
ISAAC NEWTON: INPUT-BASED APPROXIMATE
CURVATURE FOR NEWTON’S METHOD

Felix Petersen12, Tobias Sutter2, Christian Borgelt3, Dongsung Huh4,
Hilde Kuehne45, Yuekai Sun6, Oliver Deussen2

1Stanford University, 2University of Konstanz, 3University of Salzburg,
4MIT-IBM Watson AI Lab, 5University of Frankfurt, 6University of Michigan
petersen@cs.stanford.edu

ABSTRACT

We present ISAAC (Input-baSed ApproximAte Curvature), a novel method that
conditions the gradient using selected second-order information and has an asymp-
totically vanishing computational overhead, assuming a batch size smaller than the
number of neurons. We show that it is possible to compute a good conditioner based
on only the input to a respective layer without a substantial computational over-
head. The proposed method allows effective training even in small-batch stochastic
regimes, which makes it competitive to first-order as well as second-order methods.

1 INTRODUCTION

While second-order optimization methods are traditionally much less explored than first-order
methods in large-scale machine learning (ML) applications due to their memory requirements and
prohibitive computational cost per iteration, they have recently become more popular in ML mainly
due to their fast convergence properties when compared to first-order methods [1]. The expensive
computation of an inverse Hessian (also known as pre-conditioning matrix) in the Newton step has
also been tackled via estimating the curvature from the change in gradients. Loosely speaking, these
algorithms are known as quasi-Newton methods; for a comprehensive treatment, see Nocedal &
Wright [2]. Various approximations to the pre-conditioning matrix have been proposed in recent
literature [3]–[6]. From a theoretical perspective, second-order optimization methods are not nearly
as well understood as first-order methods. It is an active research direction to fill this gap [7], [8].

Motivated by the task of training neural networks, and the observation that invoking local curvature
information associated with neural network objective functions can achieve much faster progress
per iteration than standard first-order methods [9]–[11], several methods have been proposed. One
of these methods, that received significant attention, is known as Kronecker-factored Approximate
Curvature (K-FAC) [12], whose main ingredient is a sophisticated approximation to the generalized
Gauss-Newton matrix and the Fisher information matrix quantifying the curvature of the underlying
neural network objective function, which then can be inverted efficiently.

Inspired by the K-FAC approximation and the Tikhonov regularization of the Newton method,
we introduce a novel two parameter regularized Kronecker-factorized Newton update step. The
proposed scheme disentangles the classical Tikhonov regularization and in a specific limit allows
us to condition the gradient using selected second-order information and has an asymptotically
vanishing computational overhead. While this case makes the presented method highly attractive
from the computational complexity perspective, we demonstrate that its empirical performance on
high-dimensional machine learning problems remains comparable to existing SOTA methods.

The contributions of this paper can be summarized as follows: (i) we propose a novel two parameter
regularized K-FAC approximated Gauss-Newton update step; (ii) we prove that for an arbitrary pair of
regularization parameters, the proposed update direction is always a direction of decreasing loss; (iii)
in the limit, as one regularization parameter grows, we obtain an efficient and effective conditioning
of the gradient with an asymptotically vanishing overhead; (iv) we empirically analyze the method
and find that our efficient conditioning method maintains the performance of its more expensive
counterpart; (v) we demonstrate the effectiveness of the method in small-batch stochastic regimes
and observe performance competitive to first-order as well as quasi-Newton methods.

1

2 PRELIMINARIES

In this section, we review aspects of second-order optimization, with a focus on generalized Gauss-
Newton methods. In combination with Kronecker factorization, this leads us to a new regularized
update scheme. We consider the training of an L-layer neural network f(x; θ) defined recursively as

zi ← ai−1W
(i) (pre-activations), ai ← ϕ(zi) (activations), (1)

where a0 = x is the vector of inputs and aL = f(x; θ) is the vector of outputs. Unless noted otherwise,
we assume these vectors to be row vectors (i.e., in R1×n) as this allows for a direct extension to the
(batch) vectorized case (i.e., in Rb×n) introduced later. For any layer i, let W (i) ∈ Rdi−1×di be a
weight matrix and let ϕ be an element-wise nonlinear function. We consider a convex loss function
L(y, y′) that measures the discrepancy between y and y′. The training optimization problem is then

argmin
θ

Ex,y [L(f(x; θ), y)] , (2)

where θ =
[
θ(1), . . . , θ(L)

]
with θ(i) = vec(W (i)).

The classical Newton method for solving (2) is expressed as the update rule

θ′ = θ − ηH−1
θ ∇θL(f(x; θ), y) , (3)

where η > 0 denotes the learning rate and Hθ is the Hessian corresponding to the objective function
in (2). The stability and efficiency of an estimation problem solved via the Newton method can be
improved by adding a Tikhonov regularization term [13] leading to a regularized Newton method

θ′ = θ − η (Hθ + λI)−1∇θL(f(x; θ), y) , (4)

where λ > 0 is the so-called Tikhonov regularization parameter. It is well-known [14], [15], that
under the assumption of approximating the model f with its first-order Taylor expansion, the Hessian
corresponds with the so-called generalized Gauss-Newton (GGN) matrix Gθ, and hence (4) can be
expressed as

θ′ = θ − η (Gθ + λI)−1∇θL(f(x; θ), y) . (5)

A major practical limitation of (5) is the computation of the inverse term. A method that alleviates this
difficulty is known as Kronecker-Factored Approximate Curvature (K-FAC) [12] which approximates
the block-diagonal (i.e., layer-wise) empirical Hessian or GGN matrix. Inspired by K-FAC, there
have been other works discussing approximations of Gθ and its inverse [15]. In the following, we
discuss a popular approach that allows for (moderately) efficient computation.

The generalized Gauss-Newton matrix Gθ is defined as

Gθ = E
[
(Jθf(x; θ))

⊤∇2
fL(f(x; θ), y)Jθf(x; θ)

]
, (6)

where J and ∇2 denote the Jacobian and Hessian matrices, respectively. Correspondingly, the
diagonal block of Gθ corresponding to the weights of the ith layer W (i) is

GW (i)=E
[
(JW (i)f(x; θ))⊤∇2

fL(f(x; θ), y)JW (i)f(x; θ)
]
.

According to the backpropagation rule JW (i)f(x; θ) = Jzif(x; θ) ai−1, a⊤b = a ⊗ b, and the
mixed-product property, we can rewrite GW (i) as

GW (i)=E
[(
(Jzif(x; θ) ai−1)

⊤(∇2
fL(f(x; θ), y))1/2

)(
(∇2

fL(f(x; θ), y))1/2 Jzif(x; θ) ai−1

)]
(7)

=E
[
(ḡ⊤ai−1)

⊤(ḡ⊤ai−1)
]
= E

[
(ḡ ⊗ ai−1)

⊤(ḡ ⊗ ai−1)
]
= E

[
(ḡ⊤ḡ)⊗ (a⊤i−1ai−1)

]
, (8)

where
ḡ = (Jzif(x; θ))

⊤ (∇2
fL(f(x; θ), y))1/2 . (9)

Remark 1 (Monte-Carlo Low-Rank Approximation for ḡ⊤ḡ). As ḡ is a matrix of shape m × di
where m is the dimension of the output of f , ḡ is generally expensive to compute. Therefore, [12] use
a low-rank Monte-Carlo approximation to estimate ∇2

fL(f(x; θ), y) and thereby ḡ⊤ḡ. For this, we
need to use the distribution underlying the probabilistic model of our loss L (e.g., Gaussian for MSE
loss, or a categorical distribution for cross entropy). Specifically, by sampling from this distribution

2

pf (x) defined by the network output f(x; θ), we can get an estimator of ∇2
fL(f(x; θ), y) via the

identity
∇2

fL(f(x; θ), y) = Eŷ∼pf (x)

[
∇fL(f(x; θ), ŷ)⊤∇fL(f(x; θ), ŷ)

]
. (10)

An extensive reference for this (as well as alternatives) can be found in Appendix A.2 of Dangel et
al. [15]. The respective rank-1 approximation (denoted by ≜) of ∇2

fL(f(x; θ)) is

∇2
fL(f(x; θ), y) ≜ ∇fL(f(x; θ), ŷ)⊤∇fL(f(x; θ), ŷ) ,

where ŷ ∼ pf (x). Respectively, we can estimate ḡ⊤ḡ using this rank-1 approximation with

ḡ ≜ (Jzif(x; θ))
⊤∇fL(f(x; θ), ŷ) = ∇ziL(f(x; θ), ŷ) . (11)

In analogy to ḡ, we introduce the gradient of training objective with respect to pre-activations zi as

gi = (Jzif(x; θ))
⊤∇fL(f(x; θ), y) = ∇ziL(f(x; θ), y) . (12)

In other words, for a given layer, let g ∈ R1×di denote the gradient of the loss between an output and
the ground truth and let ḡ ∈ Rm×di denote the derivative of the network f times the square root of
the Hessian of the loss function (which may be approximated according to Remark 1), each of them
with respect to the output zi of the given layer i. Note that ḡ is not equal to g and that they require one
backpropagation pass each (or potentially many for the case of ḡ). This makes computing ḡ costly.

Applying the K-FAC [12] approximation to (8) the expectation of Kronecker products can be
approximated as the Kronecker product of expectations as

G = E((ḡ⊤ḡ)⊗ (a⊤a)) ≈ E(ḡ⊤ḡ)⊗ E(a⊤a) , (13)

where, for clarity, we drop the index of ai−1 in (8) and denote it with a; similarly we denote GW (i)

as G. While the expectation of Kronecker products is generally not equal to the Kronecker product
of expectations, this K-FAC approximation (13) has been shown to be fairly accurate in practice
and to preserve the “coarse structure” of the GGN matrix [12]. The K-FAC decomposition in (13)
is convenient as the Kronecker product has the favorable property that for two matrices A,B the
identity (A⊗B)−1 = A−1 ⊗B−1 which significantly simplifies the computation of an inverse.

In practice, E(ḡ⊤ḡ) and E(a⊤a) can be computed by averaging over a batch of size b as

E(ḡ⊤ḡ) ≃ ḡ̄ḡg⊤ḡ̄ḡg/b, E(a⊤a) ≃ a⊤a/b, (14)

where we denote batches of g, ḡ and a, as g ∈ Rb×di , ḡ̄ḡg ∈ Rrb×di and a ∈ Rb×di−1 , where our layer
has di−1 inputs, di outputs, b is the batch size, and r is either the number of outputs m or the rank of
an approximation according to Remark 1. Correspondingly, the K-FAC approximation of the GGN
matrix and its inverse are concisely expressed as

G ≈ (ḡ̄ḡg⊤ḡ̄ḡg)⊗ (a⊤a)/b2 G−1 ≈
(
ḡ̄ḡg⊤ḡ̄ḡg

)−1⊗
(
a⊤a

)−1 · b2 . (15)

Equipped with the standard terminology and setting, we now introduce the novel, regularized update
step. First, inspired by the K-FAC approximation (13), the Tikhonov regularized Gauss-Newton
method (5) can be approximated by

θ(i)′ = θ(i) − η(ḡ̄ḡg⊤ḡ̄ḡg/b+ λI)−1 ⊗ (a⊤a/b+ λI)−1∇θ(i)L(f(x; θ)), (16)

with regularization parameter λ > 0. A key observation, which is motivated by the structure of
the above update, is to disentangle the two occurrences of λ into two independent regularization
parameters λg, λa > 0. By defining the Kronecker-factorized Gauss-Newton update step as

ζζζ = λgλa(ḡ̄ḡg
⊤ḡ̄ḡg/b+ λgI)

−1 ⊗ (a⊤a/b+ λaI)
−1∇θ(i)L(f(x; θ)), (17)

we obtain the concise update equation

θ(i)′ = θ(i) − η∗ζζζ. (18)

This update (18) is equivalent to update (16) when in the case of η∗ = η
λgλa

and λ = λg = λa. This
equivalence does not restrict η∗, λg, λa in any way, and changing λg or λa does not mean that we
change our learning rate or step size η∗. Parameterizing ζζζ in (17) with the multiplicative terms λgλa

makes the formulation more convenient for analysis.

3

In this paper, we investigate the theoretical and empirical properties of the iterative update rule (18)
and in particular show how the regularization parameters λg, λa affect the Kronecker-factorized
Gauss-Newton update step ζζζ. When analyzing the Kronecker-factorized Gauss-Newton update step
ζζζ, a particularly useful tool is the vector product identity,((

ḡ̄ḡg⊤ḡ̄ḡg
)−1 ⊗

(
a⊤a

)−1
)
vec(g⊤a) = vec

((
ḡ̄ḡg⊤ḡ̄ḡg

)−1
g⊤a

(
a⊤a

)−1
)
, (19)

where the gradient with respect to the weight matrix is g⊤a.

3 THEORETICAL GUARANTEES

In this section, we investigate the theoretical properties of the Kronecker-factorized Gauss-Newton
update direction ζζζ as defined in (17). We recall that ζζζ introduces a Tikonov regularization, as it is
commonly done in implementations of second order-based methods. Not surprisingly, we show that
by decreasing the regularization parameters λg, λa the update rule (18) collapses (in the limit) to the
classical Gauss-Newton method, and hence in the regime of small λg, λa the variable ζζζ describes the
Gauss-Newton direction. Moreover, by increasing the regularization strength, we converge (in the
limit) to the conventional gradient descent update step.

The key observation is that, as we disentangle the regularization of the two Kronecker factors ḡ̄ḡg⊤ḡ̄ḡg
and a⊤a, and consider the setting where only one regularizer is large (λg → ∞ to be precise),
we obtain an update direction that can be computed highly efficiently. We show that this setting
describes an approximated Gauss-Newton update scheme, whose superior numerical performance is
then empirically demonstrated in Section 4.
Theorem 1 (Properties of ζζζ). The K-FAC based update step ζζζ as defined in (17) can be expressed as

ζζζ =

(
Im −

1

bλg
ḡ̄ḡg⊤
(
Ib +

1

bλg
ḡ̄ḡgḡ̄ḡg⊤

)−1

ḡ̄ḡg

)
· g⊤ ·

(
Ib −

1

bλa
aa⊤

(
Ib +

1

bλa
aa⊤

)−1
)
· a .

(20)
Moreover, ζζζ admits the following asymptotic properties:

(i) In the limit of λg, λa → 0, 1
λgλa

ζζζ is the K-FAC approximation of the Gauss-Newton step, i.e.,
limλg,λa→0

1
λgλa

ζζζ ≈ G−1∇θ(i)L(f(x; θ)), where ≈ denotes the K-FAC approximation (15).

(ii) In the limit of λg, λa →∞, ζζζ is the gradient, i.e., limλg,λa→∞ ζζζ = ∇θ(i)L(f(x; θ)).
The Proof is deferred to the Supplementary Material.

We want to show that ζζζ is well-defined and points in the correct direction, not only for λg and λa

numerically close to zero because we want to explore the full spectrum of settings for λg and λa.
Thus, we prove that ζζζ is a direction of increasing loss, independent of the choices of λg and λa.
Theorem 2 (Correctness of ζζζ is independent of λg and λa). ζζζ is a direction of increasing loss,
independent of the choices of λg and λa.

Proof. Recall that (λgIm+ḡ̄ḡg⊤ḡ̄ḡg/b) and (λaIn+a⊤a/b) are positive semi-definite (PSD) matrices by
definition. Their inverses (λgIm + ḡ̄ḡg⊤ḡ̄ḡg/b)−1 and (λaIn + a⊤a/b)−1 are therefore also PSD. As the
Kronecker product of PSD matrices is PSD, the conditioning matrix ((λgIm + ḡ̄ḡg⊤ḡ̄ḡg/b)−1 ⊗ (λaIn +
a⊤a/b)−1 ≈ G−1) is PSD, and therefore the direction of the update step remains correct.

This leads us to our primary contribution: From our formulation of ζζζ , we can find that, in the limit for
λg →∞, Equation (21) does not depend on ḡ̄ḡg. This is computationally very beneficial as computing
ḡ̄ḡg is costly as it requires one or even many additional backpropagation passes. In addition, it allows
conditioning the gradient update by multiplying a b× b matrix between g⊤ and a, which is very fast.
Theorem 3 (Efficient Update Direction / ISAAC). In the limit of λg → ∞, the update step ζζζ
converges to limλg→∞ ζζζ = ζζζ∗, where

ζζζ∗= g⊤ ·

(
Ib −

1

bλa
aa⊤

(
Ib +

1

bλa
aa⊤

)−1
)
· a . (21)

4

(i) Here, the update direction ζζζ∗ is based only on the inputs and does not require computing ḡ̄ḡg
(which would require a second backpropagation pass), making it efficient.

(ii) The computational cost of computing the update ζζζ∗ lies in O(bn2 + b2n+ b3), where n is the
number of neurons in each layer. This comprises the conventional cost of computing the gradient
∇ = g⊤x lying inO(bn2), and the overhead of computing ζζζ∗ instead of∇ lying inO(b2n+b3).
The overhead is vanishing, assuming n≫ b. For b > n the complexity lies in O(bn2 + n3).

Proof. We first show the property (21). Note that according to (22), λg ·
(
λgIm + ḡ̄ḡg⊤ḡ̄ḡg/b

)−1
con-

verges in the limit of λg →∞ to Im, and therefore (21) holds.
(i) The statement follows from the fact that the term ḡ̄ḡg does not appear in the equivalent characteriza-
tion (21) of ζζζ∗.
(ii) We first note that the matrix aa⊤ is of dimension b × b, and can be computed in O(b2n) time.
Next, the matrix (

Ib −
1

bλa
aa⊤

(
Ib +

1

bλa
aa⊤

)−1
)

is of shape b× b and can be multiplied with a in O(b2n) time.

Notably, (21) can be computed with a vanishing computational overhead and with only minor
modifications to the implementation. Specifically, only the g⊤a expression has to be replaced by (21)
in the backpropagation step. As this can be done independently for each layer, this lends itself also to
applying it only to individual layers.

As we see in the experimental section, in many cases in the mini-batch regime (i.e., b < n), the
optimal (or a good) choice for λg actually lies in the limit to∞. This is a surprising result, leading to
the efficient and effective ζζζ∗ = ζζζλg→∞ optimizer.

Remark 2 (Relation between Update Direction ζζζ and ζζζ∗). When comparing the update direction
ζζζ in (20) without regularization (i.e., λg → 0, λa → 0) with ζζζ∗ (i.e., λg → ∞) as given in (21), it
can be directly seen that ζζζ∗ corresponds to a particular pre-conditioning of ζζζ, since ζζζ∗ = Mζζζ for
M = 1

bλg
ḡ̄ḡg⊤ḡ̄ḡg.

As the last theoretical property of our proposed update direction ζζζ∗, we show that in specific networks
ζζζ∗ coincides with the Gauss-Newton update direction.
Theorem 4 (ζζζ∗ is Exact for the Last Layer). For the case of linear regression or, more generally, the
last layer of networks, with the mean squared error, ζζζ∗ is the Gauss-Newton update direction.

Proof. The Hessian matrix of the mean squared error loss is the identity matrix. Correspondingly,
the expectation value of ḡ̄ḡg⊤ḡ̄ḡg is I. Thus, ζζζ∗ = ζζζ.

Remark 3. The direction ζζζ∗ corresponds to the Gauss-Newton update direction with an approxima-
tion of G that can be expressed as G ≈ E

[
I⊗ (a⊤a)

]
.

Remark 4 (Extension to the Natural Gradient). In some cases, it might be more desirable to use the
Fisher-based natural gradient instead of the Gauss-Newton method. The difference to this setting is
that in (5) the GGN matrix G is replaced by the empirical Fisher information matrix F.

We note that our theory also applies to F, and that ζζζ∗ also efficiently approximates the natural
gradient update step F−1∇. The i-th diagonal block of F (Fθ(i) = E

[
(g⊤i gi)⊗ (a⊤i−1ai−1)

]
),

has the same form as a block of the GGN matrix G (Gθ(i) = E
[
(ḡ⊤i ḡi)⊗ (a⊤i−1ai−1)

]
).

Thus, we can replace ḡ̄ḡg with g in our theoretical results to obtain their counterparts for F.

4 EXPERIMENTS1

In the previous section, we discussed the theoretical properties of the proposed update directions
ζζζ and ζζζ∗ with the aspect that ζζζ∗ would actually be “free” to compute in the mini-batch regime. In
this section, we provide empirical evidence that ζζζ∗ is a good update direction, even in deep learning.
Specifically, we demonstrate that

1Code will be made available at github.com/Felix-Petersen/isaac

5

https://github.com/Felix-Petersen/isaac

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

-6
-5
-4
-3
-2
-1
0

+1
+2
+3
+4
+5
+6

lo
g 1

0
a

(a)

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

(b)

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

(c)

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

(d)

14

12

10

8

6

4

2

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

-6
-5
-4
-3
-2
-1
0

+1
+2
+3
+4
+5
+6

lo
g 1

0
a

(e)

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

(f)

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

(g)

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

(h)

0.970

0.972

0.974

0.976

0.978

0.980

0.982

0.984

0.986

Figure 1: Logarithmic training loss (top) and test accuracy (bottom) on the MNIST classification task. The
axes are the regularization parameters λg and λa in logarithmic scale with base 10. Training with a 5-layer
ReLU activated network with 100 (left, a, e), 400 (center, b, c, f, g), and 1 600 (right, d, h) neurons per layer.
The optimizer is SGD except for (c, g) where the optimizer is SGD with momentum. The top-left sector is
ζζζ, the top-right column is ζζζ∗, and the bottom-right corner is ∇ (gradient descent). For each experiment and
each of the three sectors, we use one learning rate, i.e., ζζζ, ζζζ∗, ∇ have their own learning rate to make a fair
comparison between the methods; within each sector the learning rate is constant. We can observe that in the
limit of λg → ∞ (i.e., in the limit to the right) the performance remains good, showing the utility of ζζζ∗.

(E1) ζζζ∗ achieves similar performance to K-FAC, while being substantially cheaper to compute.
(E2) The performance of our proposed method can be empirically maintained in the mini-batch

regime (n≫ b).
(E3) ζζζ∗ may be used for individual layers, while for other layers only the gradient ∇ is used. This

still leads to improved performance.
(E4) ζζζ∗ also improves the performance for training larger models such as BERT and ResNet.
(E5) The runtime and memory requirements of ζζζ∗ are comparable to those of gradient descent.

E1: IMPACT OF REGULARIZATION PARAMETERS

For (E1), we study the dependence of the model’s performance on the regularization parameters λg

and λa. Here, we train a 5-layer deep neural network on the MNIST classification task [16] with a
batch size of 60 for a total of 40 epochs or 40 000 steps.

The plots in Figure 1 demonstrate that the advantage of training by conditioning with curvature
information can be achieved by considering both layer inputs a and gradients with respect to random
samples ḡ̄ḡg, but also using only layer inputs a. In the plot, we show the performance of ζζζ for different
choices of λg and λa, each in the range from 10−6 to 106. The right column shows ζζζ∗, i.e., λg =∞,
for different λa. The bottom-right corner is gradient descent, which corresponds to λg = ∞ and
λa =∞.

Newton’s method or the general K-FAC approximation corresponds to the area with small λg and λa.
The interesting finding here is that the performance does not suffer by increasing λg toward∞, i.e.,
from left to right in the plot.

In addition, in Figure 3, we consider the case of regression with an auto-encoder trained with the
MSE loss on MNIST [16] and Fashion-MNIST [17]. Here, we follow the same principle as above
and also find that ζζζ∗ performs well.

6

0 2000 4000 6000 8000 10000
training time [s]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Tr
ai

ni
ng

 lo
ss

Gradient descent
* (a = 0.1)

K-FAC (a, g = 0.1)
K-FAC (a, g = 0.01)

 (a, g = 0.1)
 (a, g = 0.01)

0 500 1000 1500 2000 2500 3000 3500 4000
Steps

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Tr
ai

ni
ng

 lo
ss

Gradient descent
* (a = 0.1)

K-FAC (a, g = 0.1)
K-FAC (a, g = 0.01)

 (a, g = 0.1)
 (a, g = 0.01)

Figure 2: Training loss of the MNIST auto-encoder trained with gradient descent, K-FAC, ζζζ, and ζζζ∗. Comparing
the performance per real-time (left) and per number of update steps (right). Runtimes are for a CPU core.

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

-6
-5
-4
-3
-2
-1
0

+1
+2
+3
+4
+5
+6

lo
g 1

0
a

(a)

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

(b)

5.5

5.0

4.5

4.0

3.5

3.0

2.5

Figure 3: Training an auto-encoder on MNIST (left) and Fashion-
MNIST (right). The model is the same as used by Botev et al. [18],
i.e., it is a ReLU-activated 6-layer fully connected model with di-
mensions 784-1000-500- 30-500-1000-784. Displayed
is the logarithmic training loss.

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

-6
-5
-4
-3
-2
-1
0

+1
+2
+3
+4
+5
+6

lo
g 1

0
a

(a)

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

(b)

Figure 4: Training a 5-layer ReLU network with 400 neurons per
layer on the MNIST classification task (as in Figure 1) but with
the Adam optimizer [19].

In Figure 2, we compare the loss for dif-
ferent methods. Here, we distinguish
between loss per time (left) and loss
per number of steps (right). We can ob-
serve that, for λ = 0.1, K-FAC, ζζζ, and
ζζζ∗ are almost identical per update step
(right), while ζζζ∗ is by a large margin
the fastest, followed by ζζζ, and the con-
ventional K-FAC implementation is the
slowest (left). On the other hand, for
λ = 0.01 we can achieve a faster con-
vergence than with λ = 0.1, but here
only the K-FAC and ζζζ methods are nu-
merically stable, while ζζζ∗ is unstable in
this case. This means in the regime of
very small λ, ζζζ∗ is not as robust as K-
FAC and ζζζ, however, it achieves good
performance with small but moderate
λ like λ = 0.1. For λ < 0.01, also
K-FAC and ζζζ become numerically un-
stable in this setting and, in general, we
observed that the smallest valid λ for
K-FAC is 0.01 or 0.001 depending on
model and task. Under consideration
of the runtime, ζζζ∗ performs best as it is
almost as fast as gradient descent while
performing equivalent to K-FAC and ζζζ .
Specifically, a gradient descent step is
only about 10% faster than ζζζ∗.

E2: MINIBATCH REGIME

0 250 500 750 1000 1250 1500 1750 2000
training time [s]

18

16

14

12

10

8

6

4

2

0

lo
g.

 tr
ai

ni
ng

 e
rro

r

Gradient descent
* for layers 1, 2, 3, 4, 5
* for layers 1
* for layers 5
* for layers 1, 2, 3
* for layers 3, 4, 5
* for layers 1, 3, 5
* for layers 2, 4

Figure 5: Training on the MNIST classification task
using ζζζ∗ only in selected layers. Runtimes are for CPU.

For (E2), in Figure 1, we can see that training
performs well for n ∈ {100, 400, 1 600} neu-
rons per layer at a batch size of only 60. Also, in
all other experiments, we use small batch sizes
of between 8 and 100.

E3: ζζζ∗ IN INDIVIDUAL LAYERS

In Figure 5, we train the 5-layer fully connected
model with 400 neurons per layer. Here, we
consider the setting that we use ζζζ∗ in some of
the layers while using the default gradient ∇
in other layers. Specifically, we consider the
settings, where all, the first, the final, the first three, the final three, the odd numbered, and the
even numbered layers are updated by ζζζ∗. We observe that all settings with ζζζ∗ perform better than

7

Table 1: BERT results for fine-tuning pre-trained BERT-Base (B-B) and BERT-Mini (B-M) models on the
COLA, MRPC, and STSB text classification tasks. Larger values are better for all metrics. MCC is the Matthews
correlation. Results averaged over 10 runs.

Method / Setting CoLA (B-B) CoLA (B-M) MRPC (B-B) STS-B (B-M)

Metric MCC MCC Acc. F1 Pearson Spearman

Gradient baseline 54.20 ± 7.56 21.08 ± 2.88 82.52 ± 1.22 87.88 ± 0.74 76.98 ± 1.10 76.88 ± 0.79
ζζζ∗ 57.62 ± 1.59 24.67 ± 2.62 83.28 ± 0.89 88.28 ± 0.70 81.09 ± 1.58 80.82 ± 1.57

plain gradient descent, except for “ζζζ∗ for layers 3,4,5” which performs approximately equivalent to
gradient descent.

E4: LARGE-SCALE MODELS

BERT To demonstrate the utility of ζζζ∗ also in large-scale models, we evaluate it for fine-tuning
BERT [20] on three natural language tasks. In Table 1, we summarize the results for the BERT
fine-tuning task. For the “Corpus of Linguistic Acceptability” (CoLA) [21] data set, we fine-tune
both the BERT-Base and the BERT-Mini models and find that we outperform the gradient descent
baseline in both cases. For the “Microsoft Research Paraphrase Corpus” (MRPC) [22] data set, we
fine-tune the BERT-Base model and find that we outperform the baseline both in terms of accuracy
and F1-score. Finally, on the “Semantic Textual Similarity Benchmark” (STS-B) [23] data set, we
fine-tune the BERT-Mini model and achieve higher Pearson and Spearman correlations than the
baseline. While for training with CoLA and MRPC, we were able to use the Adam optimizer [19]
(which is recommended for this task and model) in conjunction with ζζζ∗ in place of the gradient,
for STS-B Adam did not work well. Therefore, for STS-B, we evaluated it using the SGD with
momentum optimizer. For each method, we performed a grid search over the hyperparameters. We
note that we use a batch size of 8 in all BERT experiments.

0 25 50 75 100 125 150 175 200
Epochs

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Te
st

 A
cc

.

Gradient descent, SGD w/ momentum + weight decay
* for last layer, SGD w/ momentum + weight decay

Gradient descent, SGD w/ momentum
* for last layer, SGD w/ momentum

Gradient descent, SGD
* for last layer, SGD

Figure 6: ResNet-18 trained on CIFAR-10 with image
augmentation and a cosine learning rate schedule. To
ablate the optimizer, two additional settings are added,
specifically, without weight decay and without momen-
tum. Results are averaged over 5 runs and the standard
deviation is indicated with the colored areas.

ResNet In addition, we conduct an experiment
where we train the last layer of a ResNet with
ζζζ∗, while the remainder of the model is updated
using the gradient ∇. Here, we train a ResNet-
18 [24] on CIFAR-10 [25] using SGD with a
batch size of 100. In Figure 6, we plot the test
accuracy against number of epochs. The times
for each method lie within 1% of each other. We
consider three settings: the typical setting with
momentum and weight decay, a setting with
only momentum, and a setting with vanilla SGD
without momentum. The results show that the
proposed method outperforms SGD in each of
these cases. While the improvements are rather
small in the case of the default training, they are
especially large in the case of no weight decay
and no momentum.

E5: RUNTIME AND MEMORY

Finally, we also evaluate the runtime and memory requirements of each method. The runtime
evaluation is displayed in Table 2. We report both CPU and GPU runtime using PyTorch [26] and
(for K-FAC) the backpack library [15]. Note that the CPU runtime is more representative of the
pure computational cost, as for the first rows of the GPU runtime the overhead of calling the GPU
is dominant. When comparing runtimes between the gradient and ζζζ∗ on the GPU, we can observe
that we have an overhead of around 2.5 s independent of the model size. The overhead for CPU time
is also very small at less than 1% for the largest model, and only 1.3 s for the smallest model. In
contrast, the runtime of ζζζ∗ is around 4 times the runtime of the gradient, and K-FAC has an even
substantially larger runtime. Regarding memory, ζζζ∗ (contrasting the other approaches) also requires
only a small additional footprint.

8

Table 2: Runtimes and memory requirements for different models. Runtime is the training time per epoch on
MNIST at a batch size of 60, i.e., for 1 000 training steps. The K-FAC implementation is from the backpack
library [15]. The GPU is an Nvidia A6000.

Gradient K-FAC ζζζ ζζζ∗

Model CPU time GPU time Memory CPU time GPU t. Memory CPU time GPU t. Memory CPU t. GPU t. Memory

5 layers w/ 100 n. 2.05 s 1.79 s 1.0MB 62.78 s 17.63 s 11.5MB 8.65 s 11.76 s 1.6MB 3.34 s 4.07 s 1.0MB
5 layers w/ 400 n. 23.74 s 1.84 s 4.8MB 218.48 s 32.00 s 22.4MB 38.67 s 12.62 s 7.7MB 13.62 s 4.19 s 4.9MB
5 layers w/ 1 600 n. 187.87 s 1.93 s 51.0MB 6985.48 s 156.48 s 212.2MB 665.80 s 12.53 s 85.8MB 291.01 s 4.49 s 51.4MB
5 layers w/ 6 400 n. 3439.59 s 8.22 s 691.0MB — 1320.81 s 3155.3MB 9673 s 31.87 s 1197.8MB 3451.61 s 10.24 s 692.5MB

Auto-Encoder 78.61 s 2.20 s 16.2MB 1207.58 s 74.09 s 70.7MB 193.25 s 14.19 s 33.8MB 87.39 s 4.93 s 16.5MB

Remark 5 (Implementation). The implementation of ζζζ∗ can be done by replacing the backpropagation
step of a respective layer by (21). As all “ingredients” are already available in popular deep learning
frameworks, it requires only little modification (contrasting K-FAC and ζζζ, which require at least one
additional backpropagation.)

We will publish the source code of our implementation. In the appendix, we give a PyTorch [26]
implementation of the proposed method (ζζζ∗).

5 RELATED WORK

Our methods are related to K-FAC by Martens and Grosse [12]. K-FAC uses the approximation
(13) to approximate the blocks of the Hessian of the empirical risk of neural networks. In most
implementations of K-FAC, the off-diagonal blocks of the Hessian are also set to zero. One of the
main claimed benefits of K-FAC is its speed (compared to stochastic gradient descent) for large-batch
size training. That said, recent empirical work has shown that this advantage of K-FAC disappears
once the additional computational costs of hyperparameter tuning for large batch training is accounted
for. There is a line of work that extends the basic idea of K-FAC to convolutional layers [27]. Botev et
al. [18] further extend these ideas to present KFLR, a Kronecker factored low-rank approximation,
and KFRA, a Kronecker factored recursive approximation of the Gauss-Newton step. Singh and
Alistarh [28] propose WoodFisher, a Woodbury matrix inverse-based estimate of the inverse Hessian,
and apply it to neural network compression. Yao et al. [29] propose AdaHessian, a second-order
optimizer that incorporates the curvature of the loss function via an adaptive estimation of the Hessian.
Frantar et al. [6] propose M-FAC, a matrix-free approximation of the natural gradient through a queue
of the (e.g., 1 000) recent gradients. These works fundamentally differ from our approach in that their
objective is to approximate the Fisher or Gauss-Newton matrix inverse vector products. In contrast,
this work proposes to approximate the Gauss-Newton matrix by only one of its Kronecker factors,
which we find to achieve good performance at a substantial computational speedup and reduction of
memory footprint. For an overview of this area, we refer to Kunstner et al. [30] and Martens [31].
For an overview of the technical aspects of backpropagation of second-order quantities, we refer to
Dangel et al. [15], [32]

Taking a step back, K-FAC is one of many Newton-type methods for training neural networks.
Other prominent examples of such methods include subsampled Newton methods [33], [34] (which
approximate the Hessian by subsampling the terms in the empirical risk function and evaluating the
Hessian of the subsampled terms) and sketched Newton methods [3]–[5] (which approximate the
Hessian by sketching, e.g., by projecting the Hessian to a lower-dimensional space by multiplying
it with a random matrix). Another quasi-Newton method [35] proposes approximating the Hessian
by a block-diagonal matrix using the structure of gradient and Hessian to further approximate these
blocks. The main features that distinguish K-FAC from this group of methods are K-FAC’s superior
empirical performance and K-FAC’s lack of theoretical justification.

6 CONCLUSION

In this work, we presented ISAAC Newton, a novel approximate curvature method based on layer-
inputs. We demonstrated it to be a special case of the regularization-generalized Gauss-Newton
method and empirically demonstrate its utility. Specifically, our method features an asymptotically
vanishing computational overhead in the mini-batch regime, while achieving competitive empirical
performance on various benchmark problems.

9

ACKNOWLEDGMENTS

This work was supported by the IBM-MIT Watson AI Lab, the DFG in the Cluster of Excellence EXC
2117 “Centre for the Advanced Study of Collective Behaviour” (Project-ID 390829875), the Land
Salzburg within the WISS 2025 project IDA-Lab (20102-F1901166-KZP and 20204-WISS/225/197-
2019), and the National Science Foundation (NSF) (grants no. 1916271, 2027737, and 2113373).

REFERENCES

[1] N. Agarwal, B. Bullins, and E. Hazan, “Second-order stochastic optimization for machine
learning in linear time,” Journal on Machine Learning Research, vol. 18, no. 1, pp. 4148–4187,
2017.

[2] J. Nocedal and S. J. Wright, Numerical Optimization, 2e. New York, NY, USA: Springer, 2006.
[3] A. Gonen and S. Shalev-Shwartz, “Faster SGD using sketched conditioning,” arXiv preprint,

arXiv:1506.02649, 2015.
[4] M. Pilanci and M. J. Wainwright, “Newton sketch: A near linear-time optimization algorithm

with linear-quadratic convergence,” SIAM Journal on Optimization, vol. 27, 2017.
[5] M. A. Erdogdu and A. Montanari, “Convergence rates of sub-sampled Newton methods,” in

Proc. Neural Information Processing Systems (NeurIPS), 2015.
[6] E. Frantar, E. Kurtic, and D. Alistarh, “M-FAC: Efficient matrix-free approximations of

second-order information,” in Proc. Neural Information Processing Systems (NeurIPS), 2021.
[7] N. Doikov and Y. Nesterov, “Convex Optimization based on Global Lower Second-order

Models,” in Proc. Neural Information Processing Systems (NeurIPS), Curran Associates, Inc.,
2020.

[8] Y. Nesterov and B. T. Polyak, “Cubic regularization of Newton method and its global perfor-
mance,” Mathematical Programming, vol. 108, 2006.

[9] S. Becker and Y. Lecun, “Improving the convergence of back-propagation learning with
second-order methods,” 1989.

[10] T. Schaul, S. Zhang, and Y. LeCun, “No more pesky learning rates,” in International Conference
on Machine Learning (ICML), 2013.

[11] Y. Ollivier, “Riemannian metrics for neural networks i: Feedforward networks,” Information
and Inference, vol. 4, pp. 108–153, Jun. 2015.

[12] J. Martens and R. Grosse, “Optimizing neural networks with Kronecker-factored approximate
curvature,” in International Conference on Machine Learning (ICML), 2015.

[13] A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-posed problems. W.H. Winston, 1977.
[14] P. Chen, “Hessian matrix vs. Gauss—Newton Hessian matrix,” SIAM Journal on Numerical

Analysis, 2011.
[15] F. Dangel, F. Kunstner, and P. Hennig, “Backpack: Packing more into backprop,” in Interna-

tional Conference on Learning Representations, 2020.
[16] Y. LeCun, C. Cortes, and C. Burges, “MNIST Handwritten Digit Database,” ATT Labs, 2010.
[17] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel image dataset for benchmarking

machine learning algorithms,” arXiv, 2017.
[18] A. Botev, H. Ritter, and D. Barber, “Practical Gauss-Newton optimisation for deep learning,”

in International Conference on Machine Learning (ICML), 2017.
[19] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in International Confer-

ence on Learning Representations (ICLR), 2015.
[20] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional

transformers for language understanding,” in North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (NAACL-HLT), 2018.

[21] A. Warstadt, A. Singh, and S. R. Bowman, “Neural network acceptability judgments,” Trans-
actions of the Association for Computational Linguistics, vol. 7, 2019.

[22] W. B. Dolan and C. Brockett, “Automatically constructing a corpus of sentential paraphrases,”
in Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005.

10

[23] D. Cer, M. Diab, E. Agirre, I. Lopez-Gazpio, and L. Specia, “SemEval-2017 task 1: Semantic
textual similarity multilingual and crosslingual focused evaluation,” in Proceedings of the
11th International Workshop on Semantic Evaluation (SemEval-2017), Vancouver, Canada:
Association for Computational Linguistics, 2017.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proc. International Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[25] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (Canadian Institute for Advanced Research),”
2009.

[26] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative style, high-performance deep
learning library,” in Proc. Neural Information Processing Systems (NeurIPS), 2019.

[27] R. Grosse and J. Martens, “A Kronecker-factored approximate Fisher matrix for convolution
layers,” in International Conference on Machine Learning (ICML), 2016.

[28] S. P. Singh and D. Alistarh, “Woodfisher: Efficient second-order approximation for neural
network compression,” in Proc. Neural Information Processing Systems (NeurIPS), 2020.

[29] Z. Yao, A. Gholami, S. Shen, M. Mustafa, K. Keutzer, and M. W. Mahoney, “Adahessian:
An adaptive second order optimizer for machine learning,” in AAAI Conference on Artificial
Intelligence, 2021.

[30] F. Kunstner, L. Balles, and P. Hennig, “Limitations of the empirical Fisher approximation for
natural gradient descent,” in Proc. Neural Information Processing Systems (NeurIPS), 2019.

[31] J. Martens, “New insights and perspectives on the natural gradient method,” Journal of Machine
Learning Research, 2020.

[32] F. Dangel, S. Harmeling, and P. Hennig, “Modular block-diagonal curvature approximations
for feedforward architectures,” in International Conference on Artificial Intelligence and
Statistics (AISTATS), 2020.

[33] F. Roosta-Khorasani and M. W. Mahoney, “Sub-Sampled Newton Methods I: Globally Con-
vergent Algorithms,” arXiv: 1601.04737, 2016.

[34] P. Xu, J. Yang, F. Roosta, C. Ré, and M. W. Mahoney, “Sub-sampled Newton Methods with
Non-uniform Sampling,” in Proc. Neural Information Processing Systems (NeurIPS), 2016.

[35] D. Goldfarb, Y. Ren, and A. Bahamou, “Practical Quasi-Newton Methods for Training Deep
Neural Networks,” in Proceedings of the 34th International Conference on Neural Information
Processing Systems, 2020.

11

A PYTORCH IMPLEMENTATION

We display a PyTorch [26] implementation of ISAAC for a fully-connected layer below. Here, we
mark the important part (i.e., the part beyond the boilerplate) with a red rectangle.

import torch

class ISAACLinearFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, input, weight, bias, la, inv_type):

ctx.save_for_backward(input, weight, bias)
ctx.la = la
if inv_type == 'cholesky_inverse':

ctx.inverse = torch.cholesky_inverse
elif inv_type == 'inverse':

ctx.inverse = torch.inverse
else:

raise NotImplementedError(inv_type)
return input @ weight.T + (bias if bias is not None else 0)

@staticmethod
def backward(ctx, grad_output):

input, weight, bias = ctx.saved_tensors
if ctx.needs_input_grad[0]:

grad_0 = grad_output @ weight
else:

grad_0 = None

if ctx.needs_input_grad[1]:

aaT = input @ input.T / grad_output.shape[0]
I_b = torch.eye(aaT.shape[0], device=aaT.device, dtype=aaT.dtype)
aaT_IaaT_inv = aaT @ ctx.inverse(aaT / ctx.la + I_b)
grad_1 = grad_output.T @ (

I_b - 1. / ctx.la * aaT_IaaT_inv
) @ input

else:
grad_1 = None

return (
grad_0,
grad_1,
grad_output.mean(0, keepdim=True) if bias is not None else None,
None, None, None,

)

class ISAACLinear(torch.nn.Linear):
def __init__(self, in_features, out_features,

la, inv_type='inverse', **kwargs):
super(ISAACLinear, self).__init__(

in_features=in_features, out_features=out_features, **kwargs
)
self.la = la
self.inv_type = inv_type

def forward(self, input: torch.Tensor) -> torch.Tensor:
return ISAACLinearFunction.apply(

input, self.weight,

12

self.bias.unsqueeze(0) if self.bias is not None else None,
self.la,
self.inv_type

)

B IMPLEMENTATION DETAILS

Unless noted differently, for all experiments, we tune the learning rate on a grid of
(1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001). We verified this range to cover the full reasonable range of
learning rates. Specifically, for every single experiment, we made sure that there is no learning rate
outside this range which performs better.

For all language model experiments, we used the respective Huggingface PyTorch implementation.

All other hyperparameter details are given in the main paper.

C ADDITIONAL PROOFS

Proof of Theorem 1. We first show, that ζζζ as defined in (17) can be expressed as in (20). Indeed by
using (19), the Woodbury matrix identity and by regularizing the inverses, we can see that

ζζζ = λgλa(ḡ̄ḡg
⊤ḡ̄ḡg/b+ λgI)

−1 ⊗ (a⊤a/b+ λaI)
−1g⊤a

= λgλa ·
(
λgIm + ḡ̄ḡg⊤ḡ̄ḡg/b

)−1
g⊤a

(
λaIn + a⊤a/b

)−1

= λgλa ·

(
1

λg
Im −

1

bλg
2 ḡ̄ḡg

⊤
(
Ib +

1

bλg
ḡ̄ḡgḡ̄ḡg⊤

)−1

ḡ̄ḡg

)

g⊤a

(
1

λa
In −

1

bλa
2 a

⊤
(
Ib +

1

bλa
aa⊤

)−1

a

)

=

(
Im −

1

bλg
ḡ̄ḡg⊤
(
Ib +

1

bλg
ḡ̄ḡgḡ̄ḡg⊤

)−1

ḡ̄ḡg

)
· g⊤

· a ·

(
In −

1

bλa
a⊤
(
Ib +

1

bλa
aa⊤

)−1

a

)

=

(
Im −

1

bλg
ḡ̄ḡg⊤
(
Ib +

1

bλg
ḡ̄ḡgḡ̄ḡg⊤

)−1

ḡ̄ḡg

)
· g⊤

·

(
a− 1

bλa
aa⊤

(
Ib +

1

bλa
aa⊤

)−1

a

)

=

(
Im −

1

bλg
ḡ̄ḡg⊤
(
Ib +

1

bλg
ḡ̄ḡgḡ̄ḡg⊤

)−1

ḡ̄ḡg

)
· g⊤

·

(
Ib −

1

bλa
aa⊤

(
Ib +

1

bλa
aa⊤

)−1
)
· a

To show Assertion (i), we note that according to (17)

lim
λg,λa→0

1

λgλa
ζζζ

= lim
λg,λa→0

(ḡ̄ḡg⊤ḡ̄ḡg/b+ λgI)
−1 ⊗ (a⊤a/b+ λaI)

−1g⊤a

= (ḡ̄ḡg⊤ḡ̄ḡg)−1 ⊗ (a⊤a)−1g⊤a

≈ G−1g⊤a,

13

where the first equality uses the definition of ζζζ in (17). The second equality is due to the continuity of
the matrix inversion and the last approximate equality follows from the K-FAC approximation (15).

To show Assertion (ii), we consider limλg→∞ and limλa→∞ independently, that is

lim
λg→∞

λg ·
(
λgIm + ḡ̄ḡg⊤ḡ̄ḡg/b

)−1
(22)

= lim
λg→∞

(
Im +

1

bλg
ḡ̄ḡg⊤ḡ̄ḡg

)−1

= Im,

and

lim
λa→∞

λa ·
(
λaIn + a⊤a/b

)−1
(23)

= lim
λa→∞

(
In +

1

bλa
a⊤a

)−1

= In.

This then implies

lim
λg,λa→∞

λg

(
λgIm + ḡ̄ḡg⊤ḡ̄ḡg/b

)−1 · g⊤ (24)

· a · λa

(
λaIn + a⊤a/b

)−1

= Im · g⊤a · In = g⊤a,

which concludes the proof.

D ADDITIONAL EXPERIMENTS

0 2000 4000 6000 8000 10000
training time [s]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Tr
ai

n
lo

ss

Gradient descent
* (a = 0.1)

K-FAC (a, g = 0.1)
K-FAC (a, g = 0.01)

 (a, g = 0.1)
 (a, g = 0.01)

SGD w/ Momentum
SGD (bs=600)
K-FAC (a, g = 0.01) (bs=600)
Adam

0 5 10 15 20 25 30 35 40
Epochs

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Tr
ai

n
lo

ss

Gradient descent
* (a = 0.1)

K-FAC (a, g = 0.1)
K-FAC (a, g = 0.01)

 (a, g = 0.1)
 (a, g = 0.01)

SGD w/ Momentum
SGD (bs=600)
K-FAC (a, g = 0.01) (bs=600)
Adam

0 2000 4000 6000 8000 10000
training time [s]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Te
st

 lo
ss

Gradient descent
* (a = 0.1)

K-FAC (a, g = 0.1)
K-FAC (a, g = 0.01)

 (a, g = 0.1)
 (a, g = 0.01)

SGD w/ Momentum
SGD (bs=600)
K-FAC (a, g = 0.01) (bs=600)
Adam

0 5 10 15 20 25 30 35 40
Epochs

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Te
st

 lo
ss

Gradient descent
* (a = 0.1)

K-FAC (a, g = 0.1)
K-FAC (a, g = 0.01)

 (a, g = 0.1)
 (a, g = 0.01)

SGD w/ Momentum
SGD (bs=600)
K-FAC (a, g = 0.01) (bs=600)
Adam

Figure 7: Training loss of the MNIST auto-encoder trained with gradient descent, K-FAC, ζζζ, ζζζ∗, as well as SGD
w/ momentum, SGD with a 10× larger batch size (600), K-FAC with a 10× larger batch size (600), and Adam.
Comparing the performance per real-time (left) and per number of epochs (right). We display both the training
loss (top) as well as the test loss (bottom) Runtimes are for a CPU core.

14

0 250 500 750 1000 1250 1500 1750 2000
training time [s]

0.960

0.965

0.970

0.975

0.980

0.985

0.990

Te
st

 a
cc

ur
ac

y
Gradient descent

* for layers 1, 2, 3, 4, 5
* for layers 1
* for layers 5
* for layers 1, 2, 3
* for layers 3, 4, 5
* for layers 1, 3, 5
* for layers 2, 4

Figure 8: Test accuracy for training on the MNIST classification task using ζζζ∗ only in selected layers. Runtimes
are for CPU.

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

-6
-5
-4
-3
-2
-1
0

+1
+2
+3
+4
+5
+6

lo
g 1

0
a

(a)

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

(b)

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

(c)

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

(d)

16

14

12

10

8

6

4

2

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

-6
-5
-4
-3
-2
-1
0

+1
+2
+3
+4
+5
+6

lo
g 1

0
a

(e)

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

(f)

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

(g)

-6 -5 -4 -3 -2 -1 0 +1+2+3+4+5+6
log10 g

(h)

0.970

0.972

0.974

0.976

0.978

0.980

0.982

0.984

0.986

Figure 9: Reproduction of the experiments in Figure 1 but with the Fisher-based natural gradient formulation
from Remark 4. For a description of the experimental settings, see the caption of Figure 1. We observe that, for
large λg, the behavior is similar to Figure 1, which is expected as they are the same in the limit of λg → ∞.
Further, we observe that (in this case of the Fisher-based ζζζ) not only in the limit of λg → ∞ but also in the limit
of λa → ∞ good performance can be achieved. Moreover, in this specific experiment, λa → ∞ has slightly
better optimal performance compared to λg → ∞, but λa → ∞ is more sensitive to changes in λg compared to
the sensitivity of the case of λg → ∞ wrt. changes in λa. This phenomenon was also (to a lesser extent) visible
in the experiments of Figure 1. We would like to remark that the case of λg → ∞ (i.e., ζζζ⋆) is computationally
more efficient compared to λa → ∞.

15

	Introduction
	Preliminaries
	Theoretical Guarantees
	ExperimentsCode will be made available at black!50!bluegithub.com/Felix-Petersen/isaac
	Related Work
	Conclusion
	PyTorch Implementation
	Implementation Details
	Additional Proofs
	Additional Experiments

