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Abstract

Minimum Bayes risk (MBR) decoding
achieved state-of-the-art translation perfor-
mance by using COMET, a neural metric that
has a high correlation with human evaluation.
However, MBR decoding requires quadratic
time since it computes the expected score be-
tween a translation hypothesis and all reference
translations. We propose centroid-based MBR
(CBMBR) decoding to improve the speed
of MBR decoding. Our method clusters the
reference translations in the feature space, and
then calculates the score using the centroids
of each cluster. The experimental results
show that our CBMBR not only improved
the decoding speed of the expected score
calculation 6.9 times, but also outperformed
vanilla MBR decoding in translation quality by
up to 0.5 COMET% in the WMT’22 En<Ja,
En<De, En<Zh, and WMT’23 En<«:Ja
translation tasks.'

1 Introduction

Minimum Bayes risk (MBR) decoding achieved
robust and high-quality translation by selecting the
output sentence that maximizes the expected metric
score computed from the set of translation hypothe-
ses (Kumar and Byrne, 2004; Eikema and Aziz,
2020; Miiller and Sennrich, 2021). Recently, neu-
ral evaluation metrics that have a high correlation
with human evaluation have been proposed (Rei
etal., 2020, 2022a; Sellam et al., 2020; Zhang et al.,
2020), and MBR decoding using such neural met-
rics has achieved state-of-the-art translation perfor-
mance in human evaluation compared to the con-
ventional maximum-a-posteriori (MAP) decoding
using beam search (Fernandes et al., 2022).
However, due to its formulation, the typical
MBR decoding regarding the hypothesis set as a
pseudo-reference set requires the computational
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Figure 1: Overview of our CBMBR.
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time of O(N?) when the N translation hypothe-
ses are given. In recent work, the number of hy-
potheses IV has exceeded 1,000 candidates (Fre-
itag et al., 2023), making the quadratic order of
computational time a challenge for MBR decoding,
especially when using expensive neural metrics. To
improve the decoding speed, several pruning meth-
ods have been proposed (Eikema and Aziz, 2022;
Cheng and Vlachos, 2023), while these approaches
require careful selection of a proxy metric (Eikema
and Aziz, 2022), or it is difficult to take advantage
of computational parallelism because hypotheses
are iteratively pruned (Cheng and Vlachos, 2023).

Given that expensive neural metrics, e.g,
COMET or BLEURT, are trained to output high
scores when a hypothesis sentence and a reference
translation are semantically similar, we hypothe-
sized that the distance between sentence vectors of
similar sentences in the feature space of their mod-
els is close. We leverage the sentence similarity
to improve the decoding speed of COMET-MBR
by clustering sentence vectors of the translation
candidates into £ < N clusters as shown in Fig-
ure 1. Then, we calculate the COMET scores using
k centroid vectors of their clusters, instead of using
N sentence vectors.

Our proposed method not only achieved a speed-
up of 6.9 times in the calculation of the expected
score, but also an improvement in COMET score of
up to 0.5% compared with the naive MBR decoding
in the WMT’22 En<«»Ja, En<>De, En<>Zh, and
WMT’23 En<+Ja translation tasks.



2 Background

MBR decoding MBR decoding has been demon-
strated to be effective in fields such as statistical
automatic speech recognition (Goel and Byrne,
2000) and statistical machine translation (Kumar
and Byrne, 2004), and it has been applied to neural
machine translation in recent years (Eikema and
Aziz, 2020; Miiller and Sennrich, 2021). Further-
more, it is more suitable for multiple translation
systems than ensemble models (Ito et al., 2023).

Let X and Y be the spaces of possible source
sentences and target sentences, respectively. MAP
decoding generates the target sentence yyap €
by Yyap = argmaxcy pg(y|x), where 6 denotes
the parameter of the translation model which calcu-
lates the likelihood of an output sentence y given
an input sentence € X. Since it is hard to cal-
culate probabilities for all possible y € ), usually
the beam search is used to obtain the solution.

In contrast, MBR decoding determines the out-
put sentence yygr € ) by maximizing the ex-
pected utility as follows:

YmBR = argmaxyey Byopyle) [w(h, 9)], (1)
A argmaxp ey Egej} [U(h, g)] ) (2)

where u: ) x Y — R denotes the utility func-
tion, which represents the preference relation, and
H = {hz}@l C Y denotes the set of translation
hypotheses. P(y|x) is the true probability of be-
ing translated from a given input sentence x € X,
and it is approximated using the sampled reference

translations ) = {g)l}l)jl C Y as shown in Equa-
tion 2 since the true probability is unknown. The
typical MBR decoding treats the hypothesis set
itself as the pseudo-reference set, i.e., Y = H.
Note that the time complexity is O(N?), where

N = |H|, which is time-consuming.

COMET-MBR COMET is an evaluation metric
of translation quality that achieved a high correla-
tion with human evaluation. The COMET model
consists of the XLM-RoBERTa (XLM-R) (Con-
neau et al., 2020) -based sentence encoder and the
output layer, and it is trained to predict direct assess-
ment (DA) scores (Rei et al., 2020, 2022a). It first
encodes the source sentence x € X, the hypothesis
sentence h € ), and the reference sentence § € )
into their D dimensional sentence vectors, indepen-
dently, and then the COMET score is computed
from the triplet of sentence vectors by the output
layer. Let f: X U)Y — RP be the function of

sentence encoding and s: R? x RP x RP — R
be the output layer, the COMET score is com-
puted by s(f(z), f(h), f(9)). MBR decoding us-
ing COMET (COMET-MBR) replaces the utility u
in Equation 2 with the COMET score:

yéOMET—MBR
= argmax,cy B, 5 [s(f(x), F(1), F(9))] . 3)

3 Proposed Method

Our proposed centroid-based MBR (CBMBR) ap-
proximates the expected utility by using the cen-
troids of similar sentence vectors. CBMBR de-
codes by computing the expected utility according
to the following procedures: sentence encoding,
clustering, and calculating the expected utility.

Encoding Firstly, the sentence vector of the
source f(x) € RP, the hypotheses { f(h;) lzll C

R?, and the pseudo-references { f (g)l)}gll C RP
are computed.

Clustering Next, we perform clustering for the
sentence vectors of pseudo-references into k << NV
clusters and obtain the centroid vectors of each
cluster C = {¢;}%_, < RP. Here, we employ
kmeans++ (Arthur and Vassilvitskii, 2007) to pre-
vent the centroids from being biased. kmeans++
selects the initial centroids so that the distances be-
tween each pair of centroids are farther according
to the weights calculated from distances of vec-
tors. The details of the algorithm are described
in Appendix C.1. Then, the vectors {f (g)z)}le
are clustered using the standard kmeans algorithm.
Concretely, the following steps 1) and 2) are itera-
tively calculated: 1) assign a vector to its nearest
neighbor centroid, 2) and update the centroid using
vectors assigned to its cluster.

Expected utility Finally, the expected utility is
calculated by replacing pseudo-reference vectors
f(4) € RP with centroids ¢ € R” in Equation 3:

ycmBr = argmaxpeq Eeec [s(f(2), f(h), €)] .
4
The conventional method requires O(N?) of
computational time to compute the expected utility
for all hypotheses, whereas our CBMBR computes
in O(Nk). Note that & (1 < k < N) is a hyper-
parameter that balances the trade-off between the
decoding speed and approximation accuracy. Es-
pecially, when k = 1, i.e., C = {¢1}, the centroid



Decoding en-ja ja-en en-de de-en en-zh zh-en avg. Step QE MBR PruneMBR CBMBR
MAP 78.7 69.7 773 792 774 70.1 754 Encode/hypotheses - 2470 248.0 247.8
QE 86.6 762 822 82.1 829 769 81.2 Encode/source - 516 51.1 51.2
MBR 87.9 76.6 84.0 83.0 84.2 77.3 82.2 Rerank 450.1 - - -
PruneMBR 879 765 84.0 83.0 84.1 773 82.1 Prune - - 55 -
CBMBR 879 76.6 839 83.0 84.1 77.1 82.1 kmeans++ - - - 36.5
w/o kmeans++ 87.8 764 83.8 829 840 77.2 82.0 Utility function; s - 3222 79.6 20.1
Oracle 90.6 819 87.0 86.5 87.7 81.2 858 E2E 450.1 633.1 384.7 356.8

Table 1: Translation quality on the WMT’22 translation
task with the setting of diverse translation candidates.
The best scores are emphasized in bold font and second-
best scores are underlined for each language direction.

c; can be calculated as the average of all pseudo-

(9i), and
the time complexity of CBMBR will be O(N),
which is equivalent to DeNero et al. (2009).

~ _ 15
reference vectors, i.e., ¢; = 3 Yol

4 Experiments

Setup We conducted translation experiments
with two settings: one uses diversified translation
candidates, and the other simulates a more realistic
scenario, multi-system translation. We evaluated
the translation quality using COMET score, which
is the same as the utility function of MBR decoding
used in our experiments. For comparison, we also
performed translation candidate reranking using a
quality estimation model COMETKIWTI (Rei et al.,
2022b) (QE), confidence-based pruning MBR de-
coding (PruneMBR) (Cheng and Vlachos, 2023),
and the quality upper bound (Oracle), which se-
lects the hypothesis with the best score according
to COMET using reference translations. We also
compared CBMBR without kmeans++, where ini-
tial centroids were randomly selected from the sam-
ple set (w/o kmeans++). We used COMET-22 (Rei
et al., 2022a) for the evaluation metric and utility
function. In MBR decoding, we treat the hypoth-
esis set as the pseudo-reference set, i.e., J> = H.
We set the number of centroids to k¥ = 64. Details
of our setup are shown in Appendix D.

Diverse translation candidates In this setting,
we evaluated the translation quality in six language
directions: En<+Ja, En<sDe, and En<>Zh in the
WMT’22 translation task (Kocmi et al., 2022).
We generated translation candidates using the pre-
trained multilingual translation model, M2M100.
We employed beam search with a beam size of 256
for MAP decoding, and generated 1,024 transla-
tions using epsilon sampling with € = 0.02 (Freitag

Table 2: Average processing time per sentence (msec)
on the WMT’22 translation task in the diverse candi-
dates setting. Note that “E2E” measures the end-to-end
time, including miscellaneous processes.

et al., 2023) for MBR decoding.

Table 1 shows the translation quality of each de-
coding method. From the average scores in the
table, when compared with MAP decoding, both
MBR decoding and the proposed CBMBR decod-
ing improve the COMET score by +6.8 and +6.7%,
respectively, and the gap between Oracle has been
narrowed. The results also show that the differ-
ence between CBMBR and MBR is within 0.1%
by using kmeans++ initialization.

Next, we compared the decoding time of each
method as shown in Table 2. From the table, the
overall decoding time (E2E) shows that CBMBR
is 1.8 times faster than vanilla MBR. Specifically,
in the computation of the expected utility which
required quadratic time, the speed was increased by
6.9 times when including kmeans++, and by 16.0
times when comparing only the utility computation.
Compared to PruneMBR, we confirmed that the
speed of the expected utility calculation improved
by 1.5 times. One reason for this improvement
is that, unlike PruneMBR, CBMBR computes the
expected utility at once, making it easier to leverage
parallel computation capabilities of GPU.

In summary, CBMBR maintains comparable
translation quality to the naive MBR decoding
while accelerating the computational time by 6.9
times, including clustering.

Multi-system translation We also evaluated the
effectiveness of our CBMBR in the setting where
translation candidates are generated from multiple
translation systems. In particular, we follow the
practice in Deguchi et al. (2023), in which 18 can-
didate sets with each set comprising 50-best trans-
lations are generated from nine different models
and two decoding methods: beam search and top-p
sampling (p = 0.7) with a beam size of 50. We
evaluated the translation quality in two language



WMT’22 WMT’23

Decoding en-ja  ja-en en-ja ja-en  avg.
MAP 864 809 835 804 828
QE 89.8 826 876 823 856
MBR 90.5 84.1 887 83.7 86.7
PruneMBR 889 828 86.6 822 851
CBMBR 909 841 892 838 87.0

w/o kmeans++ 90.5 84.1 88.8 83.7 86.8
Oracle 934 894 919 885 9038

Table 3: The translation quality in the multi-system
translation setting.
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Figure 2: Translation quality of various % in the multi-
system translation setting. The scores are averaged
COMET on the WMT’22 En-Ja and Ja-En.

directions: En<+Ja in the WMT’22 and WMT’23
translation tasks (Kocmi et al., 2022, 2023).

Table 3 shows the results. Unlike the diverse
candidates setting, CBMBR improved the transla-
tion quality by up to 0.5%, compared with MBR.
Naive MBR calculates the expected utility using
all samples equally, which is prone to translation
bias when candidates have multimodal distribution.
In contrast, CBMBR estimates the expected utility
using only centroids; therefore, it decodes robustly
even if the distribution is multimodal. The detailed
analysis is shown in Appendix F.

In summary, we found that CBMBR not only
improved decoding speed, but also improved trans-
lation quality compared to the vanilla MBR when
the translation is determined from the candidate
sets generated from multiple translation systems.

5 Discussion

5.1 The number of centroids &

We evaluated the COMET scores of various k €
{2}8_, in the multi-system translation setting. Fig-
ure 2 shows the results. When £ = 1, while the
time complexity is linear time O(NV), the COMET
score of CBMBR was degraded by 0.5% compared
with vanilla MBR. The figure shows that translation
quality improves as k is increased, and CBMBR
outperformed vanilla MBR when £ > 16. In addi-
tion, the translation quality was better when we use

Model dev test
RoBERTayre (Liu et al., 2019) 53.7 43.0
fastText (Joulin et al., 2017) 65.3 53.6
XLM-Rjyge (Conneau et al., 2020)  39.1  31.6
LaBSE (Feng et al., 2022) 729 72.7
COMET (Rei et al., 2022a) 782  73.6

Table 4: Pearson r x 100 in the STS-B task using the
encoder of COMET model.

kmeans++ compared to the standard kmeans.

5.2 Distance between similar sentence vectors

As a prerequisite for the proposed method, it is
necessary that sentence similarity be represented as
the distances between sentence vectors. To verify
this assumption, we investigated the distances be-
tween sentence vectors of similar sentences using
the Semantic Textual Similarity Benchmark (STS-
B) task (Cer et al., 2017). We evaluated the Pearson
correlation coefficient » with the ground truth simi-
larity score. Table 4 shows the experimental results.
Despite sentence vectors are not explicitly trained
like contrastive learning, COMET demonstrates a
strong correlation of 73.6. Moreover, the result
shows that it has implicitly learned sentence sim-
ilarity through the training of score prediction, as
evidenced by its significantly better correlation of
73.6 compared to the pre-trained XLM-R score of
31.6. Furthermore, we confirmed that COMET out-
performed LaBSE (Feng et al., 2022) trained by
contrastive learning.

To summarize, the sentence vectors of COMET
demonstrate a strong correlation with gold scores
in the STS-B task although the sentence representa-
tions are not explicitly trained. Also, we confirmed
that the encoder of COMET implicitly learned sen-
tence similarity through the score prediction.

6 Conclusion

In this paper, we proposed CBMBR, which im-
proves the speed of MBR decoding by clustering
the sentence vectors of similar sentences and com-
puting the score with the centroid representations
of each cluster. Our CBMBR achieved a 6.9 times
speed-up in the expected score calculation and
an improvement in COMET of up to 0.5% com-
pared with vanilla MBR decoding in the WMT’22
En<Ja, En<>De, En<+Zh, and WMT’23 En<sJa
translation tasks. For future work, we would like
to apply our method to other evaluation metrics
including both neural and non-neural metrics.



Limitations

This study focuses only on improving the speed of
MBR decoding, especially the neural evaluation
metric, COMET. For non-neural metrics, it is nec-
essary to apply the appropriate clustering method
for each metric.

In COMET-MBR, there are two bottlenecks of
computational time: the calculation of the expected
utility and sentence encoding. However, this study
only improves the computation speed of the ex-
pected utility, which took quadratic time. Although
the sentence encoding can be computed in a linear
time, the sentences are encoded using the expensive
XLM-R encoder, which is time-consuming.

Our method can only be applied to metrics for
which we can compute the representation indepen-
dently for each sentence. This limitation is the
same as that of the method of DeNero et al. (2009)
and is also explained in their paper as well.

The decoding times reported in this paper are
measured on a single computer and only a single
run; the amount of speed improvement may differ
when different computer architectures are used.

Ethical Consideration

Both vanilla MBR decoding and CBMBR decoding
select output sentences from a set of translation
candidates generated by translation systems, so if
the systems generate toxic text, it may be selected.
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licensed under the Apache-2.0 license and
COMETKIWI model licensed under the CC BY-
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released for the WMT General MT task can be
freely used for research purposes”.
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B Details of Dataset

Table 5 shows the number of sentences for each
dataset we used in our experiments.

Dataset

WMT’21 1,000 1,005 1,002 1,000 1,002 1,948
WMT’22 2,037 2,008 2,037 1,984 2,037 1,875
WMT’23 2,074 1,992 - - - -

en-ja ja-en en-de de-en en-zh zh-en

Table 5: Number of sentences for each dataset we used.

C Details of Algorithms and Models

C.1 kmeans++

We describe the algorithm of initial centroids selec-
tion of kmeans++:

1. Pick up the first centroid from the set Y and
add it into C.

2. Calculate the squared Euclidean distance be-
tween a vector f(g;) and its nearest centroid

d?(9;) = mineeel| f(9:) — €ll3.

3. Sample the vector f(g;) from multinomi-
nal distribution according to the weights
_P@) and add it to the set C.

S d(9)

4. Repeat steps 2 and 3 until k£ centroids are se-
lected.

C.2 COMET Model

Figure 3 shows the overview of the COMET model.
A triplet of sentences are independently encoded
into their sentence vectors, and then the COMET
score is calculated from the vectors.

COMET score
A

Output projection layer
s:R? x R? x R? > R

A

! | |

fx) f @

A 0 0
XLM-R encoder
f:Xuy->RP

) ) )

Source Hypothesis Reference
x€X hevy yey

Figure 3: Overview of COMET model.

D Details of Experimental Setup

Table 6 shows the details of our experimental
setup. Note that we implemented vanilla MBR,
PruneMBR, and CBMBR using PyTorch. We will
release our implementation.

Model
COMET Unbabel/wmt22-comet-da>
QE Unbabel/wmt22-cometkiwi-da’
GPU NVIDIA A100 x1
Batch size 256 sentences
(sentence encoding)

Diverse translation candidates setting
Translation model M2M100 (418M parameters)4

MAP decoding
Generation beam search
Beam size 256

MBR decoding

Candidate generation
# of candidates 1,024 translations
Generation epsilon sampling (e = 0.02)
(Freitag et al., 2023)
CBMBR
# of centroids £ 64
# of iterations 1

Multi-system translation setting
Translation model 9 various Transformer models
(Deguchi et al., 2023)

MAP decoding
Generation beam search using
the ensemble model
Beam size 50
MBR decoding

Candidate generation
# of candidates 900 translations®

Generation beam search and
top-p sampling (p = 0.7)
(Deguchi et al., 2023)
CBMBR
# of centroids £ 64
# of iterations 1

Table 6: The details of our experimental setup.

E Other Experimental Results

E.1 Translation quality on the development
set in the diverse translation candidates
setting

Table 7 shows the experimental results of the di-
verse translation candidates setting on the develop-
ment set. In the table, “niter” denotes the number of
iterations of kmeans clustering. We chose niter=1
from the results.

2https: //huggingface.co/Unbabel/
wmt22-comet-da

Shttps://huggingface.co/Unbabel/
wmt22-cometkiwi-da

4https ://huggingface.co/facebook/m2m100_418M

SWe will release translation candidates we created.
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Decoding en-ja ja-en en-de de-en en-zh zh-en avg.

MAP 78.8 62.6 745 804 73.0 68.6 73.0
QE 86.7 71.7 80.3 83.6 80.1 77.0 79.9
MBR 88.2 72.6 821 843 81.6 77.7 81.1
PruneMBR 88.2 72.6 82.0 843 81.6 77.7 81.1
CBMBR 88.2 723 819 844 815 775 81.0

w/o kmeans++ 88.1 724 81.8 843 814 77.5 80.9

CBMBR with various numbers of kmeans++ iterations

niter=1 882 723 819 844 815 77.5 81.0
niter=2 88.2 722 819 844 81.6 77.5 81.0
niter=3 88.2 723 819 844 815 77.5 81.0
niter=4 88.2 72.3 81.8 844 815 775 81.0
niter=5 882 723 819 844 81.6 77.5 81.0
CBMBR with various numbers of kmeans iterations

niter=1 88.1 72.4 81.8 84.3 81.4 77.5 80.9
niter=2 88.1 72.4 81.8 84.3 814 77.5 80.9
niter=3 88.1 72.4 81.8 84.3 81.4 77.5 80.9
niter=4 88.1 72.4 81.8 84.3 81.5 77.5 80.9
niter=5 88.1 72.4 81.8 84.3 815 77.5 80.9
oracle 899 763 84.0 873 842 802 83.7

Table 7: The translation quality (COMET%) in the di-
verse translation candidates setting on the WMT’21
translation task. “niter” denotes the number of itera-
tions of kmeans clustering.

E.2 Decoding speed in the multi-system
translation setting

Table 8 shows the decoding speed in the multi-
system translation setting measure on the WMT’22
and WMT’23 En<>Ja translation tasks. As shown
in the table, our CBMBR improved the speed of
the expected score calculation by 5.0 times com-
pared to vanilla MBR and 1.5 times compared to
PruneMBR in the multi-system setting.

Step QE MBR PruneMBR CBMBR
Encode

hypotheses; H - 198.1 198.7 199.1

source; T - 220 22.0 21.9
Rerank 313.0 - - -
Prune - - 54 -
kmeans++ - - - 36.1
Utility function; s - 281.1 79.5 20.1
E2E 336.0 511.9 306.0 278.4

Table 8: Average processing time per sentence (msec)
in the multi-system translation setting measured on the
WMT’22 and WMT’23 En<>Ja translation tasks. Note
that “E2E” measures the end-to-end time, including
miscellaneous processes.

F Multimodality of Translation
Candidates

In the multi-system translation setting, CBMBR
outperformed vanilla MBR also in terms of transla-

WMT 22 WMT’23

Decoding en-ja ja-en en-ja ja-en  avg.
MAP 864 809 835 804 828
QE 89.8 826 876 823 856
MBR 90.5 84.1 887 83.7 86.7
PruneMBR 889 828 86.6 822 85.1
CBMBR 909 84.1 892 838 87.0

w/o kmeans++ 90.5 84.1 888 83.7 86.8
CBMBR. 904 839 886 835 86.6

w/o kmeans++ 904 84.0 88.6 83.6 86.6

934 894 919 885 90.8

Oracle

Table 9: Results of the multi-system translation setting
with weighting by the numbers of samples.

tion quality as shown in Table 3 and Figure 2. In
this section, we discuss the multimodal nature of
translation, two approximations of MBR decoding,
and why our CBMBR outperformed vanilla MBR
in the multi-system translation setting.

The n-best translations generated by beam
search are often similar to each other (Vijayakumar
et al., 2018). To diversify the candidates while max-
imizing translation quality, Deguchi et al. (2023)
generated the 50-best translation sets from each
translation system, resulting in the candidates that
exhibit multimodality. Vanilla MBR decoding cal-
culates the expected score by treating all samples
equally, which means it is prone to being affected
by the number of similar translation samples in the
candidates with such a multimodal distribution.

Now, there are two approximation variants of
the MBR decoding in our CBMBR. One is our
proposed method, which calculates the expected
score using centroid representations:

ycpmBr = argmaxyeqy Eece [s(f(2), f(h), )]
S
The other CBMBR multiplies each centroid-
based score by the weight according to the number
of samples in each cluster, as follows:

* —_—
YCBMBRey —

argmaxy -y Ecec [S(f(l’), f(h)7 C) X w(c)] )
(6)

where w: RP — [0, 1] returns the weight of the



given centroid, as follows:

count(c)

L\ A 7
wie) Zle count(¢;)’ @
count(c) = |{ 7€ Vi e =NN(f(5),0) } .

(®)
NN(q,C) = argmin ccllg — cll2, ©)

where NN : R” x C — RP finds the nearest neigh-
bor centroid of a vector ¢ € R” from the given set
of centroids C, and count: R” — N U {0} counts
the number of samples in the cluster of the given
centroid. CBMBR_,, which uses the number of
samples in a cluster, can be regarded to more accu-
rately approximate vanilla MBR compared to our
CBMBR, which ignores the number of samples in
a cluster.

We compared the translation quality of our
CBMBR and CBMBR,; with the multi-system
translation setting. Table 9 shows the results. From
the results, the difference between vanilla MBR
and CBMBR; is narrowed to 0.1%, and degraded
by 0.6% compared to CBMBR.

In other words, CBMBR_,;, which more accu-
rately approximates vanilla MBR, is worse than
our proposed CBMBR. We attribute this observa-
tion to the biased distribution caused by the beam
search or sampling. With CBMBR, we can robustly
decode against the bias.
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