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Abstract
Self-detection for Large Language Model001
(LLM) seeks to evaluate the LLM output trusta-002
bility by leveraging LLM’s own capabilities,003
alleviating the output hallucination issue. How-004
ever, existing self-detection approaches only005
retrospectively evaluate answers generated by006
LLM, typically leading to the over-trust in in-007
correctly generated answers. To tackle this008
limitation, we propose a novel self-detection009
paradigm that considers the comprehensive an-010
swer space beyond LLM-generated answers. It011
thoroughly compares the trustability of multi-012
ple candidate answers to mitigate the over-trust013
in LLM-generated incorrect answers. Build-014
ing upon this paradigm, we introduce a two-015
step framework, which firstly instructs LLM016
to reflect and provide justifications for each017
candidate answer, and then aggregates the justi-018
fications for comprehensive target answer eval-019
uation. This framework can be seamlessly in-020
tegrated with existing approaches for superior021
self-detection. Extensive experiments on six022
datasets spanning three tasks demonstrate the023
effectiveness of the proposed framework.024

1 Introduction025

Large Language Model (LLM) typically suffers026

from the hallucination issue, (Zhang et al., 2023c;027

Li et al., 2023a; Golovneva et al., 2022; Bang et al.,028

2023), which significantly undermines the trustabil-029

ity of LLM’s outputs. A promising research direc-030

tion for evaluating the output trustability and identi-031

fying incorrect outputs is self-detection (Zhao et al.,032

2023c; Miao et al., 2023; Manakul et al., 2023).033

Given a question, self-detection aims to leverage034

LLM’s own ability to evaluate the trustability of035

its generated answers, without relying on external036

knowledge sources or specifically trained detec-037

tion models. This paper investigates self-detection038

methods tailored for black-box API LLMs due to039

their excellent performance and the inherent chal-040

lenge posed by limited output information (Achiam041

et al., 2023; OpenAI, 2024).042

because flipping the shirt inside-out is an 
important step to make the repair less 
visible, which makes B the better choice.  

Read the given question and select 
the most appropriate answer.
How do you repair a torn shirt?
A. Prepare the needle and thread. Pull 
together the fabric and sew together.
B. Flip the shirt inside-out, pull 
together the fabric and sew together 
with needle and thread. 

A  (incorrect answer)

I am 70% sure this is correct!

Generate a 
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Figure 1: An illustration of Think Twice before Trusting
framework for mitigating the over-trust issue in LLM
self-detection. LLM is instructed to reflect and generate
justification on the trustability of each answers before
evaluating the trustability of the target answer.

Previous studies in self-detection can be broadly 043

categorized into two paradigms (cf. Figure 2). The 044

first paradigm is confidence calibration, aiming 045

to estimate LLM’s confidence on the generated 046

answer to align with the actual answer accuracy 047

via multi-answer sampling and aggregation (Xiong 048

et al., 2023; Tian et al., 2023b; Si et al., 2022; Jiang 049

et al., 2023). The second one is self-evaluation, 050

which directly examines the compatibility of ques- 051

tion and answer by designing various prompt strate- 052

gies (Miao et al., 2023; Kadavath et al., 2022; Weng 053

et al., 2023). These two paradigms have also been 054

combined to enhance self-detection capabilities 055

(Chen and Mueller, 2023; Ren et al., 2023a). 056

However, both self-detection paradigms have 057

shown a significant drawback: an inclination to- 058

wards over-trusting the incorrect answers generated 059

by LLM (Si et al., 2022; Xiong et al., 2023; Jiang 060

et al., 2023; Kadavath et al., 2022). We argue that 061

one reason may be that both paradigms merely eval- 062

uate LLM-generated answers, while LLM contains 063

an inherent bias towards trusting its own genera- 064

tions (Mielke et al., 2022; Lin et al., 2022), leading 065

1



to serious over-trust in LLM-generated incorrect066

answers. An ideal self-detection paradigm should067

consider a more comprehensive answer space be-068

yond LLM’s generations. By evaluating on other069

potentially correct answers in a broader answer070

space, the strong trustability in these answers can071

counterbalance the excessive trust in the incorrect072

LLM answers, thus alleviating the over-trust issue.073

In this light, we introduce a new comprehensive074

answer evaluation paradigm involving the consider-075

ation of multiple candidate answers in the answer076

space to enhance self-detection (cf. Figure 2). This077

paradigm meticulously evaluates each answer’s078

trustability as a correct answer to the question and079

aggregates these evaluations to enhance the self-080

detection of the target LLM answer. The biased081

trust in the LLM-generated incorrect answers can082

be alleviated through the trustability comparison083

with other more trustable answers. Our preliminary084

experiments reveal the efficacy of considering more085

comprehensive answers to confront over-trust (cf.086

Section 2). To summarize, two key considerations087

arise to instantiate this new paradigm: 1) resist-088

ing the inherent bias of LLM to precisely evaluate089

the trustability of each question-answer pair, and090

2) aggregating these evaluations in the trustability091

evaluation of the target answer.092

To this end, we present a novel self-detection093

framework to tackle the over-trust issue of LLMs,094

named Think Twice before Trusting (T 3) (cf. Fig-095

ure 1). Our framework pushes LLM to reflect and096

justify from different answers’ perspectives before097

arriving at the trustability on the target answer.098

Firstly, the LLM is instructed to generate justifi-099

cations regarding the potential correctness of each100

answer. Subsequently, a prompt-based method is101

employed to integrate these justifications into joint102

evaluation for the target answer. Extensive exper-103

iments on six datasets across three tasks on three104

different LLMs show improved performance of T 3105

over methods from existing paradigms. Notably,106

T 3 can be combined with existing methods for su-107

perior self-detection. Our analysis also reveals T 3’s108

strong robustness and effective over-trust mitiga-109

tion. Our contributions are three-fold.110

• We introduce a novel self-detection paradigm111

for mitigating the over-trust issue in LLM, ad-112

dressing the limitation of existing paradigms by113

reflection in the broader answer space.114

• We present a novel T 3 framework to implement115

the comprehensive answer evaluation paradigm,116
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Figure 2: Two existing paradigms of self-detection and
our new comprehensive answer evaluation paradigm.

which can be seamlessly integrated with existing 117

self-detection methods. 118

• We conduct extensive experiments on three NLP 119

tasks with six datasets, validating the rationality 120

and effectiveness of the proposed framework. 121

2 Problem Formulation 122

LLM Self-Detection. We formulate the task of 123

self-detection for LLM as follows. Given the input 124

comprising of question q combined with prompt 125

p, which consists of an instruction and optional 126

in-context examples, LLM can generate the answer 127

a (Brown et al., 2020), denoted as the target an- 128

swer. Thereafter, self-detection aims to evaluate 129

the trustability of a by LLM’s own ability, gen- 130

erally in the form of a detection score c ∈ R 1. 131

The detection score c can be used for indicating 132

the actual accuracy of a, where low c values in- 133

dicate potential incorrect answers. Denoting the 134

self-detection strategy as a function SD(·), this 135

process can be abstracted as 136

a = LLM(p(q)), (1) 137

c = SD(LLM(·), q, a). (2) 138

In the following, we illustrate the existing two 139

paradigms for self-detection, i.e., confidence cali- 140

bration and self-evaluation, and introduce our pro- 141

posed comprehensive answer evaluation paradigm. 142

Confidence Calibration. Confidence calibration 143

aims to estimate LLM’s level of certainty on the an- 144

swer a, e.g., estimating the LLM output probability 145

1If the result of self-detection is a class label (trustable or
untrustable), the detection score can be formulated as 1 or 0.
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of a, where the obtained confidence score as the146

detection score c aims to calibrate with the actual147

answer accuracy. Xiong et al. conclude a general148

three-step confidence calibration process for LLM149

as prompting, answer sampling, aggregation (cf.150

Figure 2). Denoting the prompt for confidence cal-151

ibration as pc(·) and the aggregation function as152

Aggr(·), this paradigm can be abstracted as,153

c = Aggr(a, {a1, ..., aD}), (3)154

where ai = LLM(pc(q)), i ∈ {1, ..., D}.155

where D > 1 refers to the number of sampled an-156

swers. For example, self-consistency (Wang et al.,157

2022; Si et al., 2022) aggregates the probability of a158

in the sampled outputs of p(q) (e.g., using nucleus159

sampling (Holtzman et al., 2020)). Formally,160

c =

∑D
i=1 1(ai = a)

D
, (4)161

where ai = LLM(p(q)), i ∈ {1, ..., D}.162

Besides, the Top-K verbalized methods (Lin et al.,163

2022; Tian et al., 2023b) leverage a well-designed164

prompt pb (cf. Appendix A.3) to instruct the LLM165

to sample the K most likely answers and output166

their corresponding probabilities in one response:167

[{a1, c1}, ...{aK , cK}] = LLM(pb(q)). (5)168

where [·] denotes the concatenation of the K most169

likely answers with their probabilities. The proba-170

bility of a in the response is utilized as its detection171

score c (c = 0 if a is not in the K answers).172

However, confidence calibration methods are ob-173

served with severe over-trust issue on LLM, as-174

signing high confidence score in some incorrectly175

generated answers (Si et al., 2022; Xiong et al.,176

2023). In fact, LLM has a bias to blindly trust its177

generated answers, leading to difficulties in distin-178

guishing the correctness of its generated answers179

(Huang et al., 2023b; Ling et al., 2023; Mielke et al.,180

2022; Ren et al., 2023b). Although some attempts181

have been made to reduce high confidence in LLM182

and achieve better calibration (Jiang et al., 2023;183

Zhao et al., 2024), the over-trust issue still remains184

a severe problem towards effective self-detection.185

Self-Evaluation. Self-evaluation methods con-186

catenate q and a and leverage various designed187

prompts to instruct LLM in self-evaluating the188

correctness of a from different perspectives. The189

prompt strategy examines the matching of q, a by190

integrating the self-evaluation output o. Denoting 191

the prompt strategy as a function ES(·), this pro- 192

cess can be summarized as 193

c = ES(q, a, o), (6) 194

where o = LLM(pt(q, a)). 195

where pt represents one prompt for self-evaluation. 196

The shortcoming of self-evaluation is that many 197

approaches under this paradigm are specifically 198

designed for the mathematical question answer- 199

ing task, including step-wise checking on Chain- 200

of-Thoughts (CoT) reasoning (Miao et al., 2023), 201

completing masked q using a (Weng et al., 2023), 202

and natural program (Ling et al., 2023), limiting its 203

applicability. The general method P(True) (Kada- 204

vath et al., 2022) is straightforward and still demon- 205

strates over-trust to incorrect LLM-generated an- 206

swers. It directly asks LLM whether a is the true 207

answer to q via the prompt pr (cf. Appendix A.3), 208

and uses the probability of “True” in the sampled 209

responses as c. Formally, 210

c =

∑D
i=1 1(oi = True)

D
, (7) 211

where oi = LLM(pr(q, a)), i ∈ {1, ..., D}. 212

The two paradigms can be combined for better self- 213

detection (Xiong et al., 2023; Chen and Mueller, 214

2023; Ren et al., 2023a; Agrawal et al., 2023). 215

A New Comprehensive Answer Evaluation 216

Paradigm. A notable limitation of the existing 217

two paradigms is that their evaluation merely in- 218

volves LLM-generated answers ai, in which LLM 219

may exhibit over-trust. We argue that such biased 220

over-trust could be alleviated if LLM had thor- 221

oughly compared the trustability of more candi- 222

date answers of q beyond LLM-generated answers. 223

We consider the multi-choice question answering 224

setting where a comprehensive answer space is pro- 225

vided. 2 If other answers in q’s answer space had 226

a strong tendency to be correct, the high detection 227

score for LLM-generated incorrect a could be di- 228

minished, reducing the over-trust issue. 229

In this light, we propose a novel comprehensive 230

answer evaluation paradigm that considers N po- 231

tential answers in q’s answer space, denoted as 232

{aq1, a
q
2, ..., a

q
N}. First, LLM evaluates the trusta- 233

bility of each (q, aqi ) pair using the prompt pe. 234

ei = LLM(pe(q, aqi )), i ∈ {1, ..., N}. (8) 235

2For other settings, the answer space can be obtained via
answer retrieval or additional model prediction.
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Figure 3: Comparison of self-detection methods on
CAD. w/ cf denotes our strategy with counterfactual
data. The AUROC values are shown in the x-axis. The
boxes on the left and right represent the detection scores
of incorrect and correct instances, respectively.

Then, the obtained evaluations e1, ..., eN can be in-236

tegrated into existing paradigms to derive a more re-237

fined detection score for a by adjusting the prompts.238

For example, by adjusting the pc for confidence239

calibration (cf. Eq 3) into a new prompt pv, the240

detection score for a can be derived as,241

c = Aggr(a, {a1, ..., ai}), (9)242

where ai = LLM(pv(q, e1, ..., eN )), i ∈ {1, ..., D}.243

The evaluations can also be integrated into self-244

evaluation by adjusting the prompt pt in Eq 6.245

Preliminary Experiments. We conduct a prelim-246

inary experiment to validate that considering more247

answers in the answer space to adjust the detection248

score is beneficial for self-detection.249

Our hypothesis is that the evaluation of other an-250

swers can be leveraged to mitigate over-trust in the251

incorrect a. To demonstrate this, we employ coun-252

terfactual questions q̄, which is minimally edited253

from q to have a different label within q’s answer254

space. We aim to utilize the label difference be-255

tween q and q̄ to identify unreliable LLM-generated256

answer for q and adjust its detection score. Sup-257

pose the LLM-generated answers for q̄ and q are258

ā and a, respectively. If ā equals a, a and ā must259

have at least one wrong answer since q̄ and q have260

different labels. Thus the detection score of a on261

p(q) (denoted as ca) should be reduced according262

to the detection score of ā on p(q̄) (denoted as cā)263

because the increasing of cā indicates the weak-264

ened ca. Conversely, if ā differs from a, a and ā265

are relatively trustable, and ca can be an average of266

itself and cā. Formally, ca is re-calculated as267

c =

{
1
2(ca + cā) if a ̸= ā,
1
2(ca +O(cā)) else.

(10)268

where O(cā) denotes the detection score that q̄’s 269

label is not ā. In a k-classification task, we roughly 270

estimate O(cā) =
1

k−1(1− cā). 271

We experiment with the CAD dataset (Kaushik 272

et al., 2019), which contains human-annotated 273

original and counterfactual data pairs for senti- 274

ment analysis (SA) and natural language inference 275

(NLI) tasks. We compare the AUROC with self- 276

consistency and Top-K verbalized methods to eval- 277

uate the self-detection performance on GPT-3.5 278

(see Section 5 and Appendix B for more details). 279

Figure 3 shows the AUROC and the statistics 280

of detection scores for correct and incorrect q, a 281

instances, respectively. We can observe that 1) 282

the self-consistency and Top-K verbalized meth- 283

ods have notable over-trust. The detection scores 284

for incorrect instances have large overlap with the 285

correct ones, making it challenging to distinguish 286

them. 2) Our strategy, denoted as w/ cf, improves 287

AUROC by lowering detection scores on incorrect 288

instances, showing that considering other answers 289

can potentially alleviate the over-trust in incorrect 290

answers. However, human-annotated counterfac- 291

tual data is not easily available (Li et al., 2023b), 292

motivating us to propose the following framework. 293

3 Think Twice Before Assure Framework 294

Implementing the proposed paradigm involves two 295

key considerations. First, given the potential bias 296

of LLM over-trust in the generated answer a, it is 297

essential to develop strategies to resist this bias and 298

thoroughly evaluate the trustability of each answer 299

aqi . Secondly, it is crucial to derive strategies to 300

effectively combine these evaluations for effective 301

self-detection of a. To address these concerns, we 302

introduce the following two-step framework. 303

Step 1: Reflection and Justification. We first 304

instruct LLM to reflect on the trustability of each 305

answer aqi and force LLM to seek justification for 306

aqi as the correct answer of q, as defined by Eq. 8. 307

The LLM is instructed with the prompt pe in Ta- 308

ble 1 to gather comprehensive evidence ei from its 309

knowledge, in order to support the rationality of 310

using aqi to answer q. The rationality of this step 311

is that pe instructs LLM to abduct the justification 312

from q and aqi , which avoids the LLM bias that lies 313

in the generation direction from p(q) to a. As a 314

minor clue, generating CoT explanations from p(q) 315

before a has been validated to be ineffective for 316

calibration (Zhang et al., 2023a). 317
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pe
The task is to [task description].
Question: [q]. Answer choices: [aq1, ..., a

q
N ].

The answer is [aqi ].
Please generate an explanation to try to justify the
answer judgment.

pv

The task is to [task description].
Provide your N best guesses and the probability that
each is correct (0.0 to 1.0) for the following question...
Question: [q]. Answer choices: [aq1, ..., a

q
N ].

Possible explanation 1: [e1]
...
Possible explanation n: [eN ]

Table 1: Prompts used in our T 3 framework. pe prompts
LLM to reflect and generate justification ei for each aqi ,
and pv prompts LLM to estimate confidence according
to different ei.

Step 2: Joint Confidence Calibration. After ob-318

taining the justification ei for each aqi , we choose319

to integrate these ei with a confidence calibration320

method, the Top-K verbalized (cf. Eq. 5) to derive321

the confidence of answer a as the detection score.322

We choose this method due to its capability to gen-323

erate a set of K potential answers and their respec-324

tive probabilities efficiently in a single response,325

where we set K as the number of answers N . As326

indicated in the prompt pv of Table 1, the gener-327

ated justifications ei can be seamlessly integrated328

for confidence calibration of Top-K verbalized.329

An alternative approach to determine the final330

detection score is to put one justification to each331

pv, generating N distinct confidence scores for an-332

swer a, and then compute the averaged confidence333

score as the detection score. We do not choose334

this setting as prompting LLM to estimate from335

different perspectives via a unified prompt is more336

efficient and effective than a simple average of the337

confidence scores (further validated in Section 5.2).338

Moreover, we find that the detection scores are sen-339

sitive to the order of justification in pv, thus we340

shuffle the order of ei in pv and compute the av-341

eraged score. Notably, the T 3 framework can be342

combined with existing approaches, such as prompt343

ensemble (Jiang et al., 2023), and Hybrid method344

which adjust the detection score based on the dif-345

ference with other methods (Xiong et al., 2023).346

4 Related Work347

Confidence Calibration of LLM. Confidence348

calibration has been previously studies in neural349

networks (Guo et al., 2017) and applied in NLP350

models (Desai and Durrett, 2020; Dan and Roth,351

2021; Hu et al., 2023). After the advent of LLM,352

many confidence calibration methods utilize the 353

output token probability, such as semantic uncer- 354

tainty (Kuhn et al., 2023), temperature scaling 355

(Shih et al., 2023), entropy-based (Huang et al., 356

2023c), semantic significance (Duan et al., 2023), 357

and fine-tuning for calibration (Jiang et al., 2021; 358

Lin et al., 2022). Zhang et al. (2023b) also employ 359

model ensemble for calibration. Our research is 360

orthogonal to them, since we focus on black-box 361

API LLM itself. Other recent work suitable for 362

black-box LLM includes fidelity elicitation (Zhang 363

et al., 2024), fact elicitation (Zhao et al., 2024) and 364

perturbation generation (Gao et al., 2024). 365

Self-Evaluation of LLM. LLM self-evaluation 366

often focuses on specific domains, e.g., code gen- 367

eration (Zhou et al., 2023), natural language gen- 368

eration (Lin et al., 2023) and fact checking (Man- 369

akul et al., 2023). The general methods include 370

P(True) (Kadavath et al., 2022) and directly asking 371

LLM (Li et al., 2024b). Feng et al. (2024) also 372

performs answer reflection and employs model col- 373

laboration, yet they still focus on answers generated 374

by LLM. Note that self-detect (Zhao et al., 2023c) 375

is also a general self-evaluation method following 376

the three-step confidence calibration pipeline. 377

Other works that are related but orthogonal to 378

us include training independent models for LLM 379

evaluation (Wang and Li, 2023; Li et al., 2023c; 380

Khalifa et al., 2023; Zhao et al., 2023b; Li et al., 381

2024a), and using external tools for LLM verifi- 382

cation (Min et al., 2023; Ni et al., 2023). They 383

are usually applied to specific domains, while we 384

aim at LLM self-detection for general tasks. Also, 385

fine-tuning LLM for better trustability (An et al., 386

2023; Tian et al., 2023a) is orthogonal to us. 387

Application of LLM Self-Detection. The out- 388

come of self-detection can be applied in many ways 389

to avoid hallucination and erroneous outputs, such 390

as identifying potentially hallucinated generation 391

for knowledge retrieval and verification (Zhao et al., 392

2023a), guided output decoding (Xie et al., 2023), 393

identifying ambiguous questions (Hou et al., 2023), 394

selective generation (Ren et al., 2023a; Zablotskaia 395

et al., 2023), and LLM self-improve (Huang et al., 396

2023a). More applications can be found in this 397

survey (Pan et al., 2023). 398

5 Experiments 399

Setup. We conduct experiments on six datasets 400

across three tasks. IMDB (Maas et al., 2011) and 401
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Flipkart (Vaghani and Thummar, 2023) for SA,402

SNLI (Bowman et al., 2015) and HANS (McCoy403

et al., 2019) for NLI, CommonsenseQA (Talmor404

et al., 2019) and PIQA (Bisk et al., 2020) for com-405

monsense question answering (CQA). For LLMs,406

we utilize GPT-3.5 (gpt-3.5-turbo-1106) from Ope-407

nAI3, GLM-4 (Du et al., 2022) from ZhipuAI4,408

and Gemini (gemini-1.0-pro-001) from Google5.409

Dataset statistics and LLM hyperparameters are410

listed in Appendices A.1 and A.2.411

Compared Methods. We utilize the following412

categories of compared methods. For the first413

paradigm, we include Self-cons (Wang et al., 2022)414

(cf. Eq. 4), CoT-cons, an extension of Self-cons by415

instructing LLM to output the CoT reasoning be-416

fore the answer, Top-K Verb (Tian et al., 2023b)417

(cf. Eq. 5), Hybrid (Xiong et al., 2023), an in-418

tegration of Top-K Verb and Self-cons/CoT-cons,419

where we show the better results, Self-detect (Zhao420

et al., 2023c), taking the answer entropy of multi-421

ple rephrased questions, and CAPE (Jiang et al.,422

2023), a prompt ensemble method that we imple-423

ment on Top-K Verb. For the second paradigm,424

we utilize the general P(True) (Kadavath et al.,425

2022). Finally, to show the flexibility of T 3 in com-426

bining with existing methods to further improve427

self-detection, we show the performance of Hybrid428

T 3 with Top-K Verb (T 3 + Top-K Verb), and T 3429

with prompt ensemble following CAPE (T 3 + PE).430

For a fair comparison, we generate the target an-431

swer for each dataset with LLM temperature as 0,432

and compare all methods based on this target an-433

swer (cf. Eq 1). More details are in Appendices A.3434

and A.4, including a comparison on the number of435

API calls showing T 3’s reasonable cost.436

Evaluation Metrics. We mainly use AUROC437

(Boyd et al., 2013) and PRAUC (Manning and438

Schutze, 1999) to evaluate the self-detection ability.439

They assess the effectiveness of detection scores in440

distinguishing answer correctness using true pos-441

itive/false positive and precision/recall curves, re-442

spectively. Additionally, we use the Expected Cal-443

ibration Error (ECE) to evaluate the calibration444

performance for confidence calibration methods.445

5.1 Results446

Table 2 shows the performance of the compared447

methods on GPT-3.5. We can observe the follow-448

3https://openai.com/blog/openai-api.
4https://open.bigmodel.cn/.
5https://gemini.google.com/app.

IMDB Flipkart

AUROC ↑ PRAUC ↑ ECE ↓ AUROC ↑ PRAUC ↑ ECE ↓

Self-cons 65.5 96.8 0.115 71.4 91.4 0.106
CoT-cons 75.6 97.7 0.104 72.8 91.9 0.133
Top-K Verb 82.8 98.5 0.242 79.3 93.7 0.131
P(True) 80.1 98.1 0.104 54.5 86.7 0.243
Hybrid 87.0 98.8 0.183 79.5 94.2 0.176
Self-detect 68.9 97.1 0.320 71.2 91.4 0.146
CAPE 87.7 98.9 0.096 76.4 93.9 0.107

T 3 87.9 98.9 0.045 81.3 94.5 0.015
+ Top-K Verb 88.0 98.9 0.052 81.6 94.9 0.019
+ PE 88.1 98.9 0.056 74.2 92.9 0.157

(a) SA.
SNLI HANS

AUROC ↑ PRAUC ↑ ECE ↓ AUROC ↑ PRAUC ↑ ECE ↓

Self-cons 63.3 71.4 0.047 56.0 64.8 0.051
CoT-cons 66.7 73.8 0.043 59.4 67.9 0.152
Top-K Verb 63.6 74.0 0.089 53.3 64.9 0.273
P(True) 55.4 67.4 0.117 60.8 70.1 0.067
Hybrid 66.7 78.8 0.029 62.0 71.1 0.193
Self-detect 59.3 68.5 0.142 55.3 64.5 0.063
CAPE 69.0 79.6 0.030 71.9 80.1 0.028

T 3 77.9 84.6 0.157 69.9 77.5 0.022
+ Top-K Verb 77.1 84.7 0.024 71.3 79.6 0.030
+ PE 70.8 76.7 0.130 74.5 81.2 0.034

(b) NLI.
CommonsenseQA PIQA

AUROC ↑ PRAUC ↑ ECE ↓ AUROC ↑ PRAUC ↑ ECE ↓

Self-cons 70.7 81.7 0.151 78.6 94.0 0.043
CoT-cons 81.8 88.9 0.049 76.7 94.2 0.097
Top-K Verb 69.4 81.5 0.026 76.8 93.3 0.060
P(True) 62.5 78.0 0.097 71.9 93.9 0.176
Hybrid 77.5 89.0 0.015 82.4 95.5 0.088
Self-detect 67.9 81.5 0.261 68.5 91.0 0.161
CAPE 78.7 88.8 0.021 87.9 97.8 0.067

T 3 83.5 90.7 0.009 83.4 95.2 0.016
+ Top-K Verb 85.8 93.4 0.017 85.3 96.2 0.010
+ PE 84.4 92.1 0.019 90.3 97.9 0.034

(c) CQA.

Table 2: Results of the compared methods on GPT-3.5.
Bold font and underline indicate the best and second
best performance, respectively.

ings. 1) T 3 outperforms all compared methods in 449

AUROC and PRAUC on all datasets except HANS 450

and PIQA, and in ECE on all datasets except SNLI, 451

demonstrating its effectiveness. 2) After combin- 452

ing T 3 with other methods i.e., Top-K Verb and 453

PE, our method surpasses all compared methods on 454

all datasets in the three evaluation metrics, show- 455

ing the potential and flexibility of T 3 in combining 456

with others to further improve self-detection. 3) 457

Hybrid with Top-K Verb usually improves T 3’s 458

performance in AUROC and PRAUC, which is in 459

line with the performance improvement from Self- 460

cons/CoT-cons to Hybrid. 4) CAPE is very com- 461

petitive in AUROC and PRAUC, showing that the 462

self-detection is largely influenced by the prompt. 463

Combining T 3 with PE usually improves T 3 in 464

AUROC and PRAUC except for SNLI and Flip- 465

kart, which is in line with the performance decrease 466

from Top-K Verb to CAPE. This is potentially re- 467
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IMDB Flipkart SNLI IMDB Flipkart SNLI

AUROC↑ PRAUC↑ AUROC↑ PRAUC↑ AUROC ↑ PRAUC ↑ AUROC↑ PRAUC↑ AUROC↑ PRAUC↑ AUROC ↑ PRAUC ↑

T 3 87.9 98.9 81.3 94.5 77.9 84.6 69.9 77.5 83.9 90.9 83.4 95.2
w/ CoT expl 72.4 97.5 76.6 93.4 67.1 75.2 53.7 64.1 78.7 86.8 81.3 94.8
sep expl 86.5 98.8 79.5 94.2 68.5 75.3 54.1 63.8 83.3 92.0 84.0 95.8
w/o shuffle 75.9 98.3 71.7 92.0 70.6 77.6 60.7 67.9 80.3 87.8 80.4 94.3

Table 3: Ablation studies.

lated to the prompt sensitivity of these methods and468

the specific prompts adopted. 5) For other meth-469

ods, CoT-cons outperforms Self-cons in AUROC470

and PRAUC in 5 out of 6 datasets, as many tasks471

performs better with CoT reasoning. P(True) has472

ambivalent results which limits its applicability.473

5.2 In-depth Analysis474

Ablation Studies. We conduct the following ab-475

lation studies to further validate the rationality of476

our framework design. 1) w/ CoT expl: substitut-477

ing e1, ..., e
N in pv with N different CoT reasoning478

generated from p(q) to reveal the rationality of re-479

flection on various answers. 2) sep expl: placing480

a single ei in pv each time and calculating the av-481

eraged detection score to reveal the effectiveness482

of joint considering all ei in one pv. 3) w/o shuffle:483

ablating the order shuffling of ei in pv.484

From Table 3, we can observe that: 1) w/ CoT485

expl largely underperforms T 3 on all three tasks,486

demonstrating the rationality of pushing LLM to487

reflect and justify from each answer’s perspective.488

2) sep expl underperforms T 3 on both SA and NLI489

tasks, showing that jointly considering multiple490

justifications in one prompt is often more benefi-491

cial, and thus we choose this setting. It slightly492

outperforms T 3 on the CQA task, potentially due493

to the higher independency and objectivity of the494

answer choices. 3) w/o shuffle also underperforms495

T 3, indicating that there exists order sensitivity496

for ei. Order shuffling and score average improve497

self-detection by mitigating their position bias.498

Effect on Bias Mitigation. Since our goal of im-499

proving self-detection is to reduce the over-trust500

on incorrect answers, we show the statistics of the501

detection scores for each dataset regarding the an-502

swer correctness in Figure 4 to reveal the mecha-503

nism of T 3. We compare T 3 with Self-cons and504

Top-K Verb which are witnessed with over-trust.505

We can observe that T 3 clearly reduces the detec-506

tion score overlaps between correct and incorrect507

q, a instances on all datasets, and significantly de-508

creases the detection scores on incorrect instances509

in IMDB, Flipkart, SNLI and HANS. Thus, the510

answer accuracy is more separable by the detection511
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Figure 4: Visualization of bias mitigation effect of T 3

which largely reduces the detection score overlaps be-
tween correct (right) and incorrect (left) instances.

score, achieving better self-detection. 512

Effect on Selective Prediction via Detection 513

Score. To show the utility of the detection score, 514

we conduct experiments in selective prediction. 515

The idea of selective prediction is to abstain the 516

LLM-generated answers with low detection score 517

to maintain better accuracy of the remaining in- 518

stances. In Figure 5, we show the accuracy of the 519

remaining instances by abstaining 0% - 50% of 520

instances with the lowest detection scores from T 3. 521

We can observe that by increasing the percentage of 522

abstained instances, the accuracy for these datasets 523

gradually improves around 10% - 30%, and IMDB 524

even achieves 100% accuracy. Naturally, the in- 525

crease for datasets with lower accuracy is generally 526

easier than datasets with higher accuracy. The re- 527

sult shows that T 3 possess strong potential to be 528

applied in selective prediction scenarios. 529
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Figure 5: Accuracy improvement of selective prediction
on T 3 detection scores.

Flipkart HANS CommonsenseQA

asc

Self-cons 72.7 52.7 68.2
CoT-cons 74.4 57.5 80.4
Top-K Verb 80.4 51.8 69.2
T 3 82.2 69.5 82.7

acc

Self-cons 78.3 57.0 68.1
CoT-cons 79.2 57.8 74.3
Top-K Verb 83.9 53.3 67.5
T 3 84.3 69.2 75.0

Table 4: AUROC on two different target answers.

Analysis on the Robustness of T 3. We evaluate530

the robustness of T 3 from three aspects: different531

target answers, different LLMs, and parameter sen-532

sitivity. In addition, we examine prompt sensitivity533

of pe and pv in Appendix C.534

Firstly, the generation of target answer a may535

vary under LLM randomness, e.g., setting the tem-536

perature greater than 0. We verify the robustness of537

T 3 by utilizing different target answers, i.e., the538

majority answer of Self-cons (asc) and CoT-cons539

(acc), respectively, as shown in Table 4. We can540

observe the following. 1) For both sets of target541

answers, T 3 largely outperforms baselines, show-542

ing its effectiveness. 2) Different target answers543

may have very different self-detection performance.544

Specifically, acc on CommonsenseQA has a sharp545

decrease in AUROC of T 3 and CoT-cons compared546

with the other target answers, which is potentially547

due to the majority voting with CoT explanation548

diminished the the effect of the explanations in T 3.549

Secondly, we evaluate T 3 on different LLMs.550

Table 5 shows the performance comparison of Flip-551

kart, HANS and CommonsenseQA on GLM-4. We552

can observe that across different LLMs, combin-553

ing T 3 with PE or Top-K Verb outperforms com-554

pared methods, validating its effectiveness. Be-555

sides, the self-detection ability may vary greatly556

across LLMs, e.g., T 3’s AUROC of HANS on557

GLM-4 largely outperforms that on GPT-3.5. More558

results on Gemini can be found in Appendix D.559

Thirdly, we evaluate the parameter sensitivity560

of T 3 by changing the number of justifications and561

Flipkart HANS CommonsenseQA

AUROC↑ PRAUC↑ AUROC↑ PRAUC↑ AUROC ↑ PRAUC ↑

CoT Cons 73.4 88.8 66.4 87.5 83.1 97.0
Top-K Verb 81.1 92.1 65.4 88.0 72.3 95.3
Hybrid 80.4 92.0 69.9 89.4 79.4 97.2
CAPE 82.3 92.7 82.4 94.0 80.0 96.8

T 3 83.3 93.4 82.0 93.9 72.5 96.0
+ Top-K Verb 82.7 93.2 80.9 93.9 81.0 97.6
+ PE 83.8 93.4 84.9 95.7 76.9 96.6

Table 5: Performance comparison of Flipkart, HANS
and CommonsenseQA on GLM-4.

1 2 3
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55.0
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65.0
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75.0
80.0
85.0
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# guesses
# justifications

1 2 3 4 5
75

80

85

90
CommonsenseQA

Figure 6: Parameter sensitivity, i.e., changing the num-
ber of justifications and number of guesses in pv .

number of guesses in pv. We conduct experiments 562

on CommonsenseQA with five answer choices, and 563

SNLI with three answer choices. From Figure 6, 564

we can observe the followings. 1) A larger number 565

of justifications increases the performance on both 566

datasets, indicating a sufficient number of justifica- 567

tions is vital for better self-detection. 2) Increasing 568

the number of guesses results in a significant perfor- 569

mance improvement on the SNLI dataset, revealing 570

that enough number of guesses is demanded for the 571

NLI task. 3) Comparably, the change in the number 572

of guesses has a slight effect on the performance of 573

the CommonsenseQA dataset, which is potentially 574

because the CQA task is more objective than NLI. 575

6 Conclusion 576

In this paper, we tackled the over-trust issue of 577

self-detection on black-box API LLMs. We cate- 578

gorized existing methods into two paradigms and 579

pointed out their limitation of merely evaluating on 580

LLM-generated answer with potential LLM over- 581

trust. We proposed a novel paradigm to address 582

this limitation by comprehensively evaluating the 583

trustability of multiple candidate answers in the 584

answer space. Following our paradigm, we pre- 585

sented a two-step framework T 3 by asking LLM 586

to reflect and justify the trustability of each answer 587

for joint confidence calibration. Our framework 588

achieved improved self-detection performance over 589

compared methods and was combined with exist- 590

ing methods for further improvement. In future 591

work, we will explore the combination of T 3 with 592

more methods, and its utility in white-box LLMs. 593
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Limitations594

Our work has several limitations. Firstly, our re-595

search scope is limited to the self-detection for596

black-box API LLM. While our framework is suit-597

able for many state-of-the-art LLMs in this form, it598

might not be optimal for white-box LLMs, which599

offer access to token probabilities, thus limiting600

its broader applicability. Secondly, the utility of601

self-detection is not primarily studies in this work.602

Although we demonstrate the utility of detection603

scores in selective prediction scenarios, the chal-604

lenge still lies in leveraging them to enhance task605

accuracy or enable LLM self-correction, calling606

for further exploration. Lastly, our framework607

lacks consideration in prompt optimization for self-608

detection, an area where future self-detection meth-609

ods are expected to consider.610

Ethics Statement611

Our ethical concerns involve the following. First,612

our experimental results are mainly obtained in613

English datasets, where the applicability on other614

languages are not comprehensively evaluated. Sec-615

ondly, our research scope is black-box API LLMs,616

where open-sourced LLMs are more advocated for617

its reproducibility. Finally, the self-detection of618

LLM may mislead people to blindly trust LLM and619

easily accept untrustable answers, causing potential620

harms.621
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A Details for compared methods. 980

A.1 LLM Hyperparameters. 981

For all LLMs, we set the maximum token as 200. 982

For GPT-3.5 and Gemini, if sampling a single re- 983

sponse (N = 1), we set the temperature as 0, and 984

other hyperparameters as default. If sampling mul- 985

tiple responses, we sample N = 30 (N = 5 for 986

Gemini due to API call limitation) responses with 987

temperature as 1, which is only for Self-cons, CoT- 988

cons, and P(True). Specially, for Self-detect we 989

sample 15 rephrasing for each question with tem- 990

perature as 1, and one answer for each rephrased 991

question with temperature as 0, following the orig- 992

inal paper. For GLM-4, if sampling a single re- 993

sponse, we set the do_sample as False. If sampling 994

a variety of responses, we set temperature as 0.9, 995

top p as 0.9, and N = 5. Note that these LLM 996

hyperparameters are not carefully tuned. 997

A.2 Dataset Detail. 998

Due to the cost limitation, we randomly sample 300 999

training data for each dataset in our experiments. 1000

For IMDB and SNLI datasets, we use the same 1001

randomly sampled 300 data sets as the CAD SA 1002

and NLI in the preliminary experiments. We will 1003

release the dataset splits. Table 6 shows the num- 1004

ber and examples of candidate answers for each 1005

dataset. 1006

A.3 Prompts 1007

The basic instructions for different datasets are 1008

shown as below, where [] refers to specific task 1009
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inputs.1010

• IMDB:1011

Given a piece of movie review, classify the1012

attitude to the movie as Positive or Negative.1013

[text]1014

• Flipkart:1015

Given a piece of text, classify the sentiment as1016

Positive or Negative. [text]1017

• SNLI:1018

Determine whether the hypothesis is an en-1019

tailment (can be logically inferred from the1020

premise), a contradiction (cannot be true1021

given the premise), or neutral (does not have1022

enough information to determine its truth1023

value). Premise: [premise] Hypothesis: [hy-1024

popthesis].1025

• HANS:1026

Determine whether the second sentence in1027

each pair logically follows from the first sen-1028

tence. The output is either "entailment" if1029

the second sentence logically follows from1030

the first, or "not entailment" if it does not.1031

Sentence 1: [sentence1]. Sentence 2: [sen-1032

tence2].1033

• CommonsenseQA:1034

Read the given question and select the most1035

appropriate answer by indicating the asso-1036

ciated letter. Question: [question]. Answer1037

choices: (a) aq1 (b) aq2 (c) aq3 (d) aq4 (e) aq5.1038

• PIQA:1039

Read the given question and select the most1040

appropriate answer by indicating the asso-1041

ciated letter. Question: [question]. Answer1042

choices: (a) aq1 (b) aq2.1043

The prompts for compared methods are shown1044

below, where [instruction] denotes the task instruc-1045

tion with the task input, and [instruction_only]1046

denotes the instruction without task input.1047

• Self-cons: [instruction].1048

• CoT-cons:1049

[instruction]. Please output strictly following1050

this format: Explanation: [reasons for the1051

sentiment label] Answer: [Positive or Nega-1052

tive]1053

• Top-K Verb pb: 1054

The task is to [instruction_only]. Provide your 1055

n best guesses and the probability that each is 1056

correct (0.0 to 1.0) for the following question. 1057

Give ONLY the guesses and probabilities, no 1058

other words or explanation. For example: 1059

G1: <first most likely guess, as short as possi- 1060

ble; not a complete sentence, just the guess!> 1061

P1: <the probability between 0.0 and 1.0 that 1062

G1 is correct, without any extra commentary 1063

whatsoever; just the probability!> ... GN: <N- 1064

th most likely guess, as short as possible; not 1065

a complete sentence, just the guess!> 1066

PN: <the probability between 0.0 and 1.0 that 1067

GN is correct, without any extra commentary 1068

whatsoever; just the probability!> [question] 1069

[answer choices]. 1070

• P(True) pt: 1071

The task is to [instruction]. Label: [label]. Is 1072

the label correct or incorrect? 1073

• Self-detect: 1074

For question rephrasing: Paraphrase the given 1075

sentence. Please make sure the paraphrased 1076

sentence has exactly the same meaning as the 1077

original sentence. [question] 1078

For inference: [instruction]. 1079

• CAPE: 1080

Provide your 2 best guesses and the proba- 1081

bility that each is correct (0.0 to 1.0) for the 1082

following task. Give ONLY the guesses and 1083

probabilities, no other words or explanation. 1084

For example: 1085

G1: <first most likely guess, as short as 1086

possible; not a complete sentence, just the 1087

guess!> 1088

P1: <the probability between 0.0 and 1.0 that 1089

G1 is correct, without any extra commentary 1090

whatsoever; just the probability!> ... GN: 1091

<N-th most likely guess, as short as possible; 1092

not a complete sentence, just the guess!> 1093

PN: <the probability between 0.0 and 1.0 that 1094

GN is correct, without any extra commentary 1095

whatsoever; just the probability!> Instruction: 1096

[instruction_only] [question] 1097

- aq1 (or A. aq1) 1098

... 1099

- aqN (or N. aqN ) 1100

Possible explanation 1: [e1] 1101

... 1102

Possible explanation N: [eN ] 1103
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Correct Choice:1104

1105

• T 3 pv:1106

The task is to [instruction_only]. Provide your1107

n best guesses and the probability that each is1108

correct (0.0 to 1.0) for the following question.1109

Give ONLY the guesses and probabilities, no1110

other words or explanation. For example:1111

G1: <first most likely guess, as short as possi-1112

ble; not a complete sentence, just the guess!>1113

P1: <the probability between 0.0 and 1.0 that1114

G1 is correct, without any extra commentary1115

whatsoever; just the probability!> ... GN: <N-1116

th most likely guess, as short as possible; not1117

a complete sentence, just the guess!>1118

PN: <the probability between 0.0 and 1.0 that1119

GN is correct, without any extra commentary1120

whatsoever; just the probability!>1121

[question] [answer choices].1122

Possible explanation 1: [explanation 1].1123

...1124

Possible explanation N: [explanation N].1125

A.4 Additional Implementation Detail.1126

For T 3 and Top-K Verb, the N is set to the number1127

of candidate answers for each dataset as in Table 6.1128

For the shuffling of the justification order in pv,1129

we use one original and one reversed order for1130

T 3 on all datasets. For datasets with more than1131

two justifications (SNLI and CommonsenseQA),1132

we set the original justification order for SNLI as1133

“entailment, neutral, contradiction" and follow the1134

given answer choice order for CommonsenseQA1135

in the dataset.1136

CAPE is prompt ensemble for Top-K Verb. We1137

follow the original paper to adopt two multi-choice1138

template with alphabetic or itemized labels in addi-1139

tion to the original Top-K Verb prompt (See Sec-1140

tion A.3). For each multi-choice template, we use1141

the original and the reversed label orders. In total,1142

the confidence score is an average of five prompts.1143

For T 3 + PE, we put T 3 into the multi-choice1144

template with alphabetic labels, and use two re-1145

versed label orders and 2 reversed justification or-1146

ders, in total four prompts.1147

The number of API calls for different methods1148

are shown in Table 7. We can observe that com-1149

pared with other methods T 3 does not incur large1150

increase in number of calls. In our experiments,1151

the maximum value of N is 5. Considering its1152

effectiveness, the cost of T 3 is reasonable.1153

Self-cons CoT-cons Top-K Verb P(True) Hybrid

# call 30 30 1 30 31

Self-detect CAPE T 3 T 3 + Top-K Verb T 3 + PE

# call 30 5 N+2 N+3 N+4

Table 7: Comparison on the number of API calls of
compared methods, where N denotes the number of
choices for different datasets.

B Implementation Detail for Preliminary 1154

Experiments. 1155

For the preliminary experiments, we randomly sam- 1156

ple 300 instances from the training set of CAD SA 1157

and NLI, respectively. For those original ques- 1158

tions with more than one counterfactual questions, 1159

we randomly select one counterfactual question 1160

for experiment. The prompts can be viewed in 1161

Section A.3. CAD SA is annotated from IMDB, 1162

and CAD NLI is annotated from SNLI. The w/ 1163

cf is based on Top-K Verb, which is better cal- 1164

ibrated than Self-cons. For w/ cf, we obtain the 1165

Top-K Verb outputs for counterfactual and original 1166

questions, respectively. We use the guess with the 1167

largest probability in the response as the answer to 1168

q̄, and the probability as its confidence score. The 1169

LLM is GPT-3.5 (gpt-3.5-1106). See Section A.1 1170

for LLM hyperparameters. 1171

PIQA HANS Flipkart

pe 84.2 ± 2.0 62.7 ± 4.3 78.0 ± 2.2
pv 83.0 ± 0.5 68.3 ± 1.7 81.2 ± 0.3

Table 8: The average and standard deviation of AUROC
for T 3 with different rephrasing of prompts on GPT-3.5.

C Prompt Sensitivity 1172

We examine the prompt sensitivity of pe and pv by 1173

rephrasing each of them three times with ChatGPT6 1174

and compute the average and standard deviation of 1175

AUROC, as shown in Table 8. We can observe the 1176

followings. 1) The variation of prompts has a mild 1177

effect on the performance of T 3. Across the three 1178

datasets, HANS is the most sensitive to prompt 1179

rephrasing, potentially related to its lower AUROC 1180

performance. 2) The change of pe has larger im- 1181

pact on the detection performance than pv. This is 1182

probably because the justifications generated by pe 1183

have a larger space of variation than the outputs of 1184

pv, i.e., guesses and probabilities. 1185

6https://chat.openai.com/.
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Flipkart PIQA CommonsenseQA

AUROC PRAUC AUROC PRAUC AUROC PRAUC

CoT-cons 67.6 89.1 85.8 96.4 72.2 86.0
Top-K Verb 84.0 94.9 64.7 91.8 67.0 83.9
Hybrid 85.0 95.5 77.0 96.1 74.5 87.9
CAPE 81.5 94.5 86.5 97.8 77.3 89.5

T 3 82.0 93.9 82.6 96.5 73.4 89.3
+ Top-K Verb 83.1 94.6 77.2 96.1 76.3 91.2
+ CAPE 74.8 92.1 90.5 98.3 77.5 91.1

Table 9: Performance comparison of Gemini on Flipkart,
PIQA and CommonsenseQA.

D Additional Results on Different LLMs1186

In addition to GPT-3.5 and GLM-4, we show the1187

results of Gemini on three datasets. From Table 9,1188

we can observe that although T 3 outperforms all1189

compared methods in PIQA and CommonsenseQA,1190

it does not outperform all compared methods on1191

Flipkart. By analyzing the outputs, we discover1192

that Gemini cannot always follow the instruction1193

to perform reflection and generated justification for1194

the designated answer. Instead, it tends to perform1195

answer prediction and followed by an explanation1196

on its predicted answer. Without effective reflection1197

and justification from different answers’ perspec-1198

tives, the effectiveness of T 3 is diminished. There-1199

fore, the effectiveness of T 3 depends on the ability1200

of the specific LLM in following the instructions1201

in Table 1.1202

E Case study1203

We present two case study of PIQA. From Table 10,1204

we can observe that the detection score of the incor-1205

rect answer (a) is lowered by T 3 (0.7 → 0.45). The1206

justification (b) points out the reason why (b) is the1207

preferred answer, which increased the confidence1208

in (b) and in turn decreases (a)’s detection score.1209

From Table 11, we can observe that the LLM is1210

not sure whether the sponge should be dampened,1211

thus having an ambivalent confidence score of 0.51212

is better than being 0.7 confident on (b).1213

Input: The task is to read the given question and
select the most appropriate answer by indicating the
associated letter. Provide your 2 best guesses and
the probability that each is correct (0.0 to 1.0) for
the following question. Give ONLY the guesses and
probabilities, no other words or explanation. For
example:
G1: <first most likely guess, as short as possible; not
a complete sentence, just the guess!>
P1: <the probability between 0.0 and 1.0 that G1 is
correct, without any extra commentary whatsoever;
just the probability!> ... G2: <2-th most likely guess,
as short as possible; not a complete sentence, just the
guess!>
P2: <the probability between 0.0 and 1.0 that G2 is
correct, without any extra commentary whatsoever;
just the probability!>
Question: How do you repair a torn shirt?
Answer Choices:
(a) To repair a torn shirt, prepare the needle with a
piece of thread tied to it. Pull together the fabric
where the shirt is torn and sew together.
(b) Prepare the needle with a piece of thread tied to
it. Flip the shirt inside-out, pull together the fabric
where the shirt is torn and sew together.
Prediction: (a). Ground truth: (b).

Top-K Verb Output: G1: A P1: 0.7 G2: B P2: 0.3.
Confidence: 0.7

Justification for (a): The most appropriate answer is
(a) because it provides a clear and direct explanation
of how to repair a torn shirt. It instructs to prepare
the needle with a piece of thread tied to it and then
pull together the fabric where the shirt is torn and sew
it together. This answer is straightforward and does
not include unnecessary steps, making it the most
appropriate choice.
pv output 1: G1: A P1: 0.6 G2: B P2: 0.4
Justification for (b): Option (b) is the most appro-
priate answer because it provides a more detailed
and accurate description of the process of repairing
a torn shirt. It includes the step of flipping the shirt
inside-out, which is an important step in order to hide
the stitches and make the repair less visible. This ad-
ditional detail makes option (b) the better choice for
repairing a torn shirt.
pv output 2: G1: B P1: 0.7 G2: A P2: 0.3
T 3 Detection Score: (0.6 + 0.3)/2 = 0.45

Table 10: Case study for PIQA. pv output 1 refers to
pv with explanation (a) before explanation (b), and pv

output 2 refers to the reversed order.
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Input: The task is to read the given question and
select the most appropriate answer by indicating the
associated letter. Provide your 2 best guesses and
the probability that each is correct (0.0 to 1.0) for
the following question. Give ONLY the guesses and
probabilities, no other words or explanation. For
example:
G1: <first most likely guess, as short as possible; not
a complete sentence, just the guess!>
P1: <the probability between 0.0 and 1.0 that G1 is
correct, without any extra commentary whatsoever;
just the probability!> ... G2: <2-th most likely guess,
as short as possible; not a complete sentence, just the
guess!>
P2: <the probability between 0.0 and 1.0 that G2 is
correct, without any extra commentary whatsoever;
just the probability!>
Question: How do I keep my favorite couch fur free?
Answer Choices:
(a) Purchase a dry sponge at a pet supply store and
use it to lightly wipe dog hair in a sweeping motion
from upholstery.
(b) Purchase a dry sponge at a pet supply store and
dampen it and use it to lightly wipe dog hair in a
sweeping motion from upholstery.
Prediction: (b). Ground truth: (a).

Top-K Verb Output: G1: B P1: 0.7 G2: A P2: 0.3.
Confidence: 0.7

Justification for (a): The most appropriate answer is
(a) because using a dry sponge to wipe dog hair in a
sweeping motion from upholstery will help to remove
the fur without getting the couch wet. Dampening
the sponge, as suggested in option (b), may lead to
the couch getting wet and potentially causing damage
to the upholstery. Therefore, option (a) is the best
choice for keeping the favorite couch fur free.
pv output 1: G1: A P1: 0.7 G2: B P2: 0.3
Justification for (b): The most appropriate answer
is (b) because dampening the dry sponge will help
to better pick up and remove the dog hair from the
upholstery. Using a dry sponge alone may not be as
effective in removing the fur. Therefore, dampening
the sponge will provide better results in keeping the
favorite couch fur free.
pv output 2: G1: B P1: 0.7 G2: A P2: 0.3
T 3 Detection Score: (0.3 + 0.7)/2 = 0.5

Table 11: Case study for PIQA. pv output 1 refers to
pv with justification (a) before justification (b), and pv

output 2 refers to the reversed order.
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