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ABSTRACT

Large language models (LLMs) have achieved advanced text generation capabil-
ities, necessitating the development of reliable LLM-generated text detection to
prevent potential misuse. However, current probability-based zero-shot detection
methods face two critical challenges that reduce the detection accuracy of LLM-
generated texts: the style imitation challenge (SIC) and the content interference
challenge (CIC). The SIC arises as LLMs develop increasingly stronger abilities
to mimic human writing styles, while the CIC occurs when surprising content
characteristics interfere with probability analysis. To address these challenges, we
propose SaFT 1, a novel framework built upon Style-Oriented Instruction Pre-
fix (SOIP) to guide probability analysis for spotting style imitation and filtering
content interference. Our framework proposes SIC-Detection (SIC-D) that spots
style imitation by making style-imitating texts less unexpected through probabil-
ity analysis conditioned on human-style instructions, and CIC-Detection (CIC-D)
that filters content interference by difference analysis between probability distri-
butions conditioned on contrasting style instructions, exploiting the insight that
identical models exhibit equivalent content-related surprises. The final detec-
tion score is composed of SIC-D and CIC-D components. Extensive experiments
demonstrate that SaFT consistently outperforms existing state-of-the-art methods,
achieving improvements of 4.9% in average AUROC and 20.4% in average TPR
@ 10% FPR.

1 INTRODUCTION

Due to continuously advancing next-token prediction methodologies, advanced large language mod-
els (LLMs) (OpenAI, 2024; Comanici et al., 2025) generate text with human-like authenticity that is
virtually indistinguishable from human-written text. While these advanced capabilities have boosted
productivity across numerous domains including academic research and journalism (M Alshater,
2022; Jiang et al., 2025), they have simultaneously introduced substantial risks through malicious
applications such as academic dishonesty and fake news dissemination (Meyer et al., 2023; Deng
et al., 2025), making robust and reliable LLM-generated text detection critically essential.

Existing detection research predominantly falls into embedding-based and probability-based meth-
ods. Embedding-based methods typically operate in a supervised manner, achieving strong perfor-
mance by fine-tuning models like RoBERTa (Wang et al., 2023; Guo et al., 2024) on labeled datasets
to learn discriminative representations. However, they suffer from domain-specific overfitting and
poor cross-model generalization, often failing with unfamiliar domains or different LLM architec-
tures (Ghosal et al., 2023; Wu et al., 2025). In contrast, probability-based detection operates in a
zero-shot manner without requiring training data, employing pre-trained language models as scor-
ing models to extract statistical metrics, including token likelihood scores (Solaiman et al., 2019),
entropy measures (Gehrmann et al., 2019), and perturbation-based scoring mechanisms (Mitchell
et al., 2023; Bao et al., 2024) that analyze inherent statistical distributions within text sequences.
The underlying premise is that human-written text typically exhibits lower probability scores (more
surprising to scoring models) compared to LLM-generated text, resulting in separable probability

1Our code and data will be released soon.
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(b) Style Imitation Challenge (SIC)

(c) Content Interference Challenge (CIC)

My task is to 
imitate human 
writing styles.

"As I walked through the 
bustling streets, I couldn't 
help but notice …"

Surprising Style.
So it should be 
human text.

FOOLED

My task is to 
generate creative 
content.

"The brass lamp stared at 
its reflection, questioning 
40 years ..."

Surprising Content. 
So it should be 
human text.

FOOLED

(a) Detection Pipeline

Surprising. Not Surprising.

Human
LLMs

Source LLMs LLM Text Generating

Human Human Text Writing

"The Bank of Japan is imposing
a negative interest rate on 
accounts it holds for commercial
banks …"

Human-Written

LLM-Generated

Text Detection

"The Bank of Japan is imposing
a negative interest rate on 
commercial bank deposits at the 
central bank ..." Detectors Probability-Based Scoring

Figure 1: Illustration of challenges in probability-based LLM text detection. (a) Traditional detec-
tion pipeline classifies text based on surprise levels to scoring models. (b) Style Imitation Challenge
(SIC): LLMs generate text that exhibits surprising stylistic patterns similar to human writing, fooling
detectors through style surprise. (c) Content Interference Challenge (CIC): LLMs generate creative
content that appears inherently surprising due to content characteristics, misleading detectors to
classify it as human-written based on content surprise.

score distributions that enable classification, as illustrated in Figure 1(a). Consequently, these meth-
ods demonstrate superior adaptability through next-token prediction-based probability analysis that
captures intrinsic linguistic patterns transcending domain boundaries. However, while instructions
have demonstrated effectiveness in influencing the characteristics of LLM-generated text (Yin et al.,
2024), existing probability-based zero-shot detection approaches predominantly operate on raw text,
with only limited exploration of instruction-guided analysis (Bao et al., 2025) that typically employs
instructions with minimal relevance to actual textual features.

As LLMs’ text generation capabilities continue to advance and gain widespread adoption, we ob-
serve and formalize two significant challenges that make successful detection of LLM-generated
text difficult: the style imitation challenge (SIC) and the content interference challenge (CIC). The
SIC arises as LLMs develop increasingly stronger abilities to imitate human writing styles (Chen
et al., 2025). As shown in Figure 1(b), the imitative texts mimic human writing styles and poduce
probability distributions nearly identical to authentic human-written text, exhibiting similar levels
of surprising text to scoring models and successfully evading probability-based detection. The CIC
occurs when certain text samples appear inherently surprising to scoring models due to their content
characteristics (Hans et al., 2024). Specifically, as shown in Figure 1(c), while human texts naturally
exhibit more surprising content, LLMs can also be asked to generate similarly unexpected content
through creative or specialized prompts like “Write about a lamp going through a midlife crisis”.
Under such conditions, the content interference that deviates from world knowledge expectations of
scoring models disrupts the detectors to misclassify LLM-generated samples as human-written.

To address these challenges, we propose SaFT (Spotting Style Imitation and Filtering Content In-
terference for Zero-Shot LLM-Generated Text Detection) that addresses style imitation and content
interference in probability-based zero-shot detection. SaFT employs instruction-guided probability
analysis by introducing Style-Oriented Instruction Prefix (SOIP) that explicitly describes text writ-
ing styles to guide scoring models in spotting style imitation while filtering content interference.
We design two detection components in our framework: SIC-Detection (SIC-D) and CIC-Detection
(CIC-D). For SIC scenarios where style-imitating LLM texts achieve human-like style surprise,
SIC-D prepends candidate text with instruction prefix describing typical human writing style to
make them less unexpected. For CIC scenarios where content-related surprise misleads detection,
we leverage an intuitive principle: texts can be decomposed into outer style expression and inner
content components. Based on this insight, CIC-D computes distributional differences between
probability distributions obtained when applying human and LLM style instruction prefixes to the
same language model. Since the same language model produces nearly equivalent content surprise
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under both instructions, this approach filters out content-induced confounds and preserves style sur-
prise differences for detection. Finally, we integrate SIC-D and CIC-D to compute our SaFT score
for robust LLM-generated text detection in realistic deployment scenarios.

To evaluate the practical effectiveness of our approach, we conduct comprehensive experiments
under the black-box detection setting, which represents a more challenging yet realistic deployment
scenario compared to white-box approaches that require access to the generating model’s internal
parameters. The results demonstrate the enhanced robustness of SaFT framework under realistic
deployment scenarios.

Our main contributions can be summarized as follows:

1) We present SaFT, a novel framework built upon Style-Oriented Instruction Prefix (SOIP) that ad-
dresses the style imitation challenge and content interference challenge by leveraging style-oriented
instructions to guide probability analysis for enhanced LLM-generated text detection.

2) We propose SIC-D that spots style imitation by making style-imitating texts less unexpected
through probability analysis conditioned on human-style instructions, and CIC-D that filters content
interference by difference analysis between probability distributions conditioned on contrasting style
instructions, exploiting equivalent content surprises from identical models.

3) Extensive experiments on datasets generated by six advanced LLMs across four distinct text
domains demonstrate that our method achieves state-of-the-art detection performance compared to
existing methods.

2 RELATED WORK

Current research in LLM-generated text detection predominantly falls into two paradigms:
embedding-based methods and probability-based methods. Embedding-based methods typically
operate in a supervised manner, involving training binary classifiers on labeled datasets containing
both LLM-generated and human-written text samples. These classifiers learn discriminative repre-
sentations using bag-of-words features (Solaiman et al., 2019) or neural embeddings from models
like RoBERTa (Wang et al., 2023; Guo et al., 2024), distinguishing patterns through gradient-based
optimization on training data. However, these supervised classifiers often exhibit overfitting ten-
dencies, adapting too closely to the specific distribution of text domains and source models during
training, which consequently leads to limited generalization capabilities when exposed to out-of-
distribution data (Ghosal et al., 2023; Wu et al., 2025). To address this challenge, our research
focuses on probability-based detection, aiming to identify universal features that can be applied
across different domains and source models.

Probability-based methods primarily operate in a zero-shot manner, relying on statistical features
extracted using pre-trained language models as scoring models to extract statistical metrics with-
out requiring training data. Early approaches utilize likelihood scores (Solaiman et al., 2019), en-
tropy (Gehrmann et al., 2019), and log-rank analysis (Su et al., 2023). Recent advances include
probability curvature methods like DetectGPT (Mitchell et al., 2023) and its optimized variant
Fast-DetectGPT (Bao et al., 2024) with approximately 340 times speedup, and divergence-based
approaches like DNA-GPT (Yang et al., 2023). More sophisticated methods have emerged, includ-
ing Fast-Lastde (Xu et al., 2025), which treats token probability sequences as time series data and
employs diversity entropy to quantify temporal dynamics; Binoculars (Hans et al., 2024), which em-
ploys a dual-model architecture computing ratios between perplexity and cross-perplexity scores to
exploit inter-model consistency patterns; and MOSAIC (Dubois et al., 2025), which combines mul-
tiple language models using information-theoretic principles and Blahut-Arimoto optimal weights to
achieve robust generator-agnostic detection. While instructions have demonstrated effectiveness in
influencing LLM behavior across various domains (Yin et al., 2024), existing probability-based zero-
shot detection approaches have only explored instruction-guided detection to a limited extent (Bao
et al., 2025). These studies typically employ instructions with minimal relevance to actual textual
stylistic features, focusing on generic prompts rather than addressing the fundamental challenges in
distinguishing human and LLM-generated texts.

Differing from existing approaches that focus on designing statistical metrics from probability dis-
tributions, we propose a novel framework utilizing Style-Oriented Instruction Prefix to spot style im-
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itation and filter content interference. Our approach is built on the principle that guiding probability
analysis toward stylistic recognition while mitigating content influence will substantially improve
detection performance for challenging LLM texts.

3 METHOD

In this section, we first formulate the problem of probability-based zero-shot LLM-generated text
detection in black-box settings. We then introduce our SaFT framework, which systematically
addresses the Style Imitation Challenge (SIC) and Content Interference Challenge (CIC) through
three core components: Style-Oriented Instruction Prefix (SOIP), SIC-Detection (SIC-D), and CIC-
Detection (CIC-D), integrated via a ratio-based formulation to achieve robust detection performance.

LLM Text Scoring Model

Human-Style Instruction

[System]: You are a writer following this 
style: <Human Style>
[User]: Please write one paragraph that 
reflects your usual writing style.
[Assistant]: Below is an example paragraph 
written in my usual style.

+

LLM-Style Instruction

[System]: You are a writer following this 
style: <LLM Style>
[User]: Please write one paragraph that 
reflects your usual writing style.
[Assistant]: Below is an example paragraph 
written in my usual style.

LLM Text

+
Scoring Model

Probability under 
Human-Style

Probability under 
LLM-Style

Cross-Entropy 

The identical model 
share the same content 
surprise.
We can filter content 
interference!

LLM Text Scoring Model

Human-Style Instruction

[System]: You are a writer following this 
style: <Human Style>
[User]: Please write one paragraph that 
reflects your usual writing style.
[Assistant]: Below is an example paragraph 
written in my usual style.

+

b. SIC-Detection (SIC-D)

Style Surprise 
& Content Surprise LLM Text Scoring Model

Probability under 
Human-Style

Probability with 
Raw Text

Metric Analysis

Surprising!
So it should be 
human text.

FOOLED

β

Perplexity 
α

Consist of

Typical human style is 
the style I expect.
We can Spot Style 
Imitation!

a. Motivation of SOIP

Can Style-Oriented Instruction Prefix 
(SOIP) enable better detection?

SaFT Score = α / β CORRECT
d. SaFT Detection

c. CIC-Detection (CIC-D)

Not Surprising! So it should be LLM text.

Figure 2: Figure 2: Overview of SaFT framework. (a) Motivation of SOIP: Existing probability-
based methods operating solely on raw text struggle with SIC and CIC, where surprise of style
and content may fool detectors. (b) SIC-Detection (SIC-D): Uses human-style instruction prefix
to detect style imitation, generating perplexity-based α score. (c) CIC-Detection (CIC-D): Applies
contrasting human-style and LLM-style instructions to filter content interference, exploiting that
identical models share the same content surprise while preserving style surprise differences (β score
via cross-entropy). (d) SaFT Detection: Combines both scores through SaFT Score = α / β for
robust classification addressing both challenges.

3.1 PROBLEM FORMULATION

We formulate LLM-generated text detection as a binary classification task in the black-box set-
ting. Given a candidate text t, our objective is to determine whether it was human-written or LLM-
generated without access to the source model.

In the zero-shot setting, detection methods typically design a metric function that maps input text to
a real-valued score, leveraging pre-trained language models to extract statistical features without re-
quiring training data. The core assumption underlying these approaches is that human-written texts
and LLM-generated texts follow different distributions over the computed metric values. Specifi-
cally, human texts often exhibit higher surprise levels (lower probability scores) to scoring models
compared to LLM-generated texts, which tend to produce more predictable patterns. Classification
is performed by comparing the computed score against a decision threshold τ , where the predicted
label ŷ indicates whether the text is classified as human-written or LLM-generated. The threshold τ
is typically determined empirically to optimize detection performance across different domains and
source models.

3.2 SAFT FRAMEWORK

Style-Oriented Instruction Prefix (SOIP). Motivated by the observation that instructions can sig-
nificantly influence the probabilistic statistical characteristics of LLM outputs Yin et al. (2024),
despite limited utilization in existing probability-based detection approaches as inllustrated in Fig-
ure 2(a), we pose a key question targeting the SIC and CIC: can style-oriented instruction prefix
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enable better detection? To this end, We employ a chat-based language model Mθ as our scor-
ing model with instruction prefixes to condition probability computation and enhance feature ex-
traction capabilities. With advancing LLM capabilities in text generation, we observe that current
detection methods face two critical challenges: the style imitation challenge (SIC) where LLMs
increasingly mimic human writing styles, and the content interference challenge (CIC) where sur-
prising content characteristics interfere with probability analysis. To address these challenges, we
propose style-oriented instructions that explicitly describe writing styles as prefixes, and observe
that it significantly enhances detection performance by leveraging the model’s inherent sensitivity
to style-oriented conditioning (See Section 4.3).

SIC-Detection (SIC-D). For SIC, we propose SIC-Detection (SIC-D) that targets texts that mimic
human writing through style imitation by conditioning evaluation on explicit style instructions, as
inllustrated in Figure 2(b). The core idea is spotting style imitation: if a text was generated following
human-style guidance, it should exhibit low perplexity under human style instruction ISIC

h . The SIC-
D metric is computed as:

α(t) = exp

(
− 1

n

n∑
i=1

log pθ(ti|ISIC
h , t<i)

)
(1)

where ti is the i-th token of t and n is the total number of tokens. This conditioning makes human-
style LLM texts more predictable by aligning them with expected human patterns, creating a mea-
surable signature of style imitation that enables detection of texts that would otherwise appear gen-
uinely human. In contrast, regular LLM-generated texts and genuine human texts are less affected
by this conditioning. Additionally, while LLM texts trained with human style instructions follow
predictable patterns aligned with those instructions, genuine human texts retain their inherent com-
plexity and unpredictability that simple style prompts cannot fully capture, thus remaining surprising
to the model.

CIC-Detection (CIC-D). For CIC, as shown in Figure 2(c), we propose CIC-Detection (CIC-D) that
filters content interference by computing cross-entropy as a measure of distributional differences be-
tween probability distributions obtained when applying human and LLM style instruction prefixes
to the identical language model. The core insight is that identical models possess the same underly-
ing real-world knowledge, and when applying different style-oriented instructions to the same text,
they exhibit nearly equivalent content-related surprise. The cross-entropy computation thus filters
content interference, leaving behind “style surprise differentials” that reveal the stylistic patterns.
To maximize stylistic contrasts under different instruction prefixes within our detection scope, we
define two probability distributions at each position i: pθ(·|ICIC

h , t<i) conditioned on human-style
instruction ICIC

h and pθ(·|ICIC
m , t<i) conditioned on LLM-style instruction ICIC

m .

To focus on high-confidence regions, we apply top-P truncation. Specifically, for each position i,
we sort all tokens in the vocabulary V by their probabilities under pθ(·|ICIC

h , t<i) in descending order
to get v1, v2, . . . , v|V|, where |V| denotes the vocabulary size. The top-P token set is defined as:

V(i)
P =

vk :

k∑
j=1

pθ(vj |ICIC
h , t<i) ≤ P or k = 1

 (2)

Both probability distributions are then restricted by setting probabilities to zero for all tokens out-
side V(i)

P and renormalizing the remaining probabilities to sum to unity, obtaining the truncated
distributions p̂θ(·|ICIC

h , t<i) and p̂θ(·|ICIC
m , t<i). The CIC-D metric is computed as:

β(t) = − 1

n

n∑
i=1

p̂θ(ti|ICIC
h , t<i) log p̂θ(ti|ICIC

m , t<i) (3)

This truncation restricts both distributions to the same high-confidence token set determined by the
human-style distribution, emphasizing regions where style surprise differences are most pronounced
while reducing noise from low-probability tokens. Since both distributions evaluate identical content
using the same scoring model, content-related surprise factors affect both equivalently, allowing the
cross-entropy to extract style surprise differences while filtering content interference effects.

Score Integration and Decision Rule. Since CIC-D captures the differential between style-related
surprises under contrasting instructions rather than style surprise itself, such differentials alone are
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difficult to serve as effective classification features, as verified by corresponding experiments in Sec-
tion 4.3. Therefore, as shown in Figure 2(d), we integrate the components through an empirically-
determined ratio formulation that leverages CIC-D as a modulating factor to guide SIC-D: this en-
ables the overall score to filter content interference while simultaneously spotting style imitation:

SaFT(t) =
α(t)

β(t)
(4)

where α(t) represents SIC-D and β(t) represents CIC-D. The detection decision follows:

ŷ =

{
LLM-generated if SaFT(t) > τ

Human-written otherwise
(5)

4 EXPERIMENTS

4.1 SETTINGS

Task Definition. Given a text sample t, our task is to determine whether it was written by hu-
mans or generated by LLMs, outputting a binary classification decision. We treat LLM-generated
texts as positive samples and human-written texts as negative samples. We operate under black-box
detection constraints where detectors cannot access the generating model’s internal parameters or
probability distributions, reflecting realistic deployment scenarios where generated text may origi-
nate from proprietary or unknown systems. Detailed black-box setting specifications are provided
in Appendix A.1.

Source Models. The source models we selected represent the latest and most advanced LLMs
from leading LLM companies. Our selection includes the two most advanced versions from each
major provider: Claude-4 Sonnet (claude-sonnet-4-20250514) and Claude-4 Opus (claude-opus-4-
20250514) (Anthropic, 2025) from Anthropic, Gemini-2.5 Flash (gemini-2.5-flash) and Gemini-2.5
Pro (gemini-2.5-pro) (Comanici et al., 2025) from Google, as well as GPT-4o (gpt-4o) (OpenAI,
2024) and GPT-4.1 (gpt-4.1) 2 from OpenAI. For dataset preparation, we employ the ChatComple-
tion API 3 across all selected models.

Datasets. We conduct comprehensive evaluation across four diverse domains that represent high-
risk scenarios for LLM misuse, including XSum (Narayan et al., 2018) for news content, ArXiv
Abstracts 4 for academic writing, PubMedQA (Jin et al., 2019) for biomedical research, and Yelp Re-
views 5 for informal consumer content. These datasets provide varied linguistic styles and domain-
specific characteristics essential for robust detection evaluation. For each dataset, we ensure bal-
anced evaluation by randomly selecting 150 human-written samples and generating equal numbers
of corresponding LLM texts using the same prefix (30 tokens for articles or questions for Pub-
MedQA). Detailed dataset descriptions and generation procedures are provided in Appendix B.1
and Appendix B.2 respectively.

Baselines. We compare our approach against 11 representative detection methods spanning both tra-
ditional statistical approaches and recent state-of-the-art techniques. These include fundamental sta-
tistical methods such as Likelihood (Solaiman et al., 2019), Entropy (Gehrmann et al., 2019; Ippolito
et al., 2020), LogRank (Solaiman et al., 2019), and LRR; perturbation-based approaches including
NPR (Su et al., 2023), DetectGPT (Mitchell et al., 2023), and Fast-DetectGPT (Bao et al., 2024); ad-
vanced methods like DNA-GPT (Yang et al., 2023), Binoculars (Hans et al., 2024), Fast-Lastde (Xu
et al., 2025), and the recent MOSAIC (Dubois et al., 2025) ensemble method. Our baseline selection
covers sample-based approaches that analyze individual probability distributions and distribution-
based methods that examine statistical patterns across text samples. Complete baseline descriptions
and implementation details are provided in Appendix A.3 and Appendix A.4 respectively.

Evaluation Metrics. Following standard practice in detection research, we adopt AUROC to assess
overall discriminative performance across all decision thresholds, providing threshold-independent

2https://openai.com/index/gpt-4-1
3https://platform.openai.com/docs/guides/text-generation/chat-completions-api
4https://www.kaggle.com/datasets/spsayakpaul/arxiv-paper-abstracts/data
5https://www.yelp.com/dataset challenge

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

evaluation of separation capability between human-written and LLM-generated text. Additionally,
we report TPR @ 10% FPR to evaluate performance at practically relevant operating points where
controlling false positives on human text is crucial for real-world deployment scenarios. Detailed
metric definitions are available in Appendix A.2.

Hyperparameter Configuration. For our SaFT framework, we employ top-P truncation with P
= 0.4 for cross-entropy computation in the CIC-D component, which focuses analysis on high-
confidence token predictions while filtering low-probability noise. The style instructions employed
in our framework (ISIC

h , ICIC
h , and ICIC

m ) are specifically designed to capture distinctive writing char-
acteristics, with complete instruction templates provided in Appendix C. These hyperparameter
choices are validated through the ablation studies presented in Section 4.3.

4.2 MAIN RESULTS

Overall Performance. Table 1 presents the comprehensive performance comparison across six
advanced LLMs, where our SaFT framework consistently achieves the best performance in both
AUROC and TPR @ 10% FPR across all evaluated models. SaFT demonstrates substantial im-
provements over the second-best baselines, with AUROC gains ranging from 2.8% to 9.9% (average
4.9%) and more pronounced TPR improvements ranging from 11.2% to 45.3% (average 20.4%).
For all 12 model-metric combinations, SaFT provides the most accurate detection performance, out-
performing strong baselines such as MOSAIC and Binoculars. Notably, the TPR improvements are
more pronounced than AUROC gains, indicating that our instruction design particularly enhances
the framework’s ability to maintain high true positive rates while controlling false positives, which
is crucial for practical deployment scenarios. Furthermore, while previous methods show signifi-
cant performance variations across different models, with some methods like MOSAIC performing
excellently on Claude models but less effectively on certain Gemini variants, SaFT maintains ro-
bust detection performance regardless of the source model, validating the generalizability of our
style-oriented instruction approach.

Inference Efficiency. SaFT achieves competitive efficiency at 0.34 s/1k words while delivering
state-of-the-art detection performance. This efficiency enables practical deployment while main-
taining superior accuracy across all evaluated models and datasets. Detailed efficiency analysis are
provided in Appendix D with specific inference speeds in Table 4.

Table 1: Detection results for text generated by Claude-4-Sonnet, Claude-4-Opus, Gemini-2.5-
Flash, Gemini-2.5-Pro, GPT-4o, and GPT-4.1 models, which are averaged across XSum, ArXiv,
PubMed, and Yelp datasets. The metrics are AUROC and TPR calculated at 10% FPR. The best and
second-best results in each column are marked with bold and underline respectively. The “(Imp↑)”
row indicates the score improvement upon the second-best baselines. More detailed detection results
are available in Table 5, Table 6, and Table 7 in Appendix G.

Method Claude-4-Sonnet Claude-4-Opus Gemini-2.5-Flash Gemini-2.5-Pro GPT-4o GPT-4.1
AUROC TPR AUROC TPR AUROC TPR AUROC TPR AUROC TPR AUROC TPR

Likelihood 0.6802 0.3033 0.6777 0.3033 0.7588 0.4450 0.8179 0.5467 0.8456 0.6417 0.8314 0.5900
Entropy 0.4190 0.0750 0.4212 0.0700 0.2864 0.0317 0.2616 0.0267 0.2283 0.0317 0.2245 0.0200
LogRank 0.6678 0.2750 0.6623 0.2717 0.7248 0.3617 0.7937 0.4583 0.8215 0.5650 0.7986 0.4717
LRR 0.6127 0.1817 0.5989 0.1617 0.5631 0.1483 0.6423 0.2600 0.6518 0.2317 0.6222 0.1933
NPR 0.6664 0.3350 0.6619 0.3333 0.5461 0.1783 0.4829 0.1367 0.5426 0.2067 0.5517 0.2150
DNA-GPT 0.6575 0.2550 0.6556 0.2367 0.6266 0.1983 0.6577 0.2033 0.7388 0.3800 0.7109 0.2817
DetectGPT 0.7279 0.3650 0.7117 0.3683 0.4307 0.0583 0.3629 0.0367 0.4656 0.0833 0.4562 0.1333
Fast-DetectGPT 0.7030 0.3433 0.6970 0.3417 0.6828 0.3167 0.7902 0.4267 0.8032 0.5000 0.7405 0.3450
Fast-Lastde 0.7991 0.5183 0.8034 0.5217 0.7168 0.3767 0.7600 0.4367 0.7693 0.4667 0.7825 0.4550
Binoculars 0.8838 0.6667 0.8833 0.6567 0.8280 0.5367 0.8932 0.7108 0.9343 0.8133 0.8995 0.7050
MOSAIC 0.9331 0.8189 0.9338 0.8231 0.8628 0.6012 0.8898 0.6803 0.9401 0.8244 0.9208 0.7549
SaFT (Ours) 0.9672 0.9117 0.9650 0.9150 0.9481 0.8733 0.9183 0.8000 0.9703 0.9517 0.9795 0.9567

(Imp↑) 3.7% 11.3% 3.3% 11.2% 9.9% 45.3% 2.8% 12.5% 3.2% 15.4% 6.4% 26.7%

4.3 ABLATION STUDY

Instruction Component Ablation. To validate the effectiveness and specificity of our SOIP ap-
proach, we examine SaFT performance across different instruction component configurations using
ISIC
h , ICIC

h , and ICIC
m . Note that configurations where both ICIC

h and ICIC
m are absent would result in

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

identical distributions for CIC-D, leading to zero cross-entropy and division by zero in the final ratio,
hence such cases are not evaluated. Table 2 reveals two critical insights about our framework de-
sign. First, ISIC

h is indispensable for effective detection: without it (rows 1-3), performance remains
limited with average AUROC scores ranging from 0.8937 to 0.9357 and TPR scores averaging only
0.6700 to 0.8267. This validates our theoretical foundation that SIC-D requires human-style condi-
tioning to identify style imitation patterns. Second, CIC-D requires contrasting style instructions for
optimal content filtering: comparing row 4 (ISIC

h + ICIC
m ) and row 5 (ISIC

h + ICIC
h ), both achieve sim-

ilar AUROC performance (0.9608 vs 0.9521) but show different TPR patterns (0.8944 vs 0.8633),
while the full configuration (row 6) reaches optimal performance with 0.9714 average AUROC and
exceptional 0.9622 average TPR. These systematic performance degradations across different abla-
tion configurations demonstrate that our SOIP design is principled rather than arbitrary, with each
instruction component serving a specific and necessary role in the overall detection framework.

Table 2: Instruction component ablation results for SaFT on text generated by six advanced LLMs
on XSum dataset. We compare different instruction component configurations using ISIC

h , ICIC
h , and

ICIC
m . The best results in each column are marked with bold.

Variant Claude-4-Sonnet Claude-4-Opus Gemini-2.5-Flash Gemini-2.5-Pro GPT-4o GPT-4.1

ISIC
h ICIC

h ICIC
m AUROC TPR AUROC TPR AUROC TPR AUROC TPR AUROC TPR AUROC TPR

× × ✓ 0.9118 0.7533 0.9037 0.7533 0.8833 0.6400 0.8801 0.6333 0.9612 0.9333 0.9453 0.8600
× ✓ × 0.8793 0.6333 0.8700 0.6400 0.8896 0.6467 0.8491 0.5000 0.9271 0.7467 0.9470 0.8533
× ✓ ✓ 0.9388 0.8200 0.9252 0.7867 0.9290 0.7867 0.8961 0.7133 0.9676 0.9600 0.9572 0.8933
✓ × ✓ 0.9733 0.9267 0.9639 0.8733 0.9466 0.8267 0.9202 0.7867 0.9809 0.9800 0.9800 0.9733
✓ ✓ × 0.9628 0.8933 0.9527 0.8733 0.9521 0.8667 0.9032 0.7067 0.9618 0.8733 0.9799 0.9667
✓ ✓ ✓ 0.9826 1.0000 0.9762 0.9733 0.9715 0.9800 0.9333 0.8333 0.9823 1.0000 0.9828 0.9867

Score Component Ablation. SaFT score consists of two components: SIC-D (α(t)) and CIC-D
(β(t)). To demonstrate the indispensable role of both components in SaFT, we conducted ablation
experiments on XSum texts generated by the six advanced LLMs. We compare three configura-
tions: (1) Only SIC-D using α(t) alone, (2) Only CIC-D using β(t) alone, and (3) SaFT (Full) using
the ratio α(t)/β(t). Table 3 reveals that relying solely on SIC-D or CIC-D can only yield limited
detection performance compared to their integration. SIC-D alone already demonstrates strong de-
tection capabilities with an average AUROC of 0.9511 across all models, significantly outperforming
most existing baselines, yet its TPR performance varies significantly across models (0.7367-0.9733).
CIC-D alone shows substantially weaker performance, with an average AUROC of only 0.8119 and
particularly poor TPR performance (0.2600-0.7533), confirming our hypothesis that style surprise
differentials alone are insufficient as classification features. In stark contrast, the full SaFT frame-
work achieves exceptional detection performance with an average AUROC of 0.9715, representing
a 2.1% improvement over SIC-D alone and a remarkable 19.6% improvement over CIC-D alone.
Most notably, the integrated approach achieves perfect TPR (1.0000) for Claude-4-Sonnet and GPT-
4o while maintaining AUROC scores above 0.98, demonstrating that while individual components
are insufficient for optimal detection, their synergistic combination produces exceptional detection
capabilities that neither component can achieve alone.

Table 3: Component ablation results for SaFT on text generated by six advanced LLMs on XSum
dataset. We compare the full SaFT method with its individual components. The best results in each
column are marked with bold.

Variant Claude-4-Sonnet Claude-4-Opus Gemini-2.5-Flash Gemini-2.5-Pro GPT-4o GPT-4.1

SIC-D CIC-D AUROC TPR AUROC TPR AUROC TPR AUROC TPR AUROC TPR AUROC TPR

✓ × 0.9562 0.8567 0.9501 0.8633 0.9171 0.7367 0.9227 0.7644 0.9834 0.9733 0.9771 0.9467
× ✓ 0.7595 0.3267 0.7734 0.3533 0.6907 0.2600 0.8433 0.6000 0.9195 0.7533 0.8852 0.6533
✓ ✓ 0.9826 1.0000 0.9762 0.9733 0.9715 0.9800 0.9333 0.8333 0.9823 1.0000 0.9828 0.9867

Top-P Truncation Ablation. We evaluate the impact of top-P parameter across P values of {0, 0.2,
0.4, 0.6, 0.8, 1.0} using GPT-4.1 as the source model across four datasets, as shown in Figure 3. The
results reveal distinct patterns across domains: while ArXiv and Yelp maintain stable performance
across all P values, PubMed and XSum exhibit degradation when P = 1.0. This domain-specific
sensitivity demonstrates that top-P truncation effectively filters noise from low-probability tokens
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that can interfere with style signal extraction, particularly in specialized domains. The choice of P =
0.4 represents an optimal balance, residing in the stable performance region across all four datasets
while avoiding potential degradation from including the full vocabulary. These findings validate
that focusing cross-entropy computation on high-confidence tokens enhances the reliability of style
surprise difference detection across diverse text domains.

0.0 0.2 0.4 0.6 0.8 1.0
Top-P

0.90

0.95

1.00

AU
R

O
C

XSum
ArXiv
PubMed
Yelp

Figure 3: Top-P ablation study for SaFT frame-
work on four datasets using GPT-4.1 as the
source model, showing AUROC performance
under varying P values.
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Binoculars
Fast-Lastde
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Figure 4: Detection performance across varying
text lengths on XSum (GPT-4.1) dataset, com-
paring SaFT with four state-of-the-art methods.
The metric is AUROC.

4.4 ROBUSTNESS ANALYSIS AND DISCUSSION

Text Length Robustness. Previous research (Chakraborty et al., 2024; Wu et al., 2024) has estab-
lished that detection accuracy typically decreases with shorter text samples due to limited statistical
evidence. We assess SaFT’s robustness across different text lengths by evaluating performance on
XSum texts generated by GPT-4.1, truncated to {60, 90, 120, 150, 180} words. As shown in Fig-
ure 4, SaFT consistently outperforms all baselines across all text lengths, with the performance gap
most pronounced at shorter lengths where competing methods exhibit steep upward curves indicat-
ing strong length dependency. SaFT demonstrates exceptional robustness to text length variations,
achieving near-optimal performance even at 60 words.

Paraphrasing Attack Robustness. Following previous work (Bao et al., 2024; Xu et al., 2025), we
evaluate robustness against paraphrasing attacks using T5-Paraphraser to test whether our method
can resist adversarial modifications that preserve semantic content while altering surface expres-
sions. As shown in Figure 5, SaFT demonstrates superior robustness with minimal performance
degradation compared to baseline methods that experience substantial drops. See Appendix E for
detailed comparison and analysis.

Limitations. While our instruction design discussed in Appendix C is grounded in empirical find-
ings about style surprise differences, it focuses primarily on a single contrast dimension and may
not capture other effective distinctions. Future work could systematically explore multi-dimensional
instruction designs and automated optimization techniques to enhance detection performance.

5 CONCLUSION

We present SaFT, a novel detection framework built upon Style-Oriented Instruction Prefix (SOIP)
that addresses the style imitation challenge (SIC) and content interference challenge (CIC). Our
approach proposes SIC-Detection (SIC-D) for spotting style imitation via human-style instruction
conditioning and CIC-Detection (CIC-D) for filtering content interference through probability dis-
tributional analysis between contrasting style instructions. Their ratio-based combination produces
robust detection capabilities across diverse scenarios. Results demonstrate that SaFT significantly
outperforms existing state-of-the-art probability-based zero-shot methods.
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A EXPERIMENTAL SETTINGS

A.1 BLACK-BOX DETECTION TASK DEFINITION

In this work, we adopt the black-box detection setting to evaluate LLM-generated text detectors.
Unlike white-box approaches that require access to the generating model’s internal parameters and
probability distributions, black-box detection operates under the realistic constraint that detectors
cannot access the source model that produced the text. This setting better reflects practical deploy-
ment scenarios where generated content may originate from proprietary or unknown systems.

Formally, given a text sample t and a collection of available proxy models, the black-box detection
task aims to determine whether t was LLM-generated without knowledge of the specific model or
parameters used in its creation. This constraint necessitates the development of detection meth-
ods that rely on learned patterns and statistical signatures robust across various generation sources,
rather than exploiting model-specific artifacts or direct probability computations, making it a more
challenging but practically relevant problem compared to white-box detection.

A.2 EVALUATION METRICS

AUROC. We adopt the Area Under the Receiver Operating Characteristic curve (AUROC) to eval-
uate the overall discriminative power of our detection method. This threshold-independent metric
aggregates performance across the entire spectrum of decision boundaries, providing a comprehen-
sive assessment of how well the model separates human-written and LLM-generated content, with
values ranging from 0 to 1. Higher AUROC values indicate superior classification performance,
with AUROC = 0.5 representing random guessing and perfect discrimination achieved at AUROC =
1.0.

TPR @ 10% FPR. To evaluate performance at a practically relevant operating point, we report
the True Positive Rate (TPR) when the False Positive Rate (FPR) is fixed at 10%. This metric cap-
tures the model’s sensitivity in detecting LLM-generated texts while maintaining an acceptable level
of false alarms on human-written content, providing insight into real-world deployment scenarios
where controlling false positives is crucial.

A.3 BASELINE DETECTORS

Likelihood (Solaiman et al., 2019). This fundamental approach computes the average log-
probability of tokens in the candidate text using a pre-trained language model. The underlying
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assumption is that LLM-generated texts exhibit higher likelihood scores compared to human-written
content, as they follow more predictable patterns learned during training.

Entropy (Gehrmann et al., 2019; Ippolito et al., 2020).This method leverages the information-
theoretic concept of entropy to measure textual randomness. It calculates the average entropy across
token probability distributions, exploiting the observation that human writing typically demonstrates
higher unpredictability and variability than LLM-generated content.

LogRank (Solaiman et al., 2019). This approach assigns ranking scores to tokens based on their
probability positions within the model’s vocabulary distribution. The method computes logarithmic
rankings for each token given its preceding context, with higher average scores indicating stronger
likelihood of machine generation.

LRR (Su et al., 2023). The Log-Likelihood to Log-Rank Ratio represents a composite metric that
combines token likelihood and ranking information. This method aims to capture both the probabil-
ity magnitude and relative positioning of tokens to improve detection sensitivity.

NPR (Su et al., 2023). The Normalized Perturbed Log-Rank method introduces controlled perturba-
tions to the input text and analyzes the resulting changes in log-rank scores. This technique exploits
the differential sensitivity of human versus LLM-generated texts to minor modifications.

DNA-GPT (Yang et al., 2023). This approach utilizes N-gram statistical analysis in combination
with probability divergence measures. The method compares original text segments with model-
completed versions, leveraging the hypothesis that LLMs exhibit characteristic completion patterns
distinct from human writing.

DetectGPT (Mitchell et al., 2023). This method employs probabilistic curvature analysis by in-
troducing random perturbations to the candidate text. It discriminates between human and LLM-
generated content by examining the curvature properties of log-probability distributions around the
original text.

Fast-DetectGPT (Bao et al., 2024). An optimized variant of DetectGPT that achieves comparable
detection accuracy while significantly reducing computational overhead. This method maintains
the core curvature-based detection principle while employing efficient approximation techniques for
practical deployment.

Binoculars (Hans et al., 2024). This detector employs a dual-model architecture that computes the
ratio between perplexity and cross-perplexity scores. The method evaluates how one language model
responds to token predictions from another model, exploiting inter-model consistency patterns to
identify LLM-generated text.

Fast-Lastde (Xu et al., 2025). This detector combines local and global statistical features by treat-
ing token probability sequences as time series data. The method employs diversity entropy to quan-
tify temporal dynamics within probability sequences. Fast-Lastde represents an optimized variant
designed for real-time detection through efficient sampling strategies while maintaining robust de-
tection performance.

MOSAIC (Dubois et al., 2025). This ensemble method combines multiple language models using
information-theoretic principles for robust generator-agnostic detection. It employs Blahut-Arimoto
optimal weights to aggregate probability distributions from diverse LLMs, providing scalable detec-
tion across various domains without requiring validation datasets.

Notably, while Glimpse (Bao et al., 2025) demonstrates promising results in preliminary explo-
rations of instruction-based applications, its dependence on expensive LLM APIs constrains its
practical deployment, thus we do not consider it as a baseline detector in our evaluation.

A.4 DETECTOR SETTINGS

All experiments are conducted on two RTX 3090 GPUs. We configure the baseline detectors using
their standard model configurations to ensure fair comparison. The Neo-2.7B (Black et al., 2021)
serves as the primary scoring model for the majority of methods, including Likelihood, Entropy, Lo-
gRank, LRR, DNA-GPT, NPR, DetectGPT, and Fast-DetectGPT. Among these, perturbation-based
approaches require additional models: NPR and DetectGPT incorporate T5-3B (Chen et al., 2019)

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

for generating text perturbations, while Fast-DetectGPT employs GPT-J (Wang & Komatsuzaki,
2021) as a surrogate model for efficient sampling.

The remaining detectors adopt distinct model architectures. Fast-Lastde operates independently with
GPT-J for probability scoring. Binoculars implements a dual-model architecture using the Falcon
family (Almazrouei et al., 2023) (Falcon-7B and Falcon-7B-instruct) as observer and performer
respectively. MOSAIC adopts an ensemble strategy with Llama family variations (Llama-2-7B,
Llama-2-7B-chat, TowerBase-7B and TowerBase-13B (Alves et al., 2024)). Our proposed SaFT
method utilizes Llama-3.1-8B-Instruct (Grattafiori et al., 2024) as the scoring model.

All implementations use full-precision (float32) computation, except for Binoculars, MOSAIC, and
SaFT which employ half-precision (float16) for computational efficiency.

B DATASET CREATION

B.1 DOMAINS

We evaluate our method on four datasets representing high-risk domains where LLM misuse could
have significant consequences. These datasets span academic writing, journalism, medical literature,
and consumer reviews, providing diverse linguistic styles and domain-specific characteristics.

XSum (Narayan et al., 2018). This dataset contains BBC news articles spanning 2010-2017, encom-
passing approximately 227K documents across multiple domains including politics, technology, en-
tertainment, and current affairs. The articles represent professional journalistic writing with formal
structure and factual content presentation.

ArXiv Abstracts 6. We utilize machine learning paper abstracts from the arXiv repository, cover-
ing publications from 2007-2020. This academic corpus contains over 100K research documents
characterized by technical vocabulary, formal academic discourse, and specialized scientific termi-
nology.

PubMedQA (Jin et al., 2019). This biomedical dataset comprises question-answer pairs extracted
from medical literature abstracts. It represents highly specialized scientific writing with domain-
specific terminology, clinical language patterns, and evidence-based reasoning structures typical of
medical research.

Yelp Reviews 7. Consumer review data from the Yelp platform provides examples of informal,
conversational writing styles. The dataset includes approximately 600K reviews with sentiment
labels, characterized by colloquial language, personal opinions, and varied writing quality reflecting
diverse user backgrounds.

B.2 GENERATION PROCESS

All text generation tasks were conducted through chat with LLMs using a temperature setting of
0.8 to introduce stylistic variation while maintaining coherence. We designed domain-specific sys-
tem roles and generation prompts to capture the distinct writing characteristics of each dataset. For
news articles (XSum), we instructed the model to adopt a news writer persona; for academic ab-
stracts (ArXiv), an academic writer role was assigned; restaurant reviews (Yelp) utilized a review
writer persona; and biomedical content (PubMed) employed a technical writer role. Each genera-
tion prompt specified the desired output length and format appropriate to the domain’s conventions.
Below, we provide the generation instructions for texts in different domains:

6https://www.kaggle.com/datasets/spsayakpaul/arxiv-paper-abstracts/data
7https://www.yelp.com/dataset challenge
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Message for XSum

[
{’role’: ’system’, ’content’: ’You are a News writer.’},
{’role’: ’user’, ’content’: ’Please write an article with about

150 words starting exactly with: <prefix>’},
]

The <prefix> could be like “Joshua King needed some assistance from Newcastle’s Steven Taylor
to create the opening for Bournemouth’s first goal”, and the response is supposed to start with it.

Message for ArXiv

[
{’role’: ’system’, ’content’: ’You are a Academic writer.’},
{’role’: ’user’, ’content’: ’Please write an article with about

150 words starting exactly with: <prefix>’},
]

The <prefix> could be like “In this paper, we introduce a scanner package enhanced by deep
learning (DL) techniques”, and the response is supposed to start with it.

Message for Yelp

[
{’role’: ’system’, ’content’: ’You are a Restaurant Review writer

.’},
{’role’: ’user’, ’content’: ’Please write an article with about

150 words starting exactly with: <prefix>’},
]

The <prefix> could be like “I guess this particular restaurant benefits from people who work at
the Waterfront stopping in after a shift”, and the response is supposed to start with it.

Message for PubMed

[
{’role’: ’system’, ’content’: ’You are a Technical writer.’},
{’role’: ’user’, ’content’: ’Please answer the question in about

50 words. <prefix>’},
]

The <prefix> could be like “Question: Can communication with terminally ill patients be taught?
Answer:” and the response is supposed to answer the question directly.

C DISCUSSION ON INSTRUCTION SETTINGS

Recent empirical and computational studies have systematically investigated style surprise differ-
ences between human-written and LLM-generated texts through the lens of cognitive load theory.
(Sweller, 2011) established that human working memory has severe capacity limitations, necessi-
tating efficient, concise communication to minimize cognitive load. (Grice, 1975) demonstrated
that human communication follows cooperative principles including the maxim of brevity, reflect-
ing evolved constraints of human information processing. (Reinhart et al., 2025) found that LLMs
systematically violate these cognitive efficiency principles, using participial clauses and nominal-
izations at substantially higher rates than humans, resulting in informationally dense text that lacks
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human conciseness constraints. These studies demonstrate that human writing reflects cognitive
load optimization through concise expression, whereas LLM-generated writing favors detailed elab-
oration unconstrained by working memory limitations.

Building on these findings, we carefully designed the style-oriented instructions used in our ap-
proach, as shown in the following conversational templates. Note that ISIC

h and ICIC
h use the same

human-style instruction that encourages concise expression, while ICIC
m employs an LLM-style in-

struction that emphasizes detailed elaboration. The choice of “concise” versus “detailed” instruc-
tions directly operationalizes cognitive load theory: human writers, constrained by working memory
limitations, favor concise expression, while LLMs, unconstrained by cognitive load, tend toward de-
tailed elaboration. These templates direct the model’s probability computation toward detecting style
imitation while enabling content interference filtering through our framework’s dual-component de-
sign.

Human-style Instruction (ISIC
h & ICIC

h )

System: You are a writer following this style: Express ideas using concise sentences.
User: Please write one paragraph that reflects your usual writing style.
Assistant: Below is an example paragraph written in my usual style.

LLM-style Instruction (ICIC
m )

System: You are a writer following this style: Express ideas using detailed sentences.
User: Please write one paragraph that reflects your usual writing style.
Assistant: Below is an example paragraph written in my usual style.

D EFFICIENCY ANALYSIS

Our SaFT framework demonstrates competitive computational efficiency while achieving superior
detection performance. As shown in Table 4, SaFT requires 0.34 s/1k words, positioning it among
the most efficient and effective methods in the zero-shot detection paradigm. This efficiency stems
from our SOIP approach that requires only three forward passes over the identical language model
without complex computational operations.

Table 4: Inference efficiency comparison of zero-shot detection methods.

Method Inference Speed (s/1k words)

Likelihood 0.29
Entropy 0.29
LogRank 0.30
Fast-DetectGPT 0.33
SaFT (Ours) 0.34
Fast-Lastde 0.42
LRR 0.58
Binoculars 0.69
MOSAIC 9.77
DNA-GPT 19.88
DetectGPT 33.42
NPR 34.67

The computational landscape of zero-shot detection methods reveals distinct efficiency patterns.
Basic statistical methods such as Likelihood (0.29 s/1k words), Entropy (0.29 s/1k words), and Lo-
gRank (0.30 s/1k words) achieve the fastest inference times through single forward passes, but at the
cost of substantially lower detection accuracy. Traditional perturbation-based approaches demon-
strate significantly higher computational overhead (DetectGPT: 33.42 s/1k words, NPR: 34.67 s/1k
words), while Fast-DetectGPT achieves substantial speedup at 0.33 s/1k words through efficient
sampling strategies. DNA-GPT requires 19.88 s/1k words for its divergence-based analysis. Among
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sophisticated methods, MOSAIC exhibits high computational cost at 9.77 s/1k words, reflecting its
ensemble approach. Binoculars requires 0.69 s/1k words and Fast-Lastde requires 0.42 s/1k words
for their respective dual-model and time-series approaches.

Compared to the second-best baseline MOSAIC, SaFT achieves a 28.7× speedup while deliver-
ing consistent accuracy improvements across all evaluated models and datasets. This efficiency-
accuracy balance makes SaFT particularly suitable for real-world deployment scenarios where both
detection quality and computational constraints are critical considerations.

E PARAPHRASING ATTACK ROBUSTNESS ANALYSIS

Experimental Setup. Following established protocols (Bao et al., 2024; Xu et al., 2025), we eval-
uate robustness against paraphrasing attacks using the T5-Paraphraser model to transform LLM-
generated texts while preserving semantic content. The T5-Paraphraser applies sentence-level para-
phrasing to alter surface expressions and syntactic structures. Additionally, we introduce controlled
disruptions by randomly swapping adjacent word pairs in sentences exceeding 20 words, mimick-
ing realistic adversarial modifications. We conduct experiments on ArXiv (GPT-4.1), comparing
detection performance on both original and paraphrased versions, where the combined operations
simulate comprehensive surface-level attacks.

Results and Analysis. Figure 5 demonstrates that SaFT exhibits exceptional robustness with only
a 3.5% AUROC degradation, substantially outperforming baseline methods that experience 6.2%-
13.7% drops. SaFT’s SOIP approach focuses on stylistic characteristics that appear less affected
by surface-level paraphrasing modifications compared to traditional methods that operate without
instruction prefixes. This difference in detection mechanisms contributes to SaFT’s maintained per-
formance when texts undergo lexical and syntactic transformations.

SaFT MOSAIC Binoculars Fast-Lastde Fast-DetectGPT
Detection Methods
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Figure 5: Detection performance on original and paraphrased texts using ArXiv (GPT-4.1) dataset.
SaFT demonstrates superior robustness against paraphrasing attacks compared to baseline methods.

F USE OF LARGE LANGUAGE MODELS

Large Language Models were used for language polishing and grammatical refinement of the
manuscript.

G FULL RESULTS
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Table 5: Detailed detection results for text generated by Claude-4-Sonnet and Claude-4-Opus mod-
els. Results are reported as “AUROC / TPR”, where TPR is calculated at 10% FPR. The best results
in each column are marked with bold.

Method Claude-4-Sonnet Claude-4-Opus

XSum ArXiv PubMed Yelp XSum ArXiv PubMed Yelp

Likelihood 0.7430/0.3200 0.7074/0.3267 0.4892/0.0667 0.7811/0.5000 0.7414/0.3133 0.6990/0.3133 0.4824/0.0800 0.7880/0.5067
Entropy 0.3604/0.0133 0.5053/0.1333 0.5624/0.1333 0.2478/0.0200 0.3576/0.0133 0.5136/0.1133 0.5608/0.1467 0.2526/0.0067
LogRank 0.7214/0.2933 0.7102/0.3333 0.4923/0.0533 0.7471/0.4200 0.7162/0.2667 0.6945/0.3133 0.4876/0.0800 0.7509/0.4267
LRR 0.6262/0.1933 0.6809/0.2467 0.5216/0.0733 0.6220/0.2133 0.6025/0.1867 0.6509/0.2267 0.5233/0.0667 0.6187/0.1667
NPR 0.6856/0.3467 0.7446/0.5067 0.5551/0.1733 0.6805/0.3133 0.6422/0.3067 0.7606/0.5400 0.5521/0.1600 0.6925/0.3267
DNA-GPT 0.6714/0.2800 0.7064/0.2800 0.4890/0.0400 0.7631/0.4200 0.7035/0.3333 0.6975/0.2133 0.4805/0.0333 0.7411/0.3667
DetectGPT 0.6388/0.1467 0.8321/0.5600 0.6058/0.2067 0.8348/0.5467 0.6296/0.1800 0.8205/0.5867 0.5874/0.2400 0.8095/0.4667
Fast-DetectGPT 0.7296/0.4200 0.8104/0.5267 0.6081/0.1467 0.6636/0.2800 0.7364/0.4200 0.8125/0.5600 0.5935/0.1133 0.6459/0.2733
Fast-Lastde 0.8173/0.5133 0.9227/0.7933 0.6116/0.1600 0.8450/0.6067 0.8281/0.5267 0.9358/0.8133 0.6204/0.1600 0.8292/0.5867
Binoculars 0.8979/0.7067 0.9227/0.7467 0.7898/0.4267 0.9247/0.7867 0.9011/0.7000 0.9224/0.7200 0.7927/0.4467 0.9171/0.7600
MOSAIC 0.9834/0.9678 0.9786/0.9383 0.7961/0.4467 0.9741/0.9227 0.9826/0.9556 0.9815/0.9533 0.7962/0.4467 0.9748/0.9367
SaFT (Ours) 0.9826/1.0000 0.9828/0.9933 0.9195/0.6933 0.9839/0.9600 0.9762/0.9733 0.9825/0.9933 0.9145/0.7000 0.9866/0.9933

Table 6: Detailed detection results for text generated by Gemini-2.5-Flash and Gemini-2.5-Pro mod-
els. Results are reported as “AUROC / TPR”, where TPR is calculated at 10% FPR. The best results
in each column are marked with bold.

Method Gemini-2.5-Flash Gemini-2.5-Pro

XSum ArXiv PubMed Yelp XSum ArXiv PubMed Yelp

Likelihood 0.6897/0.2133 0.8404/0.5667 0.5631/0.1467 0.9418/0.8533 0.8676/0.5133 0.8828/0.6600 0.5705/0.1333 0.9504/0.8800
Entropy 0.3799/0.0467 0.1996/0.0000 0.4680/0.0800 0.0984/0.0000 0.1688/0.0000 0.2334/0.0000 0.5336/0.1000 0.1107/0.0067
LogRank 0.6544/0.1800 0.7966/0.4067 0.5572/0.1400 0.8911/0.7200 0.8197/0.3800 0.8680/0.5733 0.5702/0.0800 0.9168/0.8000
LRR 0.5214/0.1067 0.5849/0.1533 0.5367/0.1267 0.6094/0.2067 0.5731/0.1400 0.7525/0.4267 0.5439/0.1133 0.6997/0.3600
NPR 0.5951/0.1933 0.5001/0.2200 0.5262/0.0933 0.5631/0.2067 0.3788/0.0400 0.5441/0.1667 0.5001/0.1600 0.5085/0.1800
DNA-GPT 0.6792/0.2600 0.5542/0.1333 0.5645/0.0933 0.7084/0.3067 0.6423/0.1600 0.6212/0.1067 0.6216/0.1867 0.7457/0.3600
DetectGPT 0.5039/0.0800 0.3288/0.0400 0.4455/0.0733 0.4447/0.0400 0.1739/0.0067 0.3925/0.0267 0.4996/0.0733 0.3854/0.0400
Fast-DetectGPT 0.6486/0.2867 0.6475/0.2733 0.5763/0.1200 0.8586/0.5867 0.7472/0.3200 0.8349/0.5533 0.7053/0.2067 0.8736/0.6267
Fast-Lastde 0.6756/0.2600 0.7396/0.4400 0.5690/0.0867 0.8831/0.7200 0.6549/0.3000 0.8416/0.5867 0.6693/0.2933 0.8741/0.5667
Binoculars 0.7886/0.4733 0.8056/0.4200 0.7502/0.3600 0.9677/0.8933 0.8798/0.7067 0.9023/0.7100 0.8376/0.5600 0.9532/0.8667
MOSAIC 0.9202/0.7813 0.8337/0.4567 0.7198/0.2467 0.9774/0.9200 0.8828/0.6400 0.8910/0.6933 0.8382/0.5600 0.9471/0.8280
SaFT (Ours) 0.9715/0.9800 0.9725/0.9733 0.8509/0.5400 0.9973/1.0000 0.9333/0.8333 0.9447/0.8667 0.8128/0.5133 0.9821/0.9867

Table 7: Detailed detection results for text generated by GPT-4o and GPT-4.1 models. Results are
reported as “AUROC / TPR”, where TPR is calculated at 10% FPR. The best results in each column
are marked with bold.

Method GPT-4o GPT-4.1

XSum ArXiv PubMed Yelp XSum ArXiv PubMed Yelp

Likelihood 0.9320/0.7400 0.9098/0.7533 0.5925/0.1533 0.9480/0.9200 0.9135/0.7000 0.9114/0.7733 0.6096/0.1667 0.8913/0.7200
Entropy 0.0841/0.0000 0.2359/0.0200 0.5162/0.0867 0.0772/0.0200 0.1191/0.0000 0.1367/0.0000 0.4963/0.0800 0.1461/0.0000
LogRank 0.8807/0.5800 0.8889/0.6867 0.5909/0.1467 0.9255/0.8467 0.8643/0.5400 0.8800/0.6400 0.5997/0.1467 0.8503/0.5600
LRR 0.5902/0.1467 0.7218/0.3000 0.5741/0.1600 0.7209/0.3200 0.6009/0.2133 0.6751/0.2067 0.5547/0.0933 0.6580/0.2600
NPR 0.3424/0.0133 0.6765/0.3867 0.5253/0.1333 0.6263/0.2933 0.4421/0.0667 0.5220/0.2667 0.5355/0.1400 0.7074/0.3867
DNA-GPT 0.6931/0.3667 0.7909/0.4200 0.6075/0.0733 0.8636/0.6600 0.6860/0.2800 0.6824/0.1733 0.6301/0.1000 0.8449/0.5733
DetectGPT 0.1881/0.0000 0.5336/0.1133 0.5069/0.0800 0.6336/0.1400 0.2099/0.0000 0.3534/0.0267 0.5024/0.0733 0.7592/0.4333
Fast-DetectGPT 0.7454/0.3800 0.8680/0.6267 0.7163/0.2867 0.8834/0.7067 0.7218/0.3267 0.7627/0.3600 0.6971/0.2467 0.7803/0.4467
Fast-Lastde 0.6246/0.2067 0.9003/0.7333 0.6587/0.1733 0.8938/0.7533 0.7459/0.3733 0.8603/0.6333 0.6448/0.1600 0.8788/0.6533
Binoculars 0.9046/0.7267 0.9684/0.8867 0.8900/0.7067 0.9740/0.9333 0.8666/0.6600 0.9088/0.6933 0.8807/0.6533 0.9419/0.8133
MOSAIC 0.9678/0.9156 0.9620/0.8867 0.8593/0.5489 0.9714/0.9467 0.9358/0.8560 0.9266/0.7667 0.8437/0.4733 0.9769/0.9237
SaFT (Ours) 0.9823/1.0000 0.9892/1.0000 0.9463/0.8400 0.9632/0.9667 0.9828/0.9867 0.9901/1.0000 0.9560/0.8533 0.9893/0.9867
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