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Abstract

Agent systems based on large language models (LLMs) have shown great potential
in complex reasoning tasks, but building efficient and generalizable workflows
remains a major challenge. Most existing approaches rely on manually designed
processes, which limits their adaptability across different tasks. While a few
methods attempt automated workflow generation, they are often tied to specific
datasets or query types and make limited use of intermediate feedback, reducing
system robustness and reasoning depth. Moreover, their operations are typically
predefined and inflexible. To address these limitations, we propose DyFlow, a
dynamic workflow generation framework that adaptively constructs and adjusts
reasoning procedures based on task requirements and real-time intermediate feed-
back, thereby enhancing cross-task generalization. DyFlow consists of two core
components: a designer and an executor. The designer decomposes complex
problems into a sequence of sub-goals defined by high-level objectives and dy-
namically plans the next steps based on intermediate outputs and feedback. These
plans are then carried out by the executor, which executes each operation using
dynamic operators with context-aware parameterization, enabling flexible and
semantically grounded reasoning. We systematically evaluate DyFlow across
diverse domains, including social reasoning, biomedical tasks, mathematical prob-
lem solving, and code generation. Results demonstrate that DyFlow significantly
outperforms existing baselines, achieving substantial Pass @k improvements and
exhibiting robust generalization across diverse domains. The code is publicly
available at https://github. com/wyf23187/DyFlow.

1 Introduction

Large language models (LLMs) have demonstrated remarkable abilities in language understanding,
generation, and complex reasoning tasks [1} 2 3]]. They support many applications, from dialogue
systems and content generation to autonomous agents and multi-step decision-making [4!, 5,16} [7].
Recently, there has been a growing trend of deploying LLMs as agents, where multiple LLMs
collaborate to tackle complex tasks. Debate-based systems enable agents to critique each other’s
solutions [8]], and team-based agents distribute tasks across specialized roles [9,[10].

However, most existing multi-agent frameworks use static, pre-defined workflows, as illustrated
in Figure [T} Each agent’s role and task sequence is fixed beforehand, proceeding rigidly without
intermediate feedback. For instance, CAMEL [10] assigns agents pre-defined roles via system
prompts, MetaGPT [9] enforces collaboration based on standard operating procedures, and AutoGen
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Figure 1: Paradigm shift in LLM-based reasoning workflows. From left to right: static workflows
apply fixed sequences across all tasks; dataset-specific and question-specific workflows allow more
variation but rely on predefined operations (OP); DyFlow adopts an execution-adaptive paradigm that
dynamically adjusts the workflow based on intermediate feedback.
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[S] and OpenAgents [11]] orchestrate agents through static communication graphs or APIs. When
a sub-task fails or produces flawed output, these systems typically halt or propagate errors due to
the lack of mechanisms for revising plans or goals. Recent frameworks introduce some adaptability
but with limitations: AFlow [12] and ADAS [13]] optimize workflows via offline search guided by
dataset-level performance, still tied to specific training distributions. DyLAN [14] and MaAS [[15]]
offer query-specific agent configurations but do not adjust subgoals based on real-time feedback.

To address these limitations, we propose DyFlow, a feedback-driven framework for LLM-based
agents that dynamically adapts subgoal planning during execution. DyFlow is built on a hierarchical
designer-executor architecture and operates in a sequenced manner: Given a task, the high-level
designer initializes the process by planning the first subgoal and its corresponding operator execution
graph based on the task requirements. The low-level executor then carries out this subgoal, leveraging
tools, APIs, or external functions as required. At each execution step, DyFlow collects intermediate
outputs, tool feedback, and possible error signals. Based on this updated context, the designer
generates a revised subgoal plan tailored to the current state. This feedback loop continues throughout
the task, enabling DyFlow to adjust its reasoning trajectory in real time. If a subgoal fails or
encounters unexpected results, DyFlow can proactively revise the plan, retry the subgoal, or reassign
responsibilities—supporting both high-level strategy shifts and fine-grained execution corrections.
Compared to prior methods such as DyLAN [[14] and ReAct [[16], which only adapt agent roles
or individual actions, DyFlow enables dynamic restructuring at the subgoal level, offering greater
robustness and flexibility in complex, real-world tasks.

While the executor does not require any additional training and can be directly instantiated using
existing open-source or proprietary LLMs, the designer is trained separately to acquire strong planning
capabilities. To this end, we employ a two-phase learning strategy to empower lightweight models to
function as effective designers comparable to large proprietary models. In the initialization phase,
the designer is trained via supervised fine-tuning on a collection of successful planning examples,
allowing it to acquire basic planning capabilities. This is followed by a self-play phase, where the
designer interacts with the executor to generate its own execution trajectories and iteratively refine its
planning policy based on feedback. The resulting feedback trains the designer to favor successful
plans and learn from failures. Unlike static expert demonstrations, this method internalizes the
dynamic feedback loop for adaptive planning. Our approach does not impose additional training
requirements on the executor, enabling direct use of existing open-source or proprietary LLMs.

We evaluate DyFlow across diverse reasoning domains, including causal, math, code, medical, and
social reasoning. Experimental results demonstrate that DyFlow significantly outperforms strong
baselines. Notably, it exhibits robust cross-domain generalization and adaptability to different
executor models, even when deployed with unseen LLMs.

Our contributions are summarized as follows:

* We introduce DyFlow, a dynamic planning framework for LLM-based agents that adaptively
revises reasoning procedures based on real-time feedback. DyFlow consists of two key compo-
nents: a high-level designer that generates and revises subgoal plans, and a low-level executor
that carries out the subgoals.

* We develop a designer training method that equips lightweight models with strong structured
reasoning ability, achieving performance comparable to proprietary LLMs.



* We demonstrate DyFlow’s robustness across diverse domains, models, and tasks through system-
atic experiments covering generalization, efficiency, and ablation.

2 Related Work

2.1 Static and Dynamic Agentic Workflows

Many LLM-based agent systems are built upon static workflows, where agent roles, execution order,
and interaction protocols are predefined and fixed throughout the task. For example, MetaGPT [9] fol-
lows standard operating procedures (SOPs) encoded into prompt templates to coordinate collaborative
coding, while AutoGen [5]] orchestrates multi-agent dialogues through rigid communication graphs.
CAMEL [10] and OpenAgents [11]] further reinforce this paradigm by hard-coding agent roles or
API usage. Although such designs facilitate structured cooperation, they lack the capacity to revise
plans in response to failures or evolving context, resulting in limited robustness and adaptability.

To reduce reliance on manual design, a line of research has explored automated agent construction.
AFlow [[12] refines code-centric workflows using Monte Carlo Tree Search, ADAS [13] performs
meta-search over agent architectures, and AgentSquare [[17]] evolves modular components via com-
position. These systems automate workflow design, yet they still adopt one-shot planning: once
constructed, the workflow remains fixed during execution. Other methods such as DyLAN [14] and
MaAS [15] dynamically configure agents or select templates based on task complexity, but lack
mechanisms to adapt subgoal plans based on runtime feedback. More recently, ScoreFlow [18]] and
MaAS introduce continuous or conditional search spaces over workflows and agent architectures,
offering more expressive design flexibility. However, they still treat planning as a pre-execution
optimization problem, separated from the execution process itself.

2.2 Feedback-based Correction in LLM Systems

Intermediate feedback has been explored for improving LLM reasoning ability across various settings.
In single-agent systems, Reflexion [19] performs retrospective self-evaluation across episodes, while
Tree of Thoughts [20] enables trajectory-level revision via search. DSPy [21]] introduces assertion-
based checks to detect and fix failures at the module level. In multi-agent frameworks, AutoGen [J5]
supports retrying failed actions within fixed communication rounds.

However, these correction mechanisms have been underutilized in workflow planning. Effective
correction at the workflow level requires more than recovering from execution failures, as it demands
the ability to dynamically revise subgoal decomposition and operator selection in response to interme-
diate signals. This poses stricter requirements for granularity and adaptability than existing designs
can satisfy. DyFlow addresses this gap by directly integrating feedback into the planning loop. It
adjusts subgoal plans and operator configurations in real time based on contextual signals, enabling
fine-grained and resilient reasoning workflows that evolve with task progress.

3 Methodology: DyFlow Framework

In this section, we introduce DyFlow, a reasoning framework that constructs dynamic workflows
through iterative subgoal planning and feedback integration. At each step, a designer generates a
task-specific plan, represented as a stage subgraph, which is conditioned on the current context and
intermediate outputs. This design enables DyFlow to adapt its reasoning trajectory in response to
execution results, offering greater flexibility than static or template-based workflows.

3.1 Formalization of DyFlow Planning

To support our dynamic workflow construction, this subsection formalizes DyFlow’s planning
mechanism, detailing its state representation, operator templates, and the structure of stage subgraphs.

DyFlow formulates complex reasoning tasks as a dynamic sequence of decision-making steps. Each
task p € P requires a series of interdependent actions to reach a solution. At every step ¢, the system
maintains a state sy, which captures the complete context necessary for planning and execution. s
includes the original task specification, previously generated plans (G, ..., G¢_1), intermediate



| DyFlow Framework |

S !
- qEe Tasks P .
h Designer
Replan

* Expert Trajectories

j - .
Subgraph G, 1 :
i Distillation Lspr

E);pert

|Op Sequencel

(l:‘ - CCéj +{ & DyPlanner A ]
-

Iterate,

Self-play Preference

Optimization ‘CKTO

Summarize
Generate

4
I Op Template I IOp Instancel v
¢ Self-generate g )
ODAQ] 40140 T

-------- P Trajectories RBRBO

\ J U

Figure 2: DyFlow dynamically constructs reasoning workflows by generating stage subgraphs based
on the current task state. A high-level designer plans operator sequences, while a low-level executor
executes them using memory. The designer is trained via supervised distillation and self-play
preference optimization.

outputs such as partial answers or review verdicts, and any encountered errors. The process begins
with an initial state sy, containing only the task itself, and this state is progressively updated as the
system executes each planning step.

DyFlow draws from a finite set of operator templates O = {O;,...,On}, each corresponding to
a basic type of reasoning or execution step. These templates define reusable operations that can be
instantiated according to context. At each step, DyFlow constructs a structured plan represented as a
stage subgraph Gy = (V;, Ey, v, CL ). This directed graph specifies a set of actions to execute: V;
contains operator instances, each instantiated from a template in O. Formally, an operator instance
o € V; is defined as a tuple 0 = (O, ¢, ¥), where Oy, € O is the template, ¢ is a fine-grained
instruction tailored to the current context, and ) is a list of input keys referencing a global memory
buffer M, which stores previous outputs as key—value pairs. This design allows operator instances to
flexibly reuse information across reasoning steps. The edge set E; encodes dependencies between
these operations, v’ marks the entry point of execution, and C’ ; defines conditions for plan
termination. A complete list of operator templates and their descriptions is provided in Appendix[C]

A full task execution generates a trajectory 7 = (sg, Go, s1,G1, ..., Gr_1, $T), Where each state
transition s; — s;41 results from executing the corresponding plan G;. Execution halts when the
system triggers a terminate action, reaches a predefined step limit 7},,«, Or encounters an unrecoverable
error. Through this formulation, DyFlow supports fine-grained, context-aware reasoning that can
adaptively refine its strategy as execution unfolds. A formal theoretical analysis of DyFlow’s
performance under dynamic planning is included in Appendix [B]

3.2 Planning and Execution Process

Building on the formal definition of DyFlow’s planning mechanism, this subsection describes the
execution process, focusing on the interaction between the high-level designer and the low-level
executor during task solving.

DyFlow employs a layered control structure that separates high-level planning from low-level
execution, ensuring adaptability in task-solving. This design aligns broad objectives with precise
actions, using the state’s context to inform decisions.

The designer, implemented as a policy 7y with parameters #, manages strategic planning. At step
t, it obtains a condensed state summary fsummary (5¢) using GPT-40-mini, then uses this summary to
determine a subgoal and generate a stage subgraph G, selecting and configuring operator instances
(V) to achieve it. Formally, the designer generates:

Gy ~ 779( : | fsummary(st)) (D



Algorithm 1 DyFlow Framework for Complex Reasoning

Require: Task p, templates O, designer g, €XeCutor mexec, budget Tiax, summarizer foummary
Ensure: Final answer st and trajectory 7

L:oso« {ph 7« [ M+ {} > initial state, trace, and empty memory dictionary
2: fort =0toTa — 1do

3: 2t < foummary(5¢); Ge ~ mo(-| 2¢) > summarize context and sample stage subgraph
4: for each 0 = (O, ¢,¥) € V; (topological order) do

5: Retrieve inputs [M[k] | k € 9] > 1) is a list of keys, M is a dictionary
6: 74— Texee(@, [M[E] | k € ])

7: Generate a unique key &, for r > e.g., by operator id or execution order
8: Mk,] > store output in memory dictionary
9: end for
10: sty+1 + UpdateState(s;, G, M); T.append((s:, Gt)) > update state and record step
11:  if C!, satisfied or TERMINATE then
12: break > stop if designer signals completion
13: end if
14: end for

15: return sy, 7

where Gy = (V;, Ey, vl CL4) and each operator instance o € V; is defined as o = (O, ¢, 1) with
Oy € O. The graph structure is designed to guide step-specific reasoning toward subgoal resolution.

Unlike prior frameworks such as AFlow, MaAS [12,[15]], which implement control structures like
branching or looping via explicit edge logic in code-based graphs, DyFlow adopts a designer-centric
design. Instead of hardcoding control flow into the graph topology, we delegate all execution control
to the designer. At each planning step, the designer observes the current state, including intermediate
outputs, error signals, and planning history, and decides whether to proceed, revise, backtrack,
or terminate. This allows DyFlow to simulate conditional and iterative behaviors (such as if-else
statements or while loops) through repeated subgraph planning, without relying on manually defined
edge logic. As a result, dynamic workflows emerge naturally from context-aware decision making,
which simplifies graph construction and enhances flexibility across tasks.

The workflow executor translates this plan into action. Given G; and s, it carries out the operator
instances in V; according to the dependencies in E;, beginning with v, € V;. For each operator
0 = (O, ¢, ), the executor retrieves required inputs from the memory buffer M according to v,
executes the operation via mexe., and appends the result back to M. The updated memory is then
used to construct the next state s;11 = Executor(s;, G¢). This mechanism ensures both consistent
information flow and persistent memory accumulation across planning steps. The full procedure
is summarized in Algorithm [T} which outlines the iterative interaction between the designer and
executor.

3.3 Distilled Self-Play Learning

While the executor requires no additional training and can be directly instantiated using existing
LLMs, the designer is trained separately to develop strong planning capabilities. We train the designer
policy 7y using a two-phase method that combines knowledge distillation with self-play preference
optimization [22} 23| 24]. The goal is to enable the designer to construct context-sensitive subgoal
plans that improve execution outcomes. While the executor remains fixed throughout, the designer is
trained to dynamically generate structured reasoning workflows.

The learning process begins by generating trajectories 7 = (so, Go, s1, G1, - .., Gr—1, s7) using the
current or a past version of the policy 7y across a diverse set of tasks. Each trajectory is executed
by the workflow executor, and its outcome is compared to the correct solution to assess success.
For successful trajectories, all stage-subgraph pairs ( foummary($¢), G¢) are labeled as “preferred,”
reflecting effective planning. For failed trajectories, the corresponding pairs are labeled as “discarded,”
capturing planning errors. All positive and negative examples are derived from these self-play
trajectories, enabling the designer to learn from its own performance.



In the first phase, knowledge distillation initializes 7y to generate reliable subgraphs. Using a dataset
Dsgr = {(fsummary (5¢), G3P")} of high-quality subgraphs from successful trajectories to optimize:

Lsrr (07 DSFT) = 7E(S,G°XP°“)~DSFT [log Uy (Gexpert | fsummary (5) )} 2)

This process distills knowledge from successful trajectories, producing the reference policy 7 for
the next phase.

In the second phase, self-play preference optimization refines 7y to favor subgraphs that lead to
successful outcomes using KTO [23]). Using a dataset Dprer = {( foummary (5¢), G+, i) }, collected from
self-generated trajectories produced by current or past policies, where I; € {preferred, discarded} in-
dicates whether the subgraph is positive or negative based on the trajectory’s success, the optimization
encourages effective planning:

Eprefw; Dyref et B) = E(S,G,l)~mer [L;irt%k(p&pref, LB . 3)

Here, [ € {preferred, discarded} indicates whether the subgraph G is effective or not, and [ is a

hyperparameter controlling the strength of preference alignment. Here, L;‘gfle is computed based
on whether each subgraph G is labeled as preferred or discarded, with 3 controlling the alignment
strength between 7y and 7. By leveraging feedback from self-generated trajectories, this off-policy
self-play phase ensures the designer makes context-sensitive, adaptive decisions. This iterative
self-improvement strategy equips DyFlow to deliver robust and versatile reasoning capabilities across

a wide range of applications.

Preference Optimization Strategy. We adopt trajectory-level supervision for preference optimiza-
tion, using full execution success or failure as the training signal. Assigning fine-grained rewards to
individual subgraphs is unreliable in complex reasoning tasks, where even well-formed plans may
fail due to executor variability. For similar reasons, we avoid DPO-style pairwise ranking [24], as
it is often infeasible to construct clear positive—negative plan pairs: execution outcomes depend on
downstream decisions, and the better plan is not always evident from intermediate states. Online rein-
forcement learning poses additional challenges, reward signals are typically sparse and delayed, and
using LLM-based judges introduces high variance due to inconsistent evaluations across steps.[25] In
contrast, our offline self-play setup with KTO [23] provides a more stable learning process, enabling
effective designer refinement from diverse execution trajectories.

4 Experiments

We conduct comprehensive experiments to evaluate DyFlow across five reasoning domains. Our goals
are to assess its performance advantage over existing agent planning frameworks, its generalization
capabilities to unseen datasets and executor models, the contribution of each component through
ablation studies, and qualitative behaviors through case analyses.

4.1 Experimental Setup

Datasets. We consider 5 diverse reasoning domains, each represented by a benchmark dataset: (1)
Logical Reasoning using the LiveBench dataset [26], (2) Math Reasoning using the MATH bench-
mark [27]], (3) Medical Reasoning with PubMedQA [4], (4) Code Reasoning via HumanEval [28]],
and (5) Social Reasoning using the SocialMaze [29] benchmark. These datasets differ in their input
structures, intermediate reasoning steps, and solution formats, and together cover a broad spectrum
of reasoning behaviors.

Implement Details. DyFlow is trained only on MATH, PubMedQA, and LiveBench. HumanEval
and SocialMaze are held out to assess zero-shot generalization to unseen reasoning domains. To
avoid contamination and ensure valid knowledge separation between the designer and executor,
we use Phi-4 [30] as the executor model, and train a designer we refer to as DyPlanner, which is
initialized from Phi-4 and optimized using the DyFlow training framework. The initial distillation
during pretraining is conducted using GPT-4.1 [31], based on trajectories generated only from our
training set. At inference time, both the designer and the executor are run with temperature 0.01 to
ensure stable and deterministic behaviors.



Table 1: Performance comparison across five reasoning domains. All methods use phi-4 as the
executor. Bold marks the best score in each column. The figures in + / | indicate the absolute change
with respect to the Vanilla baseline.

Method SocialMaze PubMedQA MATH LiveBench HumanEval Avg.

Vanilla 6.49 67.33 66.80 40.00 86.59 53.44

CoT [32] 6.111038 67.7310.40 71.2014.40 39.3310.67 87.8011.21 54.4340.99
SC [33]] 10.3143.82 68.5311.20 71.6014.80 42.0012.00 87.2010.61 55.9342.49
LLM-Debate [8]] 12.59¢6.10 68.5311.20 72.4015.60 41.3311.33 84.1512.44 55.8012.36
Self-Refine [34] 10.69+4.20 69.32+1.99 70.4013.60 34.67533 81.71 4388 53.3610.08
ADAS [13] 6.111038 67.3310.00 66.8010.00 39.330.67 85.3711.22 52.990.45
AFlow [12] 11.45+14.96 69.72+2.39 74.0017.20 43.334333 89.0212.43 57.5014.06
MaAS [15] 13.3616.87 69.32+1.99 73.6076.80 44.00+4.00 88.4111.82 57.741430

DyFlow (Ours) 17.18+10.69 72.9115.58 76.4019.60 48.67138.67 92.0715.48 61.45138.01

Baselines. We compare DyFlow with a comprehensive set of baselines across two categories: (1)
Prompting-based methods, including Vanilla prompting, CoT [32], Self-Consistency (SC) [33],
LLM-Debate [8], and Self-Refine [34]]. (2) Automated Agent frameworks, including ADAS [13]],
AFlow [12], and MaAS [15], which introduce structured reasoning workflows with varying degrees
of adaptivity. All methods use the same executor (Phi-4) and operator set for fair comparison, and are
evaluated under consistent metrics: accuracy for most tasks and pass@1 for code reasoning.

4.1.1 Performance Comparison

Overall Performance Table[I|reports the performance of DyFlow and all baselines across five
reasoning domains. DyFlow consistently outperforms prior methods, achieving the highest average
accuracy (61.45) with improvements observed across logic, math, medical, code, and social reasoning
tasks. Notably, while trained only on MATH, PubMedQA, and LiveBench, DyFlow generalizes
robustly to the held-out HumanEval and SocialMaze benchmarks. These results highlight the trans-
ferability of DyFlow’s adaptive planning strategy across structurally diverse domains. In particular,
DyFlow achieves 17.18 on SocialMaze, a challenging multi-turn benchmark that requires high-level
reasoning, substantially outperforming all baselines in this zero-shot setting. This strong performance
demonstrates that DyFlow’s feedback-driven, adaptive planning enables effective subgoal revision
and robust reasoning, even on previously unseen, highly complex tasks.

Planning Upper Bound and Stability In addition

0.74
to Pass@1, we further evaluate the performance of _2_ gg;mw
DyFlow under the top-k setting. As shown in Fig- 0.9/
ure 3] DyFlow consistently outperforms CoT across — $
all k values from 1 to 5, with increasingly wider mar- g 0.641 _ 0*""'0
gins at higher k. This indicates that DyFlow not only g =TT
generates more accurate first predictions, but also <0591 ,/0"
demonstrates greater reasoning stability across mul- 0’/
tiple completions, with a higher potential to produce 03t 2 3 1 5

strong solutions. ) ]
Figure 3: Average pass@k comparisons be-

Notably, DyFlow reaches a near-perfect Pass@5 of = cen DyFlow and CoT across 5 benchmarks.

0.9817 on HumanEval, highlighting the framework’s

strong reasoning upper bound on code tasks. Moreover, the consistent improvements in medical,
logical, and math domains suggest that DyFlow enhances both accuracy and diversity of reasoning
paths. Per-task breakdowns of Pass@k curves are included in Figure[7} which reveal similar trends
across all domains.



Table 2: Performance of DyFlow with different designer models across five reasoning domains. All
designers are trained using the same pipeline. Detailed cost of different designers is in Figure 0]

Designer Model SocialMaze PubMedQA MATH LiveBench HumanEval Average

MaAS [15] 13.36 69.32 73.60 44.00 88.41 58.40
Claude-3.7-Sonnet 16.41 71.71 75.60 50.00 92.07 61.16
GPT-4.1 16.79 72.11 73.60 47.03 89.63 59.83
DyPlanner 17.18 7291 76.40 48.67 92.07 61.45

GPT-40-mini Phi-4 GPT-4.1-mini

100 0 20

Figure 4: Cross-executor performance comparison between CoT and DyFlow across five reasoning
tasks. DyFlow improves performance across all model scales, with larger gains for stronger models
on more challenging tasks. Detailed results are provided in Appendix [D.3] Table [T0}

4.2 Generalization Analysis

This section evaluates DyFlow’s generalization capabilities across three dimensions: designer models,
execution models, and datasets. Each dimension demonstrates DyFlow’s ability to maintain robust
performance under varying conditions, leveraging its adaptive planning mechanisms.

Cross-Designer Generalization To assess the robustness of our training framework across different
designer architectures, we apply the same DyFlow learning pipeline to three backbone models:
Claude-3.7-Sonnet, GPT-4.1, and Phi-4. We include MaAS as the strongest existing baseline.

As shown in Table 2} DyFlow consistently outperforms MaAS across all designer backbones. More
specifically, our DyPlanner is initialized from the 14B open-weight Phi-4 model. Despite its relatively
small scale, DyPlanner achieves performance comparable to larger proprietary designers such as
GPT-4.1 and Claude-3.7-Sonnet across most domains. This demonstrates that DyFlow’s strong
planning capability does not stem from model size alone, but also from our dedicated two-phase
optimization strategy. By combining supervised subgraph distillation with offline preference-based
refinement, we equip a compact model with the ability to perform high-quality structured planning
across diverse tasks. As shown in Table 9} DyPlanner offers a more cost-efficient and scalable
alternative without sacrificing performance. These results suggest that dynamic, feedback-aware
designers can emerge from lightweight open models when trained with appropriate trajectory-level
signals, making DyFlow well-suited for real-world deployment in resource-constrained settings.

Cross-Executor Generalization To further evaluate Table 3: Cross-task generalization.
DyFlow’s generalization capability across executor mod- Each test domain is excluded during
els, we compare its performance with CoT prompting training.

using three different executors: GPT-40-mini, Phi-4, and Test Train CoT  DyFlow

GPT-4.1-mini. All DyFlow variants in this setting use
the same DyPlanner. As shown in Figure[d DyFlow con- SR~ MR,QR,LR  6.11 17.18
sistently improves performance across all executors and CR MR, QR,LR 87.80  92.07
reasoning domains, demonstrating its compatibility witha MR CR,LR,SR  71.08  75.20
wide range of language models without requiring executor- QR CR,LR,SR  67.73  72.11

specific adaptation.

The gains are especially notable when DyFlow is paired with stronger executors and applied to more
complex tasks. For instance, Phi-4 with DyFlow achieves performance close to GPT-4.1-mini with
CoT, while incurring only half the cost. When applied to GPT-4.1-mini, DyFlow brings further
improvements, particularly on SocialMaze and LiveBench. These results indicate that structured



planning from DyPlanner enhances reasoning quality and stability across a variety of executor
backbones.

Cross-Task Generalization To evaluate cross-task generalization, we construct a series of held-out
settings where the designer is trained on a subset of three reasoning domains and tested on the
remaining two. For each setting, we select three domains from SocialMaze, PubMedQA, MATH,
LiveBench, and HumanEval for training, and evaluate performance on the two excluded domains.
For example, when training on MATH, PubMedQA, and LiveBench, we test on SocialMaze and
HumanEval. Similarly, other combinations ensure that each domain is excluded from training in at
least one setting. As shown in Table (3] DyFlow achieves strong performance across the held-out
domains, demonstrating that its designer can generalize planning strategies to structurally diverse,
unseen reasoning tasks without task-specific supervision.

Table 4: Ablation study on DyFlow using DyPlanner as the designer and Phi-4 as the executor. The
full system outperforms all ablated variants across five reasoning tasks.

Variant SocialMaze PubMedQA MATH LiveBench HumanEval Avg.
w/o KTO 13.36 68.53 72.40 43.33 89.63 57.45
w/o SFT 15.65 69.32 73.20 45.33 91.46 59.00
w/o Dynamic Operator 12.21 68.92 72.80 40.67 90.24 56.97
w/o Dynamic Planning 11.45 68.53 72.80 40.00 89.63 56.48
DyFlow (Full) 17.18 72.91 76.40 48.67 92.07 61.45

4.3 Ablation Study

To assess the contribution of DyFlow’s core components, we conduct ablation experiments targeting
both the designer training process and the execution-time mechanisms, as summarized in Table
On the training side, we remove either the knowledge distillation (SFT) or the offline preference
optimization (KTO). Both lead to consistent drops in performance, indicating that these two phases
are complementary: SFT provides structural guidance for initializing the designer, while KTO enables
refinement based on trajectory-level feedback. On the execution side, disabling dynamic operator
selection forces the executor to follow a fixed-stage template, reducing its ability to adjust reasoning
based on intermediate results.

The largest degradation is observed when dynamic plan-
ning is removed. In this setting, we prompt DyPlanner to
complete the entire problem in a single reasoning stage (O Pecompose () Plan
without receiving intermediate feedback. This design pre- O Refne

vents the designer from iteratively refining subgoals in

response to execution signals, undermining DyFlow’s cen- o V]
tral mechanism of feedback-driven replanning. Together, O Step 1: Identify Angle
these results demonstrate that DyFlow’s gains emerge from RS UEDI=
the synergy between structured designer training and dy-
namic subgoal adaptation during execution.

Question: Given AB = 10, AC =b whereb > 10, and sin B = 0.6,
compute the positive difference between two possible values of BC
Ground Truth: 16

Generate O Review

Organize Terminate  swuuus

©) Simplify the problem

Generate Plan

o——0

£) Compute + Check

Major Issues

0.6, implying cos B = +0.8

£)Step 2: Choose Branch
Proceed only with cosB = D
0.8, assuming one angle.

4.4 Case Study

We conduct a qualitative comparison between DyFlow
and a standard reasoning baseline without error correction.
The baseline generates a fixed reasoning path based on
initial inputs and executes it without revisiting intermedi-
ate outputs, making it susceptible to early mistakes and
incomplete solutions. As illustrated in Figure [5| DyFlow

E) Step 3: Compute
Only compute BC1,
obtaining a result of 6.

) Critical Flaw: Missing Branch
Ignores the case cos B =-0.8,
leading to an incomplete solution.

3) Fix Gaps
Accept

o—O0

) Finalize Answer
nswer: 16

—_

instead treats planning as an ongoing process. Guided
by the designer, it dynamically assigns operators based
on intermediate feedback and task state. When execution
produces partial or inconsistent outputs, DyFlow adapts its subgoal plan and invokes refinement
operators to identify and correct reasoning errors during runtime. This includes dynamically selecting

Figure 5: Case Study between CoT and
DyFlow on MATH dataset.



the appropriate data inputs, adjusting instructions, and refining intermediate results using targeted
operator calls.

5 Conclusion

In this paper, we presented DyFlow, a framework for dynamic workflow construction in LLM-based
reasoning systems. By modeling reasoning as subgraph planning with modular operator execution,
DyFlow enables flexible adaptation to intermediate feedback and diverse task requirements. Our
evaluations across five reasoning domains demonstrate that DyFlow improves task success rates and
generalizes across diverse reasoning tasks. Future work may explore integrating richer error detection
signals and expanding the operator set to support more complex interaction protocols.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the proposed DyFlow framework,
its hierarchical designer—executor structure, its feedback-driven planning strategy, and its
performance across multiple reasoning tasks, all of which align with the main contributions.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The Limitation section in the Appendix explicitly discusses current limitations
of DyFlow, including its symbolic-oriented operator set and the need for extension to support
tool-using or embodied reasoning tasks. Additional limitations are also discussed in the
conclusion.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

13



Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Theoretical guarantees, including Theorem 1 and Theorem 2 (Appendix B), are
stated with clear assumptions and complete proofs that compare DyFlow to static baselines
and analyze Bellman residual bounds.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The Experiments section and Appendix D (Experiment Details) disclose all
necessary information for reproducing the main results, including dataset specifications,
model initialization, LoORA-based tuning configurations, training and inference parameters,
and evaluation metrics.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Appendix C (Modular Operators) and Appendix D (Experiment Details)
provide the full operator list, training procedure, and inference setup. An anonymized version
of the code and detailed reproduction instructions will be included in the supplemental
material.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The Experiments section and Appendix D provide detailed training and
evaluation setups, including dataset splits, hyperparameters (e.g., learning rate, batch size,
number of epochs), LoRA adaptation, optimizer choice, and inference-time decoding
configurations.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer:

Justification: Formal error bars (e.g., standard deviation or confidence intervals) are not
explicitly reported in the main experimental tables due to the significant computational
cost associated with running multiple trials across all diverse experimental configurations,
including various datasets and executor models. However, the paper presents detailed
performance breakdowns across different domains and executor models (Tables 1, 2, 4, 10
and Figures 3, 4, 7), and the consistency of the observed improvements provides empirical
evidence for the robustness and significance of DyFlow’s contributions.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix D.2 (Designer Training) and D.3 (Inference and Evaluation) specify
compute resources used in the experiments, including the use of 2 NVIDIA A6000 GPUs for
training and Phi-4 model for inference, along with batch size, sequence length, and runtime
settings.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research does not involve human subjects, personally identifiable informa-
tion, or sensitive data. All datasets used are publicly available and cited appropriately, and
the study fully adheres to the NeurIPS Code of Ethics.
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10.

11.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper primarily highlights the positive societal impacts of DyFlow, such
as contributing to more robust, generalizable, and controllable Al reasoning systems (Intro-
duction). However, we acknowledge that, like other advanced LLM-based agentic systems,
DyFlow could potentially be misused if not deployed responsibly. Potential negative im-
pacts could include the generation of convincing but incorrect or biased information if the
underlying LLMs or feedback mechanisms have flaws, or the inadvertent reinforcement
of societal biases present in the training data. Furthermore, the increasing capability of
autonomous agents raises broader societal questions regarding accountability and potential
misuse in sensitive applications. While DyFlow itself is a foundational framework aimed
at improving reasoning, responsible development and deployment practices are crucial to
mitigate these risks.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release models or datasets that carry high misuse potential.
The DyPlanner model is trained on standard reasoning datasets and does not involve private,
offensive, or uncontrolled data sources.

Guidelines:
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» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All datasets and base models (e.g., Phi-4, GPT-4.1) used in the paper are

publicly available and cited in the main text. Each is used in accordance with its license or
public usage terms, as provided by the respective platforms or publications.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce a modular operator set and a dynamic planner model (DyPlanner),
documented in Appendix C and Appendix D. The supplemental material will include
instructions for using these components. An anonymized version will be provided at
submission time.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve any crowdsourcing tasks or experiments with
human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects were involved in the research, so IRB approval was not
required.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM is used only for writing, editing, or formatting purposes.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Notations

We summarize the key notations used throughout the DyFlow framework in Table[5] These notations
cover the planning state space, operator structure, execution dynamics, and training objectives for
optimizing the designer policy.

Table 5: Key notations used in the DyFlow framework.

Symbol Definition

P A reasoning task sampled from a task distribution.

St Full system state at discrete step ¢, including task inputs and execution history.
A fixed set of operator templates specifying reusable functional behaviors.
Stage subgraph constructed at step t: Gt = (Vz, B, v, Cha).
An operator instance, formally represented as o = (O, ¢, %) with Oy, € O.
Fine-grained instruction string instantiated from template O}, based on context.

Global memory storing intermediate outputs generated by executed operators.
Learnable planner (designer) policy that generates GG from current state summary.
Parameters of the planner policy 7y trained via SFT and KTO.

fsummary(st) Function that summarizes full state s; into a condensed representation.

o

Gy

o

¢

P Input reference list indexing outputs from memory buffer M.
M

o

0

2t Summarized context at step ¢: z: = foummary (St)-

Texec Fixed executor policy used to run operator instances during workflow execution.
T Full execution trajectory: 7 = (so, Go, 51, G1,. .., ST).

Lsrr Supervised fine-tuning loss used to initialize the planner mg.

Dsgr Dataset of successful planning trajectories used for supervised training.

Tref Reference planner derived from SFT, used during preference optimization.

Lpres Preference optimization loss (e.g., KTO), aligning my with effective plans.

Dprer Labeled trajectory set used for preference-based policy refinement.

B Theoretical Analysis

DyFlow is never worse than static method We consider a distribution D over reasoning tasks p.

Each task is solved by executing a sequence of stage subgraphs {G;}/_ ', yielding return R(p; 7).
Define as objective function.

J(m) = Epp [R(p; )] )

Each reasoning task p is modeled as a finite-horizon decision process (S, O, P, r,T) with bounded
rewards, finite state space S, and operator set . A static policy mst.t applies the same subgraph Gy
throughout regardless of context (i.e. Tstat(s:) = Gax), while the DyFlow policy mpyriow chooses
G, as described in[Equation 5] based on the full state s, including intermediate outputs and error
signals.

Gt = TDyFlow (.fsummary (51‘)) (5)
Lemma 1 (Static Policies as a Special Case). Ilsat € Ilpyriow, as any static Tea can be imple-
mented by DyFlow by ignoring s; and always returning Ggy.

Theorem 1 (DyFlow Is Never Worse Than Static).
max J(w) > max J(w). (6)

TEllpyFlow mEllgtat
Moreover, if there exists a task pg for which feedback-driven replanning strictly improves return, then
max J(w) > max J(m). @)

TEMDpyFlow mEMstat

Proof 1. Since Ilsay C HpyFiow by Lemmall} optimizing over the larger set Ilpyriow can only

increase (or match) the best static return like

max J(w) > max J(m) ®

WEHDyFlow € tat
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In stochastic or error-prone environments, a closed-loop DyFlow policy can correct deviations in real
time—e.g. via replanning—yielding strictly higher return on some task py [35)]. Hence the inequality
becomes strict.

Convergence proof of DyFlow We model each reasoning task p as a finite-horizon MDP of length

T.Fort=0,1,...,T,let V;*(s), V,°Y(s) denote the optimal and DyFlow value functions when
there are ¢ steps remaining from state s. At step ¢, DyFlow observes s;, computes the summary
2t = fsummary(S¢), and samples a subgraph G; ~ Tpyriow( - | 2¢) . Executing G; yields reward
r(s¢, G¢) and transitions to $¢41.

One-step Bellman operator can be operated for such MDP process with DyFlow one-step lookup

feature, denoted as
(7;‘/)(87G) = T(Sa G) + IEs’~P(~|s,G) [V(Sl)} (9)
and quantify DyFlow’s per-step suboptimality by the Bellman residual

& = max‘maXﬁthzyl(s;G) — TV (s;Gy) ‘ (10)
s G N————

optimal backup at step ¢ DyFlow’s backup at step ¢

Let e, > d; be a uniform upper bound on this residual.

Lemma 2 (Error propagation). Foranyt = 0,1,...,T and state s, the gap between the optimal and
DyFlow value functions with t steps remaining satisfies

t
Vi(s) = VP¥(s) < ) e (1n
k=1

Proof. Case 1. With zero steps remaining, both V;*(s) and V;¥ (s) equal the terminal reward (here
normalized to 0), so the inequality holds.

Case 2. Assume the claim for ¢ — 1. Then for horizon ¢,
Vi (5) = ViV (s) = max TV (5:G) = TV, (51 G-
Split into two parts:
max TV (5,G) — TV, (s Gy) + max TV (sG) — max TVPY (5;G).

= 0ese <supy [V, () -V (1]

By the inductive hypothesis, sup,, [V;* 1 (s') — V2% (s')] < 324_) ex. Hence

t—1 t
Vi(s) =V (s) < e+ Y ek = Y ek,
k=1 k=1

completing the induction. O

Theorem 2 (DyFlow performance bound). Starting from initial state sy with full horizon T along
with Lemmal[2)

T
D
Vi(so) — V¥ (so) < ;Ek <T 11Snk§1§XTsk.

C Operators

DyFlow employs modular and reusable operator templates to support flexible reasoning workflows.
Each operator defines a specific functional role and is instantiated dynamically by the planner during
execution. We summarize all templates used in DyFlow and analyze their usage patterns across
reasoning domains.
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C.1 Operator Templates

Table [§ summarizes all operator templates used by DyFlow. Each template corresponds to a modular
and reusable functional unit. During execution, the designer instantiates these templates with fine-
grained instructions (¢) and dynamic inputs (/) based on the current context.

C.2 Operator Usage Analysis

Table 6: DyFlow operator templates and their functional roles.

Template Name

Description

GENERATE_PLAN
DECOMPOSE_PROBLEM
GENERATE_ANSWER
REVIEW_SOLUTION
REFINE_ANSWER
GENERATE_CODE
REFINE_CODE
ORGANIZE_SOLUTION
ENSEMBLE

DEFAULT

TERMINATE

Propose a high-level plan for solving the current subgoal.
Break a complex goal into subgoals.

Produce an answer candidate for the current task.
Evaluate correctness or completeness of a prior answer.
Modify or improve a previously generated answer.
Write code to solve the current subgoal.

Improve or debug previously generated code.
Summarize or structure the final answer for output.
Aggregate multiple reasoning paths using voting.
General-purpose fallback operator.

End the workflow once the solution is complete.

Figure [6] summarizes the frequency of operator usage across different reasoning domains. We
observe that operators like REVIEW_SOLUTION, TERMINATE, and ORGANIZE_SOLUTION appear fre-
quently across all tasks, reflecting their general-purpose utility. In contrast, operators such as
DECOMPOSE_PROBLEM, REFINE_ANSWER, and GENERATE_PLAN are more selectively used in complex
domains like LiveBench and SocialMaze, where dynamic adaptation and structure restructuring are
more critical.

Count

250

200

150

100

50

MATH
LiveBench
PubMedQA
SocialReasoning
HumanEval

REVIEW GENERATE TERMINATE ORGANIZEDECOMPOSE REFINE GENERATE GENERATE ENSEMBLE DEFAULT

SOLUTION ANSWER

REFINE

SOLUTION PROBLEM ANSWER PLAN CODE CODE

Figure 6: Operator usage frequency across reasoning domains. Task-specific patterns reflect how
DyFlow dynamically adjusts workflow structure based on domain complexity and intermediate
feedback.
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D Experiment Details

D.1 Dataset Statistics

Table[/|summarizes the dataset statistics used in our experiments. We adopt a default TRAIN:TEST
split ratio of approximately 1:3 across all datasets to balance supervision and evaluation coverage.
For the MATH benchmark, we follow the setting in MaAS [36], selecting problems at difficulty level
5 across four representative categories: Combinatorics & Probability, Number Theory, Pre-algebra,
and Pre-calculus. For HumanEval, when it is not included in the training set, we evaluate on the full
164 problems to ensure consistency with prior work.

Table 7: Train/test statistics for each dataset.

Domain ‘ Dataset ‘ #Train ‘ #Test ‘ Metric
Social Reasoning SocialMaze 87 262 | Accuracy
Medical Reasoning | PubMedQA 84 251 | Accuracy
Math Reasoning MATH 84 250 | Accuracy
Logic Reasoning LiveBench 50 150 | Accuracy
Code Reasoning HumanEval 55 109 | pass@]1

D.2 Designer Training

We use Phi-4 [30] as the designer policy 7y, trained on 2 Nvidia A6000 GPUs with LoRA-based
parameter-efficient tuning [37)]. Training proceeds in two stages. First, supervised fine-tuning is
performed on 1.5k design results from MATH, PubMedQA, and Livebench, using a cutoff length of
2048, batch size 1 with gradient accumulation steps of 4, learning rate 5 x 105, cosine learning rate
scheduler with warmup ratio 0.1, bf16 precision, and 3 training epochs. The validation split is 10%.

Second, we apply KTO [23]] for preference-based refinement using 2k design results with a 1:1
positive-to-negative ratio, labeled based on task success. This stage uses a cutoff length of 4096,
batch size 1 with gradient accumulation steps of 8, learning rate 2 x 10~4, KL penalty 8 = 0.1,
bf16 precision, cosine scheduler, and 3 epochs. Validation is performed every 500 steps. Each
trajectory includes a task description, the planned subgraphs, intermediate operator outputs, and the
final answer.

D.3 Inference and Evaluation

At inference time, both the designer and executor are run with temperature 0.01 to ensure deterministic
outputs. All methods use Phi-4 to ensure fair comparison.

D.4 Cost Analysis

We report the cost of DyFlow in both training and inference, and compare it with baseline systems
using proprietary or open-weight models. As shown in Table [0] DyPlanner achieves the lowest
inference cost across all domains while maintaining comparable or superior performance to larger
proprietary designers such as GPT-4.1 and Claude-3.7. Despite being based on the compact Phi-4
model, DyPlanner enables DyFlow to match or outperform these stronger backbones in structured
reasoning tasks. This confirms the effectiveness of our training pipeline, which distills high-quality
planning behavior into a lightweight designer with minimal runtime cost.

We further analyze the full pipeline cost in Table [§] including both designer and executor token
usage during training and inference on the MATH benchmark. Although DyFlow incurs additional
training cost due to initial distillation from GPT-4.1, it achieves the highest performance among
all methods. During inference, DyFlow’s total token cost is moderately higher than AFlow and
MaAS (approximately 1.4x to 3x), owing to its two-stage designer—executor structure. However, this
cost remains substantially lower than prompt-based methods such as LLM-Debate and Self-Refine,
which lack structural planning. These results suggest that DyFlow offers a favorable trade-off: higher
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Figure 7: Per-benchmark Pass@k comparisons between DyFlow and CoT across five reasoning
domains. DyFlow consistently achieves better accuracy under all k values in each task.

Table 8: Cost and performance comparison on the MATH dataset. DyFlow is trained only on MATH,
PubMedQA, and LiveBench; Dyflow training cost is computed using only the MATH portion. Bold
marks the best (lowest for cost/tokens, highest for accuracy).

Method Training Inference Acc. (%)
Prompt Comp. Cost ($) Prompt Comp. Cost ($)

LLM-Debate - - - 1,449,574 4,859,777 0.78 72.40
Self-Refine - - - 2,498,569 1,768,407 0.42 70.40
AFlow 13,773,792 13,240,624 2.82 1,208,685 895,017 0.21 74.00
MaAS 1,445,257 1,011,317 0.24 528,145 419,009 0.10 73.60
DyFlow (D.) 788,910 297,669 3.96 773,625 225,737 0.09 76.40
DyFlow (E.) 617,560 452,044 0.11 1,288,918 881,452 0.21

reasoning accuracy and generalization, with only modest overhead compared to other workflow-based
systems.

D.5 Cross-Executor Performance Details

We provide detailed performance comparisons of CoT and DyFlow across three executor models
and five reasoning tasks in Table [0} DyFlow consistently improves performance over CoT under all
configurations, demonstrating its robustness to executor variation. The gains are particularly notable
for more lightweight models such as Phi-4 and GPT-40-mini, where CoT struggles with reasoning
consistency. In contrast, DyFlow’s explicit planning compensates for executor limitations, leading to
substantial improvements in domains such as SocialMaze and MATH.

E Limitations

Although DyFlow demonstrates strong generalization and reasoning stability across a variety of
tasks, its current design has a notable limitation: the lack of integration with external tools and APIs.
Specifically, DyFlow’s operator set is primarily built for symbolic reasoning (e.g., mathematical
derivation, code execution) and textual reasoning (e.g., question answering), and does not yet support
operations such as search engine access, database queries, or environment interaction. This limitation
can lead to performance bottlenecks in tasks that require complex tool-assisted reasoning.
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Table 9: Input tokens, output tokens, and computational costs of DyFlow with different designer
models across five reasoning domains.

Benchmark Designer Input Tokens Output Tokens Cost (USD)
GPT-4.1 517575 211600 2.73
HumanEval  Claude-3.7-Sonnet 511347 205813 4.62
DyPlanner 505603 199355 0.06
GPT-4.1 815952 275565 3.84
LiveBench Claude-3.7-Sonnet 803211 271937 6.49
DyPlanner 791525 300402 0.10
GPT-4.1 788910 297669 3.96
MATH Claude-3.7-Sonnet 781589 253471 6.15
DyPlanner 773625 225737 0.09
GPT-4.1 911364 302684 4.24
PubMedQA  Claude-3.7-Sonnet 887653 289117 7.00
DyPlanner 588259 213749 0.07
GPT-4.1 1499141 436371 6.49
SocialMaze  Claude-3.7-Sonnet 1387923 412689 10.35
DyPlanner 905088 300554 0.11
Total GPT-4.1 4532942 1523889 21.26
Claude-3.7-Sonnet 4371723 1433027 34.61
DyPlanner 3564100 1239797 0.42

Table 10: Detailed scores of CoT and DyFlow across three executor models and five reasoning tasks.
Best results in each column are highlighted in bold.

Model SocialMaze PubMedQA MATH LiveBench HumanEval
GPT-40-mini (CoT) 3.05 69.72 64.80 32.67 87.20
GPT-40-mini (DyFlow) 3.82 70.52 65.20 32.67 91.46
Phi-4 (CoT) 6.11 67.73 71.08 39.33 87.80
Phi-4 (DyFlow) 17.18 72.91 76.40 48.67 92.07
GPT-4.1-mini (CoT) 20.99 75.30 89.20 66.00 94.51
GPT-4.1-mini (DyFlow) 42.75 77.29 92.80 71.33 96.95

It is worth noting, however, that in most of the tasks we evaluate, performance bottlenecks arise
mainly from subgoal planning or logical reasoning errors rather than from missing external knowledge
or tool usage, which is consistent with observations in prior research [38]. As such, within the scope
of our current evaluation, DyFlow’s structured planning and feedback mechanisms already lead to
significant performance gains, and the lack of tool integration has only limited impact.

Nevertheless, as tasks continue to expand into more complex domains—such as web-based question
answering, embodied interaction, and multimodal reasoning—the demand for external tool use is
expected to increase. Future work may explore abstracting tool operations as special operator types
and extending the executor interface, thereby enhancing DyFlow’s generality and applicability in
real-world, complex environments.

F Case Study
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Case Study (MATH)

Problem Description

Task: Given AB = 10, AC = b where b > 10, and sin B = %, compute the positive
difference between the two possible values of BC'.

CoT Answer by Phi-4

Step 1: Recognize that sin B = g = cos B = :I:%.
Step 2: Proceed with cos B = % (acute angle).
Step 3: Apply Law of Cosines to compute BC and output result.

Critical Flaw: The solution ignores the second case (cos B = —%), which leads to an
incomplete answer.
Final Answer: 6 Incorrect

DyFlow Answer by Phi-4

Stage 1: Planning and Decomposition
Operator: DECOMPOSE_PROBLEM
Output: Identifies cos B = i% as two geometric branches

Stage 2: Partial Answer Generation + Initial Review
Operator: GENERATE_ANSWER — Computes BCy for cos B =
Operator: GENERATE_ANSWER — Computes BCY for cos B = f%

Operator: REVIEW_SOLUTION — Aggregates both results, checks completeness

(SN

Stage 3: Refinement and Re-evaluation
Operator: REFINE_ANSWER — Corrects inconsistency or adds missing branches
Operator: REVIEW_SOLUTION — Validates the refined answer

Stage 4: Finalization
Operator: ORGANIZE_SOLUTION, TERMINATE

Final Answer: 16 Correct
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Case Study (Livebench)

Problem Description

Task: How many ordered pairs of positive integers (m,n) satisfy ged(m,n) = 2 and
lem[m, n] = 108?
Ground Truth: 4

CoT Answer by Phi-4

Steps:

* Use identity mn = ged(m, n) - lem[m, n] = mn = 216.

e Let m = 2a, n = 2b with ged(a,b) = 1 = ab = 54.

* Only considers (a, b) = (1,54), (54, 1), which gives (m,n) = (2, 108), (108, 2).
Flaw: Misses other coprime factorizations of 54, such as (2,27) and (27, 2), leading to

incomplete counting.
Final Answer: 2 Incorrect

DyFlow Answer by Phi-4

Stage 1: Decomposition and Initial Attempt

DECOMPOSE_PROBLEM, GENERATE_ANSWER, REVIEW_SOLUTION

Uses m = 2a, n = 2b with gcd(a, b) = 1 and ab = 54, and systematically identifies all valid
(a, b) pairs by distributing the prime powers 2! and 32 disjointly between a and b.

Valid (a, b) pairs: (1,54), (2,27), (27,2), (54,1)

Corresponding (m, n): (2,108), (4,54), (54,4), (108, 2)

Stage 2: Finalization
ORGANIZE_SOLUTION, TERMINATE
Verifies all pairs meet both gcd = 2 and lem = 108.

Final Answer: 4 Correct
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Case Study (Logic Puzzle)

Problem Description

Task: In this question, assume each person either always tells the truth or always lies. [Details
of people, locations, and statements are given]. Does the person at the farm tell the truth?
Does the person at the restaurant tell the truth? Does the person at the observatory tell the
truth? Output answer as a list of three words: yes or no.

Ground Truth: yes, yes, no

CoT Answer by Phi-4

Steps:

* Identifies known truth/lie statuses (Jake at airport, Jaxon at amusement park, Devika
at observatory).

* Lists statements made by target individuals (Farm, Restaurant, Observatory).
* Correctly deduces Devika (Observatory) lies.

* Correctly deduces Luna (Restaurant) tells the truth because her statement about
Devika is true.

* Analyzes Max (Farm): Notes Elowen and Liam say Max lies, but fails to fully
leverage the crucial deduction that Luna (Restaurant) tells the truth.

* Instead of using Max’s statement "The person at the restaurant tells the truth" (which
is true, as Luna tells the truth) to prove Max is a truth-teller, it focuses on other
statements and concludes Max is "likely lying".

Flaw: Missed a key logical step. It correctly deduced Luna at the Restaurant is a truth-teller.
Max at the Farm states that the person at the Restaurant tells the truth. Since Max’s statement
about Luna is true, Max himself must be a truth-teller. The CoT failed to make this final
deduction about Max, leading to an incorrect conclusion for the Farm.

Final Answer: no, yes, no Incorrect

DyFlow Answer by Phi-4

Stage 1: Decomposition and Planning

DECOMPOSE_PROBLEM, GENERATE_PLAN

Breaks down the complex puzzle into explicit constraints, person-location mapping, and
generates a systematic plan for logical deduction. This ensures all pieces of information are
organized for analysis.

Stage 2: Solution Generation and Review

GENERATE_ANSWER, REVIEW_SOLUTION

Generates a step-by-step solution using the structured information. Crucially, during the
deduction phase (as seen in the final organized solution), it correctly identifies:

* Devika (Observatory) lies (known).
* Luna (Restaurant) tells the truth because she correctly states Devika lies.

¢ Max (Farm) tells the truth because he states the person at the Restaurant
(Luna) tells the truth, and Luna has been correctly deduced to be a truth-teller.
This is the critical deduction missed by CoT.

The REVIEW_SOLUTION step confirms the logical consistency and completeness of the de-
ductions against all constraints.

Stage 3: Finalization
ORGANIZE_SOLUTION, TERMINATE
Organizes the verified, correct solution and presents the final answer in the required format.

Final Answer: yes, yes, no Correct
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Case Study (LiveBench)

Problem Description

Task: Suppose I have a regular heptagon, and I can make four straight cuts. Each cut cannot
pass through any of the vertices of the heptagon. Also, exactly three of the cuts must intersect
at a single point within the heptagon. What is the maximum number of resulting pieces?
Output answer as a single integer.

Ground Truth: 10

CoT Answer by Phi-4

Steps:
* Identifies constraints (4 cuts, no vertices, 3 concurrent).

* Mentions general formula for maximum regions by n lines in a plane: R(n) =
n(n+1) +1
S .

* Notes three concurrent lines form 6 regions instead of 7 (correct for 3 lines in a
plane).

» Attempts calculation: "Initial regions formed by three intersecting lines: 6". This is
likely referring to the plane, not pieces in the heptagon (3 concurrent cuts divide a
convex shape into 5 pieces).

* States "The maximum number of regions formed by four lines, with three intersect-
ing at a point, is 11". This is incorrect. The maximum regions in the plane for 4
lines with 3 concurrent is 10 (R(4) — (3 — 1)(3 — 2)/2 = 11 — 1 = 10). More
importantly, it misapplies plane region logic to pieces within a bounded shape under
concurrency. A line crossing k existing segments adds k + 1 pieces.

Flaw: Miscalculated the maximum number of regions in the plane for 4 lines with 3
concurrent (states 11, should be 10). More fundamentally, failed to correctly reason about
how cuts add pieces within the bounded heptagon, especially under the concurrency constraint.
It seems to confuse total regions in the plane with pieces within the shape, and incorrectly
handles the impact of the fourth cut.

Final Answer: 11 Incorrect

DyFlow Answer by Phi-4

Stage 1: Decomposition, Solution Generation, and Review

DECOMPOSE_PROBLEM, GENERATE_ANSWER, REVIEW_SOLUTION

DyFlow begins by decomposing the task into fundamental constraints: 4 cuts, 3 of which
must intersect at a single point, and none of which may pass through vertices. The planner
generates a solution by correctly reasoning that three concurrent cuts form 6 regions inside
the heptagon, and the fourth cut, intersecting all three, adds 4 new regions (1 for each
segment crossed). This leads to a total of 6 + 4 = 10 pieces.

The REVIEW_SOLUTION operator verifies this reasoning, ensuring that the concurrency con-
straint and the incremental piece count are correctly applied. It confirms that no logical or
constraint violations are present and that the plan is internally consistent.

Stage 2: Finalization

ORGANIZE_SOLUTION, TERMINATE

The final verified solution is organized for presentation. The planner concludes the task by
outputting the answer in the required format.

Final Answer: 10 Correct
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Case Study (SocialMaze)

Problem Description

Task: Deduce the criminal and Player 1’s role in a 6-player social deduction game (3 Investi-
gators, 1 Criminal, 1 Rumormonger, 1 Lunatic) after 3 rounds of statements. Player 1 is told
they are the Criminal. Investigators always tell the truth about the Criminal. Rumormongers
believe they are Investigators but may be incorrect. Lunatics believe they are Criminals and
may be truthful or false. Output format: Final Criminal Is Player [X]. My Role Is [Y or
Unknown]. (Only provide part of the problem description due to limited space.)

Ground Truth: Final Criminal Is Player 4. My Role Is Lunatic.

CoT Answer by Phi-4

Steps:
e Summarizes rules and statements per round.
¢ Notes P6 accuses P1 in R1, P5 denies P1 in R1.
* Notes P2,3,4,6 deny P1 in R2/R3 (mostly).
¢ Notes P2,3 accuse P4 in R3.

* Flawed Deduction on Player 1: Concludes Player 1 is "likely the Criminal" because
they were told they are the Criminal and their statements are inconsistent. This
ignores the rule that Lunatics are fold they are Criminals and also make inconsistent
statements, and more importantly, contradicts the evidence from multiple players
denying P1 is the criminal.

* Flawed Deduction on Player 6: States P6 is "likely an Investigator, as they consis-

tently accuse Player 1". This is false; P6 accuses P1 (R1), denies P1 (R2), accuses
P3 (R3). P6 is inconsistent.

* Attempts role assignment based on these flawed deductions, leading to P1 as Crimi-
nal and P2,3,6 as Investigators (which contradicts P2,3,4,6 denying P1 in R2/R3).

Final Judgment: Final Criminal: 1, My role: Criminal Incorrect

DyFlow Answer by Phi-4

Stage 1: Initial Deduction and Review

GENERATE_ANSWER - Analyzes the statements and role rules to produce an initial answer:
Player 4 is the Criminal; Player 1’s role remains uncertain.

REVIEW_SOLUTION - Checks the consistency of the deduction. Confirms that Player 4 is a
strong candidate for Criminal but flags the ambiguity in Player 1’s role as a minor issue.

Stage 2: Refinement and Re-Review

REFINE_ANSWER - Reevaluates Player 1’s status using rule-based reasoning: being told they
are the Criminal while evidence contradicts that claim aligns with the definition of a Lunatic.
REVIEW_SOLUTION - Validates the refined answer. Confirms that all constraints are satisfied
and the role assignment is consistent and complete.

Stage 3: Finalization
ORGANIZE_SOLUTION, TERMINATE - Formats and outputs the final answer.

Key Deductions:

1. P2 and P3 consistently accuse Player 4. Since Investigators always speak truthfully
about the Criminal, this supports P4 as the true Criminal.

2. Player 1 was told they are the Criminal, but all external evidence contradicts this.
Under the game rules, this behavior corresponds to the Lunatic role.

Final Judgment: Final Criminal Is Player 4. My Role Is Lunatic. Correct
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Case Study (Code Generation - Simple Parsing)

Problem Description

Task: Write a Python function fruit_distribution(s, n) that takes a string s ("X
apples and Y oranges") and a total fruit count n, and returns the number of mangoes (n - X
- Y). Examples provided.

Ground Truth: Code that correctly parses the string s to extract X and Y, and returnsn - X
- Y.

CoT Answer (Original Code) by Phi-4

Summary: The generated code extracts the number of apples correctly using parts[0],
but incorrectly attempts to extract oranges using parts [4], which results in a ValueError
when parsing the word "oranges".

Result: Code fails at runtime due to incorrect parsing. Incorrect

DyFlow Answer by Phi-4

Stage 1: Initial Generation & Review
GENERATE_CODE produces a first draft, likely with the same parsing flaw.
REVIEW_SOLUTION identifies the issue via failed test cases. (Status: Minor Issues)

Stage 2: Test Construction & Refinement

DEFAULT - Dynamically constructs targeted test cases to diagnose parsing behavior and edge
failures.

REFINE_CODE - Uses the generated tests to revise the parsing logic. Attempts an improved
implementation.

REVIEW_SOLUTION - Reviews the revised code. Some issues remain unresolved in edge
cases. (Status: Minor Issues)

Stage 3: Further Refinement & Final Review

REFINE_CODE - Performs another round of refinement. This time adopts robust parsing (e.g.,
regex).

REVIEW_SOLUTION - Validates that all test cases now pass. (Status: Accept)

Stage 4: Finalization
ORGANIZE_SOLUTION - Formats and documents the final code.
TERMINATE - Outputs the final result and concludes the workflow.

Result: Code passes all tests and produces correct output. Correct
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G Prompt Template

GENERATE_CODE

You are an expert in solving coding problems. Generate Python code based on the following
context and guidance.

Context: {context}
Guidance: {guidance}

Your code must:

1. Define a function named solve that calculates and returns the final result.

2. Clearly comment each computational step.

3. Obtain necessary inputs from within the function or global variables (no function parameters).

Output Format:
‘“‘python
# Your generated code here (use the main function name ‘solve®)

(113

GENERATE_ANSWER

You are an expert in solving reasoning problems. Think step by step to solve the problem using
the context and guidance.

Context: {context}
Guidance: {guidance}

Output Format:
Reasoning: <You should think step by step to solve the problem.>
Answer:

REVIEW_SOLUTION

You are a careful reviewer trained to detect logical and mathematical errors. Your job is to
critically evaluate the solution for correctness, soundness, and completeness.

Context: {context}
Guidance: {guidance}

Instructions:

- Try to find mistakes at every step of the given answer.

- Bring the answer back to the original question and check if there is anything that does not meet
the requirements.

Output Format:

Review Details: <step-by-step review>
Overall Verdict: <accept/minor_issues/major_issues/reject>
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DECOMPOSE_PROBLEM

You are an expert in decomposing problems. Break down the original problem into clearly
defined, structured sub-tasks.

Context: {context}
Guidance: {guidance}

Instructions:

- Clearly outline each distinct sub-task.

- Do not attempt to solve any sub-task.

- Maintain logical completeness.

- Decompose the problem into 2—4 steps at most.

Output:
<your_decomposed_problem>

GENERATE_PLAN

You are an expert in generating step-by-step executable plans. Generate a step-by-step executable
plan to approach the given problem.

Context: {context}
Guidance: {guidance}

Instructions:

- Clearly number each step.

- Ensure each step is actionable and logically sequenced.
- Do not solve the problem here, only provide the plan.

- Give 24 steps at most.

Output Format:

Solution Plan:
<step_id>: <description>
<step_id>: <description>

REFINE_CODE

You are an expert in refining Python code. Refine the existing Python code based on context and
guidance.

Context: {context}
Guidance: {guidance}

Instructions:

- Correct errors or inefficiencies identified.

- Clearly comment important logic or corrections.
- Maintain the main function name as solve.

Output Format:
‘“‘python
# Your refined code here (use the main function name ‘solve®)

(X134
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REFINE_ANSWER
You are an expert in refining answers. Refine the existing answer based on context and guidance.

Context: {context}
Guidance: {guidance}

Output Format:
Answer: <your refined answer>

ORGANIZE_SOLUTION

You are an expert in organizing solutions. Clearly organize the final solution for presentation
based on the provided context and guidance.

Context: {context}
Guidance: {guidance}

Instructions:

- Clearly present final reasoning steps and results.

- Ensure alignment with the problem’s required formatting.
- Omit irrelevant or incorrect previous attempts.

Output:
<your_organized_solution>

ENSEMBLE
You are an expert in generating multiple valid and diverse solutions using distinct logical

approaches.

Context: {context}
Guidance: {guidance}

Instructions:
- Each solution must independently satisfy all constraints.
- Clearly separate each distinct reasoning path and solution.

Output:
<your_ensemble_output>

DEFAULT

You are an expert in executing actions strictly according to the given context and guidance.

Context: {context}
Guidance: {guidance}

Instructions:
- Follow every detail of the instructions carefully.

- Ensure output exactly matches the requested format.

Output:
<your_output>
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