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Abstract

Topic models and document-clustering evalu-001
ations either use automated metrics that align002
poorly with human preferences, or require ex-003
pert labels that are intractable to scale. We de-004
sign a scalable human evaluation protocol and005
a corresponding automated approximation that006
reflect practitioners’ real-world usage of mod-007
els. Annotators—or an LLM-based proxy—008
review text items assigned to a topic or cluster,009
infer a category for the group, then apply that010
category to other documents. Using this pro-011
tocol, we collect extensive crowdworker anno-012
tations of outputs from a diverse set of topic013
models on two datasets. We then use these an-014
notations to validate automated proxies, finding015
that the best LLM proxy is statistically indis-016
tinguishable from a human annotator and can017
therefore serve as a reasonable substitute in018
automated evaluations.019

1 Introduction020

Suppose a researcher wants to study the impact021

of donations on politicians’ speech. For the past022

two decades, such questions have often been an-023

swered with the help of topic models or other text-024

clustering techniques (Baden et al., 2022; Ying025

et al., 2022). Here, the research team might inter-026

pret topic model estimates as representing health-027

care or taxation categories, and associate each leg-028

islator with the topics they discuss. Researchers029

could then measure the influence of a donation030

on the change in the legislators’ topic mixture—031

showing that, e.g., money from a pharmaceutical032

company increases their focus on healthcare.033

The crucial supposition of such a “text-as-data”034

approach is that the interpreted categories are valid035

measurements of underlying concepts (Grimmer036

and Stewart, 2013; Ying et al., 2022; Zhang et al.,037

2024a). Adapting an example from Ying et al.,038

plausible interpretations of model estimates might039
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Step 1. Write a label for the category that describes 
this group of keywords and documents.

Step 2. Does this document fit your category of 
“modern artists”?

Figure 1: Our evaluation protocol for topic models and
document clustering methods. First, a user reviews doc-
uments and keywords related to a topic or cluster and
identifies a category. Then, they apply that category
to new documents (a third ranking step is not shown).
The more human relevance judgments align with cor-
responding model estimates, the better the model. Im-
portantly, the protocol is straightforward to adapt to an
LLM prompt, creating a “proxy annotator”, PROXANN.

yield either healthcare or medical research, which 040

would carry “very different substantive implica- 041

tions” for a research area. Facilitating the identi- 042

fication of valid categories is therefore a key con- 043

cern in real-world settings, which falls under the 044

framework of qualitative content analysis (QCA, 045

Mayring, 2000), a primary use case for topic mod- 046

els (Grimmer and Stewart, 2013; Bakharia et al., 047

2016; Li et al., 2024). 048

Taking the view that effective evaluations are 049

those that approximate the real-world requirements 050

of the use case (Liao and Xiao, 2023), it then fol- 051

lows that topic model (and document clustering) 052

evaluations should help encourage valid categories 053

(Ying et al., 2022). However, as we discuss in 054

Section 2, the evaluation strategies that are reason- 055
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able approximations for this use case are generally056

dependent on human-derived ground truth, render-057

ing them hard to scale and reproduce. Conversely,058

the most common unsupervised automated metrics,059

while fast to compute, tend to be poor measures of060

topic quality (Doogan and Buntine, 2021).061

This paper addresses these shortcomings by062

introducing both an application-grounded human063

evaluation protocol and a corresponding automated064

metric that can substitute for a human evaluator.065

The protocol approximates the standard qualitative066

content analysis process, where categories are first067

derived from text data and subsequently applied068

to new items, Fig. 1; our human study collects069

multiple annotations for dozens of topics, making070

it the largest of its kind.1 Using both open-source071

and proprietary large language models (LLMs),072

we develop “proxy annotators” that complete the073

tasks comparably to an arbitrary human annotator;074

we call the method PROXANN. In addition, results075

from the human evaluation indicate that a classical076

model (LDA Blei et al., 2003) performs at least077

as well, if not better, than its modern equivalents.078

2 Background and Prior Work079

We outline necessary background regarding topic080

models, clustering methods and their evaluations.081

We start with the goals of topic modeling, turn to082

standard automated evaluations, then outline use-083

oriented measures based on human input.084

2.1 Making sense of document collections085

The systematic categorization of text datasets is a086

common activity in many fields, particularly in the087

social sciences and humanities. A common man-088

ual framework to help structure the recognition of089

categories in texts is qualitative content analysis090

(QCA, Mayring, 2000; Smith, 2000; Elo and Kyn-091

gäs, 2008, inter alia). Broadly, it consists of an092

inductive process whereby categories emerge from093

data, which are then consolidated into a final code-094

set. These categories are then deductively assigned095

to new documents, supporting downstream anal-096

yses and understanding (e.g., characterizing the097

changing prevalence of categories over time).2098

1We will release code and data upon acceptance, and com-
mit to retracting the paper if we fail to follow through.

2Practitioners in various communities have developed re-
lated families of methodologies with similar goals, such as
grounded theory (Glaser and Strauss, 1967) and reflexive the-
matic analysis (Braun and Clarke, 2006))

NLP offers techniques that are designed to sup- 099

port this process—and that are often conceived as 100

analogues of manual approaches (Baumer et al., 101

2017; Bakharia et al., 2016). These methods are 102

typically unsupervised, and among the most preva- 103

lent are topic models (Blei et al., 2003). A topic 104

model is a generative model of documents, where 105

each document is represented by an admixture of 106

latent topics θd, and each topic is in turn a dis- 107

tribution over words types βk (which a user can 108

interpret as a category). For example, when an- 109

alyzing a corpus of U.S. legislation, suppose the 110

most probable words for one topic include doctor, 111

medicine, health, patient and a document 112

with a high probability for that topic is the text of 113

the Affordable Care Act; together, they appear to 114

convey a healthcare category. 115

More recently, the improved representation ca- 116

pacity of sequence embeddings (e.g., sentence 117

transformers, Reimers and Gurevych, 2019) has 118

led to their use in clustering (see Zhang et al. 2022 119

for an overview). As with topic modeling, a doc- 120

ument is associated with one or more clusters (an 121

equivalent to θd); succinct labels (standing in for 122

βk) for clusters can be obtained with various word- 123

selection methods or language-model summaries. 124

2.2 Evaluating Categorizations 125

Topic Coherence. Topic model evaluation has 126

primarily focused on the semantic coherence of 127

the most probable words in a topic—the capacity 128

for a set of terms to “enable human recognition 129

of an identifiable category” (Hoyle et al., 2021). 130

Boyd-Graber et al. 2014 consider a topic’s coher- 131

ence to be a precondition for a useful model, and 132

indeed, applied works often validate topics by pre- 133

senting the top words (Ying et al., 2022)—which, 134

in many cases, is the only form of validation. While 135

Ying et al. 2022 attempt to standardize evaluations 136

of topic-word coherence (building on Chang et al. 137

2009), the reliance on crowdworkers renders them 138

difficult and costly to scale. As a result, method- 139

ological contributions—where easily-applied met- 140

rics can help guide model development—tend to 141

use automated proxies for coherence, like Normal- 142

ized Pointwise Mutual Information (NPMI, Lau 143

et al., 2014). Despite their ubiquity, automated co- 144

herence metrics fail to align closely with human 145

judgments, exaggerating differences between top- 146

ics (Hoyle et al., 2021).3 Newer automated metrics 147

3Lim and Lauw 2024 have investigated this relationship
further, but with artificial topics not generated by a model.
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MALLET CTM BERTopic

season game games home runs career hit games season league yard season team yards league
Major League Baseball Players and History Major League Baseball Players and Achievements Sports and Athletics
Professional baseball players Former MLB players Professional Basketball and Baseball Players
American professional baseball players American baseball league American sports and their associated famous sportsmen
Baseball knowledge hub Professional baseball facts and figures Sports champions
act consumer credit employee card fuel credit revenue internal property vehicle recorder motor retrieved retrieval
Labor and Employment Legislation Renewable Energy Tax Credits and Incentives Vehicle Data Privacy and Ownership Rights
Individual Protection Laws Renewable energy tax and biofuel Vehicle owner protections
Labor Laws and Protections Energy tax credits, Alternative fuel credits Automobile Ownership Legislation
Proposed employee protections Energy Tax Policy Vehicle Owner and Safety Legislation

Table 1: GPT-4O and human annotator-provided category labels for a sample of matched topics from each model
(topic model words are in italics) for Wiki (top row) and Bills (bottom row) datasets. Labels are consistent across
humans and models.

based on LLMs face similar issues, lacking a clear148

relationship to actual usage and human judgments149

of quality (details in Section 6).150

Beyond Topic Coherence. In contrast, our con-151

tribution closely matches the standard qualitative152

analysis: developing and applying categories to153

text items. Although coherent topic-words (or cate-154

gory labels) are important for interpretability, they155

are not sufficient to establish that model outputs are156

valid. Categories are also assigned to individual157

text items, and those assignments should be “mean-158

ingful, appropriate, and useful” (Boyd-Graber et al.,159

2014). Furthermore, the coherence of the topic-160

words may not agree with the perceived quality161

of the document-topic distribution (Bhatia et al.,162

2017). For topic models, Doogan and Buntine 2021163

therefore argue that measuring the coherence of the164

top documents for each topic is necessary for a165

holistic model evaluation.4 Several prior efforts166

have situated model evaluation in the context of167

their use, but these works rely on on manual label168

assignments (either pre-existing or via interaction),169

limiting their broader utility (additional discussion170

in Section 6).171

3 Evaluation Methodology172

This section proposes a human evaluation protocol173

for topic models and document clustering methods.174

The evaluation is oriented toward real-world use,175

emulating how practitioners develop categories176

from—and assign them to—text data in applied set-177

tings. Alongside the human tasks, we also develop178

LLM prompts that adapt the human instructions,179

treating the LLM as a proxy annotator, PROXANN.180

In brief, a sample of documents and keywords181

4The same logic holds for document clustering, where the
interpretation of a category relies on reading the documents
assigned to it.

for each topic or cluster are shown to an annotator 182

to establish its semantic category (as in the first 183

step in Ying et al. 2022); the annotator then re- 184

views additional documents and labels them based 185

on their relatedness to the category. These cate- 186

gory identification and relevance judgment steps 187

follow that of qualitative content analysis, “a man- 188

ual process of inductive discovery of codesets via 189

emergent coding” (Stemler, 2000). We also include 190

a representativeness ranking task as an additional 191

evaluation signal, inspired by “verbatim selection” 192

in qualitative settings (Corden et al., 2006). 193

As a whole, our proposal builds on the idea that 194

coherence means “calling out a latent concept in 195

the mind of a reader” (Hoyle et al., 2021). By 196

measuring the coherence of the documents within 197

each topic or cluster, it provides a more holistic 198

(and use-oriented) picture of a model’s quality than 199

past work. It draws most closely from the tasks 200

in Ying et al. (2022); we adapt and combine their 201

label assignment and validation steps, avoiding the 202

reliance on curated expert labels.5 203

3.1 Evaluation Protocol 204

We describe the steps for the human evaluation pro- 205

tocol and LLM-proxy, PROXANN, in parallel. Ap- 206

pendices contain instructions, user interface screen- 207

shots (app. H), and model prompts (app. I). 208

Step 0: Setup. First, we outline the model out- 209

puts required for the evaluation (recall that we are 210

attempting to emulate content analysis, Fig. 1). 211

Throughout, we remain agnostic as possible to the 212

method that produces these outputs; the evaluation 213

is appropriate for both topic models and other text 214

clustering techniques. 215

Suppose that there are K topics or clusters and 216

5However, our approach can also use expert labels, and is
complementary to their work.
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|D| documents, with each document containing217

|Wd| word types (total vocabulary size |W |). Each218

document d ∈ D has an estimated score indicating219

its semantic relationship to the kth topic or clus-220

ter, θdk. For topic models, this is the estimated221

posterior probability for the kth topic. Different222

clustering methods can produce this value in differ-223

ent ways; e.g., for K-means, a standard estimate224

is the similarity between the document embedding225

and the cluster centroid. We place estimates into a226

matrix Θ ∈ RN×K , and each column of the matrix227

sorted to produce a ranked list of the most likely228

documents for each topic or cluster, θ(r)
k .229

Topics and clusters are also associated with230

ranked word types β(r)
k . For topic models, these are231

the sorted rows of the topic-word distributions B ∈232

RK×|W |; for clustering, it is possible to extract top233

words for a cluster via tf-idf (Sia et al., 2020).6234

The final representations shown to users consist235

of a sample of nd highly-ranked exemplar docu-236

ments from θ
(r)
k and the most probable nw key-237

words from β
(r)
k . To balance informativeness with238

annotator burden, we set the number of documents239

nex to seven and the number of words nw to 15.7240

When constructing the exemplar documents,241

Doogan and Buntine (2021) note that only showing242

the documents at the head of the distribution can243

lead to an overly-specific view of the topic (e.g.,244

“banning AR-15s” vs. “gun control”). We miti-245

gate this issue by instead sampling documents with246

a θdk greater than a threshold tk. To set tk, we247

find the point with maximum curvature using an248

“elbow”-detection algorithm (Satopaa et al., 2011).249

Then, we sample from the set {d : θdk > tk},250

where the probability of a sample is proportional251

to θdk. Figure 7 (in the appendix) shows the dis-252

tributions of θ
(r)
k for the 1,000 documents with253

the largest values over six topics for the two topic254

models we use (see Section 4).255

Step 1: Category identification. After viewing256

instructions and completing a training exercise (Ap-257

pendix H), each annotator reviews the exemplar258

documents and keywords for a single topic. They259

then construct a free-text label that best describes260

the category they have observed.8 Continuing the261

6Ranked word types are not strictly necessary for the eval-
uation, but their usage as a topic summary is widespread.

7See Lau and Baldwin 2016 for a discussion of the rela-
tionship between nw and perceived coherence.

8Per Chang et al. (2009), documents are truncated to im-
prove reading times. We limit them to 1000 characters.

α Fit (Step 2) α Rank (Step 3)

Wiki
Mallet 0.71 (0.10) 0.74 (0.12)
CTM 0.55 (0.30) 0.45 (0.11)
BERTopic 0.57 (0.16) 0.44 (0.20)

Bills
Mallet 0.31 (0.27) 0.49 (0.22)
CTM 0.37 (0.19) 0.43 (0.26)
BERTopic 0.32 (0.30) 0.34 (0.17)

Table 2: Chance-corrected human–human inter-
annotator agreement (Krippendorff’s α), averaged over
eight topics per model (standard deviation in parenthe-
ses). Each topic has at least 3 annotators.

earlier U.S. healthcare example, users might also 262

view the text of the National Organ Transplant Act 263

of 1984 and the Rare Diseases Act of 2022. 264

The LLM is prompted with condensed instruc- 265

tions and the same exemplars and keywords, also 266

producing a label for the category. 267

Step 2: Relevance Judgment. An additional 268

sample of seven evaluation documents, evenly 269

stratified over θ
(r)
k , is shown in random order.9 270

For one document at a time, annotators answer the 271

extent to which the document fits their inferred 272

category (on a scale from “1 – No, it doesn’t fit” 273

to “5 – Yes, it fits”), producing a set of fit scores 274

for annotator i, s(i)k . As a control, one document 275

with near-zero probability for the topic is always 276

shown. Here, an annotator might assign the Coron- 277

avirus Preparedness and Response Act a “5” and 278

the Federal Meat Inspection Act a “3”. 279

For the LLM prompt, the instructions are slightly 280

modified to produce binary fit scores, given that 281

models are known to face issues with Likert-like 282

scales (Stureborg et al., 2024). 283

Step 3: Representativeness ranking. Last, an- 284

notators rank the evaluation documents by how 285

representative they are for that category, r(i)k .10 286

Given the complexity of the task, a direct trans- 287

lation to an LLM prompt is not practical. Instead, 288

we modify the question to include two evaluation 289

documents at a time, leading to
(
7
2

)
prompts. The 290

LLM thus produces a set of pairwise ranks per 291

prompt, which we use to infer real-valued “related- 292

ness” scores for each document with a Bradley and 293

Terry model (further details in Appendix I). 294

9Generally, we assume a strict total ordering over evalu-
ation documents; nonstrict orders, as in the case of binary
assignments θdk ∈ {0, 1}, can work but require some alter-
ations to our metrics.

10We include a “distractor” document—an Amazon review
for kitchen sponges—to filter out poor quality annotations.
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4 Experiments295

We describe the experimental setup: the choices of296

datasets, models, annotators, and metrics.297

4.1 Datasets298

We use two English datasets that are standard in299

topic modeling evaluations: Wiki (Merity et al.,300

2017), consisting of 14,000 “good” Wikipedia11301

articles; and Bills (Adler and Wilkerson, 2008),302

comprising 32,000 legislative summaries from the303

110th–114th U.S. Congresses. We use the prepro-304

cessed version of these datasets from Hoyle et al.305

2022, in its 15,000-term vocabulary form.306

4.2 Models307

Topic Models Topic models can be broadly cate-308

gorized into classical Bayesian methods, which309

use Gibbs sampling or variational inference to310

infer posteriors over the latent topic-word (B)311

and document-topic (Θ) distributions, and neural312

topic models, often estimated with variational auto-313

encoders (Kingma and Welling, 2013). Clustering314

techniques can also approximate topic models; in a315

typical setup (e.g., Zhang et al., 2022), K-means316

is applied to sentence embeddings (Reimers and317

Gurevych, 2019) of the documents.12318

We evaluate one model from each class:319

LDA (Blei et al., 2003) using the MALLET im-320

plementation (hereafter referred to as MALLET),321

CTM (Bianchi et al., 2021), and BERTopic (Groo-322

tendorst, 2022). We reuse the 50-topic MALLET323

and CTM models from Hoyle et al. 2022 and train324

BERTopic under the same experimental setup using325

default hyperparameters (details in Appendix F).326

In a pilot study, we also evaluate a synthetic up-327

per bound model derived from ground-truth Wiki328

labels (Appendix C).329

PROXANN LLMs We employ OpenAI’s GPT-330

4o (gpt-4o-mini-2024-07-18) and 8-bit quan-331

tized Llama3.1 (Llama3.1:8B) as LLM annotators.332

We set the temperature to 0, top_p to 0.1, and333

frequency_penalty to 0. Documents exceeding334

100 tokens are truncated, extending to the end of335

the sentence to avoid incomplete cuts. The Step336

1 prompt is consistent across both models, while337

11https://en.wikipedia.org/wiki/Wikipedia:
Good_article_criteria

12Recently, LLM-based topic models (Pham et al., 2024;
Lam et al., 2024) offer more “human-readable” topic descrip-
tions, but lack the document-topic and word-topic distribu-
tions that other methods provide or approximate. Given these
differences, we leave an evaluation to future work.

Label Sim. Fit Acc. Rank τ

Wiki
GPT-4o 95% 79% 89%
Llama3.1:8B 89% 68% 58%

Bills
GPT-4o 96% 100% 100%
Llama3.1:8B 83% 96% 79%

Table 3: Share of topics where the agreement between
PROXANN and human annotators is not significantly
different than the agreement between humans, across
the 3 protocol steps (p < 0.05 in a permutation test).
For the most part, GPT-4o is a reasonable proxy.

Steps 2 and 3 prompts are optimized independently 338

per model with DSPy (Khattab et al., 2024) using 339

training samples derived from pilot annotation data 340

on Wiki (details in Appendix I). 341

4.3 Collecting Human Annotations 342

A comprehensive human evaluation of all topics 343

would be cost-prohibitive, so we randomly sample 344

8 of the 50 topics for the Wiki and Bills data on 345

each of the three models. We recruit at least 4 an- 346

notators per topic through Prolific.13 Low-quality 347

respondents are filtered out using attention checks. 348

Model-to-model results on a subset of topics may 349

not be comparable; when sampling, we first pick 350

a random topic from one model, and choose the 351

topics from the remaining models with the smallest 352

word-mover’s distance (computed using word em- 353

beddings of the topic words, Kusner et al., 2015; 354

Flamary et al., 2021). 355

4.4 Metrics 356

We examine four aspects of our approach: the sen- 357

sibility of the human evaluation protocol; using 358

the protocol to evaluate topic models and cluster- 359

ing; comparing human annotations with the LLM 360

proxy; and using metrics based on the LLM proxies 361

to score topics and clusters. 362

Human–human agreement on the tasks. Fol- 363

lowing standards from the content analysis litera- 364

ture, we use Krippendorff ’s α to assess the chance- 365

corrected agreement across human annotators for 366

Steps 2 and 3 (with ordinal weights).14 For easier 367

13prolific.com, further recruitment details in Ap-
pendix A. We also run an initial pilot study on a synthetic
upper-bound model based on ground-truth labels (comparing
with CTM and MALLET); high agreement on the upper-bound
validates that our tasks are reasonable, details and results in
Appendix C.

14Although it seems natural to use these metrics for topic
model comparisons—higher agreement indicating better top-
ics or clusters—there are complications arising from skewed
distributions and respondents annotating one topic at a time,
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comparison with the model–human metrics (next368

section), we also compute annotator-to-annotator369

correlations between each annotator’s relevance fit370

scores (Step 2) or ranks (Step 3) and the averaged371

fits (ranks) of all other annotators.372

Human evaluation of topics and clusters. Per373

Section 3.1, models estimate real-valued scores374

θdk that (should) correspond to the relevance that375

document d has for category k. In steps 2 and 3,376

annotators assess the relevance of seven documents377

over a stratified set of these scores for a topic k,378

θeval
k (all annotators review the same documents).379

As a measure of model quality, we report the380

correlation coefficients for Kendall’s τ (Kendall,381

1938) to measure both annotator-model and inter-382

annotator relationships. The annotator-model corre-383

lations are between the estimated probabilities per384

document θeval
k with either the human relevance385

scores (s(i)k , Step 2) or their ranks (r(i)k , Step 3),386

where i is the annotator. We contextualize these387

against the inter-human-annotator τ (see above).388

PROXANN–human agreement. For the LLM389

to serve as a proxy, it should be indistinguishable390

from a human annotator. We operationalize this391

criterion by computing agreement metrics for392

the results of the three steps: if the human-to-393

LLM agreements are significantly worse than394

human-to-human agreements, then the LLM is395

not a reasonable proxy. For Step 1, the agree-396

ment is the cosine similarity between sentence397

embeddings of the produced category labels398

(all-mpnet-base-v2). For Step 2, we compute399

raw agreement (accuracy) over the category rele-400

vance judgments for each of the seven evaluation401

documents (binarizing answers ≥ 4 to match the402

LLM outputs). Step 3 produces rankings over the403

evaluation documents, so agreement is Kendall’s τ .404

The pairwise agreements between humans and405

PROXANN are computed for each topic with more406

than four annotators. Statistical significance is407

computed via a one-sided permutation test: if408

the observed difference in PROXANN–human and409

human–human mean agreement is significantly410

smaller than the difference when randomly permut-411

ing “PROXANN” and “human” labels, then PROX-412

ANN is an inadequate substitute.413

PROXANN as an automated evaluator. A com-414

mon use for automated coherence metrics, like415

Appendix D.

Wiki Bills

Human
Fit

Human
Rank

Human
Fit

Human
Rank

Cohr. NPMI 0.029 -0.122 -0.073 -0.058
Model Fit Gpt-4o 0.455 0.182 0.075 0.317

Llama3.1 0.327 0.265 -0.016 -0.008
Model Rank Gpt-4o 0.452 0.448 0.101 0.316

Llama3.1 0.234 0.457 0.167 0.227

Table 4: Relationship between automated and human-
based metrics. Each cell shows Kendall’s τ correla-
tion between metrics: Human Fit and Human Rank
compare human fit scores and ranks to document-topic
probabilities (θk); Model Fit and Model Rank com-
paresPROXANN fit scores and ranks to θk.

NPMI, is the ranking of topics—and the averag- 416

ing of topics within each model to rank models. 417

Indeed, NPMI is the dominant metric used in the 418

literature to compare proposed models against base- 419

lines (Hoyle et al., 2021). 420

Here, we compare the human evaluations of top- 421

ics and clusters to metrics based on PROXANN. 422

Specifically, the evaluation metrics are those de- 423

scribed above: the correlations τ between (a) the 424

estimated document scores θeval
k ) from the topic 425

model (or clustering algorithm) and (b) the re- 426

sponses to the protocol—relevance fits sk (Step 2) 427

or ranks rk (Step 3), from either PROXANN or aver- 428

aged over human annotators. Hence, for each topic 429

and task, there is a “ground-truth” evaluation metric 430

(the τ between human scores and the topic model 431

scores) and a “proxy” metric (the τ between PROX- 432

ANN and the topic model scores). We can then com- 433

pute an additional Kendall’s τ over these metrics to 434

measure the extent to which PROXANN’s rankings 435

over topics agrees with that of the average human. 436

5 Results 437

We discuss results in the same order they were 438

presented above. Note that in tables and figures, Fit 439

refers to responses to Step 2 (relevance judgments 440

of evaluation documents) and Rank to responses to 441

Step 3 (representative rankings of the documents). 442

5.1 Human–Human Agreement 443

Generally, annotators respond consistently, pro- 444

viding qualitatively sensible labels to the topics 445

(Table 1). Average agreement per topic (Krippen- 446

dorff’s α) is reasonably strong overall, particularly 447

for the ranking tasks on the Wiki data (Table 2). We 448

emphasize that low agreement is likely indicative 449

of a poor model, rather than a misspecified task: 450
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Mallet CTM BERTopic

0.5

0

0.5

1
Inter-Annotator Tau | Fit

Mallet CTM BERTopic

Inter-Annotator Tau | Rank

Mallet CTM BERTopic

Model-Annotator Tau | Fit

Mallet CTM BERTopic

Model-Annotator Tau | Rank

Figure 2: Metrics quantifying the relationship between human relevance judgments and estimated document-topic
probabilities (θk) for two topic models and a clustering model on the Wiki data. From left-to-right, the metrics
are inter-annotator Kendall’s τ and model-annotator τ for the human relevance judgments (on a 1-5 scale, Step 2);
then the same two metrics for their document representativeness rankings (Step 3). Boxplots report variation over
topic-annotator pairs.

in Table 5 (appendix), the agreement metrics for451

a synthetic “upper-bound” model are very strong452

(α ≥ 0.8 on both tasks). Overall, MALLET tends453

to have higher agreement; however, variance over454

topics is somewhat high, and we caution against455

using α for model comparisons. Together, these456

results point to the viability of our evaluation pro-457

tocol, implying that the demands of the tasks are458

intelligible and reproducible.459

5.2 Human Evaluations of Topics460

Our protocol creates consistent and sensible re-461

sults. There is generally a positive correlation462

between the estimated document-topic probabil-463

ities (θk) and human judgments on the Wiki data464

(Fig. 2, Bills data in Fig. 8 in the appendix). Com-465

paring the first two plots (human–human) to the466

second two (human–model), annotator agreement467

with other annotators is generally higher than than468

annotator agreement with the model. Both the inter-469

annotator and model–annotator scores show a con-470

sistent ranking over models: MALLET fares better471

than CTM, and CTM better than BERTopic—in472

fact, several topics have negative correlations for473

BERTopic. In Appendix B, we report on two addi-474

tional metrics, NDCG and binarized agreement.475

These results support the idea that MALLET, de-476

spite being 20 years old, remains an effective tool477

for automated content analysis.478

5.3 Is PROXANN a good proxy?479

Generally, GPT-4o is a reasonable proxy across480

the three steps and both datasets. Llama-3.1 fares481

somewhat worse, particularly for the ranking task482

on the Wiki data—Section 4.3 shows the share of483

topics, per step, where PROXANN does not have484
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Figure 3: Model rankings based on human-derived and
automated metrics. MALLET ranks highest among hu-
mans. Rankings based on NPMI deviate from human
and LLM-based metrics, with LLM metrics generally
aligning better with humans.

significantly poorer agreement with human anno- 485

tators than humans do with each other. Generally, 486

PROXANN-GPT-4O fails on 1-3 topics in each 487

step. Fig. 4 characterizes its performance on the 488

Wiki data for the ranking task. On most topics, the 489

difference between human–human agreement and 490

model–human agreement is indistinguishable. 491

Lower performance on the Bills data may be at- 492

tributed to (a) a more specialized dataset requiring 493

additional background knowledge and (b) having 494

tuned prompts on pilot annotations from the Wiki 495

data. We plan to explore the effect of expertise and 496

data-specific tuning in follow-up work. 497

5.4 Ranking Topics and Models 498

Last, we measure the ability of metrics derived 499

from PROXANN to rank topics and models simi- 500

larly to humans. Generally, GPT-4o Step 3-based 501
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Figure 4: Mean difference in PROXANN–human and human–human ranking agreement (Step 3) for the Wiki data
across topics with >= 4 annotators (bootstrapped 95% CIs). On most topics, the LLM annotator (PROXANN-GPT-
4O) is not distinguishable from a random human. Red labels have sig. lower PROXANN–human agreement; topic
labels are the shortest available.

metrics tend to be best, with a 0.46 correlation for502

Wiki and 0.32 for Bills. While not very high,503

these values are comparable to leaving out one hu-504

man annotator and computing their agreement with505

the average of the other humans (e.g., the mean506

Wiki Rank τ is 0.34). Meanwhile, the standard au-507

tomated metric, NPMI, fails to capture the human508

judgments. Aggregating the scores over models509

shows that the PROXANN metrics produce a more510

reliable ranking than they do for individual topics,511

mostly matching human-derived ranks (Fig. 10).512

6 Prior Work513

Use-oriented evaluations Poursabzi-Sangdeh514

et al. 2016 and Li et al. 2024 invoke topic mod-515

els’ usage in content analysis settings to inform516

new interactive methods, which are evaluated by517

measuring the alignment between method outputs518

and ground-truth labels. In a different use-inspired519

approach, Ying et al. 2022 propose crowdworker520

“label validation” tasks, designed to assess the qual-521

ity of individual document-topic distributions us-522

ing already-identified expert labels. Although these523

evaluations are better aligned with real-world use524

than topic coherence, they rely on some form of525

manual labeling, and are therefore difficult to scale.526

LLM-based evaluations. Metrics based on527

LLMs have become increasingly common in the528

NLP literature, notably in machine translation and529

human preference modeling (Zheng et al., 2023).530

Within topic modeling, past efforts construct531

prompts designed to replicate human annotation 532

tasks. Both Stammbach et al. 2023 and Rahimi et al. 533

2024 prompt LLMs to emulate the word intrusion 534

and rating tasks from Chang et al. 2009, but these 535

tasks assess only the top topic-words, an incom- 536

plete view of model outputs. In addition, the corre- 537

lations with human judgments are also mixed, with 538

standard automated coherence metrics performing 539

better in some cases.15 In Yang et al. 2024, a topic 540

model and an LLM separately produce keywords to 541

label documents: if the keywords tend to align, then 542

this indicates a good model. Although LLM key- 543

words align well with human-generated ones for 544

one of two datasets, the metric does not assess the 545

overall cohesiveness of topics, and so the connec- 546

tion between this task and real-world use is unclear. 547

7 Conclusion 548

The quality of models is determined their ability 549

to meet real-world needs (Liao and Xiao, 2023). 550

This work aims to meet those needs by designing a 551

human evaluation protocol and corresponding au- 552

tomated approximation, PROXANN that together 553

reflect practitioners’ real-world usage of topic mod- 554

els and clustering methods. We anticipate that both 555

the collected human evaluation data and automated 556

approach will inspire future work in improving 557

models, metrics, and downstream usage. 558

15Stammbach et al. 2023 also propose an alternative
document-labeling metric, but it is used for selecting an opti-
mal number of topics, rather than measuring overall quality.
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8 Limitations559

A primary limitation of our LLM-proxy is that it560

is a substitute for a single human annotator. How-561

ever, a strong indicator of a poor cluster or topic562

is disagreement among multiple annotators. In fu-563

ture work, we intend to model disagreement di-564

rectly, e.g., following recent approaches for fine-565

tuning reward models in the presence of human dis-566

agreement (Zhang et al., 2024b), or earlier work on567

Bayesian models of annotation (Paun et al., 2018).568

Addressing this issue could also help solve another569

limitation: LLMs are more costly to deploy than570

previous automated metrics, but a model finetuned571

for this task could be smaller.572

Another shortcoming of our approach is the use573

of crowdworkers. Although we use several mech-574

anisms to ensure high-quality annotators (training575

questions, multiple comprehension and attention576

checks, requiring a bachelor’s degree or higher,577

bonuses for good responses), the annotators are not578

experts pursuing a research question. That said,579

we believe our use of multiple annotators per topic,580

along with the filtering described, ensures anno-581

tations of reasonably high quality (as seen by the582

consistent labels and annotations). In future work,583

we hope to explore the role of expertise in the an-584

notation process, and to measure expert agreement585

with language models.586
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Figure 5: Correlation metrics between human relevance judgments and estimated document-topic probabilities
(θk) for the three models on all eight Wiki topics. From left-to-right, the metrics are inter-annotator Kendall’s
τ , model-annotator τ , relevance agreement, and NDCG. The top row of figures reports relationships with human
relevance judgments (on a 1-5 scale), and the bottom row relationships with their document rankings. Boxplots
report variation over topic-annotator pairs. We emphasize that the “Labeled” model is not a true topic model, but a
synthetic supervised benchmark with access to ground-truth categories.

per survey; Bills was updated to 4.25 for 17 min-884

utes). To encourage careful responses, we instruct885

annotators to “give the answers you think most886

other people would agree with”, awarding a 1.50887

USD bonus to those who have over 0.75 correlation888

with the average ranking of the other annotators for889

that topic. Annotators who fail attention checks890

are not awarded a bonus and are excluded from the891

data. An ethics review board deemed this study892

to not be human subjects research, and therefore893

exempt from review.894

B Additional Metrics895

In this section, we report on additional measures896

for the human evaluations of topics (Section 4.4).897

We use Normalized Discounted Cumulative898

Gain (NDCG, Järvelin and Kekäläinen, 2002), a899

well-established IR metric that places more im-900

portance on items with higher ranks. NDCG is901

designed to average over multiple user annotations902

and queries (here corresponding to topics).903

Last, we also report the raw agreement over bina-904

rized relevance. For the human scores, we consider905

any documents where the fit to the category is 4906

or 5 to be relevant. For the models, a document907

is considered to be relevant to a topic k if its most908

Fit α (Step 2) Rank α (Step 3)

Mallet 0.59 (0.16) 0.71 (0.09)
CTM 0.64 (0.15) 0.67 (0.13)
Labeled 0.80 (0.13) 0.86 (0.05)

Table 5: Chance-corrected human–human agreement
(Krippendorff’s α), averaged over the six pilot topics
per model (standard deviation in parentheses) on the
Wiki data. Each topic has between 3 and 5 annotators
(the variance is due to filtering). High agreement on
the synthetic labeled dataset indicates that the task is
sensible.

probable topic is k. The agreement is then the 909

proportion of relevance judgments in common. 910

Results are in Fig. 5 and Fig. 8—of note is that 911

BERTopic cluster assignments tend to have higher 912

agreement with human relevance jugments (bina- 913

rized responses to Step 2), likely due to it being a 914

clustering model. 915

C Pilot Study 916

We first run a pilot annotation study on using the 917

Wiki data on six topics from CTM and MALLET. 918

To help validate the sensibility of the human 919

evaluation protocol, we also introduce an infor- 920

mal upper-bound, we evaluate a synthetic model 921
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Figure 6: Metrics quantifying the relationship between human relevance judgments and estimated document-topic
probabilities (θk) for two models and a synthetic upper-bound, using six topics from the pilot data. From left-to-right,
the metrics are inter-annotator Kendall’s τ , model-annotator τ , relevance agreement, and NDCG. The top row of
figures reports relationships with human relevance judgments (on a 1-5 scale), and the bottom row relationships
with their document rankings. Boxplots report variation over topic-annotator pairs. We emphasize that the “Labeled”
model is not a true topic model, but a synthetic supervised benchmark with access to ground-truth categories.

(termed LABELED) using ground-truth category la-922

bels for the Wiki data. For each label in data, take923

the documents assigned to the label k and embed924

them (using the same embedding model as CTM).925

To construct a pseudo-ranking over documents for926

the topic, θ̃k, we calculate the cosine similarity927

between the document embeddings (for all docu-928

ments) and the centroid of all k-labeled documents.929

We further correct the similarities for the kth label930

by adding 1 to all the k-labeled documents, ensur-931

ing that they are ranked above those that are not932

labeled for the document. Synthetic top words for933

the topic are found by concatenating all k-labeled934

documents and computing the tf-idf for this pooled935

“document”. The result is that all exemplar docu-936

ments are known to relate to a single ground-truth937

label (e.g., video games).938

Results show that both inter-annotator and939

model-annotator agreement metrics are substan-940

tially higher for the synthetic model, Table 5. Of941

particular note are the binary agreement scores942

(Fig. 6, implying that human annotators agree with943

a ground-truth assignment at very high rates.944

The resulting annotation data is used to help tune945

the LLM prompts in Appendix I.946

D Notes on Agreement Metrics 947

The most straightforward way to assess relative 948

model performance using the human annotations 949

is to compute the chance-corrected inter-annotator 950

agreement—indeed, this corresponds most closely 951

to the way a manual qualitative content analysis 952

is assessed. A topic with high agreement across 953

annotators is likely to be better than one with low 954

agreement. However, the idea is complicated by 955

annotators only viewing one topic each. Measures 956

like Krippendorff’s α (Krippendorff, 2019) use the 957

empirical distributions to estimate expected agree- 958

ment when correcting for chance, so a topic with 959

relatively high raw agreement (i.e., a very skewed 960

distribution) may have a low value relative to what 961

is qualitatively considered a “good” topic.16While 962

it is possible to average these values over topics, 963

their occasionally counter-intuitive nature makes 964

them less desirable for model comparison. 965

16There is extensive literature on this issue (Di Eugenio and
Glass, 2004; Gwet, 2012; Xu and Lorber, 2014). Nonetheless,
in the political science community, Krippendorff’s α and Co-
hen’s κ remain essentially universal. As far as we can tell, this
is also true more broadly in the social sciences.
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Figure 7: Distribution of the top 1,000 theta values
across six topics for two models. Topics have been
aligned between models based on the word-mover’s
distance (Kusner et al., 2015). Dashed lines correspond
to automatically determined “elbows” that threshold the
θk to produce representative documents. Some topics,
like the championship topic (in pink), have a sparser
distribution and steep dropoff in values; others, like the
building topic (orange), have a more gradual decline in
value.

In Section 3.1, we outlined a method for select-968

ing the exemplar documents based on finding a969

knee point in the document-topic distributions Θ.970

In Fig. 7, we visualize these distributions for CTM971

and MALLET for the pilot topics alongside the de-972

tected threshold. Documents above this threshold973

are sampled (proportional to θdk to produce the974

exemplar documents .975

F BERTopic training details 976

Although the BERTopic author advises against 977

data preprocessing17, we apply the same min- 978

imal preprocessing used for training MALLET 979

and CTM models (tokenization and entity iden- 980

tification) to ensure comparable conditions (we 981

also find that, qualitatively, topics are better af- 982

ter preprocessing). Contextualized embeddings 983

are generated separately using the raw (i.e., un- 984

processed) text and BERTopic’s default embed- 985

ding model (all-MiniLM-L6-v2). The prepro- 986

cessed data and pre-calculated embeddings are 987

then passed to the model. We train BERTopic 988

with calculate_probabilities=True to com- 989

pute topic probabilities for each document dur- 990

ing the HDBSCAN clustering step. Due to 991

the hard–clustering nature of HDBSCAN, the 992

resulting approximation of document-topic dis- 993

tribution (Θ∗
t ) often assigns a value of 1 to 994

documents confidently associated with a clus- 995

ter, while other probabilities remain close to 996

zero. To generate a smoother document-topic 997

distribution to obtain the evaluation documents, 998

we combine Θ∗
a with probabilities derived from 999

BERTopic’s approximate_distribution func- 1000

tion ( Θ∗
a ), which uses c-TF-IDF representations 1001

to estimate topic probabilities for new documents. 1002

The final distribution is computed as Θ∗ = 1003

round(Θ∗
t , 2) +Θ∗

a/100. 1004

G Additional Bills Results 1005

Figure 8, Fig. 9, and Fig. 10 depict evaluations on 1006

the Bills data, corresponding to Fig. 5, Fig. 4, and 1007

Fig. 3 in the main text. 1008

H User Interface 1009

Figures 11 to 14 are screenshots of the annotation 1010

interface presented to users. Figure 15 is the con- 1011

sent page shown at the start. 1012

I Prompting details 1013

Here, we outline our prompt engineering process 1014

used to configure the LLM-based proxy for the 1015

evaluation protocol. For the three steps of the eval- 1016

uation protocol, we use a concise system prompt 1017

(I.1–I.3) to summarize the tasks and instruct the 1018

LLM to simulate human-like behavior, combined 1019

with an instruction prompt (I.4–I.6) that provides 1020

17https://maartengr.github.io/BERTopic/faq.
html#should-i-preprocess-the-data
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Figure 8: Metrics quantifying the relationship between human relevance judgments and estimated document-topic
probabilities (θk) for three models on all eight Bills topics. See Fig. 5 for additional details.

detailed guidance for completing each task. In all1021

cases, we use few-shot prompting in the instruction1022

prompt. LLama models were run on an NVIDIA1023

4090 (24 GB RAM); prompting the models for all1024

topics takes under two hours.1025

I.1 Prompt optimization1026

The Step 1 prompt was manually optimized by the1027

authors. In its final version, the LLM is provided1028

with documents and keywords related to a topic1029

cluster and tasked with identifying their shared cate-1030

gory. While we experimented with variations, such1031

as asking the LLM to generate a brief description1032

of the label and its key characteristics, we retained1033

the original version as it demonstrated better per-1034

formance. This prompt includes a single few-shot1035

example, sourced from the pilot study, and its the1036

same for both LLM types (GPT-4o and Llama3.1).1037

Step 2 and Step 3 prompts were optimized inde-1038

pendently for each LLM type using DSPy(Khattab1039

et al., 2024), employing a 50/25/25 train-test-1040

validation split on the pilot data, with the optimizer1041

bootstrapping up to 4-shot examples and 16 candi-1042

date programs during random search. Let fi rep-1043

resent the fit scores assigned to document i by all1044

users. Let fi and Let ri be the fit and rank scores1045

assigned to document i by all users. The datasets1046

for each step were generated as follows:1047

• Step 2: For each topic, we create one sample1048

per evaluation document and user category1049

label. The fit score for each document was 1050

determined by averaging across users and bi- 1051

narizing as 1 if f̄i ≥ 4 and 0 otherwise. This 1052

process resulted in a total of 566 samples. 1053

• Step 3: For each topic, we generate all pos- 1054

sible evaluation document combinations, cre- 1055

ating one sample per pair and user category. 1056

For each document pair (i, j), we computed 1057

differences in ranks (∆r = ri − rj) and fits 1058

(∆f = fi − fj). Rank / fit agreement holds if 1059

∆ is consistent across users. If agreement ex- 1060

ists, the pairwise winner is the document with 1061

the higher rank score. The resulting dataset 1062

contains a total of 1701 samples. 1063

The final prompts (I.4–I.6) include a placeholder 1064

that consists of a User message–Assistant message 1065

combination, where two examples are provided as 1066

input to guide the model’s response generation. 1067

We also experimented with combining Step 1 1068

with Step 2 (Step 1 & 2) and Step 1 with Step 3 1069

(Step 1 & 3) to evaluate whether placing the LLM 1070

in conditions more similar to those faced by hu- 1071

mans could improve performance. While the re- 1072

sults for Step 2 & 3 were particularly promising, 1073

we ultimately retained the independent version due 1074

to its slightly better overall performance. 1075

I.2 Bradley-Terry 1076

After applying the Step 3 prompt to each topic 1077

on all
(
7
2

)
combinations of evaluation document 1078
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Figure 9: Mean difference in LLM–human and human–human ranking agreement (Step 3) for the Bills data across
topics with >= 4 annotators (bootstrapped 95% CIs). Red labels have sig. lower LLM–human agreement; topic
labels are the shortest available.
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pairs, we infer the real-valued “relatedness” for the1079

topic by aggregating pairwise comparisons using1080

the Iterative Luce Spectral Ranking (ILSR) algo-1081

rithm. To compute the rankings, we use the imple-1082

mentation from the choix18library, applying the1083

ilsr_pairwise method, setting the regularization1084

term α to 0.001 to ensure numerical stability and1085

prevents overfitting in cases where the comparison1086

graph is not fully connected.1087

To ensure a fair comparison in the prompt, eval-1088

uation documents are referred to as A and B to1089

avoid biasing the model (e.g., implying signifi-1090

cance based on numerical identifiers). However,1091

18https://choix.lum.li/en/latest/

this approach may still introduce a preference for 1092

one letter over the other. To mitigate this, we im- 1093

plemented a “both-ways” approach, running the 1094

prompt twice for each document pair: once with 1095

the first document as A and the second as B, and 1096

vice versa (following Wang et al. 2024). Evaluation 1097

of the results showed that this bidirectional method 1098

did not improve the overall rankings, as the mod- 1099

els demonstrated no systematic letter-based bias. 1100

Consequently, we adopted the simpler one-way ap- 1101

proach to compute the final rankings. 1102

16

https://choix.lum.li/en/latest/


Figure 11: Instructions for the human annotation protocol.
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Figure 12: Step 1. Category identification in the human annotation protocol for the practice question.

Figure 13: Step 2. Relevance judgment in the human annotation protocol for the practice question.
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Figure 14: Step 3. Representativeness ranking in the human annotation protocol for the practice question.

Figure 15: Consent page (shown at beginning)
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I.3 Prompt templates1103

System Prompt I.1: Category Identification (Step 1)

You are a helpful AI assistant tasked with creating descriptive labels for a set of keywords and a
group of documents, each focused on a common topic, as similar as possible to how a human
would do. The goal is to provide meaningful, concise labels that capture the central theme or
key concepts represented by the keywords and documents.

1104

System Prompt I.2: Relevance Judgment (Step 2)

You are a helpful AI assistant tasked with determining if a document fits a given category, aiming
to make judgments closely aligned with human reasoning.capture the central theme or key
concepts represented by the keywords and documents.

1105

System Prompt I.3: Representativeness Pairwise Ranking (Step 3)

You are a helpful AI assistant tasked with determining if a document fits a given category, aiming
to make judgments closely aligned with human reasoning.capture the central theme or key
concepts represented by the keywords and documents.

1106
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Instruction Prompt I.4: Category Identification (Step 1)

You will be provided with a set of keywords and a group of documents, each centered around a common
topic. Your task is to analyze both the keywords and the content of the documents to create a
clear, concise label that accurately reflects the overall theme they share.

Task Breakdown:
1. Examine the Keywords: Use the keywords as clues to identify the general subject area or themes

present in the documents.
2. Review the Documents: Skim the summaries provided to understand their main ideas and any

recurring elements.
3. Generate a Label: Based on the keywords and document content, come up with a single label that

best describes the topic connecting all the documents.

Examples:
--------
{}

#########

KEYWORDS: {}
DOCUMENTS: {}
Based on the keywords and document content, come up with a single category that best describes the

topic connecting all the documents. Return just the category.
CATEGORY:

1107
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Instruction Prompt I.5: Relevance Judgment (Step 2)

System message:

Your input fields are:
1. `CATEGORY` (str)
2. `DOCUMENT` (str)

Your output fields are:
1. `reasoning` (str)
2. `FIT` (str): Whether the DOCUMENT fits with the given CATEGORY or not (YES or NO)

All interactions will be structured in the following way, with the appropriate values filled in.

[[ ## CATEGORY ## ]]
{{CATEGORY}}

[[ ## DOCUMENT ## ]]
{{DOCUMENT}}

[[ ## reasoning ## ]]
{{reasoning}}

[[ ## FIT ## ]]
{{FIT}}

[[ ## completed ## ]]

In adhering to this structure, your objective is:
Determine whether the DOCUMENT fits with the given CATEGORY or not

User message:

[[ ## CATEGORY ## ]]
{{FEW SHOT CATEGORY}}

[[ ## DOCUMENT ## ]]
{{FEW SHOT DOCUMENT}}

Respond with the corresponding output fields, starting with the field `[[ ## reasoning ## ]]`, then
`[[ ## FIT ## ]]`, and then ending with the marker for `[[ ## completed ## ]]`.

Assistant message:

[[ ## reasoning ## ]]
{{FEW SHOT reasoning}}

[[ ## FIT ## ]]
{{FEW SHOT FIT}}

[[ ## completed ## ]]

User message:

[[ ## CATEGORY ## ]]
{category}

[[ ## DOCUMENT ## ]]
{document}

Respond with the corresponding output fields, starting with the field `[[ ## reasoning ## ]]`, then
`[[ ## FIT ## ]]`, and then ending with the marker for `[[ ## completed ## ]]`.

1108
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Instruction Prompt I.6: Representativeness Pairwise Ranking (Step 3)

System message:

Your input fields are:
1. `CATEGORY` (str)
2. `DOCUMENT_A` (str)
3. `DOCUMENT_B` (str)

Your output fields are:
1. `reasoning` (str)
2. `CLOSEST` (str): Document that is more closely related to the category (A or B)
All interactions will be structured in the following way, with the appropriate values filled in.

[[ ## CATEGORY ## ]]
{{CATEGORY}}

[[ ## DOCUMENT_A ## ]]
{{DOCUMENT_A}}

[[ ## DOCUMENT_B ## ]]
{{DOCUMENT_B}}

[[ ## reasoning ## ]]
{{reasoning}}

[[ ## CLOSEST ## ]]
{{CLOSEST}}

[[ ## completed ## ]]

In adhering to this structure, your objective is:
Determine which document is more closely related to the given category

User message:

[[ ## CATEGORY ## ]]
{{FEW SHOT CATEGORY}}

[[ ## DOCUMENT_A ## ]]
{{FEW SHOT DOCUMENT_A}}

[[ ## DOCUMENT_B ## ]]
{{FEW SHOT DOCUMENT_B}}

Respond with the corresponding output fields, starting with the field `[[ ## reasoning ## ]]`, then
`[[ ## CLOSEST ## ]]`, and then ending with the marker for `[[ ## completed ## ]]`.

Assistant message:

[[ ## reasoning ## ]]
{{FEW SHOT reasoning}}

[[ ## CLOSEST ## ]]
{{FEW SHOT CLOSEST}}

[[ ## completed ## ]]

User message:

[[ ## CATEGORY ## ]]
{category}

[[ ## DOCUMENT_A ## ]]
{doc_a}

[[ ## DOCUMENT_B ## ]]
{doc_b}

Respond with the corresponding output fields, starting with the field `[[ ## reasoning ## ]]`, then
`[[ ## CLOSEST ## ]]`, and then ending with the marker for `[[ ## completed ## ]]`.

Response:

1109
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