgraphs
LECI FIIF & PIIF Spurious subgraphs

NeGo FIIF & PIIF Intra-class spurious subgraphs and
extra-class sample space

and has emerged as a backbone model in numerous methods. Actually, the subgraph extractor used in our work is also
inspired by GSAT.

• CAL (Sui et al., 2022) is guided by the backdoor adjustment principle derived from causal theory. It encourages the
Graph Neural Networks (GNNs) to focus on exploiting causal features while disregarding shortcut connections.

• CIGA (Chen et al., 2022) is the first graph OOD method considering both Fully Informative Invariant Feature (FIIF)
and Partially Informative Invariant Feature (PIIF) assumptions. This work presents an OOD algorithm for graphs that
is provably generalizable under different types of distribution shifts.

• GIL (Li et al., 2022) is designed to capture invariant graph patterns in a mixture of underlying environments and handle
the distribution shift issue. This work introduces a GNN-based subgraph generator to identify potentially invariant
subgraphs from the complex interaction between invariant and variant patterns.

• LECI (Gui et al., 2024) comprehensively reviews existing OOD approaches and identifies the current causalsubgraph
discovery challenges. This work jointly optimize label and environment causal independence to achieve powerful
causal subgraphs learning.

• GALA (Chen et al., 2024) designs an additional assistant model to enhance model with more powerful OOD gen-
eralization ability without explicit environment labels. Theoretical proofs establish that GALA possesses robust
out-of-distribution generalization capabilities under the FIIF and PIIF assumptions.

GY
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Figure 4. Illustrations of three structural causal models (SCMs).
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D. Detailed Proofs
D.1. Proof of Proposition 4.3.

The basis Eb represents a set of fundamental components or features that can accurately represent the entire environment
space. These components capture the essential variations, patterns, and characteristics present in the environment. However,
if the inference process fails to capture this basis, it implies that the process is unable to fully understand and model the
complexities of the environment. Thus, we next investigate that whether the environment variable inferred from GS covers
such base environments. We consider two SCMs hypotheses FIIF and PIIF as shown in Fig. 4.

Under the FIIF assumption, Y⊥GS |GC , we have P (Y,GS |GC) = P (Y |GC) · P (GS |GC). This conditional independence
assumption leads to an equivalent expression: P (Y |G) = P (Y |GS , GC) = P (Y |GC). Therefore, the process of extracting
the causal subgraph GC is equivalent to the process of modeling the spurious correlations GS . Traditional positive casual
learning methods are capable of handling the FIIF assumption.

Under the PIIF assumption, Y�⊥GS |GC , we have P (Y,GS |GC) ̸= P (Y |GC) · P (GS |GC). Furthermore, we can obtain
P (Y |G) = P (Y |GS , GC) ̸= P (Y |GC). Thus, the process of extracting the causal subgraph GC cannot be used to infer
the labels of samples. More formally, using mutual information theory, we derive the following,

I(Y ;GS |GC) = H(Y |GC)−H(Y |GS , GC) > 0, (12)

H(Y |GC) > H(Y |GS , GC). (13)

This indicates that, given the causal subgraph GC , the uncertainty of Y is higher than when both the spurious subgraph GS

and the causal subgraph GC are given. It suggests that the spurious subgraph GS contains additional information of Y .

Therefore, the causal subgraph ĜC learned by the model with the positive learning manner contains components of the
spurious subgraph, i.e., GS ∩ ĜC ̸= ∅. At this point, if we can obtain the basis for the environment space, the model should
be able to infer the spurious subgraph GS and treat it as part of the environment E. The extracted causal subgraph ĜC

should be able to effectively remove the spurious subgraph, i.e., GS ∩ ĜC = ∅. This clearly contradicts the PIIF assumption,
indicating that the model currently lacks the capability to obtain a basis for the environmental space. Therefore, simply
inferring the causal subgraph with a postive manner is not sufficient to address the PIIF assumption. Since E → GS ,
modeling the spurious subgraph GS requires modeling and understanding its root E. Existing methods that simply model
G−GC also lack the capability to address the PIIF assumption.

D.2. Proof of Proposition 4.4.

The optimization of Eq. 3 enables a broader scale environment inference space by cooperatively modeling intra-class
spurious subgraphs and extra-class samples. Given that max−I(E;GC |Y ) = max I(E;GS |Y ), maximizing I(E;GS |Y )
implements the inference process for intra-class spurious subgraphs. Consider I(E;G|Ȳ ) =

∑
yi∈Ȳ

I(E;G(i)), maximizing

I(E;G|GY ) implements the modeling of extra-class sample space. The optimization procedure of max I(E;G|GY )

indicates that all other extra-class samples {G(i)|yi ∈ Ȳ } are modeled as environment variables when making environment
inference on samples with label Y . Therefore, the optimization process for Eq. 3 encompasses a broader cognitive space for
environments, with its upper limit being the ground-truth environment distribution.

D.3. Proof of Theorem 5.1.

Given that PIIF shifts in the absence of environment labels are more challenging (Chen et al., 2024), our work focuses
on the ability of NeGo on the PIIF assumption, namely PIIF implies that the causal variable GC indirectly influences
the spurious variable GS through the mediator Y . In the following analysis, we analyze the two specific scenarios under
PIIF assumption, i.e., H(GC |Y ) < H(GS |Y ) and H(GC |Y ) > H(GS |Y ). NeGo aims to comprehensively capture the
underlying environment space by inferring the extra-class sample space and the intra-class spurious subgraphs. The learning
objective of extracting casual subgraph GC can be rewritten as follows,

argmaxĜC

∀ei,ej∈E
(I(Ĝei

C , Ĝ
ej
C |C)− I(ĜC , Ḡ|Y ))

= argmaxĜC

∀ei,ej∈E
(−I(ĜC , Ḡ|Y ) + I(Ĝei

C , Ĝ
ej
C |Y )),

(14)
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where Ĝei
C denotes the extracted causal subgraph under any environmental scenario ei. The first term represents the

constraint of negative inference, meaning that NeGo models all extra-class samples as environmental space. The second term
represents the constraint of positive causal inference, meaning that the causal subgraph extracted under any environmental
condition remains consistent, and is most useful for label prediction. Next, we will demonstrate that NeGo can address the
two scenarios of the PIIF assumption.

For the case of I(GC ;Y ) > H(GC)−H(GS), we can get following derivation,

H(GS |Y ) > H(GC |Y ), (15)

H(GS)− I(GS ;Y ) > H(GC)− I(GC ;Y ), (16)

H(GS)−H(GC) + I(GC ;Y ) > I(GS ;Y ) > 0, (17)

I(GC ;Y ) > H(GC)−H(GS). (18)

We can get that inferring GC from Y is more effective and seamless compared to simply separating causal and spurious
substructures based on entropy differences. Thus, our positive inference approach, argmax

∀ei,ej∈E
I(Ĝei

C , Ĝ
ej
C |Y ), is sufficient to

achieve the decoupling of GC from the label Y .

For the case of I(GC ;Y ) < H(GC) − H(GS), we get I(GC ;Y ) < H(GC) − H(GS). This means that we need to
consider entropy differences in the data composition to assess the differences between causal and spurious relationships. In
other words, positive inference argmax

∀ei,ej∈E
I(Ĝei

C , Ĝ
ej
C |Y ) alone may result in ĜC containing spurious subgraph information,

meaning GS ∈ ĜC . Fortunately, our negative inference strategy can further refines ĜC by considering entropy differences
H(GC)−H(GS) to better distinguish between causal and spurious relationships. Specifically, our GC is also subject to
this constraint through a negative inference approach to learn ĜS ,

GC ∈ G− argmax(I(Y |ĜS)− I(ĜS |Ȳ )). (19)

E. More Experiment Results
E.1. Implementation Details

We implement our Nego and parts of baselines with PyTorch 1.10.1 on a server with NVIDIA A100-PCIE-40GB. All
experiments are repeated with 10 different random seeds of [1,2,3,4,5,6,7,8,9,10]. The reported results include the mean
and standard deviation obtained from these 10 runs. During the training stage, we employ the Adam optimizer. We set the
maximum number of training epochs to 200. The batch size of training is set as 32 except for GOOD-CMNIST, which
uses a batch size of 64. For GOOD-Motif, GOOD-CMNIST and GOODSST2, the learning rate is set to 5 × 10−4. For
GOOD-HIV, GOOD-Twitter, and DrugOOD, we exploit a learning rate of 10−4. Additionally, we utilize a weight decay of
10−4 to help with regularization and prevent overfitting. The experiment setup of all baselines is same as (Gui et al., 2024).

E.2. Performance on the Synthetic Datasets

As shown in Tab. 8, our method achieves optimal performance on almost all datasets. Besides, the performance of
environment-centered OOD methods, such as LECI and GALA, often achieves suboptimal or even optimal results on various
datasets. This demonstrate the effectiveness of modeling environment factors in addressing data distribution shifts.

E.3. Hyperparameter Sensitivity Analysis

To investigate the sensitivity of λ to performance in Eq. 11, we conducted experiments on both GOOD-HIV-scaffold and
DrugOOD-assay. As illustrated by the results from Fig. 5(b), the performance of NeGo improves significantly when λ ≈ 1.
We also find that neither smaller nor larger values of λ lead to improvements in performance. Therefore, only by jointly
utilizing both positive learning and negative inference can better performance be achieved.
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Table 8. The accuracy of NeGo on two synthetic datasets, where GOOD-Motif has a structure shift and GOOD-CMNIST has a feature
shift. * indicates statistical significance against the second-best results.

Model GOOD-Motif GOOD-CMNIST
basis size color covariate

ERM 60.93±11.11 56.63±7.12 26.64±2.37 57.56±9.59
IRM 64.94±4.85 54.52±3.27 29.63±2.06 58.11±5.14
V-Rex 61.59±6.58 55.85±9.42 27.13±2.90 48.78±7.81
IB-IRM 63.45±5.42 52.76±4.67 28.95±1.98 50.56±6.62
DIR 34.39±2.02 43.11±2.78 22.53±2.56 44.67±0.00
GSAT 62.27±8.79 50.03±5.71 35.02±2.78 68.22±7.23
CAL 59.45±3.34 51.27±2.50 28.87±1.80 52.59±2.76
CIGA 37.81±2.42 51.87±5.15 25.06±3.07 56.78±2.99
GIL 68.48±2.46 63.61±2.75 47.32±2.27 57.61±2.98
LECI 84.56±2.22 71.43±1.96 51.80±2.71 83.20±5.89
GALA 80.95±1.31 70.45±1.30 52.68±2.40 81.23±3.29
NeGo 83.96±1.90 72.65±1.47* 53.28±1.79 82.43±1.73

E.4. Case Studies

We also explore whether incorporating prompt learning can enhance the model’s performance, rather than our overall negative
prompt framework. To this end, we develop a variant of our NeGo framework, referred to as PoGo, which incorporates
the positive prompt practice. We evaluate the effectiveness (ROC-AUC) of PoGo on four distribution shift datasets. We
present the final performance by averaging the results from two runs conducted on an NVIDIA A100-PCIE-40GB with
different random seeds. As shown in Fig. 5(a), the performance of PoGo is competitive with recent successful practices like
LECI and GALA, demonstrating that the design of positive prompt can still obtain excellent generalization. However, our
framework of negative prompt shows superior performance.

We further investigate the reason of such performance of positive prompt practice PoGo. We modify PoGo by masking the
Lposi (the original Negative Loss Lnaga), obtaining PoGo (w/o. Lposi). With all other configurations remaining the same,
we observe a significant decrease in the performance of PoGo (w/o. Lposi). Our analysis is as follows: although both Lposi
and Lpred are positive losses in PoGo, we argue they serve different purposes and convey distinct information. Lprompt, as
a guidance strategy for the positive prompt, guides the prompt module to learn more potential environment semantics, while
Lpred enhances prediction accuracy. Without prompt guidance Lprompt, the advantage of prompt learning is not released.
Therefore, we argue that positive prompt may also enhance the model to capture a broader scale of environments. A more
in-depth investigation will be left for our future work.
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Figure 5. Left: the performance comparison of PoGo, which is a variant of our NeGo framework by incorporating the positive prompt
practice. Right: hyperparameter sensitivity analysis.
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F. Future Works
Our design can effectively solve the existing challenges, but there still exist a limitation. The negative prompter in our
approach learns class-specific environment embeddings by considering all extra-class samples as environment variables.
This results in our method relying on the class information of the dataset. With a larger number of classes, the model
is better equipped to capture and recognize complex underlying environment factors. When the dataset is limited to
a binary classification task, environment factors always present within the in-class samples. In this case, our negative
prompter may have reduced capability to expand the environment inference space. The reason for this limitation is that the
model is sensitive to the characteristics of dataset. Actually, we can realize that environment variables are often shareable
across datasets. Therefore, it is a promising research direction to study cross-task graph OOD work to capture broader
environmental information. In the future, we aim to investigate transferable multi-task graph OOD generalization learning,
which is not discussed in existing works.
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