
Inducing Equilibria via Incentives: Simultaneous
Design-and-Play Ensures Global Convergence

Boyi Liu⇤, Jiayang Li⇤
Northwestern University

{boyiliu2018,jiayangli2024}@u.northwestern.edu

Zhuoran Yang
Yale University

zhuoran.yang@yale.edu

Hoi-To Wai
The Chinese University of Hong Kong

htwai@se.cuhk.edu.hk

Mingyi Hong
University of Minnesota

mhong@umn.edu

Yu (Marco) Nie, Zhaoran Wang
Northwestern University

{y-nie,zhaoran.wang}@northwestern.edu

Abstract

To regulate a social system comprised of self-interested agents, economic incentives
are often required to induce a desirable outcome. This incentive design problem
naturally possesses a bilevel structure, in which a designer modifies the rewards
of the agents with incentives while anticipating the response of the agents, who
play a non-cooperative game that converges to an equilibrium. The existing bilevel
optimization algorithms raise a dilemma when applied to this problem: anticipating
how incentives affect the agents at equilibrium requires solving the equilibrium
problem repeatedly, which is computationally inefficient; bypassing the time-
consuming step of equilibrium-finding can reduce the computational cost, but
may lead the designer to a sub-optimal solution. To address such a dilemma, we
propose a method that tackles the designer’s and agents’ problems simultaneously
in a single loop. Specifically, at each iteration, both the designer and the agents
only move one step. Nevertheless, we allow the designer to gradually learn the
overall influence of the incentives on the agents, which guarantees optimality after
convergence. The convergence rate of the proposed scheme is also established for
a broad class of games.

1 Introduction

A common thread in human history is how to "properly" regulate a social system comprised of
self-interested individuals. In a laissez-faire economy, for example, the competitive market itself is
the primary regulatory mechanism [47, 16]. However, a laissez-faire economy may falter due to the
existence of significant "externalities" [8, 18], which may arise wherever the self-interested agents
do not bear the external cost of their behaviors in the entirety. The right response, many argue, is
to introduce corrective policies in the form of economic incentives (e.g., tolls, taxes, and subsidies)
[32]. By modifying the rewards of the agents, these incentives can encourage (discourage) the agents
to engage in activities that create positive (negative) side effects for the society, and thus guide the
self-interests of the agents towards a socially desirable end. For example, carbon taxes can be levied
on carbon emissions to protect the environment during the production of goods and services [35].

⇤Equal contribution.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Surge pricing has been widely used to boost supply and dampen demand in volatile ride-hail markets
[37]. Lately, subsidies and penalties were both introduced to overcome vaccine hesitancy in the
world’s hard-fought battle against the COVID-19 pandemic.

The goal of this paper is to develop a provably efficient method for guiding the agents in a non-
cooperative game towards a socially desirable outcome — e.g., the one that maximizes the social
welfare — by modifying their payoffs with incentives. The resulting problem may be naturally
interpreted as a Stackelberg game [50] in which the “incentive designer" is the leader while the agents
being regulated are the followers. Hence, it naturally possesses a bilevel structure [3]: at the upper
level, the "designer" optimizes the incentives by anticipating and regulating the best response of
the agents, who play a non-cooperative game at the lower level. As the lower-level agents pursue
their self-interests freely, their best response can be predicted by the Nash equilibrium [39], which
dictates no agent can do better by unilaterally changing their strategy. Accordingly, the incentive
design problem is a mathematical program with equilibrium constraints (MPEC) [30].

In the optimization literature, MPECs are well-known for their intractability [10]. Specifically, even
getting a first-order derivative through their bilevel structure is a challenge. In the incentive design
problem, for example, to calculate the gradient of the designer’s objective at equilibrium, which
provides a principled direction for the designer to update the incentives, one must anticipate how
the equilibrium is affected by the changes [17]. This is usually achieved by performing a sensitivity
analysis, which in turn requires differentiation through the lower-level equilibrium problem, either
implicitly or explicitly [25]. No matter how the sensitivity analysis is carried out, the equilibrium
problem must be solved before updating the incentives. The resulting algorithm thus admits a double
loop structure: in the outer loop, the designer iteratively moves along the gradient; but to find the
gradient, it must allow the lower level game dynamics to run its course to arrive at the equilibrium
given the current incentives.

Because of the inherent inefficiency of the double-loop structure, many heuristics methods have also
been developed for bilevel programs in machine learning [27, 29, 14]. When applied to the incentive
design problem, these methods assume that the designer does not solve the equilibrium exactly to
evaluate the gradient. Instead, at each iteration, the game is allowed to run just a few rounds, enough
for the designer to obtain a reasonable approximation of the gradient. Although such a method
promises to reduce the computational cost significantly at each iteration, it may never converge to the
same optimal solution obtained without the approximation.

Contribution. In a nutshell, correctly anticipating how incentives affect the agents at equilibrium
requires solving the equilibrium problem repeatedly, which is computationally inefficient. On the
other hand, simply bypassing the time-consuming step of equilibrium-finding may lead the designer
to a sub-optimal solution. This dilemma prompts the following question that motivates this study:
can we obtain the optimal solution to an incentive design problem without repeatedly solving the
equilibrium problem?

In this paper, we propose an efficient principled method that tackles the designer’s problem and
agents’ problem simultaneously in a single loop. At the lower level, we use the mirror descent
method [40] to model the process through which the agents move towards equilibrium. At the upper
level, we use the gradient descent method to update the incentives towards optimality. At each
iteration, both the designer and the agents only move one step based on the first-order information.
However, as discussed before, the upper gradient relies on the corresponding lower equilibrium,
which is not available in the single-loop update. Hence, we propose to use the implicit differentiation
formula—with equilibrium strategy replaced by the current strategy—to estimate the upper gradient,
which might be biased at the beginning. Nevertheless, we prove that if we improve the lower-level
solution with larger step sizes, the upper-level and lower-level problems may converge simultaneously
at a fast rate. The proposed scheme hence guarantees optimality because it can anticipate the overall
influence of the incentives on the agents eventually after convergence.

Organization. In Section 2, we discuss related work. In Section 3, we provide the mathematical
formulation of the incentive design problem. In Section 4, we design algorithms for solving the
problem. In Section 5, we establish conditions under which the proposed scheme globally converges
to the optimal solution and analyze the convergence rate. The convergence analysis is restricted to
games with a unique equilibrium. In Section 6, we discuss how to apply our algorithms to games
with multiple equilibria. Eventually, we conduct experiments to test our algorithms in Section 7.

2

Notation. We denote h·, ·i as the inner product in vector spaces. For a vector form a = (ai), we
denote a�i = (aj)j 6=i. For a finite set X 2 Rn, we denote �(X) = {⇡ 2 Rn

+ :
P

xi2X ⇡xi = 1}.
For any vector norm k · k, we denote k · k⇤ = supkzk1h·, zi as its dual norm. We refer readers to
Appendix A for a collection of frequently used problem-specific notations.

2 Related work

The incentive design problem studied in this paper is a special case of mathematical programs with
equilibrium constraints (MPEC) [19], a class of optimization problems constrained by equilibrium
conditions. MPEC is closely related to bilevel programs [10], which bind two mathematical programs
together by treating one program as part of the constraints for the other.

Bilevel Programming. In the optimization literature, bilevel programming was first introduced
to tackle resource allocation problems [7] and has since found applications in such diverse topics
as revenue management, network design, traffic control, and energy systems. In the past decade,
researchers have discovered numerous applications of bilevel programming in machine learning,
including meta-learning (ML) [14], adversarial learning [22], hyperparameter optimization, [31]
and neural architecture search [27]. These newly found bilevel programs in ML are often solved
by gradient descent methods, which require differentiating through the (usually unconstrained)
lower-level optimization problem [28]. The differentiation can be carried out either implicitly on
the optimality conditions as in the conventional sensitivity analysis [see e.g., 2, 43, 4], or explicitly
by unrolling the numerical procedure used to solve the lower-level problem [see e.g., 31, 15]. In
the explicit approach, one may "partially" unroll the solution procedure (i.e., stop after just a few
rounds, or even only one round) to reduce the computational cost. Although this popular heuristic
has delivered satisfactory performance on many practical tasks [29, 36, 14, 27], it cannot guarantee
optimality for bilevel programs under the general setting, as it cannot derive the accurate upper-level
gradient at each iteration [53].

MPEC. Unlike bilevel programs, MPEC is relatively under-explored in the ML literature so far.
Recently, Li et al. [25] extended the explicit differentiation method for bilevel programs to MPECs.
Their algorithm unrolls an iterative projection algorithm for solving the lower-level problem, which is
formulated as a variational inequality (VI) problem. Leveraging the recent advance in differentiable
programming [2], they embedded each projection iteration as a differentiable layer in a computational
graph, and accordingly, transform the explicit differentiation as standard backpropagation through
the graph. The algorithm proposed by Li et al. [26] has a similar overall structure, but theirs casts the
lower-level solution process as the imitative logit dynamics [6] drawn from the evolutionary game
theory, which can be more efficiently unrolled. Although backpropagation is efficient, constructing
and storing such a graph — with potentially a large number of projection layers needed to find a good
solution to the lower-level problem — is still demanding. To reduce this burden, partially unrolling
the iterative projection algorithm is a solution. Yet, it still cannot guarantee optimality for MPECs
due to the same reason as for bilevel programs.

The simultaneous design-and-play approach is proposed to address this dilemma. Our approach
follows the algorithm of Hong et al. [21] and Chen et al. [9], which solves bilevel programs via single-
loop update. Importantly, they solve both the upper- and the lower-level problem using a gradient
descent algorithm and establish the relationship between the convergence rate of the single-loop
algorithm and the step size used in gradient descent. However, their algorithms are limited to the cases
where the lower-level optimization problem is unconstrained. Our work extends these single-loop
algorithms to MPECs that have an equilibrium problem at the lower level. We choose mirror descent
as the solution method to the lower-level problem because of its broad applicability to optimization
problems with constraints [40] and generality in the behavioral interpretation of games [34, 23]. We
show that the convergence of the proposed simultaneous design-and-play approach relies on the
setting of the step size for both the upper- and lower-level updates, a finding that echos the key result
in [21]. We first give the convergence rate under mirror descent and the unconstrained assumption
and then extend the result to the constrained case. For the latter, we show that convergence cannot
be guaranteed if the lower-level solution gets too close to the boundary early in the simultaneous
solution process. To avoid this trap, the standard mirror descent method is revised to carefully steer
the lower-level solution away from the boundary.

3

3 Problem Formulation

We study incentive design in both atomic games [39] and nonatomic games [45], classified depending
on whether the set of agents is endowed with an atomic or a nonatomic measure. In social systems,
both types of games can be useful, although the application context varies. Atomic games are typically
employed when each agent has a non-trivial influence on the rewards of other agents. In a nonatomic
game, on the contrary, a single agent’s influence is negligible and the reward could only be affected
by the collective behavior of agents.

Atomic Game. Consider a game played by a finite set of agents N = {1, . . . , n}, where each agent
i 2 N selects a strategy ai 2 Ai ✓ Rdi

to maximize the reward received, which is determined by a
continuously differentiable function ui : A =

Q
i2N Ai ! R. Formally, a joint strategy a⇤ 2 A is a

Nash equilibrium if

ui(ai⇤, a
�i
⇤) � ui(ai, a�i

⇤), 8 ai 2 Ai, 8i 2 N .

Suppose that for all i 2 N , the strategy set Ai is closed and convex, and the reward function ui is
convex in ai, then a⇤ 2 A is a Nash equilibrium if and only if there exists �i, . . . ,�n > 0 such that
[46]

nX

i=1

�i ·
⌦
raiui(a⇤), a

i � ai⇤
↵
 0, for all a 2 A. (3.1)

Example 3.1 (Oligopoly model). In an oligopoly model, there is finite set N = {1, . . . , n} of firms,
each of which supplies the market with a quantity ai (ai � 0) of goods. Under this setting, we have
A = Rn

+. The good is then priced as p(q) = p0 � � · q, where p0, � > 0 and q =
P

j2N ai it the
total output. The profit and the marginal profit of the firm i are then given by

ui(a) = ai ·
✓
p0 � � ·

X

j2N
aj
◆
� ci, raiui(a) = p0 � � ·

✓
ai +

X

j2N
aj
◆
,

respectively, where ci is the constant marginal cost2 for firm i.

Nonatomic Game. Consider a game played by a continuous set of agents, which can be divided into
a finite set of classes N = {1, . . . , n}. We assume that each i 2 N represents a class of infinitesimal
and homogeneous agents sharing the finite strategy set Ai with |Ai| = di. The mass distribution for
the class i is defined as a vector qi 2 �(Ai) that gives the proportion of agents using each strategy.
Let the cost of an agent in class i to select a strategy a 2 Ai given q = (q1, . . . , qn) be cia(q).
Formally, a joint mass distribution q 2 �(A) =

Q
i2N �(Ai) is a Nash equilibrium, also known as

a Wardrop equilibrium [51], if for all i 2 N , there exists bi such that
⇢
cia(q⇤) = bi, if qia⇤ > 0,
cia(q⇤) � bi, if qia⇤ = 0.

The following result extends the VI formulation to Nash equilibrium in nonatomic game: denote
ci(q) = (cia(q))a2Ai , then q⇤ is a Nash equilibrium if and only if [11]

X

i2N
�i ·

⌦
ci(q⇤), q

i � qi⇤
↵
� 0, for all q 2 �(A). (3.2)

Example 3.2 (Routing game). Consider a set of agents traveling from source nodes to sink nodes
in a directed graph with nodes V and edges E . Denote N ✓ V ⇥ V as the set of source-sink pairs,
Ai ✓ 2E as the set of paths connecting i 2 N and E ia ✓ E as the set of all edges on the path a 2 Ai.
Suppose that each source-sink pair i 2 N is associated with ⇢i nonatomic agents aiming to choose a
route from Ai to minimize the total cost incurred. Let qia 2 �(Ai) be the proportion of travelers
using the path a 2 Aw, xe 2 R+ be the number of travelers using the edge e and te(xe) 2 R+

be the cost for using edge e. Then we have xe =
P

i2N
P

a2Ai ⇢i · qia · �eia, where �eik equals
1 if e 2 E ia and 0 otherwise. The total cost for a traveler selecting a path a 2 Ai will then be
cia(q) =

P
e2E t

e(xe) · �eia.

2Throughout this paper, we use the term “reward” to describe the scenario where the agents aim to maximize
ui, and use “cost” when the agents aim to do the opposite.

4

Incentive Design. Despite the difference, we see that an equilibrium of both atomic and nonatomic
games can be formulated as a solution to a corresponding VI problem in the following form

X

i2N
�i ·

⌦
vi(x⇤), x

i � xi
⇤
↵
 0, for all x 2 X =

Y

i2N
X i, (3.3)

where vi and X i denote different terms in the two types of games. Suppose that there exists an
incentive designer aiming to induce a desired equilibrium. To this end, the designer can add incentives
✓ 2 ⇥ ✓ Rd, which is assumed to enter the reward/cost functions and thus leads to a parameterized
vi✓(x). We assume that the designer’s objective is determined by a function f : ⇥⇥ X ! R. Denote
S(✓) as the solution set to (3.3). We then obtain the uniform formulation of the incentive design
problem for both atomic games and nonatomic games

min
✓2⇥

f⇤(✓) = f(✓, x⇤), s.t. x⇤ 2 S(✓). (3.4)

If the equilibrium problem admits multiple solutions, the agents may converge to different ones and
it would be difficult to determine which one can better predict the behaviors of the agents without
additional information. In this paper, we first consider the case where the game admits a unique
equilibrium. Sufficient conditions under which the game admits a unique equilibrium will also be
provided later. We would consider the non-unique case later and show that our algorithms can still
become applicable by adding an appropriate regularizer in the cost function.

Stochastic Environment. In the aforementioned settings, vi✓(x) is a deterministic function. Although
most MPEC algorithms in the optimization literature follow this deterministic setting, in this paper,
we hope our algorithm can handle more realistic scenarios. Specifically, in the real world, the
environment could be stochastic if some environment parameters that fluctuate over days. In a traffic
system, for example, both worse weather and special events may affect the road condition, hence
the travel time vi✓(x) experienced by the drivers. We expect our algorithm can still work in the face
of such stochasticity. To this end, we assume that vi✓(x) represents the expected value of the cost
function. On each day, however, the agents can only receive a noised feedback bvi✓ as an estimation.
In the next section, we develop algorithms based on such noisy feedback.

4 Algorithm

We propose to update ✓ and x simultaneously to improve the computational efficiency. The game
dynamics at the lower level is modeled using the mirror descent method. Specifically, at the stage k,
given ✓k and xk, the agent first receives vi✓k(xk) as the feedback. After receiving the feedback, the
agents update their strategies via

xi
k+1 = argmax

xi2X i

�
hvi✓k(xk), x

ii � 1/�i
k ·D i(xi

k, x
i)

, (4.1)

where D i(xi
k, x

i) is the Bregman divergence induced by a strongly convex function i. The accurate
value of rf⇤(✓k), the gradient of its objective function, equals

r✓f
�
✓k, x⇤(✓k)

�
+
⇥
r✓x⇤(✓k)

⇤> ·rxf
�
✓k, x⇤(✓k)

�
,

which requires the exact lower-level equilibrium x⇤(✓k). However, at the stage k, we only have the
current strategy xk. Therefore, we also have to establish an estimator of rx⇤(✓k) and rf⇤(✓k) using
xk, the form of which will be specified later.
Remark 4.1. The standard gradient descent method is double-loop because at each ✓k it involves an
inner loop for solving the exact value of x⇤(✓k) and then calculating the exact gradient.

4.1 Unconstrained Game

We first consider unconstrained games with X i = Rdi

, for all i 2 N . We select i(·) as smooth
function, i.e., there exists a constant H � 1 such that for all i 2 N and xi, xi0 2 X i,

��r i(xi)�r i(xi0)
��
2
 H · kxi � xi0k2. (4.2)

Example of i satisfying this assumption include (but is not limited to) i(xi) = (xi)>Qixi/2,
where Qi 2 Rdi ⇥ Rdi

is a positive definite matrix. It can be directly checked that we can set

5

H = maxi2N �i, where �i is the largest singular value of Qi. In this case, the corresponding
Bregman divergence becomes D i(xi, xi0) = (xi � xi0)>Qi(xi � xi0)/2, which is known as the
squared Mahalanobis distance. Before laying out the algorithm, we first give the following lemma
characterizing r✓x⇤(✓).

Lemma 4.2. When X i = Rdi

and rxv✓(x⇤(✓)) is non-singular, it holds that

r✓x⇤(✓) = �
h
rxv✓

�
x⇤(✓)

�i�1
·r✓v✓

�
x⇤(✓)

�
.

Proof. See Appendix B.2 for detailed proof.

For any given ✓ 2 ⇥ and x 2 X , we define

erf(✓, x) = r✓f(✓, x)�
⇥
r✓v✓(x)

⇤> ·
⇥
rxv✓(x)

⇤�1 ·rxf(✓, x). (4.3)

Although we cannot obtain the exact value of rf⇤(✓k), we may use brf(✓k, xk) as a surrogate and
update ✓k based on brf⇤(✓k, xk) instead. Now we are ready to present the following bilevel incentive
design algorithm for unconstrained games (see Algorithm 1).

Algorithm 1 Bilevel incentive design for unconstrained games
Input: ✓0 2 ⇥, x0 2 X = Rd, where d =

P
i2N di, sequence of step sizes (↵k, {�i

k}i2N).
For k = 0, 1, . . . do:

Update strategy profile

xi
k+1 = argmax

xi2X i

�
hbvik, xii � 1/�i

k ·D i(xi
k, x

i)

, (4.4)

for all i 2 N , where bvik is an estimator of vi✓k (xk).
Update incentive parameter

✓k+1 = argmax
✓2⇥

�
herf(✓k, xk+1), ✓i � 1/↵k · k✓ � ✓kk22

.

EndFor
Output: Last iteration incentive parameter ✓k+1 and strategy profile xk+1.

In Algorithm 1, if ✓k and xk converge to fixed points ✓̄ and x̄, respectively, then x̄ = x⇤(✓̄) is
expected to be satisfied. Thus, we would also have brf(✓̄, x̄) = rf⇤(✓̄). Thus, the optimality of ✓̄
can be then guaranteed. It implies that the algorithm would find the optimal solution if it converges.
Instead, the difficult part is how to design appropriate step sizes that ensure convergence. In this
paper, we provide such conditions in Section 5.1.

4.2 Simplex-Constrained Game

We then consider the case where for all i 2 N , xi is constrained within the probability simplex

�
�
[di]

�
=
�
xi 2 Rdi ��xi � 0, (xi)>1di = 1

,

where 1di 2 Rdi

is the vector of all ones. Here we remark that any classic game-theoretic models are
simplex-constrained. In fact, as long as the agent faces a finite number of choices and adopts a mixed
strategy, its decision space would be a probability simplex [39]. In addition, some other types of
decisions may also be constrained by a simplex. For example, financial investment concerns how to
split the money on different assets. In such a scenario, the budget constraint can also be represented
by a probability simplex.

In such a case, we naturally consider i(xi) = �
P

j2[di][x
i]j · log[xi]j , which is the Shannon

entropy. Such a choice gives the Bregman divergence D i(xi, xi0) =
P

j2[di][x
i]j · log([xi0]j/[xi]j),

which is known as the KL divergence. In this case, we still first need to characterize r✓x⇤(✓), which
also has an analytic form. Specifically, if we define a function h✓(x) = (hi

✓(x
i))i2N that satisfies

hi
✓(x

i) = argmax
x0i2X i

n⌦
vi✓(x

i), x0i↵� 1/�i
k ·D i(xi, x0i)

o
,

6

then for any ✓, xi
⇤(✓) satisfies xi

⇤(✓) = h✓(xi
⇤(✓)) [12]. Implicitly differentiating through this fixed

point equation then yields rx⇤(✓) = r✓h✓(x⇤(✓)) · (I �rxh✓(x⇤(✓)))�1. Then, similar to (4.3),
we may use

erf(✓, x) = r✓f(✓, x)�r✓h✓(x) ·
�
I �rxh✓(x)

��1 ·rxf(✓, x) (4.5)

to approximate the actual gradient rf⇤(✓) and then update ✓k based on rf⇤(✓k) instead.

Remark 4.3. The mapping h✓(x) has an analytic expression, which reads

hi
✓(x) = xi · exp

�
��i

k · vi✓(x)
�.���xi · exp

�
��i

k · vi✓(x)
����

1
.

Hence, both rxh✓(x) and r✓h✓(x) can also be calculated analytically.

In addition to a different gradient estimate, we also modify Algorithm 1 to keep the iterations xk

from hitting the boundary at the early stage. The modification involves an additional step that mixes
the strategy with a uniform strategy 1di/di, i.e., imposing an additional step

exi
k+1 = (1� ⌫k+1) · xk+1 + ⌫k+1 · 1di/di

upon finishing the update (4.4), where ⌫k+1 2 (0, 1) is a the mixing parameter, decreasing to 0 when
k ! 1. In the following, we give the formal presentation of the modified bilevel incentive design
algorithm for simplex-constrained games (see Algorithm 2).

Algorithm 2 Bilevel incentive design for simplex constrained games
Input: ✓0 2 ⇥, x0 2 X , step sizes (↵k, {�i

k}i2N), k � 0, and mixing parameters ⌫k, k � 0.
For k = 0, 1, . . . do:

Update strategy profile

xi
k+1 = argmax

xi2�([di])

�
hbvik, xii � 1/�i

k ·D i(exi
k, x

i)

,

exi
k+1 = (1� ⌫k) · xk+1 + ⌫k · 1di/d

i, (4.6)

for all i 2 N , where bvik is an estimator of vi✓k (exk).
Update incentive parameter

✓k+1 argmax
✓2⇥

�
herf(✓k, exk+1), ✓i � 1/↵k · k✓ � ✓kk22

.

EndFor
Output: Last iteration incentive parameter ✓k+1 and strategy profile xk+1.

Similar to Algorithm 1, at the core of the convergence of Algorithm 2 is still the step size. This case
is even more complicated, as we need to design ↵k, �k, and ⌫k at the same time. In this paper, a
provably convergent scheme is provided in Section 5.2.

Before closing this section, we remark that the algorithm can be easily adapted to other types of
constraints by using another h✓(x) to model the game dynamics. Particularly, the projected gradient
descent dynamics has very broad applicability. In this case, the algorithm for calculating r✓h✓(x)
and rxh✓(x) is given by, for example, Amos and Kolter [2]. The additional step (4.6) then becomes
unnecessary as it is dedicated to simplex constraints.

5 Convergence Analysis

In this section, we study the convergence of the proposed algorithms. For simplicity, define
D

�
x, x0� =

P
i2N D i

�
xi, xi0�. We make the following assumptions.

Assumption 5.1. The lower-level problem in (3.4) satisfies the following conditions. (1) The strategy
set X i of agent i is a nonempty, compact, and convex subset of Rdi

. (2) For each i 2 N , the
gradient vi✓(·) is Hu-Lipschitz continuous with respect to D , i.e., for all i 2 N and x, x0 2 X ,
kvi✓(x)�vi✓(x

0)k2⇤  H2
u ·D (x, x0). (3) There exist constants ⇢✓, ⇢x > 0 such that for all x 2 X and

7

✓ 2 ⇥, kr✓v✓(x)k2 < ⇢✓, and k[rxv✓(x)]�1k2  1/⇢x. (4) For all ✓ 2 ⇥, the equilibrium x⇤(✓) of
the game is strongly stable with respect to D , i.e., for all x 2 X ,

P
i2N �i · hvi✓(x), xi

⇤(✓)� xii �
D (x⇤(✓), x).
Assumption 5.2. The upper-level problem in (3.4) satisfies the following properties. (1) The set ⇥
is compact and convex. The function f⇤(✓) is µ-strongly convex and rf⇤(✓) has 2-norm uniformly
bounded by M . (2) The extended gradient erf(✓, x) is eH-Lipschitz continuous with respect to D ,
i.e., for all x, x0 2 X , kerf(✓, x)� erf(✓, x0)k22  eH2 ·D (x, x0).

Assumption 5.3. Define the filtration by F✓
0 = {✓0}, Fx

0 = ;, F✓
k = F✓

k�1 [{xk�1, ✓k}, and
Fx

k = Fx
k�1 [{✓k, xk}. We assume (1) the feedback bvk is an unbiased estimate, i.e., for all i 2 N ,

we have E[bvik | Fx
k] = vi✓k(xk); (2) The feedback bvk has bounded mean squared estimation errors,

i.e., there exists �u > 0 such that E[kbvik � vi✓k(xk)k2⇤ | Fx
k]  �2u for all i 2 N .

Below we discuss when the proposed assumptions hold, and if they are violated, how would our
algorithm works. Assumption 5.1 includes the condition that x⇤(✓) is strongly stable. In this case,
it is the unique Nash equilibrium of the game [34]. It is also a common assumption in the analysis
of the mirror descent dynamics itself [13]. We provide sufficient conditions for checking strong
stability in Appendix B.1. We refer the readers to Section 6 for an explanation of how to extend our
algorithm when this assumption is violated. Assumption 5.2 includes the convexity of the upper-level
problem, which is usually a necessary condition to ensure global convergence. Yet, without convexity,
our algorithm can still converge to a local minimum. Assumption 5.3 becomes unnecessary if we
simply assume that the environment is deterministic. In this case, the accurate value of vi✓(x) is
available. Yet, if the noises are added to the feedback, assuming that the noisy feedback is unbiased
and bounded is still reasonable.

5.1 Unconstrained Game

In this part, we establish the convergence guarantee of Algorithm 1 for unconstrained games. We
define the optimality gap ✏✓k and the equilibrium gap ✏xk+1 as

✏✓k := E
⇥
k✓k � ✓⇤k22

⇤
, ✏xk+1 := E

h
D

�
x⇤(✓k), xk+1

�i
.

We track such two gaps as the convergence criteria in the subsequent results.
Theorem 5.4. For Algorithm 1, set the step sizes ↵k = ↵/(k + 1), �k = �/(k + 1)2/3, and
�i
k = �i · �k with constants ↵ > 0 and � > 0 satisfying

�  1/N ·H2
uk�k22, ↵/�3/2  1/12 ·H

eHH⇤,

where H⇤ = ⇢✓/⇢x. Suppose that Assumptions 5.1-5.3 hold, then we have

✏✓k = O(k�2/3), ✏xk = O(k�2/3).

Proof. See Appendix C for detailed proof and a detailed expression of convergence rates.

5.2 Simplex-Constrained Game

In this part, we establish the convergence guarantee of Algorithm 2 for simplex constrained games.
We still define optimality gap ✏✓k as ✏✓k = E

⇥
k✓k � ✓⇤k22

⇤
. Yet, corresponding to (4.6), we track e✏xk+1

as a measure of convergence for the strategies of the agents, which is defined as

e✏xk+1 = E
h
D

�
ex⇤(✓k), exk+1

�i
,

where ex⇤(✓k) = (1� ⌫k) · x⇤(✓k) + ⌫k · 1/di. We are now ready to give the convergence guarantee
of Algorithm 2.
Theorem 5.5. For Algorithm 2, set the step sizes ↵k = ↵/(k+1)1/2, �k = �/(k+1)2/7, �i

k = �i ·�k,
and ⌫k = ⌫/(k + 1)4/7 with constants ↵ > 0 and � > 0 satisfying

�  1/6 ·NH2
uk�k22, ↵/�3/2  1/7 · eH eH⇤,

8

where eH⇤ = (1 + d)⇢✓/⇢x. Suppose that Assumptions 5.1-5.3 hold. If there exists some constant
V⇤ > 0 such that kv✓(x⇤(✓))k1  V⇤ for any ✓ 2 ⇥, we then have

✏✓k = O(k�2/7), e✏xk = O(k�2/7).

Proof. See Appendix D for detailed proof and a detailed form of the convergence rates.

6 Extensions to Games with Multiple Equilibria

We then briefly discuss how to apply our algorithms when the lower-level game has multiple equilibria.

Case I: If the function v✓(x) = (vi✓(x))i is strongly monotone in the neighbourhood of each
equilibrium, then all equilibria are strongly stable in a neighbourhood and hence isolated [38]. In this
case, our algorithms can be directly applied as rxv✓(x) is non-singular in these neighborhoods. It is
commonly believed that the most likely equilibrium is the one reached by the game dynamics [52];
our algorithm naturally converges to this one.

Case II: If the function v✓(x) = (vi✓(x))i is monotone but not strongly monotone, then the equilib-
rium set is a convex and closed region [34]. This case is challenging, as the matrix rxv✓(x) needed
to be inverted would become singular. Nevertheless, we can simply assume the agents are bounded
rational [42, 1, 33]. The bounded rationality would result in a quantal response equilibrium for
predicting the agents’ response. We refer the readers to Appendix F for a detailed explanation (with
numerical examples for illustration). Here we briefly sum up the key takeaways: (1) it is equivalent
to add a regularizer ⌘i · (log(xi + ✏) + 1) to vi✓(x) for some ⌘i > 0 and ✏ � 0; (2) as long as ✓ > 0,
the strong stability condition in Assumption 5.1 would then be satisfied, hence a unique equilibrium
would exist; (3) as long as ✏ > 0, the Lipschitz continuous condition in Assumption 5.1 will also not
be violated. In a nutshell, the bounded rationality assumption can simultaneously make our model
more realistic and satisfy the assumptions in Section 5.

7 Numerical Experiments

In this section, we conduct two numerical experiments to test our algorithms. All numerical results
reported in this section were produced either on a MacBook Pro (15-inch, 2017) with 2.9 GHz
Quad-Core Intel Core i7 CPU.

Pollution Control via Emission Tax. We first consider the oligopoly model introduced in Example
3.1. We assume that producing ai units of output, firm i would generate ei = diai units of emissions.
We consider the following social welfare function [44]

W (a) =

Z Pn
i=1 ai

0
(p0 � � · q) dq �

nX

i=1

ci · qi � ⌧ ·
nX

i=1

diai,

where the first term is the consumers’ surplus, the second term is the total production cost, and the
third term is the social damage caused by pollution. To maximize social welfare, an authority can
impose emission taxes on the productions. Specifically, whenever producing ai units of output, firm i
could be charged ⇡i · ai, where ⇡i is specialized for the firm i. In the experiment, we set n = 100,
p0 = 100, � = 1, ⌧ = 10, and di = 10 � exp(ci) + ✏i, where {ci}100i=1 are evenly spaced between
1 and 2 and {✏i}100i=1 are the white noises. Under this setting, ci and ei are negatively correlated,
which is realistic because if a firm hopes to reduce their pollution by updating their emission control
systems, the production cost must be increased accordingly.

Through this small numerical example, we hope to illustrate that the single-loop scheme developed
in this paper is indeed much more efficient than previous double-loop algorithms. To this end, we
compare our algorithm with two double-loop schemes proposed by Li et al. [25]. In both approaches,
the lower-level equilibrium problem is solved exactly first at each iteration. But afterwards, the upper-
level gradients are respectively obtained via automatic differentiation (AD) and implicit differentiation
(ID). To make a fair comparison, the same hyperparameters — including the initial solutions, the
learning rates, and the tolerance values for both upper- and lower-level problems — are employed for
the tested algorithms (double-loop AD, double-loop ID, and our algorithm).

9

Table 1 reports statistics related to the computation performance, including the total CPU time, the
total iteration number, and the CPU time per iteration. The results reveal that all tested algorithm
take a similar number of iterations to reach the same level of precision. However, the running time
per iteration required by our algorithm is significantly lower than the two double-loop approaches.
Hence, in general, our scheme is more efficient.

Table 1: Performance of the tested algorithms for solving the emission tax design problem.

Method Double-loop AD Double-loop ID Our algorithm

Total CPU time (s) 71.56 11.29 2.09
Total iteration number 519 626 813
Time per iteration (ms) 137.89 18.04 2.57

Second-Best Congestion Pricing. We then consider the routing game model introduced in Example
3.2. To minimize the total travel delay, an authority on behalf of the public sector could impose
appropriate tolls on selected roads [49]. This problem of determining tolls is commonly known as
the congestion pricing problem. The second-best scheme assumes that only a subset of links can be
charged [48]. Specifically, we write ⇡ 2 R|E|

+ as the toll imposed on all the links and Etoll as the set of
tollable links. We model total cost for a traveler selecting a path a 2 A as

cia(⇡, q) =
X

e2E

�
te(xe) + ⇡e

�
· �eia + ⌘ ·

�
log(qia) + 1

�
,

where we add an extra term (log(qia) + 1) to characterize the uncertainties in travelers’ route choices
[20, 5]. It results in a quantal response equilibrium, as discussed in Section 6. We test our algorithm
on a real-world traffic network: the Sioux-Falls network (See Lawphongpanich and Hearn [24] for its
structure). We select 20 links (11, 35, 32, 68, 46, 21, 65, 52, 71, 74, 33, 64, 69, 14, 18, 39, 57, 48, 15,
51) for imposing congestion tolls.

We run Algorithm 2 to solve the problem and compare 4 different settings on the selection of step
sizes. Setting A: ↵k = ↵/(k + 1)1/2, �k = �/(k + 1)2/7, and ⌫k = ⌫/(k + 1)4/7. It ensures
convergence according to Theorem 5.5. Setting B: ↵k = ↵/(k + 1)1/2, �k = �/(k + 1)1, and
⌫k = ⌫/(k + 1)4/7. It only increases the decreasing rate of the step size in the inner loop. Setting C:
↵k = ↵/(k + 1)1, �k = �/(k + 1)1, and ⌫k = ⌫/(k + 1)1. It assumes that all step sizes decrease
based on the classic O(1/k) rate. Setting D: ↵k = ↵/(k+1)1/2, �k = �/(k+1)2/7, and ⌫k = 0. It
does not adopt the mixing step proposed in our paper. We add white noise to the costs received by the
agents based on Gaussian distributions and run our algorithm under each setting with 10 times. The
mean value of upper-level optimality gaps and lower-level equilibrium gaps are reported in Figure 1
(the shadowed areas are plotted based on "mean ± std" area over all sampled trajectories).

Figure 1: Comparison across different algorithms and step sizes when solving the second-best
congestion pricing problem.

Below we summarize a few observations. First, without the mixing step proposed in our paper, the
algorithm does hit the boundary too early. The algorithm fails after just a few iterations. It verifies
our earlier claim that directly extending previous methods [21, 9] designed for bilevel optimization
problems to MPECs is problematic. Second, the step size given by Theorem 5.5 ensures the fastest
and the most stable convergence.

10

Acknowledgments and Disclosure of Funding

Mingyi Hong’s research is funded by NSF under the award numbers CIF-1910385 and CMMI-
1727757. Yu (Marco) Nie’s research is funded by NSF under the award number CMMI-2225087.
Zhaoran Wang’s research is funded by NSF under the award number ECCS-2048075.

References
[1] Ahmed, Z., Le Roux, N., Norouzi, M., and Schuurmans, D. (2019). Understanding the impact of

entropy on policy optimization. In International conference on machine learning, pages 151–160.
PMLR.

[2] Amos, B. and Kolter, J. Z. (2017). Optnet: Differentiable optimization as a layer in neural
networks. In Proceedings of the 34th International Conference on Machine Learning, pages
136–145.

[3] Anandalingam, G. and Friesz, T. L. (1992). Hierarchical optimization: An introduction. Annals
of Operations Research, 34(1):1–11.

[4] Bai, S., Kolter, J. Z., and Koltun, V. (2019). Deep equilibrium models. In Advances in Neural
Information Processing Systems, pages 688–699.

[5] Bar-Gera, H. and Boyce, D. (1999). Route flow entropy maximization in origin-based traffic
assignment. In 14th International Symposium on Transportation and Traffic TheoryTransportation
Research Institute.

[6] Björnerstedt, J. and Weibull, J. W. (1994). Nash equilibrium and evolution by imitation. Technical
report, IUI Working Paper.

[7] Bracken, J. and McGill, J. T. (1973). Mathematical programs with optimization problems in the
constraints. Operations Research, 21(1):37–44.

[8] Buchanan, J. M. and Stubblebine, W. C. (1962). Externality. In Classic papers in natural
resource economics, pages 138–154. Springer.

[9] Chen, T., Sun, Y., and Yin, W. (2021). A single-timescale stochastic bilevel optimization method.
arXiv preprint arXiv:2102.04671.

[10] Colson, B., Marcotte, P., and Savard, G. (2007). An overview of bilevel optimization. Annals of
operations research, 153(1):235–256.

[11] Dafermos, S. (1980). Traffic equilibrium and variational inequalities. Transportation Science,
14(1):42–54.

[12] Dafermos, S. (1983). An iterative scheme for variational inequalities. Mathematical Program-
ming, 26(1):40–47.

[13] D’Orazio, R., Loizou, N., Laradji, I., and Mitliagkas, I. (2021). Stochastic mirror descent:
Convergence analysis and adaptive variants via the mirror stochastic polyak stepsize. arXiv
preprint arXiv:2110.15412.

[14] Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of
deep networks. In International Conference on Machine Learning, pages 1126–1135. PMLR.

[15] Franceschi, L., Donini, M., Frasconi, P., and Pontil, M. (2017). Forward and reverse gradient-
based hyperparameter optimization. In International Conference on Machine Learning, pages
1165–1173. PMLR.

[16] Friedman, M. and Friedman, R. (1990). Free to choose: A personal statement. Houghton
Mifflin Harcourt.

[17] Friesz, T. L., Tobin, R. L., Cho, H.-J., and Mehta, N. J. (1990). Sensitivity analysis based heuris-
tic algorithms for mathematical programs with variational inequality constraints. Mathematical
Programming, 48(1-3):265–284.

11

[18] Greenwald, B. C. and Stiglitz, J. E. (1986). Externalities in economies with imperfect informa-
tion and incomplete markets. The quarterly journal of economics, 101(2):229–264.

[19] Harker, P. T. and Pang, J.-S. (1988). Existence of optimal solutions to mathematical programs
with equilibrium constraints. Operations research letters, 7(2):61–64.

[20] Hazelton, M. L. (1998). Some remarks on stochastic user equilibrium. Transportation Research
Part B: Methodological, 32(2):101–108.

[21] Hong, M., Wai, H.-T., Wang, Z., and Yang, Z. (2020). A two-timescale framework for bilevel op-
timization: Complexity analysis and application to actor-critic. arXiv preprint arXiv:2007.05170.

[22] Jiang, H., Chen, Z., Shi, Y., Dai, B., and Zhao, T. (2021). Learning to defend by learning
to attack. In International Conference on Artificial Intelligence and Statistics, pages 577–585.
PMLR.

[23] Krichene, W., Krichene, S., and Bayen, A. (2015). Convergence of mirror descent dynamics in
the routing game. In 2015 European Control Conference (ECC), pages 569–574. IEEE.

[24] Lawphongpanich, S. and Hearn, D. W. (2004). An mpec approach to second-best toll pricing.
Mathematical programming, 101(1):33–55.

[25] Li, J., Yu, J., Nie, Y. M., and Wang, Z. (2020). End-to-end learning and intervention in games.
Advances in Neural Information Processing Systems, 33.

[26] Li, J., Yu, J., Wang, Q., Liu, B., Wang, Z., and Nie, Y. M. (2022). Differentiable bilevel
programming for stackelberg congestion games. arXiv preprint arXiv:2209.07618.

[27] Liu, H., Simonyan, K., and Yang, Y. (2018). Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055.

[28] Liu, R., Gao, J., Zhang, J., Meng, D., and Lin, Z. (2021). Investigating bi-level optimiza-
tion for learning and vision from a unified perspective: A survey and beyond. arXiv preprint
arXiv:2101.11517.

[29] Luketina, J., Berglund, M., Greff, K., and Raiko, T. (2016). Scalable gradient-based tuning
of continuous regularization hyperparameters. In International conference on machine learning,
pages 2952–2960. PMLR.

[30] Luo, Z.-Q., Pang, J.-S., and Ralph, D. (1996). Mathematical programs with equilibrium
constraints. Cambridge University Press.

[31] Maclaurin, D., Duvenaud, D., and Adams, R. (2015). Gradient-based hyperparameter opti-
mization through reversible learning. In International conference on machine learning, pages
2113–2122. PMLR.

[32] Maskin, E. S. (1994). The invisible hand and externalities. The American Economic Review,
84(2):333–337.

[33] Melo, E. (2021). On the uniqueness of quantal response equilibria and its application to network
games. Economic Theory, pages 1–45.

[34] Mertikopoulos, P. and Zhou, Z. (2019). Learning in games with continuous action sets and
unknown payoff functions. Mathematical Programming, 173(1-2):465–507.

[35] Metcalf, G. E. and Weisbach, D. (2009). The design of a carbon tax. Harv. Envtl. L. Rev.,
33:499.

[36] Metz, L., Poole, B., Pfau, D., and Sohl-Dickstein, J. (2016). Unrolled generative adversarial
networks. arXiv preprint arXiv:1611.02163.

[37] Mguni, D., Jennings, J., Sison, E., Valcarcel Macua, S., Ceppi, S., and Munoz de Cote, E.
(2019). Coordinating the crowd: Inducing desirable equilibria in non-cooperative systems. In
Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems,
pages 386–394.

12

[38] Nagurney, A. (2013). Network economics: A variational inequality approach, volume 10.
Springer Science & Business Media.

[39] Nash, J. (1951). Non-cooperative games. Annals of mathematics, pages 286–295.

[40] Nemirovskij, A. S. and Yudin, D. B. (1983). Problem Complexity and Method Efficiency in
Optimization. A Wiley-Interscience publication. Wiley.

[41] Parise, F. and Ozdaglar, A. (2017). Sensitivity analysis for network aggregative games. In 2017
IEEE 56th Annual Conference on Decision and Control (CDC), pages 3200–3205. IEEE.

[42] Prashker, J. N. and Bekhor, S. (2004). Route choice models used in the stochastic user
equilibrium problem: a review. Transport reviews, 24(4):437–463.

[43] Rajeswaran, A., Finn, C., Kakade, S., and Levine, S. (2019). Meta-learning with implicit
gradients. arXiv preprint arXiv:1909.04630.

[44] Requate, T. (1993). Pollution control in a cournot duopoly via taxes or permits. Journal of
Economics, 58(3):255–291.

[45] Schmeidler, D. (1973). Equilibrium points of nonatomic games. Journal of statistical Physics,
7(4):295–300.

[46] Scutari, G., Palomar, D. P., Facchinei, F., and Pang, J.-S. (2010). Convex optimization, game
theory, and variational inequality theory. IEEE Signal Processing Magazine, 27(3):35–49.

[47] Smith, A. (1791). An Inquiry into the Nature and Causes of the Wealth of Nations, volume 1.
Librito Mondi.

[48] Verhoef, E. T. (2002). Second-best congestion pricing in general networks. heuristic algorithms
for finding second-best optimal toll levels and toll points. Transportation Research Part B:
Methodological, 36(8):707–729.

[49] Vickrey, W. S. (1969). Congestion theory and transport investment. The American Economic
Review, 59(2):251–260.

[50] von Stackelberg, H. (1952). The theory of the market economy. Oxford University Press.

[51] Wardrop, J. G. (1952). Some theoretical aspects of road traffic research. In Proceedings of the
Institution of Civil Engineers, volume 1, pages 325–362.

[52] Weibull, J. W. (1997). Evolutionary game theory. MIT press.

[53] Wu, Y., Ren, M., Liao, R., and Grosse, R. (2018). Understanding short-horizon bias in stochastic
meta-optimization. arXiv preprint arXiv:1803.02021.

13

	Introduction
	Related work
	Problem Formulation
	Algorithm
	Unconstrained Game
	Simplex-Constrained Game

	Convergence Analysis
	Unconstrained Game
	Simplex-Constrained Game

	Extensions to Games with Multiple Equilibria
	Numerical Experiments
	Notations
	Detailed Discussions on the Games
	Strong Stability
	Sensitivity of Nash Equilibrium

	Proof of Theorem 5.4
	Proof of Lemma C.1
	Proof of Lemma C.2

	Proof of Theorem 5.5
	Proof of Lemma D.1
	Proof of Lemma D.2

	Properties of the Bregman Divergence
	Extensions to Games with Multiple Equilibria

