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Abstract

Minimum Bayes risk (MBR) decoding001
achieved state-of-the-art translation perfor-002
mance by using COMET, a neural metric that003
has a high correlation with human evaluation.004
However, MBR decoding requires quadratic005
time since it computes the expected score be-006
tween a translation hypothesis and all reference007
translations. We propose centroid-based MBR008
(CBMBR) decoding to improve the speed009
of MBR decoding. Our method clusters the010
reference translations in the feature space, and011
then calculates the score using the centroids012
of each cluster. The experimental results013
show that our CBMBR not only improved014
the decoding speed of the expected score015
calculation 6.9 times, but also outperformed016
vanilla MBR decoding in translation quality by017
up to 0.5 COMET% in the WMT’22 En↔Ja,018
En↔De, En↔Zh, and WMT’23 En↔Ja019
translation tasks.1020

1 Introduction021

Minimum Bayes risk (MBR) decoding achieved022

robust and high-quality translation by selecting the023

output sentence that maximizes the expected metric024

score computed from the set of translation hypothe-025

ses (Kumar and Byrne, 2004; Eikema and Aziz,026

2020; Müller and Sennrich, 2021). Recently, neu-027

ral evaluation metrics that have a high correlation028

with human evaluation have been proposed (Rei029

et al., 2020, 2022a; Sellam et al., 2020; Zhang et al.,030

2020), and MBR decoding using such neural met-031

rics has achieved state-of-the-art translation perfor-032

mance in human evaluation compared to the con-033

ventional maximum-a-posteriori (MAP) decoding034

using beam search (Fernandes et al., 2022).035

However, due to its formulation, the typical036

MBR decoding regarding the hypothesis set as a037

pseudo-reference set requires the computational038

1We will release our source code on GitHub.

Figure 1: Overview of our CBMBR.

time of O(N2) when the N translation hypothe- 039

ses are given. In recent work, the number of hy- 040

potheses N has exceeded 1,000 candidates (Fre- 041

itag et al., 2023), making the quadratic order of 042

computational time a challenge for MBR decoding, 043

especially when using expensive neural metrics. To 044

improve the decoding speed, several pruning meth- 045

ods have been proposed (Eikema and Aziz, 2022; 046

Cheng and Vlachos, 2023), while these approaches 047

require careful selection of a proxy metric (Eikema 048

and Aziz, 2022), or it is difficult to take advantage 049

of computational parallelism because hypotheses 050

are iteratively pruned (Cheng and Vlachos, 2023). 051

Given that expensive neural metrics, e.g, 052

COMET or BLEURT, are trained to output high 053

scores when a hypothesis sentence and a reference 054

translation are semantically similar, we hypothe- 055

sized that the distance between sentence vectors of 056

similar sentences in the feature space of their mod- 057

els is close. We leverage the sentence similarity 058

to improve the decoding speed of COMET-MBR 059

by clustering sentence vectors of the translation 060

candidates into k ≪ N clusters as shown in Fig- 061

ure 1. Then, we calculate the COMET scores using 062

k centroid vectors of their clusters, instead of using 063

N sentence vectors. 064

Our proposed method not only achieved a speed- 065

up of 6.9 times in the calculation of the expected 066

score, but also an improvement in COMET score of 067

up to 0.5% compared with the naive MBR decoding 068

in the WMT’22 En↔Ja, En↔De, En↔Zh, and 069

WMT’23 En↔Ja translation tasks. 070

1



2 Background071

MBR decoding MBR decoding has been demon-072

strated to be effective in fields such as statistical073

automatic speech recognition (Goel and Byrne,074

2000) and statistical machine translation (Kumar075

and Byrne, 2004), and it has been applied to neural076

machine translation in recent years (Eikema and077

Aziz, 2020; Müller and Sennrich, 2021). Further-078

more, it is more suitable for multiple translation079

systems than ensemble models (Ito et al., 2023).080

Let X and Y be the spaces of possible source081

sentences and target sentences, respectively. MAP082

decoding generates the target sentence y∗MAP ∈ Y083

by y∗MAP = argmaxy∈Y pθ(y|x), where θ denotes084

the parameter of the translation model which calcu-085

lates the likelihood of an output sentence y given086

an input sentence x ∈ X . Since it is hard to cal-087

culate probabilities for all possible y ∈ Y , usually088

the beam search is used to obtain the solution.089

In contrast, MBR decoding determines the out-090

put sentence y∗MBR ∈ Y by maximizing the ex-091

pected utility as follows:092

y∗MBR = argmaxh∈H Eŷ∼P (y|x) [u(h, ŷ)] , (1)093

≈ argmaxh∈H Eŷ∈Ŷ [u(h, ŷ)] , (2)094

where u : Y × Y → R denotes the utility func-095

tion, which represents the preference relation, and096

H = {hi}|H|
i=1 ⊂ Y denotes the set of translation097

hypotheses. P (y|x) is the true probability of be-098

ing translated from a given input sentence x ∈ X ,099

and it is approximated using the sampled reference100

translations Ŷ = {ŷi}|Ŷ|
i=1 ⊂ Y as shown in Equa-101

tion 2 since the true probability is unknown. The102

typical MBR decoding treats the hypothesis set103

itself as the pseudo-reference set, i.e., Ŷ := H.104

Note that the time complexity is O(N2), where105

N := |H|, which is time-consuming.106

COMET-MBR COMET is an evaluation metric107

of translation quality that achieved a high correla-108

tion with human evaluation. The COMET model109

consists of the XLM-RoBERTa (XLM-R) (Con-110

neau et al., 2020) -based sentence encoder and the111

output layer, and it is trained to predict direct assess-112

ment (DA) scores (Rei et al., 2020, 2022a). It first113

encodes the source sentence x ∈ X , the hypothesis114

sentence h ∈ Y , and the reference sentence ŷ ∈ Y115

into their D dimensional sentence vectors, indepen-116

dently, and then the COMET score is computed117

from the triplet of sentence vectors by the output118

layer. Let f : X ∪ Y → RD be the function of119

sentence encoding and s : RD × RD × RD → R 120

be the output layer, the COMET score is com- 121

puted by s(f(x), f(h), f(ŷ)). MBR decoding us- 122

ing COMET (COMET-MBR) replaces the utility u 123

in Equation 2 with the COMET score: 124

y∗COMET-MBR 125

= argmaxh∈H Eŷ∈Ŷ [s(f(x), f(h), f(ŷ))] . (3) 126

3 Proposed Method 127

Our proposed centroid-based MBR (CBMBR) ap- 128

proximates the expected utility by using the cen- 129

troids of similar sentence vectors. CBMBR de- 130

codes by computing the expected utility according 131

to the following procedures: sentence encoding, 132

clustering, and calculating the expected utility. 133

Encoding Firstly, the sentence vector of the 134

source f(x) ∈ RD, the hypotheses {f(hi)}|H|
i=1 ⊂ 135

RD, and the pseudo-references {f(ŷi)}|Ŷ|
i=1 ⊂ RD 136

are computed. 137

Clustering Next, we perform clustering for the 138

sentence vectors of pseudo-references into k ≪ N 139

clusters and obtain the centroid vectors of each 140

cluster C = {ci}ki=1 ⊂ RD. Here, we employ 141

kmeans++ (Arthur and Vassilvitskii, 2007) to pre- 142

vent the centroids from being biased. kmeans++ 143

selects the initial centroids so that the distances be- 144

tween each pair of centroids are farther according 145

to the weights calculated from distances of vec- 146

tors. The details of the algorithm are described 147

in Appendix C.1. Then, the vectors {f(ŷi)}|Ŷ|
i=1 148

are clustered using the standard kmeans algorithm. 149

Concretely, the following steps 1) and 2) are itera- 150

tively calculated: 1) assign a vector to its nearest 151

neighbor centroid, 2) and update the centroid using 152

vectors assigned to its cluster. 153

Expected utility Finally, the expected utility is 154

calculated by replacing pseudo-reference vectors 155

f(ŷ) ∈ RD with centroids c ∈ RD in Equation 3: 156

y∗CBMBR = argmaxh∈H Ec∈C [s(f(x), f(h), c)] .
(4) 157

The conventional method requires O(N2) of 158

computational time to compute the expected utility 159

for all hypotheses, whereas our CBMBR computes 160

in O(Nk). Note that k (1 ≤ k ≤ N ) is a hyper- 161

parameter that balances the trade-off between the 162

decoding speed and approximation accuracy. Es- 163

pecially, when k = 1, i.e., C = {c1}, the centroid 164
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Decoding en-ja ja-en en-de de-en en-zh zh-en avg.

MAP 78.7 69.7 77.3 79.2 77.4 70.1 75.4
QE 86.6 76.2 82.2 82.1 82.9 76.9 81.2
MBR 87.9 76.6 84.0 83.0 84.2 77.3 82.2
PruneMBR 87.9 76.5 84.0 83.0 84.1 77.3 82.1
CBMBR 87.9 76.6 83.9 83.0 84.1 77.1 82.1

w/o kmeans++ 87.8 76.4 83.8 82.9 84.0 77.2 82.0

Oracle 90.6 81.9 87.0 86.5 87.7 81.2 85.8

Table 1: Translation quality on the WMT’22 translation
task with the setting of diverse translation candidates.
The best scores are emphasized in bold font and second-
best scores are underlined for each language direction.

c1 can be calculated as the average of all pseudo-165

reference vectors, i.e., c1 = 1
|Ŷ|

∑|Ŷ|
i=1 f(ŷi), and166

the time complexity of CBMBR will be O(N),167

which is equivalent to DeNero et al. (2009).168

4 Experiments169

Setup We conducted translation experiments170

with two settings: one uses diversified translation171

candidates, and the other simulates a more realistic172

scenario, multi-system translation. We evaluated173

the translation quality using COMET score, which174

is the same as the utility function of MBR decoding175

used in our experiments. For comparison, we also176

performed translation candidate reranking using a177

quality estimation model COMETKIWI (Rei et al.,178

2022b) (QE), confidence-based pruning MBR de-179

coding (PruneMBR) (Cheng and Vlachos, 2023),180

and the quality upper bound (Oracle), which se-181

lects the hypothesis with the best score according182

to COMET using reference translations. We also183

compared CBMBR without kmeans++, where ini-184

tial centroids were randomly selected from the sam-185

ple set (w/o kmeans++). We used COMET-22 (Rei186

et al., 2022a) for the evaluation metric and utility187

function. In MBR decoding, we treat the hypoth-188

esis set as the pseudo-reference set, i.e., Ŷ := H.189

We set the number of centroids to k = 64. Details190

of our setup are shown in Appendix D.191

Diverse translation candidates In this setting,192

we evaluated the translation quality in six language193

directions: En↔Ja, En↔De, and En↔Zh in the194

WMT’22 translation task (Kocmi et al., 2022).195

We generated translation candidates using the pre-196

trained multilingual translation model, M2M100.197

We employed beam search with a beam size of 256198

for MAP decoding, and generated 1,024 transla-199

tions using epsilon sampling with ϵ = 0.02 (Freitag200

Step QE MBR PruneMBR CBMBR

Encode/hypotheses – 247.0 248.0 247.8
Encode/source – 51.6 51.1 51.2
Rerank 450.1 – – –
Prune – – 5.5 –
kmeans++ – – – 36.5
Utility function; s – 322.2 79.6 20.1

E2E 450.1 633.1 384.7 356.8

Table 2: Average processing time per sentence (msec)
on the WMT’22 translation task in the diverse candi-
dates setting. Note that “E2E” measures the end-to-end
time, including miscellaneous processes.

et al., 2023) for MBR decoding. 201

Table 1 shows the translation quality of each de- 202

coding method. From the average scores in the 203

table, when compared with MAP decoding, both 204

MBR decoding and the proposed CBMBR decod- 205

ing improve the COMET score by +6.8 and +6.7%, 206

respectively, and the gap between Oracle has been 207

narrowed. The results also show that the differ- 208

ence between CBMBR and MBR is within 0.1% 209

by using kmeans++ initialization. 210

Next, we compared the decoding time of each 211

method as shown in Table 2. From the table, the 212

overall decoding time (E2E) shows that CBMBR 213

is 1.8 times faster than vanilla MBR. Specifically, 214

in the computation of the expected utility which 215

required quadratic time, the speed was increased by 216

6.9 times when including kmeans++, and by 16.0 217

times when comparing only the utility computation. 218

Compared to PruneMBR, we confirmed that the 219

speed of the expected utility calculation improved 220

by 1.5 times. One reason for this improvement 221

is that, unlike PruneMBR, CBMBR computes the 222

expected utility at once, making it easier to leverage 223

parallel computation capabilities of GPU. 224

In summary, CBMBR maintains comparable 225

translation quality to the naive MBR decoding 226

while accelerating the computational time by 6.9 227

times, including clustering. 228

Multi-system translation We also evaluated the 229

effectiveness of our CBMBR in the setting where 230

translation candidates are generated from multiple 231

translation systems. In particular, we follow the 232

practice in Deguchi et al. (2023), in which 18 can- 233

didate sets with each set comprising 50-best trans- 234

lations are generated from nine different models 235

and two decoding methods: beam search and top-p 236

sampling (p = 0.7) with a beam size of 50. We 237

evaluated the translation quality in two language 238
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WMT’22 WMT’23

Decoding en-ja ja-en en-ja ja-en avg.

MAP 86.4 80.9 83.5 80.4 82.8
QE 89.8 82.6 87.6 82.3 85.6
MBR 90.5 84.1 88.7 83.7 86.7
PruneMBR 88.9 82.8 86.6 82.2 85.1
CBMBR 90.9 84.1 89.2 83.8 87.0

w/o kmeans++ 90.5 84.1 88.8 83.7 86.8

Oracle 93.4 89.4 91.9 88.5 90.8

Table 3: The translation quality in the multi-system
translation setting.

1 2 4 8 16 32 64 128 256
k

86.8
87.0
87.2
87.4
87.6

CO
M

ET

CBMBR w/ k-means++
CBMBR w/o k-means++
MBR

Figure 2: Translation quality of various k in the multi-
system translation setting. The scores are averaged
COMET on the WMT’22 En-Ja and Ja-En.

directions: En↔Ja in the WMT’22 and WMT’23239

translation tasks (Kocmi et al., 2022, 2023).240

Table 3 shows the results. Unlike the diverse241

candidates setting, CBMBR improved the transla-242

tion quality by up to 0.5%, compared with MBR.243

Naive MBR calculates the expected utility using244

all samples equally, which is prone to translation245

bias when candidates have multimodal distribution.246

In contrast, CBMBR estimates the expected utility247

using only centroids; therefore, it decodes robustly248

even if the distribution is multimodal. The detailed249

analysis is shown in Appendix F.250

In summary, we found that CBMBR not only251

improved decoding speed, but also improved trans-252

lation quality compared to the vanilla MBR when253

the translation is determined from the candidate254

sets generated from multiple translation systems.255

5 Discussion256

5.1 The number of centroids k257

We evaluated the COMET scores of various k ∈258

{2i}8i=0 in the multi-system translation setting. Fig-259

ure 2 shows the results. When k = 1, while the260

time complexity is linear time O(N), the COMET261

score of CBMBR was degraded by 0.5% compared262

with vanilla MBR. The figure shows that translation263

quality improves as k is increased, and CBMBR264

outperformed vanilla MBR when k ≥ 16. In addi-265

tion, the translation quality was better when we use266

Model dev test

RoBERTalarge (Liu et al., 2019) 53.7 43.0
fastText (Joulin et al., 2017) 65.3 53.6
XLM-Rlarge (Conneau et al., 2020) 39.1 31.6
LaBSE (Feng et al., 2022) 72.9 72.7

COMET (Rei et al., 2022a) 78.2 73.6

Table 4: Pearson r × 100 in the STS-B task using the
encoder of COMET model.

kmeans++ compared to the standard kmeans. 267

5.2 Distance between similar sentence vectors 268

As a prerequisite for the proposed method, it is 269

necessary that sentence similarity be represented as 270

the distances between sentence vectors. To verify 271

this assumption, we investigated the distances be- 272

tween sentence vectors of similar sentences using 273

the Semantic Textual Similarity Benchmark (STS- 274

B) task (Cer et al., 2017). We evaluated the Pearson 275

correlation coefficient r with the ground truth simi- 276

larity score. Table 4 shows the experimental results. 277

Despite sentence vectors are not explicitly trained 278

like contrastive learning, COMET demonstrates a 279

strong correlation of 73.6. Moreover, the result 280

shows that it has implicitly learned sentence sim- 281

ilarity through the training of score prediction, as 282

evidenced by its significantly better correlation of 283

73.6 compared to the pre-trained XLM-R score of 284

31.6. Furthermore, we confirmed that COMET out- 285

performed LaBSE (Feng et al., 2022) trained by 286

contrastive learning. 287

To summarize, the sentence vectors of COMET 288

demonstrate a strong correlation with gold scores 289

in the STS-B task although the sentence representa- 290

tions are not explicitly trained. Also, we confirmed 291

that the encoder of COMET implicitly learned sen- 292

tence similarity through the score prediction. 293

6 Conclusion 294

In this paper, we proposed CBMBR, which im- 295

proves the speed of MBR decoding by clustering 296

the sentence vectors of similar sentences and com- 297

puting the score with the centroid representations 298

of each cluster. Our CBMBR achieved a 6.9 times 299

speed-up in the expected score calculation and 300

an improvement in COMET of up to 0.5% com- 301

pared with vanilla MBR decoding in the WMT’22 302

En↔Ja, En↔De, En↔Zh, and WMT’23 En↔Ja 303

translation tasks. For future work, we would like 304

to apply our method to other evaluation metrics 305

including both neural and non-neural metrics. 306
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Limitations307

This study focuses only on improving the speed of308

MBR decoding, especially the neural evaluation309

metric, COMET. For non-neural metrics, it is nec-310

essary to apply the appropriate clustering method311

for each metric.312

In COMET-MBR, there are two bottlenecks of313

computational time: the calculation of the expected314

utility and sentence encoding. However, this study315

only improves the computation speed of the ex-316

pected utility, which took quadratic time. Although317

the sentence encoding can be computed in a linear318

time, the sentences are encoded using the expensive319

XLM-R encoder, which is time-consuming.320

Our method can only be applied to metrics for321

which we can compute the representation indepen-322

dently for each sentence. This limitation is the323

same as that of the method of DeNero et al. (2009)324

and is also explained in their paper as well.325

The decoding times reported in this paper are326

measured on a single computer and only a single327

run; the amount of speed improvement may differ328

when different computer architectures are used.329

Ethical Consideration330

Both vanilla MBR decoding and CBMBR decoding331

select output sentences from a set of translation332

candidates generated by translation systems, so if333

the systems generate toxic text, it may be selected.334
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B Details of Dataset526

Table 5 shows the number of sentences for each527

dataset we used in our experiments.

Dataset en-ja ja-en en-de de-en en-zh zh-en

WMT’21 1,000 1,005 1,002 1,000 1,002 1,948
WMT’22 2,037 2,008 2,037 1,984 2,037 1,875
WMT’23 2,074 1,992 – – – –

Table 5: Number of sentences for each dataset we used.

528

C Details of Algorithms and Models529

C.1 kmeans++530

We describe the algorithm of initial centroids selec-531

tion of kmeans++:532

1. Pick up the first centroid from the set Ŷ and533

add it into C.534

2. Calculate the squared Euclidean distance be-535

tween a vector f(ŷi) and its nearest centroid536

d2(ŷi) = minc∈C∥f(ŷi)− c∥22.537

3. Sample the vector f(ŷi) from multinomi-538

nal distribution according to the weights539
d2(ŷi)∑|Ŷ|

j=1 d
2(ŷj)

and add it to the set C.540

4. Repeat steps 2 and 3 until k centroids are se-541

lected.542

C.2 COMET Model543

Figure 3 shows the overview of the COMET model.544

A triplet of sentences are independently encoded545

into their sentence vectors, and then the COMET546

score is calculated from the vectors.547

Figure 3: Overview of COMET model.

D Details of Experimental Setup 548

Table 6 shows the details of our experimental 549

setup. Note that we implemented vanilla MBR, 550

PruneMBR, and CBMBR using PyTorch. We will 551

release our implementation. 552

Model
COMET Unbabel/wmt22-comet-da2

QE Unbabel/wmt22-cometkiwi-da3

GPU NVIDIA A100 ×1
Batch size 256 sentences
(sentence encoding)

Diverse translation candidates setting
Translation model M2M100 (418M parameters)4

MAP decoding
Generation beam search
Beam size 256

MBR decoding
Candidate generation

# of candidates 1,024 translations
Generation epsilon sampling (ϵ = 0.02)

(Freitag et al., 2023)
CBMBR

# of centroids k 64
# of iterations 1

Multi-system translation setting
Translation model 9 various Transformer models

(Deguchi et al., 2023)
MAP decoding

Generation beam search using
the ensemble model

Beam size 50
MBR decoding

Candidate generation
# of candidates 900 translations5

Generation beam search and
top-p sampling (p = 0.7)
(Deguchi et al., 2023)

CBMBR
# of centroids k 64
# of iterations 1

Table 6: The details of our experimental setup.

E Other Experimental Results 553

E.1 Translation quality on the development 554

set in the diverse translation candidates 555

setting 556

Table 7 shows the experimental results of the di- 557

verse translation candidates setting on the develop- 558

ment set. In the table, “niter” denotes the number of 559

iterations of kmeans clustering. We chose niter=1 560

from the results. 561

2https://huggingface.co/Unbabel/
wmt22-comet-da

3https://huggingface.co/Unbabel/
wmt22-cometkiwi-da

4https://huggingface.co/facebook/m2m100_418M
5We will release translation candidates we created.
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Decoding en-ja ja-en en-de de-en en-zh zh-en avg.

MAP 78.8 62.6 74.5 80.4 73.0 68.6 73.0
QE 86.7 71.7 80.3 83.6 80.1 77.0 79.9
MBR 88.2 72.6 82.1 84.3 81.6 77.7 81.1
PruneMBR 88.2 72.6 82.0 84.3 81.6 77.7 81.1
CBMBR 88.2 72.3 81.9 84.4 81.5 77.5 81.0

w/o kmeans++ 88.1 72.4 81.8 84.3 81.4 77.5 80.9

CBMBR with various numbers of kmeans++ iterations
niter=1 88.2 72.3 81.9 84.4 81.5 77.5 81.0
niter=2 88.2 72.2 81.9 84.4 81.6 77.5 81.0
niter=3 88.2 72.3 81.9 84.4 81.5 77.5 81.0
niter=4 88.2 72.3 81.8 84.4 81.5 77.5 81.0
niter=5 88.2 72.3 81.9 84.4 81.6 77.5 81.0

CBMBR with various numbers of kmeans iterations
niter=1 88.1 72.4 81.8 84.3 81.4 77.5 80.9
niter=2 88.1 72.4 81.8 84.3 81.4 77.5 80.9
niter=3 88.1 72.4 81.8 84.3 81.4 77.5 80.9
niter=4 88.1 72.4 81.8 84.3 81.5 77.5 80.9
niter=5 88.1 72.4 81.8 84.3 81.5 77.5 80.9

oracle 89.9 76.3 84.0 87.3 84.2 80.2 83.7

Table 7: The translation quality (COMET%) in the di-
verse translation candidates setting on the WMT’21
translation task. “niter” denotes the number of itera-
tions of kmeans clustering.

E.2 Decoding speed in the multi-system562

translation setting563

Table 8 shows the decoding speed in the multi-564

system translation setting measure on the WMT’22565

and WMT’23 En↔Ja translation tasks. As shown566

in the table, our CBMBR improved the speed of567

the expected score calculation by 5.0 times com-568

pared to vanilla MBR and 1.5 times compared to569

PruneMBR in the multi-system setting.570

Step QE MBR PruneMBR CBMBR

Encode
hypotheses; H – 198.1 198.7 199.1
source; x – 22.0 22.0 21.9

Rerank 313.0 – – –
Prune – – 5.4 –
kmeans++ – – – 36.1
Utility function; s – 281.1 79.5 20.1

E2E 336.0 511.9 306.0 278.4

Table 8: Average processing time per sentence (msec)
in the multi-system translation setting measured on the
WMT’22 and WMT’23 En↔Ja translation tasks. Note
that “E2E” measures the end-to-end time, including
miscellaneous processes.

F Multimodality of Translation571

Candidates572

In the multi-system translation setting, CBMBR573

outperformed vanilla MBR also in terms of transla-574

WMT’22 WMT’23

Decoding en-ja ja-en en-ja ja-en avg.

MAP 86.4 80.9 83.5 80.4 82.8
QE 89.8 82.6 87.6 82.3 85.6
MBR 90.5 84.1 88.7 83.7 86.7
PruneMBR 88.9 82.8 86.6 82.2 85.1
CBMBR 90.9 84.1 89.2 83.8 87.0

w/o kmeans++ 90.5 84.1 88.8 83.7 86.8
CBMBRcnt 90.4 83.9 88.6 83.5 86.6

w/o kmeans++ 90.4 84.0 88.6 83.6 86.6

Oracle 93.4 89.4 91.9 88.5 90.8

Table 9: Results of the multi-system translation setting
with weighting by the numbers of samples.

tion quality as shown in Table 3 and Figure 2. In 575

this section, we discuss the multimodal nature of 576

translation, two approximations of MBR decoding, 577

and why our CBMBR outperformed vanilla MBR 578

in the multi-system translation setting. 579

The n-best translations generated by beam 580

search are often similar to each other (Vijayakumar 581

et al., 2018). To diversify the candidates while max- 582

imizing translation quality, Deguchi et al. (2023) 583

generated the 50-best translation sets from each 584

translation system, resulting in the candidates that 585

exhibit multimodality. Vanilla MBR decoding cal- 586

culates the expected score by treating all samples 587

equally, which means it is prone to being affected 588

by the number of similar translation samples in the 589

candidates with such a multimodal distribution. 590

Now, there are two approximation variants of 591

the MBR decoding in our CBMBR. One is our 592

proposed method, which calculates the expected 593

score using centroid representations: 594

y∗CBMBR = argmaxh∈H Ec∈C [s(f(x), f(h), c)] .
(5) 595

The other CBMBRcnt multiplies each centroid- 596

based score by the weight according to the number 597

of samples in each cluster, as follows: 598

y∗CBMBRcnt
= 599

argmaxh∈H Ec∈C [s(f(x), f(h), c)× w(c)] ,
(6)

600

where w : RD → [0, 1] returns the weight of the 601
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given centroid, as follows:602

w(c) =
count(c)∑k
i=1 count(ci)

, (7)603

count(c) =
∣∣∣{ ŷ ∈ Ŷ : c = NN(f(ŷ), C)

}∣∣∣ ,
(8)

604

NN(q, C) = argminc∈C∥q − c∥2, (9)605

where NN: RD×C → RD finds the nearest neigh-606

bor centroid of a vector q ∈ RD from the given set607

of centroids C, and count : RD → N ∪ {0} counts608

the number of samples in the cluster of the given609

centroid. CBMBRcnt, which uses the number of610

samples in a cluster, can be regarded to more accu-611

rately approximate vanilla MBR compared to our612

CBMBR, which ignores the number of samples in613

a cluster.614

We compared the translation quality of our615

CBMBR and CBMBRcnt with the multi-system616

translation setting. Table 9 shows the results. From617

the results, the difference between vanilla MBR618

and CBMBRcnt is narrowed to 0.1%, and degraded619

by 0.6% compared to CBMBR.620

In other words, CBMBRcnt, which more accu-621

rately approximates vanilla MBR, is worse than622

our proposed CBMBR. We attribute this observa-623

tion to the biased distribution caused by the beam624

search or sampling. With CBMBR, we can robustly625

decode against the bias.626
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