DyFlow: Dynamic Workflow Framework for Agentic Reasoning

Yanbo Wang¹, Zixiang Xu¹, Yue Huang², Xiangqi Wang², Zirui Song¹ Lang Gao¹, Chenxi Wang¹, Xiangru Tang³, Yue Zhao⁴, Arman Cohan³ Xiangliang Zhang², Xiuying Chen^{1,†}

¹Mohamed bin Zayed University of Artificial Intelligence (MBZUAI)

²University of Notre Dame, ³Yale University, ⁴University of Southern California

Email: wyf23187@gmail.com

†Corresponding author

Abstract

Agent systems based on large language models (LLMs) have shown great potential in complex reasoning tasks, but building efficient and generalizable workflows remains a major challenge. Most existing approaches rely on manually designed processes, which limits their adaptability across different tasks. While a few methods attempt automated workflow generation, they are often tied to specific datasets or query types and make limited use of intermediate feedback, reducing system robustness and reasoning depth. Moreover, their operations are typically predefined and inflexible. To address these limitations, we propose **DyFlow**, a dynamic workflow generation framework that adaptively constructs and adjusts reasoning procedures based on task requirements and real-time intermediate feedback, thereby enhancing cross-task generalization. DyFlow consists of two core components: a designer and an executor. The designer decomposes complex problems into a sequence of sub-goals defined by high-level objectives and dynamically plans the next steps based on intermediate outputs and feedback. These plans are then carried out by the executor, which executes each operation using dynamic operators with context-aware parameterization, enabling flexible and semantically grounded reasoning. We systematically evaluate DyFlow across diverse domains, including social reasoning, biomedical tasks, mathematical problem solving, and code generation. Results demonstrate that DyFlow significantly outperforms existing baselines, achieving substantial Pass@k improvements and exhibiting robust generalization across diverse domains. The code is publicly available at https://github.com/wyf23187/DyFlow.

1 Introduction

Large language models (LLMs) have demonstrated remarkable abilities in language understanding, generation, and complex reasoning tasks [1, 2, 3]. They support many applications, from dialogue systems and content generation to autonomous agents and multi-step decision-making [4, 5, 6, 7]. Recently, there has been a growing trend of deploying LLMs as *agents*, where multiple LLMs collaborate to tackle complex tasks. Debate-based systems enable agents to critique each other's solutions [8], and team-based agents distribute tasks across specialized roles [9, 10].

However, most existing multi-agent frameworks use *static*, pre-defined workflows, as illustrated in Figure 1. Each agent's role and task sequence is fixed beforehand, proceeding rigidly without intermediate feedback. For instance, CAMEL [10] assigns agents pre-defined roles via system prompts, MetaGPT [9] enforces collaboration based on standard operating procedures, and AutoGen

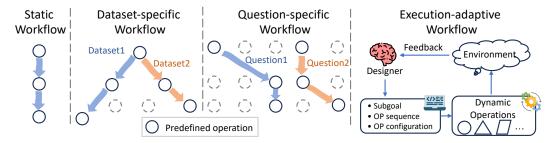


Figure 1: Paradigm shift in LLM-based reasoning workflows. From left to right: static workflows apply fixed sequences across all tasks; dataset-specific and question-specific workflows allow more variation but rely on predefined operations (OP); DyFlow adopts an execution-adaptive paradigm that dynamically adjusts the workflow based on intermediate feedback.

[5] and OpenAgents [11] orchestrate agents through static communication graphs or APIs. When a sub-task fails or produces flawed output, these systems typically halt or propagate errors due to the lack of mechanisms for revising plans or goals. Recent frameworks introduce some adaptability but with limitations: AFlow [12] and ADAS [13] optimize workflows via offline search guided by dataset-level performance, still tied to specific training distributions. DyLAN [14] and MaAS [15] offer query-specific agent configurations but do not adjust subgoals based on real-time feedback.

To address these limitations, we propose **DyFlow**, a feedback-driven framework for LLM-based agents that dynamically adapts subgoal planning during execution. DyFlow is built on a hierarchical *designer-executor* architecture and operates in a sequenced manner: Given a task, the high-level *designer* initializes the process by planning the first subgoal and its corresponding operator execution graph based on the task requirements. The low-level *executor* then carries out this subgoal, leveraging tools, APIs, or external functions as required. At each execution step, DyFlow collects intermediate outputs, tool feedback, and possible error signals. Based on this updated context, the designer generates a revised subgoal plan tailored to the current state. This feedback loop continues throughout the task, enabling DyFlow to adjust its reasoning trajectory in real time. If a subgoal fails or encounters unexpected results, DyFlow can proactively revise the plan, retry the subgoal, or reassign responsibilities—supporting both high-level strategy shifts and fine-grained execution corrections. Compared to prior methods such as DyLAN [14] and ReAct [16], which only adapt agent roles or individual actions, DyFlow enables dynamic restructuring at the subgoal level, offering greater robustness and flexibility in complex, real-world tasks.

While the executor does not require any additional training and can be directly instantiated using existing open-source or proprietary LLMs, the designer is trained separately to acquire strong planning capabilities. To this end, we employ a two-phase learning strategy to empower lightweight models to function as effective designers comparable to large proprietary models. In the initialization phase, the designer is trained via supervised fine-tuning on a collection of successful planning examples, allowing it to acquire basic planning capabilities. This is followed by a self-play phase, where the designer interacts with the executor to generate its own execution trajectories and iteratively refine its planning policy based on feedback. The resulting feedback trains the designer to favor successful plans and learn from failures. Unlike static expert demonstrations, this method internalizes the dynamic feedback loop for adaptive planning. Our approach does not impose additional training requirements on the executor, enabling direct use of existing open-source or proprietary LLMs.

We evaluate DyFlow across diverse reasoning domains, including causal, math, code, medical, and social reasoning. Experimental results demonstrate that DyFlow significantly outperforms strong baselines. Notably, it exhibits robust cross-domain generalization and adaptability to different executor models, even when deployed with unseen LLMs.

Our contributions are summarized as follows:

- We introduce DyFlow, a dynamic planning framework for LLM-based agents that adaptively
 revises reasoning procedures based on real-time feedback. DyFlow consists of two key components: a high-level *designer* that generates and revises subgoal plans, and a low-level *executor*that carries out the subgoals.
- We develop a designer training method that equips lightweight models with strong structured reasoning ability, achieving performance comparable to proprietary LLMs.

• We demonstrate DyFlow's robustness across diverse domains, models, and tasks through systematic experiments covering generalization, efficiency, and ablation.

2 Related Work

2.1 Static and Dynamic Agentic Workflows

Many LLM-based agent systems are built upon static workflows, where agent roles, execution order, and interaction protocols are predefined and fixed throughout the task. For example, MetaGPT [9] follows standard operating procedures (SOPs) encoded into prompt templates to coordinate collaborative coding, while AutoGen [5] orchestrates multi-agent dialogues through rigid communication graphs. CAMEL [10] and OpenAgents [11] further reinforce this paradigm by hard-coding agent roles or API usage. Although such designs facilitate structured cooperation, they lack the capacity to revise plans in response to failures or evolving context, resulting in limited robustness and adaptability.

To reduce reliance on manual design, a line of research has explored automated agent construction. AFlow [12] refines code-centric workflows using Monte Carlo Tree Search, ADAS [13] performs meta-search over agent architectures, and AgentSquare [17] evolves modular components via composition. These systems automate workflow design, yet they still adopt one-shot planning: once constructed, the workflow remains fixed during execution. Other methods such as DyLAN [14] and MaAS [15] dynamically configure agents or select templates based on task complexity, but lack mechanisms to adapt subgoal plans based on runtime feedback. More recently, ScoreFlow [18] and MaAS introduce continuous or conditional search spaces over workflows and agent architectures, offering more expressive design flexibility. However, they still treat planning as a pre-execution optimization problem, separated from the execution process itself.

2.2 Feedback-based Correction in LLM Systems

Intermediate feedback has been explored for improving LLM reasoning ability across various settings. In single-agent systems, Reflexion [19] performs retrospective self-evaluation across episodes, while Tree of Thoughts [20] enables trajectory-level revision via search. DSPy [21] introduces assertion-based checks to detect and fix failures at the module level. In multi-agent frameworks, AutoGen [5] supports retrying failed actions within fixed communication rounds.

However, these correction mechanisms have been underutilized in workflow planning. Effective correction at the workflow level requires more than recovering from execution failures, as it demands the ability to dynamically revise subgoal decomposition and operator selection in response to intermediate signals. This poses stricter requirements for granularity and adaptability than existing designs can satisfy. DyFlow addresses this gap by directly integrating feedback into the planning loop. It adjusts subgoal plans and operator configurations in real time based on contextual signals, enabling fine-grained and resilient reasoning workflows that evolve with task progress.

3 Methodology: DyFlow Framework

In this section, we introduce **DyFlow**, a reasoning framework that constructs dynamic workflows through iterative subgoal planning and feedback integration. At each step, a designer generates a task-specific plan, represented as a stage subgraph, which is conditioned on the current context and intermediate outputs. This design enables DyFlow to adapt its reasoning trajectory in response to execution results, offering greater flexibility than static or template-based workflows.

3.1 Formalization of DyFlow Planning

To support our dynamic workflow construction, this subsection formalizes DyFlow's planning mechanism, detailing its state representation, operator templates, and the structure of stage subgraphs.

DyFlow formulates complex reasoning tasks as a dynamic sequence of decision-making steps. Each task $p \in \mathcal{P}$ requires a series of interdependent actions to reach a solution. At every step t, the system maintains a state s_t , which captures the complete context necessary for planning and execution. s_t includes the original task specification, previously generated plans (G_0, \ldots, G_{t-1}) , intermediate

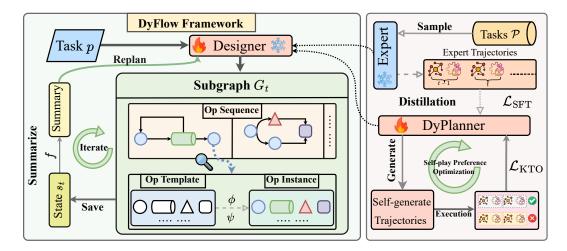


Figure 2: DyFlow dynamically constructs reasoning workflows by generating stage subgraphs based on the current task state. A high-level designer plans operator sequences, while a low-level executor executes them using memory. The designer is trained via supervised distillation and self-play preference optimization.

outputs such as partial answers or review verdicts, and any encountered errors. The process begins with an initial state s_0 , containing only the task itself, and this state is progressively updated as the system executes each planning step.

DyFlow draws from a finite set of **operator templates** $\mathcal{O} = \{O_1, \dots, O_N\}$, each corresponding to a basic type of reasoning or execution step. These templates define reusable operations that can be instantiated according to context. At each step, DyFlow constructs a structured plan represented as a stage subgraph $G_t = (V_t, E_t, v_{\text{start}}^t, C_{\text{end}}^t)$. This directed graph specifies a set of actions to execute: V_t contains operator instances, each instantiated from a template in \mathcal{O} . Formally, **an operator instance** $o \in V_t$ is defined as a tuple $o = (O_k, \phi, \psi)$, where $O_k \in \mathcal{O}$ is the template, ϕ is a fine-grained instruction tailored to the current context, and ψ is a list of input keys referencing a global memory buffer \mathcal{M} , which stores previous outputs as key-value pairs. This design allows operator instances to flexibly reuse information across reasoning steps. The edge set E_t encodes dependencies between these operations, v_{start}^t marks the entry point of execution, and C_{end}^t defines conditions for plan termination. A complete list of operator templates and their descriptions is provided in Appendix C.

A full task execution generates a trajectory $\tau=(s_0,G_0,s_1,G_1,\ldots,G_{T-1},s_T)$, where each state transition $s_t\to s_{t+1}$ results from executing the corresponding plan G_t . Execution halts when the system triggers a terminate action, reaches a predefined step limit T_{\max} , or encounters an unrecoverable error. Through this formulation, DyFlow supports fine-grained, context-aware reasoning that can adaptively refine its strategy as execution unfolds. A formal theoretical analysis of DyFlow's performance under dynamic planning is included in Appendix B.

3.2 Planning and Execution Process

Building on the formal definition of DyFlow's planning mechanism, this subsection describes the execution process, focusing on the interaction between the high-level designer and the low-level executor during task solving.

DyFlow employs a layered control structure that separates high-level planning from low-level execution, ensuring adaptability in task-solving. This design aligns broad objectives with precise actions, using the state's context to inform decisions.

The **designer**, implemented as a policy π_{θ} with parameters θ , manages strategic planning. At step t, it obtains a condensed state summary $f_{\text{summary}}(s_t)$ using GPT-40-mini, then uses this summary to determine a subgoal and generate a stage subgraph G_t , selecting and configuring operator instances (V_t) to achieve it. Formally, the designer generates:

$$G_t \sim \pi_{\theta}(\cdot \mid f_{\text{summary}}(s_t))$$
 (1)

Algorithm 1 DyFlow Framework for Complex Reasoning

```
Require: Task p, templates \mathcal{O}, designer \pi_{\theta}, executor \pi_{\text{exec}}, budget T_{\text{max}}, summarizer f_{\text{summary}}
Ensure: Final answer s_T and trajectory \tau
 1: s_0 \leftarrow \{p\}; \tau \leftarrow []; \mathcal{M} \leftarrow \{\}
                                                                  ⊳ initial state, trace, and empty memory dictionary
 2: for t = 0 to T_{\text{max}} - 1 do
          z_t \leftarrow f_{\text{summary}}(s_t); \ G_t \sim \pi_{\theta}(\cdot \mid z_t)
                                                                     ▶ summarize context and sample stage subgraph
          for each o=(O_k,\phi,\psi)\in V_t (topological order) do
 4:
                Retrieve inputs [\mathcal{M}[k] \mid k \in \psi]
 5:
                                                                                   \triangleright \psi is a list of keys, \mathcal{M} is a dictionary
                r \leftarrow \pi_{\text{exec}}(\phi, [\mathcal{M}[k] \mid k \in \psi])
 6:
 7:
               Generate a unique key k_r for r
                                                                                 ▷ e.g., by operator id or execution order
 8:
                \mathcal{M}[k_r] \leftarrow r
                                                                                      > store output in memory dictionary
 9:
          end for
10:
          s_{t+1} \leftarrow \text{UpdateState}(s_t, G_t, \mathcal{M}); \ \tau.\text{append}((s_t, G_t))

    □ update state and record step

          if C_{\mathrm{end}}^t satisfied or TERMINATE then
11:
12:
               break
                                                                                     > stop if designer signals completion
          end if
13:
14: end for
15: return s_T, \tau
```

where $G_t = (V_t, E_t, v_{\text{start}}^t, C_{\text{end}}^t)$ and each operator instance $o \in V_t$ is defined as $o = (O_k, \phi, \psi)$ with $O_k \in \mathcal{O}$. The graph structure is designed to guide step-specific reasoning toward subgoal resolution.

Unlike prior frameworks such as AFlow, MaAS [12, 15], which implement control structures like branching or looping via explicit edge logic in code-based graphs, DyFlow adopts a designer-centric design. Instead of hardcoding control flow into the graph topology, we delegate all execution control to the designer. At each planning step, the designer observes the current state, including intermediate outputs, error signals, and planning history, and decides whether to proceed, revise, backtrack, or terminate. This allows DyFlow to simulate conditional and iterative behaviors (such as if-else statements or while loops) through repeated subgraph planning, without relying on manually defined edge logic. As a result, dynamic workflows emerge naturally from context-aware decision making, which simplifies graph construction and enhances flexibility across tasks.

The **workflow executor** translates this plan into action. Given G_t and s_t , it carries out the operator instances in V_t according to the dependencies in E_t , beginning with $v_{\text{start}}^t \in V_t$. For each operator $o = (O_k, \phi, \psi)$, the executor retrieves required inputs from the memory buffer \mathcal{M} according to ψ , executes the operation via π_{exec} , and appends the result back to \mathcal{M} . The updated memory is then used to construct the next state $s_{t+1} = \text{Executor}(s_t, G_t)$. This mechanism ensures both consistent information flow and persistent memory accumulation across planning steps. The full procedure is summarized in Algorithm 1, which outlines the iterative interaction between the designer and executor.

3.3 Distilled Self-Play Learning

While the executor requires no additional training and can be directly instantiated using existing LLMs, the designer is trained separately to develop strong planning capabilities. We train the designer policy π_{θ} using a two-phase method that combines knowledge distillation with self-play preference optimization [22, 23, 24]. The goal is to enable the designer to construct context-sensitive subgoal plans that improve execution outcomes. While the executor remains fixed throughout, the designer is trained to dynamically generate structured reasoning workflows.

The learning process begins by generating trajectories $\tau = (s_0, G_0, s_1, G_1, \dots, G_{T-1}, s_T)$ using the current or a past version of the policy π_θ across a diverse set of tasks. Each trajectory is executed by the workflow executor, and its outcome is compared to the correct solution to assess success. For successful trajectories, all stage-subgraph pairs $(f_{\text{summary}}(s_t), G_t)$ are labeled as "preferred," reflecting effective planning. For failed trajectories, the corresponding pairs are labeled as "discarded," capturing planning errors. All positive and negative examples are derived from these self-play trajectories, enabling the designer to learn from its own performance.

In the first phase, **knowledge distillation** initializes π_{θ} to generate reliable subgraphs. Using a dataset $D_{\text{SFT}} = \{(f_{\text{summary}}(s_t), G_t^{\text{expert}})\}$ of high-quality subgraphs from successful trajectories to optimize:

$$\mathcal{L}_{\text{SFT}}(\theta; D_{\text{SFT}}) = -\mathbb{E}_{(s, G^{\text{expert}}) \sim D_{\text{SFT}}} \left[\log \pi_{\theta}(G^{\text{expert}} | f_{\text{summary}}(s)) \right]$$
 (2)

This process distills knowledge from successful trajectories, producing the reference policy π_{ref} for the next phase.

In the second phase, **self-play preference optimization** refines π_{θ} to favor subgraphs that lead to successful outcomes using KTO [23]. Using a dataset $D_{\text{pref}} = \{(f_{\text{summary}}(s_t), G_t, l_t)\}$, collected from self-generated trajectories produced by current or past policies, where $l_t \in \{\text{preferred}, \text{discarded}\}$ indicates whether the subgraph is positive or negative based on the trajectory's success, the optimization encourages effective planning:

$$\mathcal{L}_{\text{pref}}(\theta; D_{\text{pref}}, \pi_{\text{ref}}, \beta) = \mathbb{E}_{(s, G, l) \sim D_{\text{pref}}} \left[L_{\text{pref}}^{\text{single}}(p_{\theta}, p_{\text{ref}}, l; \beta) \right]. \tag{3}$$

Here, $l \in \{ \text{preferred}, \text{discarded} \}$ indicates whether the subgraph G is effective or not, and β is a hyperparameter controlling the strength of preference alignment. Here, $L_{\text{pref}}^{\text{single}}$ is computed based on whether each subgraph G is labeled as preferred or discarded, with β controlling the alignment strength between π_{θ} and π_{ref} . By leveraging feedback from self-generated trajectories, this off-policy self-play phase ensures the designer makes context-sensitive, adaptive decisions. This iterative self-improvement strategy equips DyFlow to deliver robust and versatile reasoning capabilities across a wide range of applications.

Preference Optimization Strategy. We adopt trajectory-level supervision for preference optimization, using full execution success or failure as the training signal. Assigning fine-grained rewards to individual subgraphs is unreliable in complex reasoning tasks, where even well-formed plans may fail due to executor variability. For similar reasons, we avoid DPO-style pairwise ranking [24], as it is often infeasible to construct clear positive—negative plan pairs: execution outcomes depend on downstream decisions, and the better plan is not always evident from intermediate states. Online reinforcement learning poses additional challenges, reward signals are typically sparse and delayed, and using LLM-based judges introduces high variance due to inconsistent evaluations across steps.[25] In contrast, our offline self-play setup with KTO [23] provides a more stable learning process, enabling effective designer refinement from diverse execution trajectories.

4 Experiments

We conduct comprehensive experiments to evaluate DyFlow across five reasoning domains. Our goals are to assess its performance advantage over existing agent planning frameworks, its generalization capabilities to unseen datasets and executor models, the contribution of each component through ablation studies, and qualitative behaviors through case analyses.

4.1 Experimental Setup

Datasets. We consider 5 diverse reasoning domains, each represented by a benchmark dataset: (1) **Logical Reasoning** using the LiveBench dataset [26], (2) **Math Reasoning** using the MATH benchmark [27], (3) **Medical Reasoning** with PubMedQA [4], (4) **Code Reasoning** via HumanEval [28], and (5) **Social Reasoning** using the SocialMaze [29] benchmark. These datasets differ in their input structures, intermediate reasoning steps, and solution formats, and together cover a broad spectrum of reasoning behaviors.

Implement Details. DyFlow is trained only on MATH, PubMedQA, and LiveBench. HumanEval and SocialMaze are held out to assess zero-shot generalization to unseen reasoning domains. To avoid contamination and ensure valid knowledge separation between the designer and executor, we use Phi-4 [30] as the executor model, and train a designer we refer to as **DyPlanner**, which is initialized from Phi-4 and optimized using the DyFlow training framework. The initial distillation during pretraining is conducted using GPT-4.1 [31], based on trajectories generated only from our training set. At inference time, both the designer and the executor are run with temperature 0.01 to ensure stable and deterministic behaviors.

Table 1: Performance comparison across five reasoning domains. All methods use phi-4 as the
executor. Bold marks the best score in each column. The figures in † / \(\psi\$ indicate the absolute change
with respect to the <i>Vanilla</i> baseline.

Method	SocialMaze	PubMedQA	MATH	LiveBench	HumanEval	Avg.
Vanilla	6.49	67.33	66.80	40.00	86.59	53.44
CoT [32]	6.11\plue0.38	67.73↑0.40	$71.20_{\uparrow 4.40}$	39.33\\0.67	87.80 \(\pm 1.21 \)	54.43 \(\)0.99
SC [33]	$10.31_{\uparrow 3.82}$	68.53↑1.20	$71.60{\scriptstyle\uparrow4.80}$	$42.00_{\uparrow 2.00}$	87.20 \(\phi 0.61 \)	55.93 \(\)2.49
LLM-Debate [8]	$12.59_{\uparrow 6.10}$	$68.53_{1.20}$	$72.40_{\uparrow 5.60}$	$41.33 {\uparrow} 1.33$	84.15\\(\perp_2.44\)	55.80 \(\pm 2.36 \)
Self-Refine [34]	$10.69 {\scriptstyle \uparrow 4.20}$	69.32↑1.99	$70.40_{\uparrow 3.60}$	34.67 \ 5.33	81.71 \ 4.88	53.36\\ 0.08
ADAS [13]	6.11\plue0.38	67.33↑0.00	$66.80{\scriptstyle\uparrow0.00}$	39.33\\0.67	85.37\1.22	$52.99_{\downarrow 0.45}$
AFlow [12]	11.45 \(\pm 4.96 \)	69.72 \(\frac{1}{2} \).39	74.00 ↑ 7.20	43.33↑3.33	89.02 \(\tau 2.43 \)	57.50↑4.06
MaAS [15]	13.36 ↑ 6.87	$69.32_{\uparrow 1.99}$	$73.60{\scriptstyle\uparrow}6.80$	$44.00_{\uparrow 4.00}$	$88.41{\scriptstyle \uparrow 1.82}$	57.74 \(\pm 4.30 \)
DyFlow (Ours)	17.18 ↑10.69	72.91 ↑5.58	76.40 ↑9.60	48.67 ↑8.67	92.07 ↑5.48	61.45 ↑8.01

Baselines. We compare DyFlow with a comprehensive set of baselines across two categories: (1) *Prompting-based methods*, including **Vanilla** prompting, **CoT** [32], **Self-Consistency** (**SC**) [33], **LLM-Debate** [8], and **Self-Refine** [34]. (2) *Automated Agent frameworks*, including **ADAS** [13], **AFlow** [12], and **MaAS** [15], which introduce structured reasoning workflows with varying degrees of adaptivity. All methods use the same executor (Phi-4) and operator set for fair comparison, and are evaluated under consistent metrics: accuracy for most tasks and pass@1 for code reasoning.

4.1.1 Performance Comparison

Overall Performance Table 1 reports the performance of DyFlow and all baselines across five reasoning domains. DyFlow consistently outperforms prior methods, achieving the highest average accuracy (61.45) with improvements observed across logic, math, medical, code, and social reasoning tasks. Notably, while trained only on MATH, PubMedQA, and LiveBench, DyFlow generalizes robustly to the held-out HumanEval and SocialMaze benchmarks. These results highlight the transferability of DyFlow's adaptive planning strategy across structurally diverse domains. In particular, DyFlow achieves 17.18 on SocialMaze, a challenging multi-turn benchmark that requires high-level reasoning, substantially outperforming all baselines in this zero-shot setting. This strong performance demonstrates that DyFlow's feedback-driven, adaptive planning enables effective subgoal revision and robust reasoning, even on previously unseen, highly complex tasks.

Planning Upper Bound and Stability In addition to Pass@1, we further evaluate the performance of DyFlow under the top-k setting. As shown in Figure 3, DyFlow consistently outperforms CoT across all k values from 1 to 5, with increasingly wider margins at higher k. This indicates that DyFlow not only generates more accurate first predictions, but also demonstrates greater reasoning stability across multiple completions, with a higher potential to produce strong solutions.



Notably, DyFlow reaches a near-perfect Pass@5 of 0.9817 on HumanEval, highlighting the framework's

Figure 3: Average pass@k comparisons between DyFlow and CoT across 5 benchmarks.

strong reasoning upper bound on code tasks. Moreover, the consistent improvements in medical, logical, and math domains suggest that DyFlow enhances both accuracy and diversity of reasoning paths. Per-task breakdowns of Pass@k curves are included in Figure 7, which reveal similar trends across all domains.

Table 2: Performance of DyFlow with different designer models across five reasoning domains. All designers are trained using the same pipeline. Detailed cost of different designers is in Figure 9.

Designer Model	SocialMaze	PubMedQA	MATH	LiveBench	HumanEval	Average
MaAS [15]	13.36	69.32	73.60	44.00	88.41	58.40
Claude-3.7-Sonnet	16.41	71.71	75.60	50.00	92.07	61.16
GPT-4.1	16.79	72.11	73.60	47.03	89.63	59.83
DyPlanner	17.18	72.91	76.40	48.67	92.07	61.45

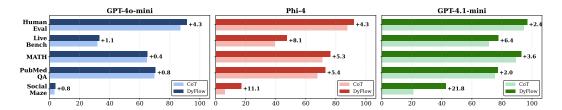


Figure 4: Cross-executor performance comparison between CoT and DyFlow across five reasoning tasks. DyFlow improves performance across all model scales, with larger gains for stronger models on more challenging tasks. Detailed results are provided in Appendix D.5, Table 10.

4.2 Generalization Analysis

This section evaluates DyFlow's generalization capabilities across three dimensions: designer models, execution models, and datasets. Each dimension demonstrates DyFlow's ability to maintain robust performance under varying conditions, leveraging its adaptive planning mechanisms.

Cross-Designer Generalization To assess the robustness of our training framework across different designer architectures, we apply the same DyFlow learning pipeline to three backbone models: Claude-3.7-Sonnet, GPT-4.1, and Phi-4. We include MaAS as the strongest existing baseline.

As shown in Table 2, DyFlow consistently outperforms MaAS across all designer backbones. More specifically, our DyPlanner is initialized from the 14B open-weight Phi-4 model. Despite its relatively small scale, DyPlanner achieves performance comparable to larger proprietary designers such as GPT-4.1 and Claude-3.7-Sonnet across most domains. This demonstrates that DyFlow's strong planning capability does not stem from model size alone, but also from our dedicated two-phase optimization strategy. By combining supervised subgraph distillation with offline preference-based refinement, we equip a compact model with the ability to perform high-quality structured planning across diverse tasks. As shown in Table 9, DyPlanner offers a more cost-efficient and scalable alternative without sacrificing performance. These results suggest that dynamic, feedback-aware designers can emerge from lightweight open models when trained with appropriate trajectory-level signals, making DyFlow well-suited for real-world deployment in resource-constrained settings.

Cross-Executor Generalization To further evaluate DyFlow's generalization capability across executor models, we compare its performance with CoT prompting using three different executors: GPT-40-mini, Phi-4, and GPT-4.1-mini. All DyFlow variants in this setting use the same DyPlanner. As shown in Figure 4, DyFlow consistently improves performance across all executors and reasoning domains, demonstrating its compatibility with a wide range of language models without requiring executor-specific adaptation.

Table 3: Cross-task generalization. Each test domain is excluded during training.

Test	Train	CoT	DyFlow
SR	MR, QR, LR	6.11	17.18
CR	MR, QR, LR	87.80	92.07
MR	CR, LR, SR	71.08	75.20
QR	CR, LR, SR	67.73	72.11

The gains are especially notable when DyFlow is paired with stronger executors and applied to more complex tasks. For instance, Phi-4 with DyFlow achieves performance close to GPT-4.1-mini with CoT, while incurring only half the cost. When applied to GPT-4.1-mini, DyFlow brings further improvements, particularly on SocialMaze and LiveBench. These results indicate that structured

planning from DyPlanner enhances reasoning quality and stability across a variety of executor backbones.

Cross-Task Generalization To evaluate cross-task generalization, we construct a series of held-out settings where the designer is trained on a subset of three reasoning domains and tested on the remaining two. For each setting, we select three domains from SocialMaze, PubMedQA, MATH, LiveBench, and HumanEval for training, and evaluate performance on the two excluded domains. For example, when training on MATH, PubMedQA, and LiveBench, we test on SocialMaze and HumanEval. Similarly, other combinations ensure that each domain is excluded from training in at least one setting. As shown in Table 3, DyFlow achieves strong performance across the held-out domains, demonstrating that its designer can generalize planning strategies to structurally diverse, unseen reasoning tasks without task-specific supervision.

Table 4: Ablation study on DyFlow using DyPlanner as the designer and Phi-4 as the executor. The full system outperforms all ablated variants across five reasoning tasks.

Variant	SocialMaze	PubMedQA	MATH	LiveBench	HumanEval	Avg.
w/o KTO	13.36	68.53	72.40	43.33	89.63	57.45
w/o SFT	15.65	69.32	73.20	45.33	91.46	59.00
w/o Dynamic Operator	12.21	68.92	72.80	40.67	90.24	56.97
w/o Dynamic Planning	11.45	68.53	72.80	40.00	89.63	56.48
DyFlow (Full)	17.18	72.91	76.40	48.67	92.07	61.45

4.3 Ablation Study

To assess the contribution of DyFlow's core components, we conduct ablation experiments targeting both the designer training process and the execution-time mechanisms, as summarized in Table 4. On the training side, we remove either the knowledge distillation (SFT) or the offline preference optimization (KTO). Both lead to consistent drops in performance, indicating that these two phases are complementary: SFT provides structural guidance for initializing the designer, while KTO enables refinement based on trajectory-level feedback. On the execution side, disabling dynamic operator selection forces the executor to follow a fixed-stage template, reducing its ability to adjust reasoning based on intermediate results.

The largest degradation is observed when dynamic planning is removed. In this setting, we prompt DyPlanner to complete the entire problem in a single reasoning stage without receiving intermediate feedback. This design prevents the designer from iteratively refining subgoals in response to execution signals, undermining DyFlow's central mechanism of feedback-driven replanning. Together, these results demonstrate that DyFlow's gains emerge from the synergy between structured designer training and dynamic subgoal adaptation during execution.

4.4 Case Study

We conduct a qualitative comparison between DyFlow and a standard reasoning baseline without error correction. The baseline generates a fixed reasoning path based on initial inputs and executes it without revisiting intermediate outputs, making it susceptible to early mistakes and incomplete solutions. As illustrated in Figure 5, DyFlow instead treats planning as an ongoing process. Guided by the designer, it dynamically assigns operators based on intermediate feedback and task state. When execution

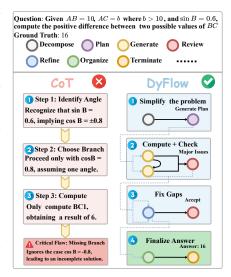


Figure 5: Case Study between CoT and DyFlow on MATH dataset.

produces partial or inconsistent outputs, DyFlow adapts its subgoal plan and invokes refinement operators to identify and correct reasoning errors during runtime. This includes dynamically selecting

the appropriate data inputs, adjusting instructions, and refining intermediate results using targeted operator calls.

5 Conclusion

In this paper, we presented DyFlow, a framework for dynamic workflow construction in LLM-based reasoning systems. By modeling reasoning as subgraph planning with modular operator execution, DyFlow enables flexible adaptation to intermediate feedback and diverse task requirements. Our evaluations across five reasoning domains demonstrate that DyFlow improves task success rates and generalizes across diverse reasoning tasks. Future work may explore integrating richer error detection signals and expanding the operator set to support more complex interaction protocols.

References

- [1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.
- [2] Zirui Song, Guangxian Ouyang, Meng Fang, Hongbin Na, Zijing Shi, Zhenhao Chen, Yujie Fu, Zeyu Zhang, Shiyu Jiang, Miao Fang, et al. Hazards in daily life? enabling robots to proactively detect and resolve anomalies. *NAACL*, 2024.
- [3] Yuyang Song, Hanxu Yan, Jiale Lao, Yibo Wang, Yufei Li, Yuanchun Zhou, Jianguo Wang, and Mingjie Tang. Quite: A query rewrite system beyond rules with llm agents. *arXiv preprint* arXiv:2506.07675, 2025.
- [4] Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W Cohen, and Xinghua Lu. Pubmedqa: A dataset for biomedical research question answering. *arXiv preprint arXiv:1909.06146*, 2019.
- [5] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang, Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-agent conversation. *arXiv preprint arXiv:2308.08155*, 2023.
- [6] Zirui Song, Bin Yan, Yuhan Liu, Miao Fang, Mingzhe Li, Rui Yan, and Xiuying Chen. Injecting domain-specific knowledge into large language models: a comprehensive survey. arXiv preprint arXiv:2502.10708, 2025.
- [7] Chenxi Wang, Tianle Gu, Zhongyu Wei, Lang Gao, Zirui Song, and Xiuying Chen. Word form matters: Llms' semantic reconstruction under typoglycemia. arXiv preprint arXiv:2503.01714, 2025.
- [8] Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving factuality and reasoning in language models through multiagent debate. In *Forty-first International Conference on Machine Learning*, 2023.
- [9] Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-agent collaborative framework. *arXiv preprint arXiv:2308.00352*, 3(4):6, 2023.
- [10] Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Communicative agents for mind exploration of large language model society. *Advances in Neural Information Processing Systems*, 36:51991–52008, 2023.
- [11] Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Luoxuan Weng, Yitao Liu, Toh Jing Hua, Junning Zhao, Qian Liu, Che Liu, et al. Openagents: An open platform for language agents in the wild. *arXiv preprint arXiv:2310.10634*, 2023.
- [12] Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow generation. *arXiv preprint arXiv:2410.10762*, 2024.

- [13] Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. *arXiv* preprint *arXiv*:2408.08435, 2024.
- [14] Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. Dynamic llm-agent network: An llm-agent collaboration framework with agent team optimization. *arXiv* preprint *arXiv*:2310.02170, 2023.
- [15] Guibin Zhang, Luyang Niu, Junfeng Fang, Kun Wang, Lei Bai, and Xiang Wang. Multi-agent architecture search via agentic supernet. *arXiv preprint arXiv:2502.04180*, 2025.
- [16] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React: Synergizing reasoning and acting in language models. In *International Conference on Learning Representations (ICLR)*, 2023.
- [17] Yu Shang, Yu Li, Keyu Zhao, Likai Ma, Jiahe Liu, Fengli Xu, and Yong Li. Agentsquare: Automatic llm agent search in modular design space. *arXiv preprint arXiv:2410.06153*, 2024.
- [18] Yinjie Wang, Ling Yang, Guohao Li, Mengdi Wang, and Bryon Aragam. Scoreflow: Mastering llm agent workflows via score-based preference optimization. *arXiv preprint arXiv:2502.04306*, 2025.
- [19] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning. *Advances in Neural Information Processing Systems*, 36:8634–8652, 2023.
- [20] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Advances in neural information processing systems*, 36:11809–11822, 2023.
- [21] Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vardhamanan, Saiful Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, et al. Dspy: Compiling declarative language model calls into self-improving pipelines. *arXiv preprint arXiv:2310.03714*, 2023.
- [22] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. *Advances in neural information processing systems*, 35:27730–27744, 2022.
- [23] Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model alignment as prospect theoretic optimization. *arXiv preprint arXiv:2402.01306*, 2024.
- [24] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances in Neural Information Processing Systems*, 36:53728–53741, 2023.
- [25] Jiayi Ye, Yanbo Wang, Yue Huang, Dongping Chen, Qihui Zhang, Nuno Moniz, Tian Gao, Werner Geyer, Chao Huang, Pin-Yu Chen, et al. Justice or prejudice? quantifying biases in llm-as-a-judge. *arXiv preprint arXiv:2410.02736*, 2024.
- [26] Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, et al. Livebench: A challenging, contamination-free llm benchmark. *arXiv preprint arXiv:2406.19314*, 2024.
- [27] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *NeurIPS*, 2021.
- [28] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.
- [29] Zixiang Xu, Yanbo Wang, Yue Huang, Jiayi Ye, Haomin Zhuang, Zirui Song, Lang Gao, Chenxi Wang, Zhaorun Chen, Yujun Zhou, et al. Socialmaze: A benchmark for evaluating social reasoning in large language models. *arXiv* preprint arXiv:2505.23713, 2025.

- [30] Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 technical report. arXiv preprint arXiv:2412.08905, 2024.
- [31] OpenAI. Gpt-4.1 technical overview. https://openai.com/index/gpt-4-1/, 2024.
- [32] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837, 2022.
- [33] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. arXiv preprint arXiv:2203.11171, 2022.
- [34] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah W, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement with self-feedback. *Advances in Neural Information Processing Systems*, 36:46534–46594, 2023.
- [35] Karl Johan Åström and Richard Murray. Feedback systems: an introduction for scientists and engineers. Princeton university press, 2021.
- [36] Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, Ceyao Zhang, Chenxing Wei, Danyang Li, Jiaqi Chen, Jiayi Zhang, et al. Data interpreter: An Ilm agent for data science. arXiv preprint arXiv:2402.18679, 2024.
- [37] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.
- [38] Siru Ouyang, Zhuosheng Zhang, Bing Yan, Xuan Liu, Yejin Choi, Jiawei Han, and Lianhui Qin. Structured chemistry reasoning with large language models. *arXiv preprint arXiv:2311.09656*, 2023.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the proposed DyFlow framework, its hierarchical designer—executor structure, its feedback-driven planning strategy, and its performance across multiple reasoning tasks, all of which align with the main contributions.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
 are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The Limitation section in the Appendix explicitly discusses current limitations of DyFlow, including its symbolic-oriented operator set and the need for extension to support tool-using or embodied reasoning tasks. Additional limitations are also discussed in the conclusion.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was
 only tested on a few datasets or with a few runs. In general, empirical results often
 depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by
 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
 limitations that aren't acknowledged in the paper. The authors should use their best
 judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers
 will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: Theoretical guarantees, including Theorem 1 and Theorem 2 (Appendix B), are stated with clear assumptions and complete proofs that compare DyFlow to static baselines and analyze Bellman residual bounds.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The Experiments section and Appendix D (Experiment Details) disclose all necessary information for reproducing the main results, including dataset specifications, model initialization, LoRA-based tuning configurations, training and inference parameters, and evaluation metrics.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Appendix C (Modular Operators) and Appendix D (Experiment Details) provide the full operator list, training procedure, and inference setup. An anonymized version of the code and detailed reproduction instructions will be included in the supplemental material.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be
 possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
 including code, unless this is central to the contribution (e.g., for a new open-source
 benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The Experiments section and Appendix D provide detailed training and evaluation setups, including dataset splits, hyperparameters (e.g., learning rate, batch size, number of epochs), LoRA adaptation, optimizer choice, and inference-time decoding configurations.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [No]

Justification: Formal error bars (e.g., standard deviation or confidence intervals) are not explicitly reported in the main experimental tables due to the significant computational cost associated with running multiple trials across all diverse experimental configurations, including various datasets and executor models. However, the paper presents detailed performance breakdowns across different domains and executor models (Tables 1, 2, 4, 10 and Figures 3, 4, 7), and the consistency of the observed improvements provides empirical evidence for the robustness and significance of DyFlow's contributions.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Appendix D.2 (Designer Training) and D.3 (Inference and Evaluation) specify compute resources used in the experiments, including the use of 2 NVIDIA A6000 GPUs for training and Phi-4 model for inference, along with batch size, sequence length, and runtime settings.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research does not involve human subjects, personally identifiable information, or sensitive data. All datasets used are publicly available and cited appropriately, and the study fully adheres to the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: The paper primarily highlights the positive societal impacts of DyFlow, such as contributing to more robust, generalizable, and controllable AI reasoning systems (Introduction). However, we acknowledge that, like other advanced LLM-based agentic systems, DyFlow could potentially be misused if not deployed responsibly. Potential negative impacts could include the generation of convincing but incorrect or biased information if the underlying LLMs or feedback mechanisms have flaws, or the inadvertent reinforcement of societal biases present in the training data. Furthermore, the increasing capability of autonomous agents raises broader societal questions regarding accountability and potential misuse in sensitive applications. While DyFlow itself is a foundational framework aimed at improving reasoning, responsible development and deployment practices are crucial to mitigate these risks.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release models or datasets that carry high misuse potential. The DyPlanner model is trained on standard reasoning datasets and does not involve private, offensive, or uncontrolled data sources.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All datasets and base models (e.g., Phi-4, GPT-4.1) used in the paper are publicly available and cited in the main text. Each is used in accordance with its license or public usage terms, as provided by the respective platforms or publications.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: We introduce a modular operator set and a dynamic planner model (DyPlanner), documented in Appendix C and Appendix D. The supplemental material will include instructions for using these components. An anonymized version will be provided at submission time.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve any crowdsourcing tasks or experiments with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: No human subjects were involved in the research, so IRB approval was not required.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLM is used only for writing, editing, or formatting purposes.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

A Notations

We summarize the key notations used throughout the DyFlow framework in Table 5. These notations cover the planning state space, operator structure, execution dynamics, and training objectives for optimizing the designer policy.

Table 5: Key notations used in the DyFlow framework.

Symbol	Definition
\overline{p}	A reasoning task sampled from a task distribution.
s_t	Full system state at discrete step t , including task inputs and execution history.
\mathcal{O}	A fixed set of operator templates specifying reusable functional behaviors.
G_t	Stage subgraph constructed at step t : $G_t = (V_t, E_t, v_{\text{start}}^t, C_{\text{end}}^t)$.
o	An operator instance, formally represented as $o = (O_k, \phi, \psi)$ with $O_k \in \mathcal{O}$.
ϕ	Fine-grained instruction string instantiated from template O_k based on context.
ψ	Input reference list indexing outputs from memory buffer M .
\mathcal{M}	Global memory storing intermediate outputs generated by executed operators.
$\pi_{ heta}$	Learnable planner (designer) policy that generates G_t from current state summary.
θ	Parameters of the planner policy π_{θ} trained via SFT and KTO.
$f_{\text{summary}}(s_t)$	Function that summarizes full state s_t into a condensed representation.
z_t	Summarized context at step t : $z_t = f_{\text{summary}}(s_t)$.
$\pi_{ m exec}$	Fixed executor policy used to run operator instances during workflow execution.
au	Full execution trajectory: $\tau = (s_0, G_0, s_1, G_1, \dots, s_T)$.
$L_{ m SFT}$	Supervised fine-tuning loss used to initialize the planner π_{θ} .
$D_{ m SFT}$	Dataset of successful planning trajectories used for supervised training.
π_{ref}	Reference planner derived from SFT, used during preference optimization.
$L_{ m pref}$	Preference optimization loss (e.g., KTO), aligning π_{θ} with effective plans.
D_{pref}	Labeled trajectory set used for preference-based policy refinement.

B Theoretical Analysis

DyFlow is never worse than static method We consider a distribution \mathcal{D} over reasoning tasks p. Each task is solved by executing a sequence of stage subgraphs $\{G_t\}_{t=0}^{T-1}$, yielding return $R(p;\pi)$. Define Equation 4 as objective function.

$$J(\pi) = \mathbb{E}_{p \sim \mathcal{D}} \left[R(p; \pi) \right] \tag{4}$$

Each reasoning task p is modeled as a finite-horizon decision process $\langle \mathcal{S}, \mathcal{O}, P, r, T \rangle$ with bounded rewards, finite state space \mathcal{S} , and operator set \mathcal{O} . A static policy π_{stat} applies the same subgraph G_{fix} throughout regardless of context (i.e. $\pi_{\text{stat}}(s_t) \equiv G_{\text{fix}}$), while the DyFlow policy π_{DyFlow} chooses G_t as described in Equation 5, based on the full state s_t , including intermediate outputs and error signals.

$$G_t = \pi_{\text{DyFlow}}(f_{\text{summary}}(s_t))$$
 (5)

Lemma 1 (Static Policies as a Special Case). $\Pi_{\text{stat}} \subseteq \Pi_{\text{DyFlow}}$, as any static π_{stat} can be implemented by DyFlow by ignoring s_t and always returning G_{fix} .

Theorem 1 (DyFlow Is Never Worse Than Static).

$$\max_{\pi \in \Pi_{\text{DyFlow}}} J(\pi) \ge \max_{\pi \in \Pi_{\text{stat}}} J(\pi). \tag{6}$$

Moreover, if there exists a task p_0 for which feedback-driven replanning strictly improves return, then

$$\max_{\pi \in \Pi_{\text{DyFlow}}} J(\pi) > \max_{\pi \in \Pi_{\text{stat}}} J(\pi). \tag{7}$$

Proof 1. Since $\Pi_{\text{stat}} \subseteq \Pi_{\text{DyFlow}}$ by Lemma 1, optimizing over the larger set Π_{DyFlow} can only increase (or match) the best static return like Equation 8.

$$\max_{\pi \in \Pi_{\mathrm{DyFlow}}} J(\pi) \geq \max_{\pi \in \Pi_{\mathrm{stat}}} J(\pi) \tag{8}$$

In stochastic or error-prone environments, a closed-loop DyFlow policy can correct deviations in real time—e.g. via replanning—yielding strictly higher return on some task p_0 [35]. Hence the inequality becomes strict.

Convergence proof of DyFlow We model each reasoning task p as a finite-horizon MDP of length T. For $t=0,1,\ldots,T$, let $V_t^*(s)$, $V_t^{\mathrm{Dy}}(s)$ denote the optimal and DyFlow value functions when there are t steps remaining from state s. At step t, DyFlow observes s_t , computes the summary $z_t=f_{\mathrm{summary}}(s_t)$, and samples a subgraph $G_t\sim\pi_{\mathrm{DyFlow}}(\cdot\mid z_t)$. Executing G_t yields reward $r(s_t,G_t)$ and transitions to s_{t+1} .

One-step Bellman operator can be operated for such MDP process with DyFlow one-step lookup feature, denoted as Equation 9

$$(\mathcal{T}_t V)(s;G) = r(s,G) + \mathbb{E}_{s' \sim P(\cdot|s,G)} [V(s')]$$
(9)

and quantify DyFlow's per-step suboptimality by the Bellman residual

$$\delta_t = \max_{s} \left| \underbrace{\max_{G} \mathcal{T}_t V_{t-1}^{\mathrm{Dy}}(s; G)}_{\text{optimal backup at step } t} - \underbrace{\mathcal{T}_t V_{t-1}^{\mathrm{Dy}}(s; G_t)}_{\text{DyFlow's backup at step } t} \right|. \tag{10}$$

Let $\varepsilon_t > \delta_t$ be a uniform upper bound on this residual.

Lemma 2 (Error propagation). For any t = 0, 1, ..., T and state s, the gap between the optimal and DyFlow value functions with t steps remaining satisfies Equation 11.

$$V_t^*(s) - V_t^{\mathrm{Dy}}(s) \le \sum_{k=1}^t \varepsilon_k \tag{11}$$

Proof. Case 1. With zero steps remaining, both $V_0^*(s)$ and $V_0^{\mathrm{Dy}}(s)$ equal the terminal reward (here normalized to 0), so the inequality holds.

Case 2. Assume the claim for t-1. Then for horizon t,

$$V_t^*(s) - V_t^{\text{Dy}}(s) = \max_{G} \mathcal{T}_t V_{t-1}^*(s; G) - \mathcal{T}_t V_{t-1}^{\text{Dy}}(s; G_t).$$

Split into two parts:

$$\underbrace{\max_{G} \mathcal{T}_{t} V_{t-1}^{\mathrm{Dy}}(s;G) - \mathcal{T}_{t} V_{t-1}^{\mathrm{Dy}}(s;G_{t})}_{\leq \delta_{t} \leq \varepsilon_{t}} + \underbrace{\max_{G} \mathcal{T}_{t} V_{t-1}^{*}(s;G) - \max_{G} \mathcal{T}_{t} V_{t-1}^{\mathrm{Dy}}(s;G)}_{\leq \sup_{s'} \left[V_{t-1}^{*}(s') - V_{t-1}^{\mathrm{Dy}}(s') \right]}.$$

By the inductive hypothesis, $\sup_{s'} \left[V_{t-1}^*(s') - V_{t-1}^{\mathrm{Dy}}(s') \right] \leq \sum_{k=1}^{t-1} \varepsilon_k$. Hence

$$V_t^*(s) - V_t^{\mathrm{Dy}}(s) \le \varepsilon_t + \sum_{k=1}^{t-1} \varepsilon_k = \sum_{k=1}^t \varepsilon_k,$$

completing the induction.

Theorem 2 (DyFlow performance bound). *Starting from initial state* s_0 *with full horizon* T *along with Lemma* 2,

$$V_T^*(s_0) - V_T^{\mathrm{Dy}}(s_0) \le \sum_{k=1}^T \varepsilon_k \le T \max_{1 \le k \le T} \varepsilon_k.$$

C Operators

DyFlow employs modular and reusable operator templates to support flexible reasoning workflows. Each operator defines a specific functional role and is instantiated dynamically by the planner during execution. We summarize all templates used in DyFlow and analyze their usage patterns across reasoning domains.

C.1 Operator Templates

Table 6 summarizes all operator templates used by DyFlow. Each template corresponds to a modular and reusable functional unit. During execution, the designer instantiates these templates with fine-grained instructions (ϕ) and dynamic inputs (ψ) based on the current context.

Table 6: DyFlow operator templates and their functional roles.

Template Name	Description
GENERATE_PLAN	Propose a high-level plan for solving the current subgoal.
DECOMPOSE_PROBLEM	Break a complex goal into subgoals.
GENERATE_ANSWER	Produce an answer candidate for the current task.
REVIEW_SOLUTION	Evaluate correctness or completeness of a prior answer.
REFINE_ANSWER	Modify or improve a previously generated answer.
GENERATE_CODE	Write code to solve the current subgoal.
REFINE_CODE	Improve or debug previously generated code.
ORGANIZE_SOLUTION	Summarize or structure the final answer for output.
ENSEMBLE	Aggregate multiple reasoning paths using voting.
DEFAULT	General-purpose fallback operator.
TERMINATE	End the workflow once the solution is complete.

C.2 Operator Usage Analysis

Figure 6 summarizes the frequency of operator usage across different reasoning domains. We observe that operators like REVIEW_SOLUTION, TERMINATE, and ORGANIZE_SOLUTION appear frequently across all tasks, reflecting their general-purpose utility. In contrast, operators such as DECOMPOSE_PROBLEM, REFINE_ANSWER, and GENERATE_PLAN are more selectively used in complex domains like LiveBench and SocialMaze, where dynamic adaptation and structure restructuring are more critical.

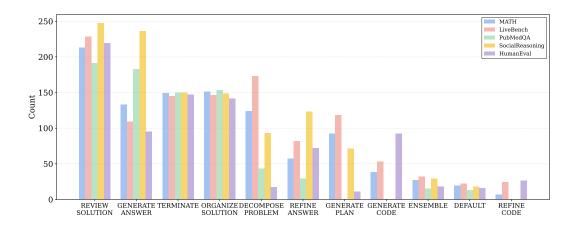


Figure 6: Operator usage frequency across reasoning domains. Task-specific patterns reflect how DyFlow dynamically adjusts workflow structure based on domain complexity and intermediate feedback.

D Experiment Details

D.1 Dataset Statistics

Table 7 summarizes the dataset statistics used in our experiments. We adopt a default TRAIN:TEST split ratio of approximately 1:3 across all datasets to balance supervision and evaluation coverage. For the MATH benchmark, we follow the setting in MaAS [36], selecting problems at difficulty level 5 across four representative categories: Combinatorics & Probability, Number Theory, Pre-algebra, and Pre-calculus. For HumanEval, when it is not included in the training set, we evaluate on the full 164 problems to ensure consistency with prior work.

Domain	Dataset	#Train	#Test	Metric
Social Reasoning	SocialMaze	87	262	Accuracy
Medical Reasoning	PubMedQA	84	251	Accuracy
Math Reasoning	MATH	84	250	Accuracy
Logic Reasoning	LiveBench	50	150	Accuracy
Code Reasoning	HumanEval	55	109	pass@1

Table 7: Train/test statistics for each dataset.

D.2 Designer Training

We use Phi-4 [30] as the designer policy π_{θ} , trained on 2 Nvidia A6000 GPUs with LoRA-based parameter-efficient tuning [37]. Training proceeds in two stages. First, supervised fine-tuning is performed on 1.5k design results from MATH, PubMedQA, and Livebench, using a cutoff length of 2048, batch size 1 with gradient accumulation steps of 4, learning rate 5×10^{-6} , cosine learning rate scheduler with warmup ratio 0.1, bf16 precision, and 3 training epochs. The validation split is 10%.

Second, we apply KTO [23] for preference-based refinement using 2k design results with a 1:1 positive-to-negative ratio, labeled based on task success. This stage uses a cutoff length of 4096, batch size 1 with gradient accumulation steps of 8, learning rate 2×10^{-4} , KL penalty $\beta=0.1$, bf16 precision, cosine scheduler, and 3 epochs. Validation is performed every 500 steps. Each trajectory includes a task description, the planned subgraphs, intermediate operator outputs, and the final answer.

D.3 Inference and Evaluation

At inference time, both the designer and executor are run with temperature 0.01 to ensure deterministic outputs. All methods use Phi-4 to ensure fair comparison.

D.4 Cost Analysis

We report the cost of DyFlow in both training and inference, and compare it with baseline systems using proprietary or open-weight models. As shown in Table 9, DyPlanner achieves the lowest inference cost across all domains while maintaining comparable or superior performance to larger proprietary designers such as GPT-4.1 and Claude-3.7. Despite being based on the compact Phi-4 model, DyPlanner enables DyFlow to match or outperform these stronger backbones in structured reasoning tasks. This confirms the effectiveness of our training pipeline, which distills high-quality planning behavior into a lightweight designer with minimal runtime cost.

We further analyze the full pipeline cost in Table 8, including both designer and executor token usage during training and inference on the MATH benchmark. Although DyFlow incurs additional training cost due to initial distillation from GPT-4.1, it achieves the highest performance among all methods. During inference, DyFlow's total token cost is moderately higher than AFlow and MaAS (approximately 1.4x to 3x), owing to its two-stage designer–executor structure. However, this cost remains substantially lower than prompt-based methods such as LLM-Debate and Self-Refine, which lack structural planning. These results suggest that DyFlow offers a favorable trade-off: higher

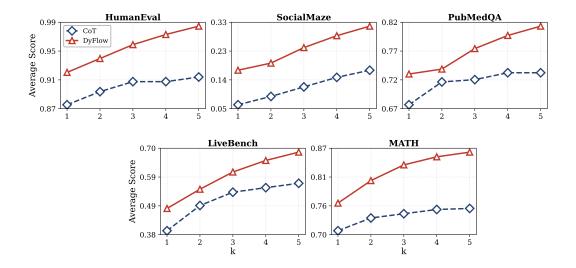


Figure 7: Per-benchmark Pass@k comparisons between DyFlow and CoT across five reasoning domains. DyFlow consistently achieves better accuracy under all k values in each task.

Table 8: Cost and performance comparison on the MATH dataset. DyFlow is trained only on MATH, PubMedQA, and LiveBench; Dyflow training cost is computed using only the MATH portion. **Bold** marks the best (lowest for cost/tokens, highest for accuracy).

Method		Training			Acc. (%)		
	Prompt	Comp.	Cost (\$)	Prompt	Comp.	Cost (\$)	(/)
LLM-Debate	=	=	-	1,449,574	4,859,777	0.78	72.40
Self-Refine	_	_	_	2,498,569	1,768,407	0.42	70.40
AFlow	13,773,792	13,240,624	2.82	1,208,685	895,017	0.21	74.00
MaAS	1,445,257	1,011,317	0.24	528,145	419,009	0.10	73.60
DyFlow (D.)	788,910	297,669	3.96	773,625	225,737	0.09	76.40
DyFlow (E.)	617,560	452,044	0.11	1,288,918	881,452	0.21	

reasoning accuracy and generalization, with only modest overhead compared to other workflow-based systems.

D.5 Cross-Executor Performance Details

We provide detailed performance comparisons of CoT and DyFlow across three executor models and five reasoning tasks in Table 10. DyFlow consistently improves performance over CoT under all configurations, demonstrating its robustness to executor variation. The gains are particularly notable for more lightweight models such as Phi-4 and GPT-40-mini, where CoT struggles with reasoning consistency. In contrast, DyFlow's explicit planning compensates for executor limitations, leading to substantial improvements in domains such as SocialMaze and MATH.

E Limitations

Although DyFlow demonstrates strong generalization and reasoning stability across a variety of tasks, its current design has a notable limitation: the lack of integration with external tools and APIs. Specifically, DyFlow's operator set is primarily built for symbolic reasoning (e.g., mathematical derivation, code execution) and textual reasoning (e.g., question answering), and does not yet support operations such as search engine access, database queries, or environment interaction. This limitation can lead to performance bottlenecks in tasks that require complex tool-assisted reasoning.

Table 9: Input tokens, output tokens, and computational costs of DyFlow with different designer models across five reasoning domains.

Benchmark	Designer	Input Tokens	Output Tokens	Cost (USD)
	GPT-4.1	517575	211600	2.73
HumanEval	Claude-3.7-Sonnet	511347	205813	4.62
	DyPlanner	505603	199355	0.06
	GPT-4.1	815952	275565	3.84
LiveBench	Claude-3.7-Sonnet	803211	271937	6.49
	DyPlanner	791525	300402	0.10
	GPT-4.1	788910	297669	3.96
MATH	Claude-3.7-Sonnet	781589	253471	6.15
	DyPlanner	773625	225737	0.09
	GPT-4.1	911364	302684	4.24
PubMedQA	Claude-3.7-Sonnet	887653	289117	7.00
	DyPlanner	588259	213749	0.07
	GPT-4.1	1499141	436371	6.49
SocialMaze	Claude-3.7-Sonnet	1387923	412689	10.35
	DyPlanner	905088	300554	0.11
Total	GPT-4.1	4532942	1523889	21.26
	Claude-3.7-Sonnet	4371723	1433027	34.61
	DyPlanner	3564100	1239797	0.42

Table 10: Detailed scores of CoT and DyFlow across three executor models and five reasoning tasks. Best results in each column are highlighted in **bold**.

Model	SocialMaze	PubMedQA	MATH	LiveBench	HumanEval
GPT-4o-mini (CoT)	3.05	69.72	64.80	32.67	87.20
GPT-4o-mini (DyFlow)	3.82	70.52	65.20	32.67	91.46
Phi-4 (CoT)	6.11	67.73	71.08	39.33	87.80
Phi-4 (DyFlow)	17.18	72.91	76.40	48.67	92.07
GPT-4.1-mini (CoT)	20.99	75.30	89.20	66.00	94.51
GPT-4.1-mini (DyFlow)	42.75	77.29	92.80	71.33	96.95

It is worth noting, however, that in most of the tasks we evaluate, performance bottlenecks arise mainly from subgoal planning or logical reasoning errors rather than from missing external knowledge or tool usage, which is consistent with observations in prior research [38]. As such, within the scope of our current evaluation, DyFlow's structured planning and feedback mechanisms already lead to significant performance gains, and the lack of tool integration has only limited impact.

Nevertheless, as tasks continue to expand into more complex domains—such as web-based question answering, embodied interaction, and multimodal reasoning—the demand for external tool use is expected to increase. Future work may explore abstracting tool operations as special operator types and extending the executor interface, thereby enhancing DyFlow's generality and applicability in real-world, complex environments.

F Case Study

Case Study (MATH)

Problem Description

Task: Given AB = 10, AC = b where b > 10, and $\sin B = \frac{3}{5}$, compute the positive difference between the two possible values of BC.

CoT Answer by Phi-4

Step 1: Recognize that $\sin B = \frac{3}{5} \Rightarrow \cos B = \pm \frac{4}{5}$. Step 2: Proceed with $\cos B = \frac{4}{5}$ (acute angle). Step 3: Apply Law of Cosines to compute BC_1 and output result.

Critical Flaw: The solution ignores the second case $(\cos B = -\frac{4}{5})$, which leads to an incomplete answer.

Final Answer: 6 Incorrect

DyFlow Answer by Phi-4

Stage 1: Planning and Decomposition

Operator: DECOMPOSE_PROBLEM

Output: Identifies $\cos B = \pm \frac{4}{5}$ as two geometric branches

Stage 2: Partial Answer Generation + Initial Review

Operator: GENERATE_ANSWER — Computes BC_1 for $\cos B = \frac{4}{5}$

Operator: GENERATE_ANSWER — Computes BC_2 for $\cos B = \frac{5}{-\frac{4}{5}}$ Operator: REVIEW_SOLUTION — Aggregates both results, checks completeness

Stage 3: Refinement and Re-evaluation

Operator: REFINE_ANSWER — Corrects inconsistency or adds missing branches

Operator: REVIEW_SOLUTION — Validates the refined answer

Stage 4: Finalization

Operator: ORGANIZE_SOLUTION, TERMINATE

Final Answer: 16 Correct

Case Study (Livebench)

Problem Description

Task: How many ordered pairs of positive integers (m,n) satisfy $\gcd(m,n)=2$ and $\mathrm{lcm}[m,n]=108$?

Ground Truth: 4

CoT Answer by Phi-4

Steps:

- Use identity $mn = \gcd(m, n) \cdot \operatorname{lcm}[m, n] \Rightarrow mn = 216$.
- Let m = 2a, n = 2b with $gcd(a, b) = 1 \Rightarrow ab = 54$.
- Only considers (a, b) = (1, 54), (54, 1), which gives (m, n) = (2, 108), (108, 2).

Flaw: Misses other coprime factorizations of 54, such as (2,27) and (27,2), leading to incomplete counting.

Final Answer: 2

Incorrect

DyFlow Answer by Phi-4

Stage 1: Decomposition and Initial Attempt

DECOMPOSE_PROBLEM, GENERATE_ANSWER, REVIEW_SOLUTION

Uses m=2a, n=2b with gcd(a,b)=1 and ab=54, and systematically identifies all valid (a,b) pairs by distributing the prime powers 2^1 and 3^3 disjointly between a and b.

Valid (a, b) pairs: (1, 54), (2, 27), (27, 2), (54, 1)

Corresponding (m, n): (2, 108), (4, 54), (54, 4), (108, 2)

Stage 2: Finalization

ORGANIZE_SOLUTION, TERMINATE

Verifies all pairs meet both gcd = 2 and lcm = 108.

Final Answer: 4 Correct

Case Study (Logic Puzzle)

Problem Description

Task: In this question, assume each person either always tells the truth or always lies. [Details of people, locations, and statements are given]. Does the person at the farm tell the truth? Does the person at the restaurant tell the truth? Does the person at the observatory tell the truth? Output answer as a list of three words: yes or no.

Ground Truth: yes, yes, no

CoT Answer by Phi-4

Steps:

- Identifies known truth/lie statuses (Jake at airport, Jaxon at amusement park, Devika at observatory).
- Lists statements made by target individuals (Farm, Restaurant, Observatory).
- Correctly deduces Devika (Observatory) lies.
- Correctly deduces Luna (Restaurant) tells the truth because her statement about Devika is true.
- Analyzes Max (Farm): Notes Elowen and Liam say Max lies, but **fails to fully** leverage the crucial deduction that Luna (Restaurant) tells the truth.
- Instead of using Max's statement "The person at the restaurant tells the truth" (which is true, as Luna tells the truth) to prove Max is a truth-teller, it focuses on other statements and concludes Max is "likely lying".

Flaw: Missed a key logical step. It correctly deduced Luna at the Restaurant is a truth-teller. Max at the Farm states that the person at the Restaurant tells the truth. Since Max's statement about Luna is true, Max himself must be a truth-teller. The CoT failed to make this final deduction about Max, leading to an incorrect conclusion for the Farm.

Final Answer: no, yes, no Incorrect

DyFlow Answer by Phi-4

Stage 1: Decomposition and Planning

DECOMPOSE_PROBLEM, GENERATE_PLAN

Breaks down the complex puzzle into explicit constraints, person-location mapping, and generates a systematic plan for logical deduction. This ensures all pieces of information are organized for analysis.

Stage 2: Solution Generation and Review

GENERATE_ANSWER, REVIEW_SOLUTION

Generates a step-by-step solution using the structured information. Crucially, during the deduction phase (as seen in the final organized solution), it correctly identifies:

- Devika (Observatory) lies (known).
- Luna (Restaurant) tells the truth because she correctly states Devika lies.
- Max (Farm) tells the truth because he states the person at the Restaurant (Luna) tells the truth, and Luna has been correctly deduced to be a truth-teller. This is the critical deduction missed by CoT.

The REVIEW_SOLUTION step confirms the logical consistency and completeness of the deductions against all constraints.

Stage 3: Finalization

ORGANIZE_SOLUTION, TERMINATE

Organizes the verified, correct solution and presents the final answer in the required format.

Final Answer: yes, yes, no Correct

Case Study (LiveBench)

Problem Description

Task: Suppose I have a regular heptagon, and I can make four straight cuts. Each cut cannot pass through any of the vertices of the heptagon. Also, exactly three of the cuts must intersect at a single point within the heptagon. What is the maximum number of resulting pieces? Output answer as a single integer.

Ground Truth: 10

CoT Answer by Phi-4

Steps:

- Identifies constraints (4 cuts, no vertices, 3 concurrent).
- Mentions general formula for maximum regions by n lines in a plane: $R(n) = \frac{n(n+1)}{2} + 1$.
- Notes three concurrent lines form 6 regions instead of 7 (correct for 3 lines in a plane).
- Attempts calculation: "Initial regions formed by three intersecting lines: 6". This is likely referring to the plane, not pieces in the heptagon (3 concurrent cuts divide a convex shape into 5 pieces).
- States "The maximum number of regions formed by four lines, with three intersecting at a point, is 11". This is incorrect. The maximum regions in the plane for 4 lines with 3 concurrent is 10 (R(4) (3-1)(3-2)/2 = 11 1 = 10). More importantly, it misapplies plane region logic to pieces within a bounded shape under concurrency. A line crossing k existing segments adds k + 1 pieces.

Flaw: Miscalculated the maximum number of regions in the plane for 4 lines with 3 concurrent (states 11, should be 10). More fundamentally, failed to correctly reason about how cuts add *pieces within the bounded heptagon*, especially under the concurrency constraint. It seems to confuse total regions in the plane with pieces within the shape, and incorrectly handles the impact of the fourth cut.

Final Answer: 11 Incorrect

DyFlow Answer by Phi-4

Stage 1: Decomposition, Solution Generation, and Review

DECOMPOSE_PROBLEM, GENERATE_ANSWER, REVIEW_SOLUTION

DyFlow begins by decomposing the task into fundamental constraints: 4 cuts, 3 of which must intersect at a single point, and none of which may pass through vertices. The planner generates a solution by correctly reasoning that three concurrent cuts form 6 regions inside the heptagon, and the fourth cut, intersecting all three, adds 4 new regions (1 for each segment crossed). This leads to a total of 6+4=10 pieces.

The REVIEW_SOLUTION operator verifies this reasoning, ensuring that the concurrency constraint and the incremental piece count are correctly applied. It confirms that no logical or constraint violations are present and that the plan is internally consistent.

Stage 2: Finalization

ORGANIZE_SOLUTION, TERMINATE

The final verified solution is organized for presentation. The planner concludes the task by outputting the answer in the required format.

Final Answer: 10 Correct

Case Study (SocialMaze)

Problem Description

Task: Deduce the criminal and Player 1's role in a 6-player social deduction game (3 Investigators, 1 Criminal, 1 Rumormonger, 1 Lunatic) after 3 rounds of statements. Player 1 is told they are the Criminal. Investigators always tell the truth about the Criminal. Rumormongers believe they are Investigators but may be incorrect. Lunatics believe they are Criminals and may be truthful or false. Output format: Final Criminal Is Player [X]. My Role Is [Y or Unknown]. (Only provide part of the problem description due to limited space.)

Ground Truth: Final Criminal Is Player 4. My Role Is Lunatic.

CoT Answer by Phi-4

Steps:

- Summarizes rules and statements per round.
- Notes P6 accuses P1 in R1, P5 denies P1 in R1.
- Notes P2,3,4,6 deny P1 in R2/R3 (mostly).
- Notes P2,3 accuse P4 in R3.
- Flawed Deduction on Player 1: Concludes Player 1 is "likely the Criminal" because they were told they are the Criminal and their statements are inconsistent. This ignores the rule that Lunatics are *told* they are Criminals and also make inconsistent statements, and more importantly, contradicts the evidence from multiple players denying P1 is the criminal.
- Flawed Deduction on Player 6: States P6 is "likely an Investigator, as they consistently accuse Player 1". This is false; P6 accuses P1 (R1), denies P1 (R2), accuses P3 (R3). P6 is *inconsistent*.
- Attempts role assignment based on these flawed deductions, leading to P1 as Criminal and P2,3,6 as Investigators (which contradicts P2,3,4,6 denying P1 in R2/R3).

Final Judgment: Final Criminal: 1, My role: Criminal Incorrect

DyFlow Answer by Phi-4

Stage 1: Initial Deduction and Review

GENERATE_ANSWER - Analyzes the statements and role rules to produce an initial answer: Player 4 is the Criminal; Player 1's role remains uncertain.

REVIEW_SOLUTION - Checks the consistency of the deduction. Confirms that Player 4 is a strong candidate for Criminal but flags the ambiguity in Player 1's role as a minor issue.

Stage 2: Refinement and Re-Review

REFINE_ANSWER - Reevaluates Player 1's status using rule-based reasoning: being told they are the Criminal while evidence contradicts that claim aligns with the definition of a Lunatic. REVIEW_SOLUTION - Validates the refined answer. Confirms that all constraints are satisfied and the role assignment is consistent and complete.

Stage 3: Finalization

ORGANIZE_SOLUTION, TERMINATE - Formats and outputs the final answer.

Key Deductions:

- 1. P2 and P3 consistently accuse Player 4. Since Investigators always speak truthfully about the Criminal, this supports P4 as the true Criminal.
- 2. Player 1 was told they are the Criminal, but all external evidence contradicts this. Under the game rules, this behavior corresponds to the Lunatic role.

Final Judgment: Final Criminal Is Player 4. My Role Is Lunatic.

Correct

Case Study (Code Generation - Simple Parsing)

Problem Description

Task: Write a Python function fruit_distribution(s, n) that takes a string s ("X apples and Y oranges") and a total fruit count n, and returns the number of mangoes (n - X - Y). Examples provided.

Ground Truth: Code that correctly parses the string s to extract X and Y, and returns n - X - Y.

CoT Answer (Original Code) by Phi-4

Summary: The generated code extracts the number of apples correctly using parts[0], but incorrectly attempts to extract oranges using parts[4], which results in a ValueError when parsing the word "oranges".

Result: Code fails at runtime due to incorrect parsing.

Incorrect

DyFlow Answer by Phi-4

Stage 1: Initial Generation & Review

 ${\tt GENERATE_CODE}\ produces\ a\ first\ draft,\ likely\ with\ the\ same\ parsing\ flaw.$

REVIEW_SOLUTION identifies the issue via failed test cases. (Status: Minor Issues)

Stage 2: Test Construction & Refinement

DEFAULT - Dynamically constructs targeted test cases to diagnose parsing behavior and edge failures.

REFINE_CODE - Uses the generated tests to revise the parsing logic. Attempts an improved implementation.

REVIEW_SOLUTION - Reviews the revised code. Some issues remain unresolved in edge cases. (Status: Minor Issues)

Stage 3: Further Refinement & Final Review

REFINE_CODE - Performs another round of refinement. This time adopts robust parsing (e.g., regex).

REVIEW_SOLUTION - Validates that all test cases now pass. (Status: Accept)

Stage 4: Finalization

ORGANIZE_SOLUTION - Formats and documents the final code.

TERMINATE - Outputs the final result and concludes the workflow.

Result: Code passes all tests and produces correct output.

Correct

G Prompt Template

GENERATE_CODE

You are an expert in solving coding problems. Generate Python code based on the following context and guidance.

Context: {context} Guidance: {guidance}

Your code must:

- 1. Define a function named solve that calculates and returns the final result.
- 2. Clearly comment each computational step.
- 3. Obtain necessary inputs from within the function or global variables (no function parameters).

Output Format:

"python

Your generated code here (use the main function name 'solve')

""

GENERATE_ANSWER

You are an expert in solving reasoning problems. Think step by step to solve the problem using the context and guidance.

Context: {context}
Guidance: {guidance}

Output Format:

Reasoning: <You should think step by step to solve the problem.>

Answer:

REVIEW SOLUTION

You are a careful reviewer trained to detect logical and mathematical errors. Your job is to critically evaluate the solution for correctness, soundness, and completeness.

Context: {context} Guidance: {guidance}

Instructions:

- Try to find mistakes at every step of the given answer.
- Bring the answer back to the original question and check if there is anything that does not meet the requirements.

Output Format:

Review Details: <step-by-step review>

Overall Verdict: <accept/minor_issues/major_issues/reject>

DECOMPOSE_PROBLEM

You are an expert in decomposing problems. Break down the original problem into clearly defined, structured sub-tasks.

Context: {context} Guidance: {guidance}

Instructions:

- Clearly outline each distinct sub-task.
- Do not attempt to solve any sub-task.
- Maintain logical completeness.
- Decompose the problem into 2–4 steps at most.

Output:

<your_decomposed_problem>

GENERATE_PLAN

You are an expert in generating step-by-step executable plans. Generate a step-by-step executable plan to approach the given problem.

Context: {context} Guidance: {guidance}

Instructions:

- Clearly number each step.Ensure each step is actionable and logically sequenced.
- Do not solve the problem here, only provide the plan.
- Give 2-4 steps at most.

Output Format: Solution Plan:

<step_id>: <description>

<step_id>: <description>

REFINE_CODE

You are an expert in refining Python code. Refine the existing Python code based on context and guidance.

Context: {context} Guidance: {guidance}

Instructions:

- Correct errors or inefficiencies identified.
- Clearly comment important logic or corrections.
- Maintain the main function name as solve.

Output Format:

""python

Your refined code here (use the main function name 'solve')

REFINE ANSWER

You are an expert in refining answers. Refine the existing answer based on context and guidance.

Context: {context} Guidance: {guidance}

Output Format:

Answer: <your refined answer>

ORGANIZE_SOLUTION

You are an expert in organizing solutions. Clearly organize the final solution for presentation based on the provided context and guidance.

Context: {context} Guidance: {guidance}

Instructions:

- Clearly present final reasoning steps and results.
- Ensure alignment with the problem's required formatting.
- Omit irrelevant or incorrect previous attempts.

Output:

<your_organized_solution>

ENSEMBLE

You are an expert in generating multiple valid and diverse solutions using distinct logical approaches.

Context: {context}
Guidance: {guidance}

Instructions:

- Each solution must independently satisfy all constraints.
- Clearly separate each distinct reasoning path and solution.

Output:

<your_ensemble_output>

DEFAULT

You are an expert in executing actions strictly according to the given context and guidance.

Context: {context} Guidance: {guidance}

Instructions:

- Follow every detail of the instructions carefully.
- Ensure output exactly matches the requested format.

Output:

<your_output>