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Abstract

Learning-to-defer is a framework to automatically defer decision-making to a human expert
when ML-based decisions are deemed unreliable. Existing learning-to-defer frameworks are
not designed for sequential settings. That is, they defer at every instance independently,
based on immediate predictions, while ignoring the potential long-term impact of these
interventions. As a result, existing frameworks are myopic. Further, they do not defer
adaptively, which is crucial when human interventions are costly. In this work, we propose
Sequential Learning-to-Defer (SLTD), a framework for learning-to-defer to a domain expert
in sequential decision-making settings. Contrary to existing literature, we pose the problem
of learning-to-defer as model-based reinforcement learning (RL) to i) account for long-term
consequences of ML-based actions using RL and ii) adaptively defer based on the dynamics
(model-based). Our proposed framework determines whether to defer (at each time step) by
quantifying whether a deferral now will improve the value compared to delaying deferral to
the next time step. To quantify the improvement, we account for potential future deferrals.
As a result, we learn a pre-emptive deferral policy (i.e. a policy that defers early if using the
ML-based policy could worsen long-term outcomes). Our deferral policy is adaptive to the
non-stationarity in the dynamics. We demonstrate that adaptive deferral via SLTD provides
an improved trade-off between long-term outcomes and deferral frequency on synthetic,
semi-synthetic, and real-world data with non-stationary dynamics. Finally, we interpret
the deferral decision by decomposing the propagated (long-term) uncertainty around the
outcome, to justify the deferral decision.

1 Introduction
Machine learning (ML) has the potential to be deployed for decision-making in complex domains such as
healthcare, lending, and legal systems. In many cases, ML-based policy may not generalize to situations not
encountered during training. In practice, it may be safer to defer to a human expert when using the ML
policy may not improve outcomes or cause active harm. Automatically deferring to a human expert is called
‘Learning-to-defer.’ Earlier works have considered the problem of learning-to-defer in non-sequential settings
(Mozannar and Sontag, 2020; Madras et al., 2017)..

In situations such as managing health, however, two key challenges remain. First, deferral decisions can
significantly alter long-term outcomes. Thus modeling the long-term outcome is critical to decide when to
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defer to an expert. Deferring too late may lead to unintended and irreversible harm. Deferring too early
may increase the burden on the human expert. Second, when human interventions (after deferral) are costly,
learning-to-defer adaptively and only when critical is crucial. To defer adaptively, we need a well-characterized
model of the environment, a challenging estimation issue, especially under non-stationarity, i.e., when the
dynamics of the environment change over time.

Existing learning-to-defer methods defer based on immediate outcomes e.g. Mozannar and Sontag (2020);
Madras et al. (2017); Gennatas et al. (2020), and are therefore myopic. Further, the objective to defer is
to improve the performance of some prediction tasks (such as the ability to predict a patient outcome).
These frameworks either defer based on the probability of correct short-term prediction or characterizing
the trade-off of paying a cost (to defer). Instead, interventions based on an ML system can have long-term
consequences that are crucial to the model. Further, in many cases, merely deferring to optimize for decision/
prediction accuracy in a supervised learning setting does not suffice to improve long-term outcomes. Existing
approaches also do not leverage the potential of modeling the environment to defer adaptively, especially
beneficial if the environment is non-stationary.
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Figure 1: A conceptual overview of deferral strategies in a medical setting. We show potential patient
outcome trajectories over time (x-axis). The outcome is shown on the y-axis. A higher outcome is better.
A discretized reward is available to us: ‘Healthy’, ‘Continue Monitoring’, and ‘Adverse’. The white regions
indicate regions where πtar will provide similar recommendations to π0 (specific actions are not shown). The
shaded gray region indicates that at these times, the patient is in states (not shown) where πtar provides
recommendations that do not improve long-term outcomes compared to π0. The patient follows the gray
trajectory from time t = 0 to t = 2 when πtar’s recommendations are used. The red trajectory shows the
final outcome if we continue to use πtar till the end of the horizon. One potential deferral strategy is to defer
when the observed outcome deteriorates to ‘Adverse’ (orange trajectory). This deferral is late/myopic and
the expert policy is unable to significantly improve the patient’s outcome in a single time step. This baseline
is akin to a model where the expert takes over from πtar when they see that the patient is deteriorating and
is not an automated deferral. A better-automated deferral strategy is to defer when the predicted outcome
using πtar is ‘Adverse’ (yellow trajectory). This deferral strategy corresponds to supervised learning-to-defer
methods such as those of Mozannar et. al. and Madras et. al. and is also late/myopic as i) it is based
on immediate predicted outcomes, and ii) does not characterize the regions of the state-space where πtar
is worse than π0 (gray region) in terms of the long-term patient outcome. On the other hand, the green
trajectories indicate long-term outcomes if we defer in the gray region (corresponding to what SLTD and
SLTD-Stationary will do), where immediate predicted outcomes are not adverse, but long-term consequences
of continuing to use πtar significantly deteriorate the patient. Note that here we do not show the distinction
between behaviors due to the non-stationarity of the dynamics. Thus, ideally, a pre-emptive deferral policy
should characterize all regions of the state space where long-term outcomes using πtar are worse than π0,
and defer accordingly. Also note that here, both green trajectories are pre-emptive according to our setup
though SLTD will defer earlier at t = 3 as well as at t = 4 and then rely on πtar for t ≥ 5. In regions marked
“Early defer”, we would like to avoid deferrals since as πtar is as good as or better than π0 and deferring is
unnecessarily costly. SLTD can avoid such premature deferrals by incorporating a cost for deferrals.

2



Published in Transactions on Machine Learning Research (07/2023)

Algorithmic Motivation. To address these challenges, we deviate significantly from existing learning-
to-defer methods, which use a supervised learning framework. Instead, we model the learning-to-defer
problem for sequential settings as offline model-based reinforcement learning (RL). SLTD is the first RL-based
learning-to-defer framework. We focus on settings where online experimentation is prohibitive for safety
reasons, such as healthcare.

We assume access to batch data collected by human experts (such as clinicians) using a behavior policy. Our
goal is to learn a deferral policy with respect to a fixed ML-based policy (called the target policy). SLTD
decides whether or not to defer (to an expert policy) at each instance by modeling the impact of delaying
deferral (by one time step) on the long-term outcomes. SLTD defers if delaying deferral does not improve
outcomes compared to deferring in the current instance. To quantify long-term outcomes, we also account for
all future deferrals. In doing so, SLTD precisely identifies the regions of the state space where the target
ML-based policy will not improve outcomes. As a result, our method is pre-emptive, i.e., it defers in all
regions where the ML policy is unlikely to improve long-term outcomes. See Figure 1 for a conceptual overview
of SLTD.

Human expert interventions are often costly. Hence deferring too often is not desirable. To defer adaptively,
we propose to leverage an estimate of the environment dynamics and the associated uncertainty. Modeling
the dynamics allows us to reliably quantify the impact of delaying deferral on long-term outcomes, which is
particularly beneficial in non-stationary settings. We show that modeling the non-stationarity provides a
better trade-off of improving outcomes versus the frequency of deferrals. In a myopic environment (i.e., when
the effect of interventions are observed in the near future), it may seem unnecessary to model the dynamics.
However, we demonstrate that deferral methods that defer myopically, based on immediate outcomes still
benefit from modeling the dynamics, and consequently the impact of potential future myopic deferrals. When
SLTD defers, human experts can benefit from an additional justification of the deferral decision to determine
potential interventions. Hence, we also interpret SLTD’s decision to defer at any given time by quantifying
the long-term uncertainty in the outcome and decomposing the sources of uncertainty. We justify how the
decomposition can guide experts to potential interventions.

Clinical Motivation. We are motivated by clinical settings where a target policy is learned from batch data
to work well across multiple institutions. Such a policy may perform well on average, but when deployed to a
new environment, encounter a different or an evolving patient population. An evolving patient physiology
can often result in non-stationary dynamics on which the target policy is not uniformly better, necessitating
deferral. Clinicians might also follow a slightly different treatment protocol than this learned policy, which
could be an auxiliary reason to defer. Most importantly, regulatory constraints may prevent significantly
adapting our target policy completely to the new site. In this case, it is safer to leverage batch data from the
new site to quantify when it is reliable to deploy the learned target policy. In situations where the policy
does not improve outcomes compared to the human expert, exacerbated by challenges like non-stationarity, it
is safer to defer to human experts. We further propose a model-based method motivated by the fact that in
many clinical settings, mechanistic models of patient physiology are available. Beyond healthcare, our work
is applicable in many safety-focused, data-scarce, non-stationary settings where online policy improvement is
not allowed due to ethical or practical constraints.

2 Related Work & Background
Mixture-of-Experts (MoE). Many methods focus on deciding to deploy two or more policies. For
example, Jacobs et al. (1991); Jordan and Jacobs (1994) switch between different policies in decision-making
by partitioning the input space into regions assigned to different specialized sub-models. Variants of this
framework enforce an explicit preference for a specific expert, e.g., a human expert, and train other experts to
complement the human expert (Pradier et al., 2021). In sequential settings, Parbhoo et al. (2017); Gottesman
et al. (2019); Parbhoo et al. (2018) combine parametric and non-parametric experts to learn more accurate
estimates of the value function. On the other hand, we focus on deferral to human experts when future
outcomes using the current ML-based policy are potentially undesirable. Further, we defer based on explicitly
quantifying the impact of delayed deferral to decide when to defer.

Policy Improvement with Expert Supervision. Sonabend et al. (2020) use hypothesis testing to assess
whether, at each state, a policy from a human expert would improve value estimates over a target policy
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during training to improve the target policy. In contrast, our work identifies the value of delaying deferral to
a human expert at test time. Improvements using expert supervision are unlikely to be always feasible due
to safety and regulatory constraints. Learning-to-defer with respect to a fixed target policy is crucial as a
safeguard. Some works focus on safe policy improvement in a non-stationary MDP setting (Chandak et al.,
2020b;a). Chandak et al. (2020a) assume that the non-stationarity is governed by an exogenous process, and
so past actions do not impact the underlying non-stationarity. Our work differs in two ways: first, we argue
that model misspecification, specifically ignoring non-stationarity induced by (deferral) actions, affects the
likelihood of future deferrals. Accounting for this non-stationarity is crucial to avoid costly deferrals. Second,
we incorporate human expertise by explicitly measuring the impact of delaying deferral.

Learning-to-defer to Human Expertise. Madras et al. (2017); Mozannar and Sontag (2020) propose
supervised models to defer to the expert. Here, the classifiers are trained on the samples of an expert’s
decisions. Madras et al. (2017) train a separate rejection and prediction function, while Mozannar and Sontag
(2020) learn a joint predictor for all targets and deferral. Madras et al. (2017) is conceptually closer to our
work but in a non-sequential setting. Other approaches such as Raghu et al. (2019); Wilder et al. (2020)
first train a standard classifier on the data and then compute uncertainty estimates for this classifier and the
human expert. The models defer to the expert if the model is highly uncertain or can significantly benefit
from deferral. Liu et al. (2021) incorporate uncertainty in Learning-to-Defer algorithms for classification
tasks. Instead, we focus on learning-to-defer in non-stationary, sequential settings. Our work highlights the
role that the dynamics of the environment can have on our ability to defer preemptively.

Learning-to-defer as Causal OPE. We pose our Learning-to-defer problem as an offline model-based
reinforcement learning problem. Besides learning, evaluating the utility of a policy (on data collected from
a behavior policy) in an offline manner is called Off-policy Evaluation (OPE) (Precup, 2000). OPE is a
challenging problem as the utility of a policy needs to be determined without exploration. Literature on OPE
is extensive, summarized in a seminal review of (Uehara et al., 2022). In model-based settings, Importance
Sampling (IS), and its variants, and a Direct Method (DM) that directly estimates the Q-function, are the
most foundational methods for OPE. Offline learning refers to learning an improved policy in offline settings.
Q-function estimation requires making parametric assumptions of the Action-value functions, while highly
flexible parametrizations are prone to overfitting that may not generalize. We strongly believe this is less
grounded for healthcare settings. On the other hand, mechanistic models of disease and physiology are
often available in clinical settings, motivating our model-based approach to offline learning. For evaluating
the quality of our proposed method, we rely on either the knowledge of the true dynamics or IS in this
work. IS is asymptotically unbiased but can suffer from variance challenges in finite-sample settings. For
real-world data, we use the self-normalized variant of importance sampling from Uehara et al. (2022);
Precup (2000); Robins et al. (2007) as one of the evaluation metrics. Nonetheless, overlap assumptions are
critical to obtaining unbiased OPE estimates using IS, a crucial assumption that may be violated in practice,
especially under non-stationarity. Quantifying overlap in a data-driven manner is challenging (Oberst et al.,
2020). in this work, we assume sufficient overlap between clinician/expert policy and behavior policy during
evaluation.

Implicit in the framework of OPE, including our work, are assumptions about no hidden confounding, which
are surfaced by a causal framing of the OPE problem (Uehara et al., 2022; Gottesman et al., 2018). This
view poses OPE as a causal inference problem given observations from a causal system. The no-hidden
confounding assumption is primarily because most OPE solutions assume that the data is generated from an
MDP which does not allow for potential latent factors to drive decisions. This assumption can have profound
consequences on the quality of OPE estimates. In our setup, we also assume that our offline data is generated
from an MDP, thus making the no unobserved/hidden confounding assumption.

Efforts to relax this assumption allow for the presence of latent factors that influence decision-making in
off-line data and provide OPE estimates that are robust to the variability of this influence (Kallus and
Zhou, 2018; Tennenholtz et al., 2020; Oberst and Sontag, 2019). Often these works focus on parametric
assumptions of how much the propensity or the probability of a particular treatment is allowed to deviate,
known as the Marginal Structural Model (MSM) assumption (Robins et al., 2000) to provide conservative
OPE estimates under worst-case deviations under the MSM assumption. The utility of MSM assumptions
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has been significant in epidemiological settings, though relevance in chronic condition management, which is
the focus of our clinical setting, is less clear.

Decomposing Uncertainty for Interpreting Policies. Uncertainty, if well calibrated can help decision-
makers understand the failure modes of a model (Bhatt et al., 2020; Tomsett et al., 2020; Zhang et al., 2020).
Several methods estimate predictive uncertainty in ML (Gal and Ghahramani, 2016; Guo et al., 2017). Here,
we focus on capturing the propagated uncertainty in sequential settings to interpret deferral decisions. We
interpret the (different) sources of propagated uncertainty when SLTD defers to the expert. Decomposing
the sources of uncertainty into modeling and irreducible uncertainty over predictions has been explored
in classification and prediction settings (Yao et al., 2019; Depeweg et al., 2018) but remains significantly
under-explored for sequential settings.

Background and Notation. We consider our environment to be a finite horizon MDP defined by
M ≡ (S,A,P, r, p0) where S indicates the state-space, A indicates the action-space, P the transition
dynamics, r : s×a→R+ the reward function, p0 the initial state distribution. The action-space is assumed to
be discrete, while the state space can be discrete or continuous. Any intervention policy (usually stochastic in
our case) is given by π =: S ×A→ [0, 1]. We consider a non-stationary environment such that the dynamics
at any time t are governed by a specific MDPMt ≡ Pt(s′|s, a). Thus the environment is a sequence of MDPs.
We assume the existence of a true set of non-stationary dynamics governing all episodes and denote it by
M∗ := {M∗t }t. In the rest of the draft, M := {Mt}t denotes an estimate of the true dynamics M∗. Let T
be the episode-length. The value of a policy π at t is given by VM

π,t (s) = EM[
∑T
j=t r

j(s, a)|st = s, π]. The
action value is given by QM

π,t(s, a) = r(s, a) +
∑
s′∈S Pt(s′|s, a)VM

π,t (s′).

3 Sequential Learning-to-Defer
Problem Setup. Assume we are given a policy πtar that may be learned from batch data from one or more
environments. πtar is intended to be deployed in a new environment. We have access to batch data, denoted
by D∗ = {si,0, ai,0, ri,0, · · · , si,T , ai,T , ri,T }Ni=1 collected in the new non-stationary environment M∗ = {M∗

t }t,
from some (potentially non-stationary) expert policy π0. Note that we assume that π0 is given. For example,
it may be the behavior policy from which we have data samples in the target environment. Here N denotes
the number of episodes. Our goal is to learn a deferral policy gπtar(s, t) : S × T →{0, 1} (where 1 corresponds
to defer or ⊥) with respect to πtar to defer to the expert policy π0. In practice, experts may deviate from π0
in some cases. In our experiments, we account for this by using an ε-greedy version of the behavior policy
as π0, which serves as a proxy model for such deviation. In addition, a clinician may override a treatment
recommendation even when a model does not defer. We account for this using ε-greedy version of πtar. For
ease of exposition, we still refer to them as π0 and πtar.

Deferral to the expert is denoted by the action ⊥. That is, we will augment the action space of existing
MDP M∗ to include a new deferral action A⊥ := A∪ ⊥. At every step, the agent decides whether or not
to defer. If the agent defers, π0 will be deployed for that time step. We describe the formulation assuming
strict adherence to π0 at deferral to emphasize other aspects of our contribution such as the impact of
non-stationarity and how to account for relevant sources of uncertainty to compare outcomes. SLTD can
easily account for the uncertainty of expert actions in the framework.

In practice, the target policy πtar may not uniformly improve over π0 for all states. That is guaranteeing that
VM∗

πtar,0(s) ≥ VM∗

π0,0 (s) for all s ∈ S, is challenging. Even when fine-tuning is allowed, it is challenging to ensure
that the target policy is indeed better than π0 in all regions of the state space. Hence, we would like to get
the best of both worlds. We can deploy πtar, to reduce the costs of relying on human expertise, and learn
to automatically defer to the costlier policy π0 (i.e. human expert) when relying on πtar does not improve
outcomes. In regions of the state-space where the value of πtar is lower than π0, it is better to defer to the
human as a “safety protocol”. Formally, we only assume that Vπtar(s) > Vπ0(s) for some states s ∈ S.

Type of non-stationarity: Assuming that the non-stationary dynamics are represented by a sequence of MDPs
allows the SLTD framework to be general and not restricted to specific forms of non-stationary environments.
The main difference between each component in the MDP sequence is that they can be arbitrarily different
state-transition dynamics within the same family of distributions (e.g. gaussian or multinomial distributions).
As a result, this sequence will not share the optimal policy, and hence the optimal is a non-stationary
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deterministic policy. When mechanistic models on the specific type of non-stationarity are available, they can
be incorporated into our framework to provide less conservative deferral policies.

SLTD. To determine whether to defer at each time step, we quantify whether deferring (relying on π0) or
not deferring (using πtar) at the current time step improves the long-term outcome. Long-term outcomes are
affected by potential future deferrals. Thus comparing the consequences of deferring versus relying on the
ML policy at the current instance is equivalent to comparing the impact of deferring now versus delaying
deferral by one time step.

Future deferrals imply that some unknown mixture of πtar and π0 is used in the future. We denote such a
mixture policy as πmix. To minimize cumbersome notation, we denote a policy where πtar is deployed at
instance t and πmix in the future as: πtar(t),mix(t+). Similarly, if we defer now, then the policy that is deployed
at time t is π0 , and πmix in the future. We denote this mixture as π0(t),mix(t+). Thus, at any instance t, we
want to defer if VM

πtar(t),mix(t+)
(s) < VM

π0(t),mix(t+)
(s). Note that we consider deferral to π0 as a costly one. This

is accounted through a constant cost c > 0 in terms of the value. That is, deferral incurs cost c and the
resulting value is: VM

π0(t),mix(t+)
(s)− c. We can now formalize our stochastic deferral policy:

Definition 1. Let πtar,t be such that there exists st ⊆ S ∀t ∈ {0, 1, · · · , T} where P (VM
πtar(t),mix(t+)

(s) <
VM
π0(t),mix(t+)

(s)− c) > τ for constant cost of deferral c > 0 and threshold τ > 0, ∀s ∈ st. Then the deferral
policy gπtar(s, t) , 1[P (VM

πtar(t),mix(t+)
(s) < VM

π0(t),mix(t+)
(s)− c) > τ ] , 1[g̃πtar(s, t) > τ ].

Corollary 1. By Definition 1, gπtar(s, t), includes the earliest time in the episode where g̃πtar(s, t) ,
P (VM

πtar(t),mix(t+)
< VM

π0(t),mix(t+)
− c) > τ . Thus, gπtar(s, t) is a pre-emptive deferral policy.

The cost c determines how conservative SLTD is and trades-off frequency of deferral to the value attained.This
parameter should be tuned by domain experts aware of the trade-off and risks involved. For instance, in a
critical care setting, we may be more conservative and use a smaller c than in a chronic care situation. τ is a
safety threshold on the probability of worse outcome beyond which we deem that deferral is necessary.

Definition 1 indicates that to reliably learn the deferral policy, we need to estimate g̃πtar(s, t) ,
P (VM

πtar(t),mix(t+)
(s) < VM

π0(t),mix(t+)
(s) − c). To estimate this probability, we should model all sources of

uncertainty in the system, including the non-stationary dynamics, and the uncertainty associated with our
modeling assumptions. We use a Bayesian RL approach to account for all sources of uncertainty. We motivate
this by first describing our dynamic programming approach to learn-to-defer.

Our dynamic programming procedure maintains an estimate of the deferral probability g̃πtar(s, t) and refines
it as we train on the batch data. Given an estimate of g̃πtar(s, t), we outline the procedure to i) estimate the
value under mixture policies corresponding to deferral (and delayed deferral), ii) modeling the probability of
improvement under various sources of uncertainty, and finally iii) obtaining a new estimate of the deferral
probability g̃πtar(s, t)∀s ∈ S at the given time t using i) and ii). We then bootstrap this procedure over our
batch data to refine our deferral probabilities. We describe the procedure for estimating the dynamics in the
discrete setting.

Estimating Value function. At any instance we defer based on current estimates of gπtar(s, t) (or
equivalently g̃πtar(s, t)). We sample actions from πtar if gπtar(s, t) = 0 and π0 otherwise (equivalent to ⊥).
Note that the current estimate of gπtar(s, t) determines the future mixture policy as well. We now estimate
the value of the mixture policies using the Bellman Equation of the state and action value functions. For the
mixture policy πm , πtar(t),mix(t+) (corresponding to no deferral at t), the Q-function is:

QM
πm,t(s, a) = r(s, a) +

∑
s′∈S

PM(s′|s, a)VM
πmix(t+),t+1(s′) (1)

and the Value function is:
VM
πm,t(s) =

∑
a∈A

πtar(t)(a|s)QM
πm,t(s, a) (2)

Similarly for the mixture policy if we defer at t.
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Algorithm 1 Sequential Learning to Defer
Input: D∗, expert policy π0, target policy πtar.
Estimate Posterior Distributions {Mt , pt(·|D∗)}Tt=0 (posteriors over rewards not shown here)
Initialization: Deferral function gπtar(s, t) = 0 for all s ∈ S and t ∈ {1, 2, · · · , T}.
for n ∈ BOOTSTRAPS(D∗) do
Sample Mk , {Mk,t ∼ pt(|̇D∗)}∀t ∈ {1, 2, · · · , T},∀k ∈ {1, 2, · · · ,K}
for t ∈ {T, T − 1, · · · , 1} do
for s ∈ S do

Compute VM
πtar(t),mix(t+)

, VM
π0(t),mix(t+)

− c∀M
g̃πtar (s, t)←≈ 1

K

∑
Mk∼{pt′ (·|D)}T

t′=t

[1(VMk
πtar(t),mix(t+) < V

Mk
π0(t),mix(t+) − c)]

end for
end for

end for
return gπtar(s, t) = 1(g̃πtar(s, t) > τ)∀s, t ∈ S × {1, 2, · · · , T}

Estimating the probability of improving outcomes by delaying deferral. At each instance t, for
all states s, we can estimate the indicator function 1[VM∗

πtar(t),mix(t+)
(s) < VM∗

π0(t),mix(t+)
(s)− c] given an estimate

of g̃πtar as described above. However, we do not have access to the true dynamics M∗. In batch settings, such
as ours, we often estimate the dynamics using maximum-likelihood estimation. Such methods make specific
assumptions about the distribution governing the dynamics. Our assumptions about the dynamics may be
incorrect resulting in potential misspecification of our dynamics model. This increases the uncertainty in the
outcome and potentially over-estimates the probability that relying on the model may improve outcomes. To
account for this additional source of uncertainty, we use a Bayesian RL approach. We describe the procedure
for the dynamics. The procedure for rewards follows an analogous process.

Suppose the parameters of the distributions governing the dynamics are denoted by θt ∀t ∈ {0, · · · , T}. We
denote the full set of parameters by θ = {θt}t. We assume a prior distribution over the parameters of the
distribution governing the dynamics PM

θ (s′|s, a) and the rewards r(s, a). Given batch samples D∗, we can
estimate the posterior distribution over the non-stationary MDPs and rewards using Bayesian inference:

p(θ|D∗) ∝ p(D∗|θ)p(θ)

More specifically, we assume conjugate priors for our parameters θ. By relying on conjugate priors in our
inference, the parameters of posterior distributions over the dynamics and rewards are obtained in closed
form. For discrete state dynamics (and rewards), we assume a Dirichlet prior distribution and model the
observations p(D∗|θ) using a Multinomial distribution. For continuous states, p(D∗|θ) is assumed to be
normally distributed with θ being the mean and variance parameters. The prior distributions over the mean
and precision (inverse of the variance) is the Normal-gamma prior. This is a domain-dependent choice and
SLTD is agnostic so long as we can sample from the posterior distributions of the learned model dynamics. A
detailed derivation of how the data is leveraged to estimate the posterior distributions over the dynamics are
provided in Appendix A.1. By allowing flexibility of modeling the dynamics via Bayesian RL, we can account
for uncertainty over our modeling assumptions.
Finally, based on our assumption that the non-stationary environment is governed by a sequence of MDPs,
we estimate the MDP for each time step independently from batch data. This allows us to make fewer
assumptions about the type of non-stationarity. Any additional domain knowledge about the nature of
non-stationarity can be leveraged for data efficiency. We can now estimate the impact of delayed deferral by
sampling non-stationary MDPs from our posterior distributions and averaging to obtain our final probability:

g̃πtar (s, t) , P (VM∗
πtar(t),mix(t+) (s) < VM∗

π0(t),mix(t+) (s)− c)

= EM∼p(·|D∗)[1[VM
πtar(t),mix(t+) (s) < VM

π0(t),mix(t+) (s)− c]]

≈ 1
K

∑
Mk∼{pt′ (·|D∗)}T

t′=t

1[VMk
πtar(t),mix(t+) (s) < VMk

π0(t),mix(t+) (s)− c]
(3)
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where the second line comes from the definition due to the randomness over the dynamics, and the last
term comes from approximating the expectation using K samples from the posterior distribution of the
dynamics p(·|D∗). Thus, for every instant t, in a given state s, our deferral policy gπtar(s, t) is given by,
gπtar(s, t) := 1[g̃πtar(s, t) > τ ].

Dynamic Programming to estimate gπtar(s, t). Our dynamic programming procedure is summarized
in Algorithm 1. We initialize gπtar(s, t) = 0 for all s ∈ S. We estimate VM

πtar(t),mix(t+)
(s), VM

π0(t),mix(t+)
(s) for a

given t using Bellman Equations 1 and 2. Following that, we can update our estimate of gπtar(s, t) using our
posterior MDPs, i.e. Equation 3. We repeat (over t) using the updated estimates of gπtar(s, t). Note further
that π0 is stochastic. Thus, we do not make explicit assumptions on the specific actions an expert will take
in the futher. More specifically, SLTD accounts for the added uncertainty in human’s actions by explicitly
taking expectations over actions a ∼ π0. In our experiments, we use an ε-greedy versions of both π0 and πtar,
which will allow for further deviations from the expert policy or allowing for overrides, to reflect realistic
settings.

Optimality of Learned Deferral Policy. Note that the optimal policy in our environment is a deter-
ministic non-stationary policy. More specifically, the optimal policy is a sequence of policies where each
component in the sequence is optimal with respect to the specific dynamics at the corresponding time instance.
It may not be possible to always reach such an optimal via deferral. Our goal is thus to significantly improve
over our target policy πtar by deferring to the expert policy. This could be envisioned as a setup where are
restricted to a policy class of offline RL where we are only allowed to learn from families that defer to the
expert policy and use πtar otherwise.

4 Decomposing the uncertainty at deferral
SLTD defers at time t because the probability that relying on πtar improves the outcome is below our safety
threshold, i.e. SLTD is uncertain of an improved outcome. Conveying this uncertainty can help the domain
expert take over decision-making. We interpret this deferral decision in terms of the total and decomposed
uncertainty on long-term outcomes. We convey two different sources of uncertainty at deferral. First, we
consider epistemic/modeling uncertainty, which captures whether our model specification has resulted in high
uncertainty and the aleatoric uncertainty which mainly results from the stochasticity of the environment
itself. A high relative value of the former suggests that adding more data to train SLTD can improve the
confidence of the model. High aleatoric uncertainty suggests that the environment itself is highly variable
leading to the lack of confidence in relying on πtar.
Concretely, let td be a time when SLTD defers. The agent is in state std . We are interested in the reward
(and uncertainty over the reward) at time T due to deferral at td, i.e., E[rT |std , µtd , π0(td),mix(td+)]. We
denote the posterior MDP samples for any state-action pair by µt. The variability in these samples captures
modeling uncertainty. The dynamics parameters are denoted by θt(s, a) for each state-action pair. First,
we sample the parameters of the dynamics from posterior distribution p(θt′ |D∗), followed by sampling the
MDPs µt′ ∼ p(µt′ |θ′t(st′ , at′)). Once we defer, we sample actions from π0 at time t′ = td and πmix for t′ > td
where the mixture probability is determined by the learned gπtar for future deferrals. The expected long-term
outcome is given by:

E[rT |std , µtd ] =
∫ sT

std+1

∫ aT

atd

∫ µT

µtd+1

∫ T

θtd

r(sT , aT )×
T∏

t′=td+1

pt′(st′ |µt′)pt′(µt′ |θ′t(st′ , at′))πt′(at′ |st′)pt′(θt′ |D)dsdadµdθ

Integrands are written in short-hand: s = {std+1, std+2, · · · , sT } (analogously for other quantities). We
maintain one estimate of parameter θt′ and sample K MDPs µt′ from this distribution. Thus, the epistemic
uncertainty we capture is due to the uncertainty over dynamics under fixed parameters. The total uncertainty
can now be decomposed using the law of total variance:

Var(rT |std ,D)︸ ︷︷ ︸
Total Uncertainty

= Eµtd
∼p(µtd

|D)[Var(rT |µtd , std ,D)]︸ ︷︷ ︸
Irreducible/ Aleatoric Uncertainty

+Varµtd
∼p(µtd

|D)(E[rT |µtd , std ,D])︸ ︷︷ ︸
Epistemic/Modeling Uncertainty

The second term is the variance conditioned on knowledge of the model µtd . This is the propagated uncertainty
due to modeling uncertainty at td and can be reduced by data collection. The first term averages over the
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variance due to µtd and captures propagated uncertainty due to aleatoric uncertainty at td, which conveys
stochasticity of the environment itself. This uncertainty can only be reduced by careful interventions at td. We
estimate these using Monte-Carlo sampling. Additional details on the derivation are provided in Appendix A.2.
As suggested before, a high propagated epistemic uncertainty conveys that the current uncertainty of model
prediction (of the dynamics) is high but could be improved if additional data could be collected. High
propagated aleatoric uncertainty indicates high variability in the dynamics that can only be reduced with
careful interventions and is otherwise not manageable.

5 Experiments
We evaluate SLTD’s ability to defer adaptively in sequential settings with respect to a known and fixed πtar to
the expert policy π0. We test the utility of i) deferring based on long-term outcomes, ii) adaptively deferring
by quantifying the impact of delaying deferral, i.e., in regions where delayed deferral can worsen outcomes,
iii) modeling the non-stationarity on deferral frequency, iv) quantifying multiple sources of uncertainty to
estimate the probability of different outcomes under delayed deferral. We test our method on synthetic data,
a non-stationary diabetes simulator modified from Chandak et al. (2020b), and real-world HIV data.

Synthetic Data. In this synthetic simulation, the region of deferral is known apriori by careful design of
πtar. This environment has 8 discrete states and binary actions {a0, a1}. All samples start at state 0 and
progress toward a sink state 7. The episode length is 15. State 6 has a low reward (−5) while all other states
have a reward of +1. The initial dynamics are set up such that action a0 reduces the probability of landing
in stage 6, and action a1 increases the probability of reaching state 6. πtar increases the chances to reach
state 6 unfavourably by taking action a1 in states 2, 3, 4 when t < 5 or t > 12. We expect to defer in states
2, 3, 4 even though rewards are favorable if a method is pre-emptive. When 5 ≤ t ≤ 12, the dynamics flip such
that a0 becomes an unfavorable action that increases the probability of landing in 6, while a1 reduces this
probability. Here, πtar again increases the chances of landing in 6, by taking a0 more often in states 2, 3, 4.
By flipping the better action to a0 in this region, it becomes crucial to estimate the dynamics over predicting
the best action. The dynamics are non-stationary and the probability of landing in state 6 progressively
increases when 5 ≤ t ≤ 12. For t ≥ 13, the dynamics reset to noise levels at t < 5 adding non-stationarity to
the dynamics. Note that the optimal policy is π(s, t) = 1∀s ∈ S, 5 ≤ t ≤ 12 and 0 otherwise. The expert
policy is such that:

π0(s, t) := p(a1) =


0.9 if 5 ≤ t ≤ 12, s ∈ {2, 3, 4}
0.7 if 5 ≤ t ≤ 12, s /∈ {2, 3, 4}
0.1 t < 5 or t > 12,∀s ∈ S

for all states s ∈ S. In this case, pre-emptive deferral will allow us to reach close to the optimal by deferring
in states {2, 3, 4}.

Real-world simulator: Diabetes Data. We use an open-source implementation of the FDA-approved
Type-1 Diabetes Mellitus simulator (T1DMS) for modeling the treatment of Type-1 diabetes. We sample
10 adolescent patient trajectories (episodes) over 24 hours (aggregated at 15 minute intervals). Glucose
levels are discretized into 13 states. Combination interventions of insulin and bolus are discretized to
generate a total of 25 actions. We introduce non-stationarity in each episode by increasingly changing the
adolescent patient’s properties to an alternative patient. We enable this by smoothly varying the weighting
of the patient parameters over the horizon. While this does not reflect a realistic patient scenario but will
nonetheless evaluate the utility of all methods for a smoothly transitioning non-stationary environment. The
non-stationarity significantly affects the utility of the initial target policy which is learned on the dynamics of
the original patient, thus necessitating deferral as the patient properties change over time. The non-stationary
target policy πtar for this task is estimated using Q-learning. An ε-greedy version of this Q-learned policy
is used in our experiments. We defer to a clinician policy, here simulated by learning an ε-greedy version
of a policy learned using Q-learning under (estimated) non-stationary dynamics on the target data. For
evaluation of value post learning, we estimate the dynamics on N = 1000 patients to remove estimation bias
for evaluation purposes. We further provide IS estimates as we discuss in the metrics below.

Jinyu Xie. Simglucose v0.2.1 (2018) [Online]. Available: https://github.com/jxx123/simglucose. Accessed on: 07-24-2021.
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Real-world: HIV Data. We identified individuals between 18−72 years of age from the EuResist database
(Zazzi et al., 2012) comprising of genotype, phenotype, and clinical information of over 65, 000 individuals
in response to antiretroviral therapy administered between 1983 − 2018. We focus on a subset of 32, 960
patients’ genotype, treatment response, CD4+, and viral load measurements, gender, age, risk group, number
of past treatments collected over on average 14 years (aggregated at 4 − 6 month intervals). Our action
space consists of the 25 most frequently occurring drug combinations, while our state space consists of 100
continuous states of cell counts and viral loads. Since the virus evolves in response to drug pressure, the
problem is inherently non-stationary. Our data is collected using a standard first-line therapy provided by
clinicians. For our first case study (Case-I), we use a candidate clinician-provided policy as πtar. Given
data from the first-line therapy, we investigate whether deferring to second-line therapy (π0), as proposed by
standard medical guidelines in response to potential drug resistance(Saag et al., 2020), improves long-term
outcomes. The non-stationary behavior policy is the first line therapy estimated using Q-learning. For our
second case study (Case-II), data is collected from a non-stationary behavior policy which corresponds to
a first-line therapy typically used for treating patients of subtype C. Using the same candidate πtar as in
Case I, we then examine whether deferring to first-line therapy, given by clinical collaborators, for patients of
subtype M (due to potential drug resistance) improves long-term outcomes.
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Figure 2: Learned deferral probabilities for SLTD (top row), SLTD stationary (second row), SLTD one-step (third row),
and Augmented-MDP (red dotted line) for c = 0. Each row is a method (Row 1 is SLTD, Row 2 is SLTD-Stationary,
and Row 3 is SLTD-One Step). We are plotting g̃πtar (s, t) which is a function of states s and time t. Since this is
a function of two dimensions, we represent the variation along t in a row and then for each fixed t, we show the
different values this function can take for different states s. According to Synthetic data design, target policy always
takes suboptimal actions in the yellow region. That is, the optimal deferral policy is to defer for all states 2, 3, 4 for
all 0 ≤ t ≤ 15. That is, gπtar (s, t) = 1∀s ∈ {2, 3, 4} and 0 ≤ t ≤ 15 and 0 otherwise. Further, the dynamics change
over time so that the optimal action flips, as well as the noise increases when 5 ≤ t ≤ 12 requires deferral more
often. Thus, shaded yellow regions are the region of pre-emptive deferral. SLTD, which models non-stationarity defers
adaptively and early in the shaded yellow region (top row) and increases the deferral probability when dynamics
change. SLTD-stationary does not learn calibrated probabilities in the yellow region over time and only defers when
the average dynamics of the environment require deferral. SLTD-one-step and Augmented-MDP (dotted red line) only
defer in state 6 when the reward is negative and is not pre-emptive.

Baselines. We compare to the following baselines.

Mozannar et. al. (Mozannar and Sontag, 2020): This is a supervised method using a consistent loss
function to learn-to-defer. It learns an augmented regressor to defer or recommend treatment myopically
(independently at every time step). When the model defers, the clinician’s treatment recommendation is
used.

Madras et. al. (Madras et al., 2017): This is an alternative supervised learning-to-defer method. This
baseline learns separate regressors to defer and recommend treatments. We modify it to use πtar to recommend
and learn the rejection function to defer to π0. Note that both the supervised learning-to-defer methods are
trained to predict action targets.

Augmented-MDP: A conceptual contribution of SLTD is to defer by comparing outcomes by delaying
deferral with some knowledge of the expert policy. The deferral action itself is considered to augment the
MDP action space. We explore a baseline that uses Value Iteration in this augmented MDP. Comparing with
this baseline helps evaluate the utility of deferring based on outcomes of delayed versus immediate deferral.
This baseline will defer permanently to the expert, and knowledge of an expert policy is not assumed. This
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augmented MDP has action-space is A∪ ⊥, an augmented state-space S ∪ sdefer (sdefer is the deferred state),
and defers based on the cost c. This baseline models non-stationary dynamics, and is designed for sequential
settings. However since this method defers permanently to the expert, it incurs a larger deferral cost. In our
experiments, all values are plotted without the cost to reflect actual environment outcomes.

SLTD-Stationary: To assess the impact of misspecifying the non-stationarity, we compare to a variant of
SLTD that assumes the dynamics (and rewards) are stationary while allowing the method the flexibility of
learning a non-stationary deferral policy.

SLTD-One Step: We compare to a myopic version of SLTD that defers based on the immediate reward.
The key difference with the myopic Madras et. al., Mozannar et. al. baselines is that SLTD-One Step models
the dynamics and the uncertainty on the immediate reward. Thus, this baseline accounts for future deferrals
while deferring myopically.

Ablations for Uncertainty Modeling: For all SLTD variants, we evaluate the utility of accounting for
different sources of uncertainty, more specifically the modeling uncertainty to estimate the probability of
improving outcomes via delayed deferral. In SLTD, modeling uncertainty is accounted for by sampling
multiple (K) MDPs (Equation 3) from the posterior dynamics distribution, over which our outcomes are
averaged. Higher variability across K indicates higher modeling uncertainty. Hence, in Equation 3, using
K = 1 assumes a perfect estimate of the dynamics model and only accounts for the irreducible stochasticity
of the environment. A larger K accounts for potential variability in estimation (original SLTD formulation).
If our modeling uncertainty in the environment is indeed large, we anticipate the choice of K to have a larger
effect on SLTD’s performance. Modeling uncertainty can be large when there is insufficient data to fit the
target function class of the dynamics.

5.1 Evaluation Metrics.
We use the following evaluation metrics for assessing our proposed models.

Value Estimation. Once a deferral policy is learned, evaluating its utility using offline data is the problem
of off-policy evaluation (OPE). We use the following estimation procedure for evaluating the Value of a
deferral policy:

1. Rollout with true dynamics: For Synthetic data and Diabetes , we have access to the true dynamics,
although Diabetes data may be prone to discretization error. Here we can roll out the trajectories
under the true dynamics using deferral and collect the true value estimates. In our experiments, we
collect 10000 trajectories for all datasets.

2. Rollout with estimated dynamics: For HIV data, we do not have access to the true dynamics.
Hence we use the same procedure above but with estimated dynamics, which are estimated using
Maximum-Likelihood. This evaluation can be used when there is sufficient domain knowledge to rely
on the utility of MLE estimates of dynamics. In our HIV data, the MLE estimates are considered
state-of-the-art in clinical knowledge of HIV treatment Parbhoo et al. (2017). However, in general,
relying on an MLE estimate is prone to a biased value estimate.

3. Self-normalized Importance Sampling (IS): For real-world data where true dynamics are unavailable
and relying on MLE estimates of the dynamics may lead to bias, we provide an IS estimate of the
value. This metric will likely be used in most real-world scenarios while choosing the best deferral
policy. Note that IS is only asymptotically unbiased and suffers from large variance issues. Hence we
use a Self-normalized IS estimate. Note that IS can only be used when the assumption of overlap as
well as no unobserved confounding holds.

Deferral Frequency. In order to assess the trade-off of deferral frequency and value attained, we use the
true dynamics for Synthetic data and Diabetes data to roll out trajectories and estimate deferral frequency.
For HIV data, we use the Maximum-Likelihood dynamics to roll out trajectories to estimate deferral frequency
based on the consistency of value estimates of Self-normalized IS and MLE dynamics, which then allows us to
use the MLE dynamics to roll out trajectories. Please see further justification of this choice in Section 6.
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Method Synthetic Diabetes HIV Case-I HIV Case-II
Value estimate using

true dynamics
(mean ± 2 s.e.)

Self-Normalized IS
(mean ± 2 s.e.)

Value estimate using
true dynamics
(mean ± 2 s.e.)

Self-Normalized IS
(mean ± 2 s.e.)

Value estimate using
MLE dynamics
(mean ± 2 s.e.)

Self-Normalized IS
(mean ± 2 s.e.)

Value estimate using
MLE dynamics
(mean ± 2 s.e.)

Self-Normalized IS
(mean ± 2 s.e.)

SLTD 6.837 ± 0.229 3.710 ± 0.078 18.882 ± 0.151 -1.76e+05 ± 1.00e+04 18.628 ± 0.073 16.457 ± 0.351 25.192 ± 0.021 21.695 ± 0.217
SLTD-Stat. 6.464 ± 0.043 4.170 ± 0.202 4.312 ± 0.371 -2.27e+06 ± 7.30e+03 17.198 ± 0.170 17.261 ± 0.196 17.859 ± 0.586 11.281 ± 0.397
SLTD-One Step 6.324 ± 0.019 -1.283 ± 0.015 18.853 ± 0.105 -1.16e+05 ± 9.97e+03 6.859 ± 0.027 10.791 ± 0.331 7.103 ± 0.019 11.227 ± 0.374
SLTD
(K=1) 6.775 ± 0.397 3.819 ± 0.125 14.574 ± 0.931 -1.87e+05 ± 6.55e+04 8.611 ± 0.025 11.159 ± 0.517 22.187 ± 0.421 17.864 ± 0.661

SLTD-Stat.
(K=1) 6.455 ± 0.069 4.028 ± 0.265 5.054 ± 1.984 -2.17e+06 ± 1.08e+05 6.527 ± 0.017 8.659 ± 0.182 18.551 ± 0.236 17.877 ± 0.157

SLTD-One Step
(K=1) 6.332 ± 0.030 -1.170 ± 0.081 15.664 ± 0.839 -9.46e+04 ± 4.81e+04 6.173 ± 0.215 6.258 ± 0.539 7.136 ± 0.142 4.178 ± 0.131

Augmented-MDP 3.611 ± 0.028 2.731 ± 0.000 -0.742 ± 0.012 -2.64e+06 ± 0.000 N/A N/A N/A N/A
Mozannar et. al. 7.828 ± 0.163 4.111 ± 0.073 -4.253 ± 10.811000 -2.37e+06 ± 1.39e+04 6.857 ± 0.255 2.139 ± 0.381 8.259 ± 0.133 3.168 ± 0.281
Madras et. al. 3.318 ± 0.702 4.743 ± 0.083 35.955 ± 0.488 -8.148 ± 0.026 9.238 ± 0.301 6.829 ± 0.116 4.831 ± 0.117 4.173 ± 0.027
πtar 1.329 ± 0.055 -1.397 ± 0.000 -0.771 ± 0.033 -2.44e+06 ± 0.000 4.122 ± 0.217 3.159 ± 0.158 3.186 ± 0.319 3.199 ± 0.212
π0 6.522 ± 0.044 11.564 ± 0.000 35.166 ± 0.114 -8.085 ± 0.000 8.815 ± 0.027 6.158 ± 0.015 7.857 ± 0.139 4.844 ± 0.016

Table 1: Expected Value of SLTD compared with baselines for Synthetic data, Diabetes , and HIV data.
i) True dynamics (first column), ii) Self-normalized Importance Sampling estimate (second column). For
Synthetic data, IS estimate is biased relative to the true dynamics suggesting IS estimates may not be reliable
due to finite samples. The best value according to all methods for Diabetes is Madras et. al. suggesting
benefits to myopic deferral for this data. However, the frequency trade-off shown in Table 8 shows that
Madras et. al. achieves this value when it defers (always) to the clinician. SLTD is competitive for Synthetic
data and outperforms all other methods for HIV data. According to IS estimates, Madras et. al. provides
the best value for Synthetic data. For Diabetes , severe overlap issues result in unreliable IS estimates, except
for Madras et. al. which matches π0 as it completely defers to the clinician. IS-estimates are consistent with
MLE-based estimates for HIV where SLTD consistently outperforms all baselines. Figure 3 shows the deferral
frequency versus value trade-off for all datasets.

6 Results
Optimizing for long-term outcomes learns qualitatively different deferral policies. Our deferral
policy is a non-stationary stochastic function g̃πtar(s, t) which we threshold. Visualizing g̃πtar(s, t) enables us
to understand the utility of various modeling choices of SLTD. Figure 2 shows the histograms of g̃πtar for
SLTD and its Stationary and One-Step variant when the cost c = 0 for Synthetic data. Visualizing without
deferral cost allows us to see how adaptive SLTD is without a penalty. Each row corresponds to a method;
the x-axis corresponds to time over the horizon T . Each box in a row corresponds to a single time point. For
a fixed t, g̃πtar is a stochastic function of the states, shown as a histogram.

The yellow shaded region indicates the state space where πtar takes unfavorable actions. Over time, the
dynamics change so that the favorable action flips 5 ≤ t ≤ 12 and the stochasticity in the dynamics
increases requiring more frequent deferrals. Deferring in the yellow region is desirable to pre-emptively avoid
landing in a state of 6. SLTD is highly adaptive, and pre-emptively defers in the yellow region. As the
stochasticity increases, the probability of deferrals appropriately increases. The stationary variant significantly
underestimates the need to defer in states 2, 3, 4 when t < 5. It is only able to pre-emptively defer in regions
where the average stochasticity of the estimated dynamics aligns with the environment. The One-Step variant
defers only in state 6 and is therefore not preemptive. Augmented-MDP (red vertical line) deterministically
defers in state 6. Thus deferring based on the probability of improved outcomes of immediate and delayed
deferrals is desirable over alternatives (see also Figures 4, 5, and 6 in Appendix for Diabetes and HIV
data).

It is important to note that SLTD lowers deferral frequency for t ≥ 12. The reason for this is two-fold. First,
it is an artifact of the synthetic data that we use to evaluate SLTD. More specifically, there is an additional
form of non-stationarity that kicks in at t ≥ 12 where we stop adding noise to our dynamics, which resets
the dynamics to where they were at t < 5. As a result, the deferral frequency is expected to be lower than
at 5 ≤ t ≤ 12. Second, since SLTD is designed in an offline learning environment, the support of the data
matters (for any offline learning algorithm). For t > 12, the offline data collected does not have significant
support over the “deferral” states [2, 3, 4], which induces an estimation issue. While we expect this to be
compensated by uncertainty modeling that we incorporate, lack of data support is a much more fundamental
problem in offline learning, and we anticipate requiring better prior knowledge of the dynamics to completely
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overcome the bias that is introduced in the deferral frequency. This bias further lowers deferral frequencies
even more compared to t < 5. Nonetheless, the learned deferral policy improves as can be seen from Table 1
and noting that the value estimate we have from the optimal policy for Synthetic data was estimated to be
≈ 8. Mozannar et. al. is able to achieve close to optimal by deferring over 80% of the time.

Method
SLTD SLTD-Stationary SLTD-One Step Augmented-MDP Mozannar et al. Madras et al. Clinician Behavior
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Figure 3: The trade-off of deferral frequency and value attained. Synthetic data and Diabetes use true
dynamics, while HIV uses Maximum-Likelihood estimates for value estimates. The plot shows the expected
value (higher is better) for a sweep over deferral cost (corresponding to best performing hyperparameters
for each baseline) to the deferral frequency (lower is better). SLTD achieves the best trade-off and better
value by deferring pre-emptively. The stationary variant is unable to attain high values for the same deferral
frequency. The One-Step variant cannot improve over πtar in MDPs where the effect of interventions is not
myopic (Synthetic and HIV) and achieves good performance by modeling the dynamics in Diabetes, compared
to Mozannar et. al.. Madras et. al. baseline performs well on Diabetes data suggesting this data is myopic,
though non-stationary (considering deterioration of SLTD-Stationary, and the high deferral frequency of
Madras et. al. baseline. Augmented-MDP is unable to achieve good performance indicating the benefits
of deferring by explicitly quantifying the impact of delaying deferral as in SLTD over Augmented-MDP’s
Value Iteration method. SLTD and the stationary variant achieve the best trade-offs in HIV data. Deferral
trade-offs when relying on Self-normalized IS for model-selection are provided in Tables 8 and 11 in the
Appendix.

SLTD improves long-term outcomes. Table 1 shows the value (higher is better) for all baselines using
the different value estimation methods outlined above. We have shown the highest value for each value
estimate independently. For HIV data, we do not see significant differences between MLE dynamics and
IS evaluation metrics. SLTD unanimously outperforms all baselines. Table 1 shows significant biases in
the IS estimate compared to the true dynamics for Synthetic data data. Based on IS estimates, Madras
et. al. performs the best for Synthetic data. Table 8 in Appendix shows the frequency of deferrals and the
corresponding cost hyperparameter, if IS value estimates are used to select the best deferral methods. This
performance is obtained when there is no cost to deferring (c = 0) resulting in deferral frequency of over
50%. For c > 0, we see a drop in value to less than 2 for Madras et. al. (see Figure 3). This suggests that
SLTD is still efficient and able to reach a high value for fewer deferrals in Synthetic data data. For Diabetes
data, Madras et. al. performs the best according to both Self-normalized IS and using the true dynamics.
However, Figure 3 suggests that the Madras et. al. baseline always defers to clinician and never has a
deferral frequency less than 1. Due to significant overlap issues, IS-estimates for Diabetes are unreliable
except for Madras et. al. which matches clinician policy (due to permanent deferral). As such there are
untestable overlap issues using IS that need further attention in such non-stationary environments.

Based on the true dynamics, Augmented-MDP baseline is not preemptive despite modeling the non-stationary
dynamics. Hence, deferring by comparing outcomes of delayed deferral is a better alternative, specifically
Value Iteration used in Augmented-MDP. Additional benefits of modeling the dynamics are clear from the
improved performance of all SLTD variants compared to the myopic Mozannar et. al. baseline when c > 0.
Mis-specification of dynamics (SLTD-Stat.) results in worse performance. SLTD-Stat. defers more often to
achieve comparable performance. Figure 3 demonstrates this trade-off is general, for all choices of deferral
costs and other parameters. In Figure 3, the x-axis corresponds to deferral frequency (lower is better) and
y-axis the value attained (higher is better). For Synthetic data and Diabetes , value estimates using the true
dynamics are shown. For HIV data, since we do not have access to the true dynamics, the deferral frequency
is estimated using an MLE estimate of the dynamics. From Table 1, we can see that all value estimation

13



Published in Transactions on Machine Learning Research (07/2023)

procedurs provide comparable estimates for HIV. SLTD achieves the best trade-off for Synthetic data and
HIV.

Further, pre-emptive deferral allows SLTD to reach close to optimal (value average obtained is ≈ 7.0) in
Synthetic data, though Mozannar et. al. achieves a higher value when deferral cost is 0. SLTD-One Step only
relies on immediate rewards failing to improve long-term outcomes for HIV. However, as long as we model
the dynamics appropriately, even myopic deferral using SLTD-One Step is beneficial for Diabetes compared
to Mozannar et. al.. This is possible when the effect of interventions is observed myopically, as is the case in
Diabetes data since modeling the dynamics and impact of future deferral is beneficial to characterize. Madras
et. al. performs well on Diabetes data suggesting optimal actions don’t significantly deviate in target data
and that its design of training a rejection function worked better than the loss function design of Mozannar
et. al.

Defer Time
td

Total
Uncertainty

Modeling
Uncertainty

Mean
Outcome

Synthetic data 3 26.190 0.233 3.42
Diabetes 3 3418.17 34.160 73.669

Table 2: Interpreting first time of deferral for a sample trajectory. Modeling uncertainty remains low in all
cases whereas in comparison, total variance is high. This indicates irreducible stochasticity of the dynamics is
the primary source of uncertainty. Additional results are in Appendix.

Ablations for uncertainty modeling. We study the utility of accounting for modeling uncertainty in
our framework. As described in Section 4, multiple sources of propagated uncertainty contribute to variability
in estimated outcomes. Modeling uncertainty is crucial to account for in a model-based framework. Here we
evaluate the impact of not accounting for this uncertainty on SLTD’s performance.

If modeling uncertainty is high, variability of the sampled MDPs used to estimate Equation 3 will be higher.
Evaluating for K = 1, will evaluate the impact of ignoring this uncertainty. In Table 1 (see also Figure 8
in Appendix), we demonstrate the results with K = 1 for all SLTD variants. We do not observe significant
differences for Synthetic data and Diabetes indicating that our modeling uncertainty is low in these data.
The difference is higher in HIV suggesting the importance of accounting for this uncertainty for real-world
HIV data. Such analysis is crucial to understanding whether our modeling assumptions are reasonable.

Decomposing uncertainty in SLTD can help interpret deferral. Conveying the type of uncertainty
to a domain expert can help identify the dominant source of uncertainty that resulted in a deferral to their
standard practice (expert policy). Table 2 shows this decomposition for one timepoint for discrete data. In
each case, the modeling uncertainty is a small fraction of the total uncertainty. This suggests that systematic
non-stationarity is the dominant source of uncertainty which generally cannot be reduced by collecting
data and may require careful interventions beyond the standard policy. Knowledge of the amount of model
uncertainty can enable users to further improve decision-making through data collection or improving model
assumptions.

7 Discussion
We proposed SLTD, a learning-to-defer framework for sequential settings using offline model-based RL. We
learn a deferral policy by quantifying the impact of delaying deferral to the future. SLTD can defer based
on long-term outcomes and learns a pre-emptive deferral policy. Further, we emphasize a model-based
RL method that captures the dynamics of the environment, particularly non-stationarity. Modeling the
non-stationarity of the environment allows deferring adaptively. Misspecifying non-stationarity leads to
significantly more deferrals to improve long-term outcomes. We demonstrate that existing learning-to-defer
frameworks are myopic. That is, these methods do not learn a pre-emptive policy even in sequential settings
as they focus on the immediate consequences of actions. We further demonstrate the utility of accounting for
all potential sources of stochasticity to quantify the impact of delayed deferral. Explicit characterization of the
probability of improving outcomes is beneficial to prevent over-estimation of the benefits of delaying deferral.
We further interpret deferral decisions of SLTD by decomposing the long-term propagated uncertainty.
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Limitations and Future Work. While quantifying the uncertainty is useful, especially to compensate for
the fundamental challenge of data support in offline reinforcement learning, modeling uncertainty through non-
stationarity is costly. Developing a model-free framework is an important aspect of future work. Uncertainty
quantification may not be able to compensate for cases of severe data support issues, which may result in biases
in the learned SLTD policy. In this case, better prior knowledge of the dynamics is necessary. SLTD assumes
no hidden/unobserved confounding by relying on an MDP data-generating assumption. Thus our current
uncertainty quantification does not account for the added epistemic uncertainty due to potential hidden
confounding. Incorporating clinically motivated sensitivity models to account for unobserved confounding is
an active area of our future work. SLTD can account for some deviations from the expert policy, as well as
the potential for its recommendations to be overridden, though significant deviations should be modeled as
an online human-in-the-loop system. In this case, SLTD can serve as a reliable warm-start policy that could
be further improved using (online) human input. We also posit that our current ε-greedy version will prove
to be more conservative compared to such an online framework, as we expect real human decisions to be
more informed (modulo their own biases) than a noise model that is ε-greedy. Nonetheless, rigorously testing
this human-in-the-loop learning-to-defer framework is left to future work. Finally, note that if the type of
non-stationarity we would like to defer against is not observed in the offline data, the deferral policy may
over/understimate the need to defer.

Ethical considerations. SLTD is a technical proof-of-concept to defer to an expert by accounting for
long-term effects, assuming that the expert is better at increasing value over the current policy in certain
regions. In practice, an expert policy may not be bias free. Thus, deferral may result in biased decisions if the
expert is biased. Such bias may be exacerbated due to potential sources of hidden confounding (Gottesman
et al., 2018). While we are not focused on addressing bias, exposing uncertainties may encourage expert
introspection. Nonetheless, deferring is better when an automated decision may be harmful.

8 Acknowledgements
This material is based upon work supported by the Center for Research on Computation and Society (CRCS)
at Harvard University, the National Science Foundation under Grant No. IIS-2007076. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the funding agencies.

References
Umang Bhatt, Javier Antorán, Yunfeng Zhang, Q Vera Liao, Prasanna Sattigeri, Riccardo Fogliato,

Gabrielle Gauthier Melançon, Ranganath Krishnan, Jason Stanley, Omesh Tickoo, et al. Uncertainty as a
form of transparency: Measuring, communicating, and using uncertainty. arXiv preprint arXiv:2011.07586,
2020.

Yash Chandak, Scott M Jordan, Georgios Theocharous, Martha White, and Philip S Thomas. Towards safe
policy improvement for non-stationary mdps. arXiv preprint arXiv:2010.12645, 2020a.

Yash Chandak, Georgios Theocharous, Shiv Shankar, Martha White, Sridhar Mahadevan, and Philip Thomas.
Optimizing for the future in non-stationary mdps. In International Conference on Machine Learning, pages
1414–1425. PMLR, 2020b.

Stefan Depeweg, Jose-Miguel Hernandez-Lobato, Finale Doshi-Velez, and Steffen Udluft. Decomposition of
uncertainty in bayesian deep learning for efficient and risk-sensitive learning. In International Conference
on Machine Learning, pages 1184–1193. PMLR, 2018.

Daniel Fink. A compendium of conjugate priors. See http://www. people. cornell.
edu/pages/df36/CONJINTRnew% 20TEX. pdf, 46, 1997.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty
in deep learning. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd
International Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research,
pages 1050–1059, New York, New York, USA, 20–22 Jun 2016. PMLR. URL http://proceedings.mlr.press/
v48/gal16.html.

15

http://proceedings.mlr.press/v48/gal16.html
http://proceedings.mlr.press/v48/gal16.html


Published in Transactions on Machine Learning Research (07/2023)

Efstathios D. Gennatas, Jerome H. Friedman, Lyle H. Ungar, Romain Pirracchio, Eric Eaton, Lara G.
Reichmann, Yannet Interian, José Marcio Luna, Charles B. Simone, Andrew Auerbach, Elier Delgado,
Mark J. van der Laan, Timothy D. Solberg, and Gilmer Valdes. Expert-augmented machine learning.
Proceedings of the National Academy of Sciences, 117, 2020.

Omer Gottesman, Fredrik Johansson, Joshua Meier, Jack Dent, Donghun Lee, Srivatsan Srinivasan, Linying
Zhang, Yi Ding, David Wihl, Xuefeng Peng, et al. Evaluating reinforcement learning algorithms in
observational health settings. arXiv preprint arXiv:1805.12298, 2018.

Omer Gottesman, Yao Liu, Scott Sussex, Emma Brunskill, and Finale Doshi-Velez. Combining parametric
and nonparametric models for off-policy evaluation. In International Conference on Machine Learning,
pages 2366–2375. PMLR, 2019.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks. In
International Conference on Machine Learning, pages 1321–1330. PMLR, 2017.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of local
experts. Neural computation, 3(1):79–87, 1991.

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm. Neural
computation, 6(2):181–214, 1994.

Nathan Kallus and Angela Zhou. Confounding-robust policy improvement. Advances in neural information
processing systems, 31, 2018.

Jessie Liu, Blanca Gallego, and Sebastiano Barbieri. Incorporating uncertainty in learning to defer algorithms
for safe computer-aided diagnosis. arXiv preprint arXiv:2108.07392, 2021.

David Madras, Toniann Pitassi, and Richard Zemel. Predict responsibly: improving fairness and accuracy by
learning to defer. arXiv preprint arXiv:1711.06664, 2017.

Hussein Mozannar and David Sontag. Consistent estimators for learning to defer to an expert. arXiv preprint
arXiv:2006.01862, 2020.

Michael Oberst and David Sontag. Counterfactual off-policy evaluation with gumbel-max structural causal
models. In International Conference on Machine Learning, pages 4881–4890. PMLR, 2019.

Michael Oberst, Fredrik Johansson, Dennis Wei, Tian Gao, Gabriel Brat, David Sontag, and Kush Varshney.
Characterization of overlap in observational studies. In International Conference on Artificial Intelligence
and Statistics, pages 788–798. PMLR, 2020.

Sonali Parbhoo, Jasmina Bogojeska, Maurizio Zazzi, Volker Roth, and Finale Doshi-Velez. Combining kernel
and model based learning for hiv therapy selection. AMIA Summits on Translational Science Proceedings,
2017:239, 2017.

Sonali Parbhoo, Omer Gottesman, Andrew Slavin Ross, Matthieu Komorowski, Aldo Faisal, Isabella Bon,
Volker Roth, and Finale Doshi-Velez. Improving counterfactual reasoning with kernelised dynamic mixing
models. PloS one, 13(11):e0205839, 2018.

Melanie F Pradier, Javier Zazo, Sonali Parbhoo, Roy H Perlis, Maurizio Zazzi, and Finale Doshi-Velez.
Preferential mixture-of-experts: Interpretable models that rely on human expertise as much as possible.
arXiv preprint arXiv:2101.05360, 2021.

Doina Precup. Eligibility traces for off-policy policy evaluation. Computer Science Department Faculty
Publication Series, page 80, 2000.

Maithra Raghu, Katy Blumer, Greg Corrado, Jon Kleinberg, Ziad Obermeyer, and Sendhil Mullainathan. The
algorithmic automation problem: Prediction, triage, and human effort. arXiv preprint arXiv:1903.12220,
2019.

16



Published in Transactions on Machine Learning Research (07/2023)

James Robins, Mariela Sued, Quanhong Lei-Gomez, and Andrea Rotnitzky. Comment: Performance of
double-robust estimators when" inverse probability" weights are highly variable. Statistical Science, 22(4):
544–559, 2007.

James M Robins, Miguel Angel Hernan, and Babette Brumback. Marginal structural models and causal
inference in epidemiology. Epidemiology, pages 550–560, 2000.

Michael S Saag, Rajesh T Gandhi, Jennifer F Hoy, Raphael J Landovitz, Melanie A Thompson, Paul E Sax,
Davey M Smith, Constance A Benson, Susan P Buchbinder, Carlos Del Rio, et al. Antiretroviral drugs for
treatment and prevention of hiv infection in adults: 2020 recommendations of the international antiviral
society–usa panel. Jama, 324(16):1651–1669, 2020.

Aaron Sonabend, Junwei Lu, Leo Anthony Celi, Tianxi Cai, and Peter Szolovits. Expert-supervised
reinforcement learning for offline policy learning and evaluation. In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
18967–18977. Curran Associates, Inc., 2020.

Guy Tennenholtz, Uri Shalit, and Shie Mannor. Off-policy evaluation in partially observable environments.
In AAAI, pages 10276–10283, 2020.

Richard Tomsett, Alun Preece, Dave Braines, Federico Cerutti, Supriyo Chakraborty, Mani Srivastava,
Gavin Pearson, and Lance Kaplan. Rapid trust calibration through interpretable and uncertainty-aware ai.
Patterns, 1(4):100049, 2020.

Masatoshi Uehara, Chengchun Shi, and Nathan Kallus. A review of off-policy evaluation in reinforcement
learning. arXiv preprint arXiv:2212.06355, 2022.

Bryan Wilder, Eric Horvitz, and Ece Kamar. Learning to complement humans. arXiv preprint
arXiv:2005.00582, 2020.

Jiayu Yao, Weiwei Pan, Soumya Ghosh, and Finale Doshi-Velez. Quality of uncertainty quantification for
bayesian neural network inference. arXiv preprint arXiv:1906.09686, 2019.

Maurizio Zazzi, Francesca Incardona, Michal Rosen-Zvi, Mattia Prosperi, Thomas Lengauer, Andre Altmann,
Anders Sonnerborg, Tamar Lavee, Eugen Schülter, and Rolf Kaiser. Predicting response to antiretroviral
treatment by machine learning: the euresist project. Intervirology, 55(2):123–127, 2012.

Yunfeng Zhang, Q Vera Liao, and Rachel KE Bellamy. Effect of confidence and explanation on accuracy
and trust calibration in ai-assisted decision making. In Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency, pages 295–305, 2020.

17


