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ABSTRACT

In flow and diffusion-based generative modeling, conventional methods rely on
unidimensional coefficients for the trajectory of differential equations. In this
work, we first introduce a multidimensional coefficient that generalizes the con-
ventional unidimensional coefficient into multiple dimensions. We also propose
a new problem called multidimensional trajectory optimization, which suggests
a novel trajectory optimality determined by the final transportation quality rather
than predefined properties like straightness. Our approach pre-trains flow and dif-
fusion models with various coefficients sampled from a hypothesis space and sub-
sequently optimizes inference trajectories through adversarial training of a gener-
ator comprising the flow or diffusion model and the parameterized coefficient. To
empirically validate our method, we conduct experiments on various generative
models, including EDM and Stochastic Interpolant, across multiple datasets such
as 2D synthetic datasets, CIFAR-10, FFHQ, and AFHQv?2. Remarkably, inference
using our optimized multidimensional trajectory achieves significant performance
improvements with low NFE (e.g., 5), achieving state-of-the-art results in CIFAR-
10 conditional generation. The introduction of multidimensional trajectory opti-
mization enhances model efficiency and opens new avenues for exploration in flow
and diffusion-based generative modeling.

1 INTRODUCTION

Flow and diffusion-based generative modeling (Song et al.|

2021} [Karras et al. 2022} [Lipman et al., 2023)) demonstrates y
remarkable performance across various tasks and has become

a standard approach for generation tasks. We introduce the f
novel concept of the Adaptive Multidimensional Coefficientand " &, , .. !

propose an optimization problem termed Multidimensional Tra- o “
jectory Optimization (MTO) in this field. As described by [AIl] @ 1(t) (b)) (t)
bergo et al.| (2023), the trajectory with zg ~ pg and 1 ~ p; Flf;-’u.fe L: ) Comparison between
in flow and diffusion for ¢ € [0, 7] can be written as x(t) = unidimensional (a1(t)) and mul-

ao(t)zo + o1 (t)z1, 0,2, € RY where conventionally, the tidimensional (7, (t)) coefficient.
coefficients a(t), a1 () € R are unidimensional. We extend this by introducing a multidimensional
coefficient v (t),v1 () € R?, allowing different time scheduling across all data dimensions.

By leveraging the increased flexibility provided by the multidimensional coefficient, our multidi-
mensional trajectory optimization addresses the key question: “Given a differential equation solver
with fixed configurations, which multidimensional trajectory yields optimal performance in terms
of final transportation quality for a given starting point of the differential equation?” This ques-
tion highlights a trade-off inherent in diffusion models, where simulation-free objectives—though
beneficial in reducing training costs—Ilimit adaptability in trajectory optimization concerning out-
put quality, a flexibility retained in simulation-dynamics (Chen et al.l |2018). To enable trajectory
optimization while maintaining simulation-free objectives for training cost, prior approaches have
relied on pre-defined trajectory properties, such as straightness (Liu et al., [2023; Tong et al.| 2024),
to minimize numerical error. However, such pre-defined properties for the trajectories diverge from
true optimality in transportation, as they do not account for the sole measure of optimality which
can be calculated by simulation-dynamics in our perspective: the final quality of transportation.
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We reintroduce trajectory adaptability by employing simulation dynamics combined with adversarial
training (Goodfellow et al}, 2014), defining trajectory optimality based solely on the final generative
output under fixed solver configurations. Specifically, first, we pre-train a diffusion model Hy with
randomly sampled multidimensional coefficients v from a well-designed hypothesis space. This
pre-training enables the flow or diffusion model to handle various coefficients, preparing it for the
trajectory optimization stage. Next, we introduce the parameterized coefficient -y, to compose a
flow or diffusion-based generator Gy 4, which produces g 6,4 through simulation dynamics. A
discriminator Dy, evaluates the generated samples .y .4 to optimize both 6 and ¢, a process we
term multidimensional trajectory optimization.

To effectively leverage the advantages of simulation-based objectives which lie on adaptability and
flexibility of trajectories while mitigating their inefficiencies in training, we use simulation-based
objectives only for ¢ after pre-training 6 with a simulation-free objective, making trajectory opti-
mization feasible in terms of efficiency and scalability. Our experiments demonstrate that trajecto-
ries optimized through this approach significantly improve the performance of flow and diffusion
models. In summary, our main contributions are as follows:

1. By introducing the concept of an adaptive multidimensional coefficient in flow and diffu-
sion, we lay the groundwork for complete trajectory flexibility.

2. We address a novel problem—multidimensional trajectory optimization—leveraging the
increased flexibility provided by the adaptive multidimensional coefficient. This introduces
an optimality concept based solely on the end-to-end final transportation quality rather than
on pre-defined properties of the trajectory.

3. We propose a solution to the multidimensional trajectory optimization problem using ad-
versarial training to discover adaptive multidimensional trajectories for efficient inference.

By introducing adaptive multidimensional trajectories, our work alleviates the constraints on tra-
jectories in flow and diffusion models and opens new avenues for future research and applications.

2 RELATED WORKS

Trajectory Optimizations in Flow and Diffusion Various trajectory optimization approaches
pre-define optimality without relying on final transportation quality. Approaches such as [Liu et al|
(2023)); [Tong et al.| (2024) define straightness as the optimality criterion and optimize trajectories
by maintaining the consistency of (zg, 1) for training flow and diffusion models, aligning with
an optimal transport perspective. Another example is [Singhal et al.| (2023), which defines optimal-
ity through a fixed sequence of diffusion steps intended to reduce inference complexity rather than
focusing on the quality of final samples. Additionally, Bartosh et al.[|(2024) introduces neural flow
models that implicitly set trajectory optimality within the diffusion process, aiming to generate high-
quality samples without explicit trajectory adjustment post-training. There are also approaches that
refine trajectories after training, such as |Albergo et al.|(2024), where optimality is defined by min-
imizing the trajectory length in the Wasserstein-2 metric, focusing on a shortest-distance criterion.
Despite these diverse perspectives on trajectory optimality, there are two significant differences be-
tween these methods and ours. First, we calculate the optimality of the trajectory solely based on the
final transportation quality, which is a crucial factor in generative modeling. Second, none of these
methods achieve full flexibility of the trajectory on two fronts: multidimensionality and adaptability
with respect to different inference trajectories.

Diffusion Distillation for Few-Step Generation There are two main approaches to diffusion dis-
tillation: non-adversarial and adversarial. Non-adversarial methods, like Yin et al.| (2024); Song &
Dhariwall (2023)); [Geng et al.| (2024)); [Berthelot et al.| (2023)), focus on 1-step distillation techniques
without adversarial objectives. These approaches aim to simplify training by leveraging distribu-
tional losses and equilibrium models, effectively distilling the diffusion process without involving
a GAN discriminator. Conversely, adversarial approaches to diffusion distillation, such as
& Yang| (2024); Xu et al.| (2024); Wang et al.| (2023)), employ a GAN-like discriminator to enhance
sample quality by learning distribution consistency in an adversarial setting. Additionally, [Luo et al.|
propose Diff-Instruct, which transfers knowledge from pre-trained diffusion models through
a GAN-based framework, closely resembling GAN approaches in training dynamics. Also,
developed Consistency Trajectory Models (CTM), which generalize
for efficient sampling with the assistance of a discriminator. While our method shares similarities
in achieving few-step generation, there is a key difference: distillation in these works is not aimed
at trajectory optimization. Our method optimizes both € and ¢, representing the diffusion model
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parameters and adaptive multidimensional coefficient parameters, with respect to different inference
trajectories, thereby enabling adaptive multidimensional trajectory optimization. In contrast, dis-
tillation typically targets a fixed teacher network, limiting flexibility in optimizing the trajectory.

3 PRELIMINARY

We consider the task of transporting between two distributions o ~ pg and 1 ~ p1, where zg, z1 €
R, Following Albergo et al.[(2023), for ¢ € [0, T}, the trajectory x(t) is:

z(t) = ag(t)wo + a1 ()1, v(t,z(t)) = do(t)zo + d1(t)w1, @o(t), a1(t) € R, (D

where a(t) = [ao(t), a1(t)] represents the unidimensional-valued coefficients and & denotes the
derivative of o with respect to ¢. Diffusion models the vector field v(t) as follows:

[xo, xl] ~ [.’)3079, i’l)g] = NN9<t, m(t)), U(t, x(t)) ~ f}@(t, x(t)) = O.éo(t)io’e + O'él(t)ilﬁ, 2)

where NN denotes a neural network. For example, [Song et al.| (2021) predict the score value
Vlogp(z(t);t) = —&1,9/0a(t) to obtain the vector field. There are also flow-based methods, such
as|Lipman et al.| (2023)), that do not explicitly target £ ¢ or £1 ¢ but instead directly model the vec-
tor field 0g(t, x(t)) = NNp(¢, (t)). All these methods achieve generative modeling by numerically
solving an ODE or SDE using the predicted vector field vg(¢,2(¢)). In this section, we introduce
two specific methods utilized in our experiments.

Elucidating Diffusion Model (EDM) The Elucidating Diffusion Model (Karras et al.| [2022) re-
fines and stabilizes diffusion model training, using Ty ~ po as data and zr ~ pr = N (0, T2I ).

The coefficient is defined as:

at) = [ao(t),ar ()] = [1,t], T = 80. 3)
EDM minimizes || Hy (t,x(t)) — xol|3 for Hy where &9 = Hy(t,z(t)) and 1 9 = I(t)_% By
using vy composed of £g g, 21,9, EDM enables transportation from pr = N (O,TQI ) to po. We
apply EDM to our image generation experiments.

Stochastic Interpolant (SI) Stochastic Interpolant (Albergo et al.,2023)) facilitates transportation
between arbitrary distributions py and p;. The conventional coefficient design is:

a(t) = [ao(t), aa ()] = [L — .8, T=1, @)

which represents linear interpolation between zo and x1. SI models [0, %1,9] = Ho(t, z(t)).
Given that SI is useful for transporting between arbitrary distributions, we employ SI for various
2-dimensional experiments to validate our framework.

4 METHODOLOGY

4.1 DEFINITION OF ADAPTIVE MULTIDIMENSIONAL COEFFICIENT

We introduce the multidimensional coefficient, y(t) = [yo(t),71(t)] € R?*9, which generalizes the
conventional unidimensional coefficient by extending it to higher dimensions.

Definition 1 (Multidimensional Coefficient) v(t) = [vo(t),71(t)] € R?*? for t € [0,T] defines
the trajectory x(t) = vo(t) © xo + 1 (t) © 1, where xg, 1 € R ~(t) must satisfy: v(t) € [0,T],
70(0) = 14, Y0(T) = k4, 71(0) = 04, 1(T) = Ty, and v € C*([0,T],R*>*?). Here, k € [0,T]
and 14 denotes a d-dimensional vector filled with the value 1.

v € CH([0,T),R**4) indicates that ~y is continuously first-order differentiable with respect to t on
the interval [0, T']. Boundary conditions written above ensure that z(¢) becomes x¢ and z for¢t = 0
and t = T, which is a requirement for transportation. Values k£ and I" for boundary conditions vary
based on the task. For example, in image translation tasks where both distributions pg and p; are data
distributions, £ = 0 and 7" = 1 might be appropriate. The unidimensional coefficient « is a special
case of v when all elements "7 (£) = ~*"7' (¢) for any indices , j, 7/, j' in y(t). We visualize v and ~y
in Figure [T] for better comprehension. The above definition of the multidimensional coefficient uses
the same coefficient with respect to the trajectory. However, we can consider a multidimensional
coefficient v parameterized by ¢, allowing adaptation to different inference trajectories xg 4(t) for
inference times 7 = {to, ..., txn}, Where 6 represents the flow or diffusion model parameters:
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Definition 2 (Adaptive Multidimensional Coefficient) For t E [0,T] and inference trajectory
79 (1), the adaptive multidimensional coefficient v4(t, v 4(t)) : [0,T] x R? — R**? is parame-
terized by ¢. Boundary conditions follow Deﬁnitioni 1} with g 6 C’l([O T], R?xd),

To reduce computational cost in calculating vy, we use only ¢ = T for x¢,4(t) in vy (t, 2g,4(t))
rather than the inference trajectory at multiple time points. This approach allows us to compute
¢ across the entire inference time schedule 7 = {t¢,...,tx} with a single function evaluation
before initiating transportation. By using the adaptive multidimensional coefficient, we can address
multidimensional trajectory optimization as outlined in the next section.

4.2 MULTIDIMENSIONAL TRAJECTORY OPTIMIZATION: DEFINITION AND PRACTICE

A key aspect of our perspective is that the quality of a trajectory cannot be fully evaluated until the
entire transportation process is completed. This contrasts with existing views on trajectory optimal-
ity, which pre-define properties for the trajectory without simulation, as seen in works such as|Liu
et al.| (2023)); [Tong et al.| (2024); Singhal et al.| (2023)); Bartosh et al.[(2024). For example, reducing
the total trajectory length for transportation, as in the optimal transport (OT) perspective, results in
straight trajectories that can indirectly reduce NFE since a straight line minimizes numerical errors
when solving differential equations. However, in generative tasks, the real cost is not trajectory
length but the NFE required to achieve a certain sample quality. Thus, the optimality for generative
models should align more closely with final sample quality, evaluated through simulation, rather
than pre-defined properties. Based on this principle, we define trajectory optimality as follows:

Definition 3 (Multidimensional Trajectory Optimization (MTO)) Consider a flow and diffusion-
based generator Gy 4 with fixed configurations (NFE, discretization method, etc.), where 0 rep-
resents the flow or diffusion model parameters and ¢ is the parameter for the adaptive multidi-
mensional coefficient v4(t,x1) = [Y0.6(t, 1), 71,6(t, 27)] € R**% Then the multidimensional
trajectory optimization problem is:

0", ¢" = argminD (p1, f1,0.6) , 5)

where p1 9,4 denotes the generated distribution from Gg g, and ID measures a divergence metric.

Given that the trajectory zy (¢) from Gy 4 is entirely parameterized by 6 and ¢, we have full
controllability over the trajectory by adjusting 8 and ¢, allowing us to term this process a trajectory
optimization. This optimization can be approximated 6%, ¢* ~ 0%, * using a finite set of samples.
In this view, we do not guarantee pre-defined properties for the optimized trajectory g+ ¢+ (), which
underscores our perspective on optimality. Our definition of optimality is based solely on the quality
of the final sample for given differential equation-solving configurations, rather than pre-defined
properties of the trajectory itself.

Practical Approach for MTO in High-Dimensional Transportation To solve MTO in high-
dimensional datasets like images using conventional approaches, there are two potential strategies.
The first involves simulation-based training, such as CNF (Chen et al.,|2019)), which is inefficient in
terms of both training cost and performance. The second strategy involves the conventional diffusion
approach, trained with a fixed single ¢, which would require training multiple models 64, ..., 6,
with corresponding coefficients ¢1, ..., ¢; and then selecting the optimal 8 and ¢. This process is
computationally intractable. To address these challenges, we propose the following procedure:

1. Design the hypothesis space of the adaptive multidimensional coefficient v, heuristi-
cally: Leverage prior knowledge to identify an appropriate space.

2. Pre-train flow or diffusion models 6 to handle various multidimensional coefficients
sampled from the hypothesis space.

3. Jointly optimize 6 and ¢ using simulation dynamics and adversarial training.

This approach appropriately balances the advantages and disadvantages of simulation-based and
simulation-free methods to achieve both trajectory flexibility and training efficiency: employing
simulation-based objectives exclusively for ¢ after pre-training 6 with various . By following
this procedure, we aim to converge to 8* and ¢* that can generate high-quality samples efficiently
compared to unoptimized trajectories.
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Figure 2: Crude coefficients: (a) Oscillatory behavior in ¢ due to high frequency components; (b)
High adjacent pixel differences in d. Refined coefficients: (c) Constrained multidimensionality for
larger ¢ in pre-training; (d) Unconstrained multidimensionality for adversarial training.

4.3 DESIGN CHOICE OF THE COEFFICIENT’S HYPOTHESIS SPACE

Let’s define the adaptive multidimensional coefficient space as:

v=[o,ml, veCH0,T],R*>*?),
r= v [O7T] X Rd — RQXd ’Yo(O,fET) = 1da ’YO(Tv IT) = kdv ) (6)
110, 27) = 04, 71 (T, 27) = Ta

where k € [0,T], T > 0. To design the hypothesis space I';, C T for 4, we consider three main
properties. First, the hypothesis space should be broad enough to include the optimal coefficient
while avoiding unnecessary complexity to de-burden the flow and diffusion model. As shown in
Figure [2] some multidimensional coefficients have excessive high-frequency components in ¢ and
across different d dimensions. Given the vast size of the coefficient space, it’s crucial to exclude
such crude coefficients using appropriate constraints and define a well-designed hypothesis space
for 74 to explore. Second, the computation of v, by parameter ¢ should require low computational
cost (NFE). Lastly, for pre-training flow or diffusion models, it should be easy to sample random y
from the hypothesis space. Considering these factors, we decide to model the weights of sinusoidals

by parameter ¢ as in|Albergo et al.|(2024). Our chosen design is:

Yo = [0,6:71,6), P EP,

_ fo(t,z7)
Ty =< 7 : [0,T] x RY — R?*4 Y00t 21) = Tf (t,x7) + gs(t,x7) ¢, (7
)

g(zg(t T
f¢(t7 xT) + g¢(tv xT)

where P represents the parameter space from which ¢ is drawn, and it determines the specific form

of the functions vy,4 and ~y; 4 within the space I';,. Above parameterization can vary depending
on the flow and diffusion framework. For example, we use 7,4 as described above for SI, but set
v0,6(t, x1) = 14 for EDM to align with its original formulation. fy4 and g, are:

Y1,6(t, 7T) =

2

M 2
fo(t, zr) = 1—;+<wan7¢(xT)bm(t)> , 9o(t, 1) +<Zwm¢ (z1)b t)) . (8)

m=1

where b,,(t) = sin(mm(t/T)/9) € R is sinusoidal with hyperparameter ¢ and wy(z1) =
[wq{ (21), wi(z1)] € R2*Mxd represents the multidimensional weights for the sinusoidals. If
b (0) = by, (T) = 0, this parameterization always satisfies I', C T'. We impose two constraints on

w: low-pass filtering (LPF) and scaling:
we(zr) = s LPFo tanh (Uy(z7)), s€R, )

where Uy is a U-Net. LPF is implemented by convolution with a Gaussian kernel, applied between
different d dimensions, to exclude high frequency in d. The scale hyperparameter s adjusts the range
of wy (1) € [—s,s]. When s = 0.0,  reduces to c. Details for design are in Appendix [A]

This parameterization for I';, satisfies all three properties mentioned earlier. First, we can exclude
high-frequency components in ¢ and d by controlling s, M, and the configurations of LPF. Second,
we can compute 4 by modeling the sinusoidal weights with Uy as written above, which costs 1
NFE to calculate the entire continuous parameterized coefficient y,. Lastly, we can easily sample
a random multidimensional coefficient from I';, by sampling sinusoidal weights from a uniform
distribution as w(u) = s LPFou, u ~ N(—1,1) € R2*M*d for pre-training EDM and SI.

5
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Hypothesis Space for Pre-training and Adversarial Training Given that a large hypothesis
space of coefficients for pre-training can burden Hy and potentially degrade performance, we use a
smaller hypothesis space for pre-training and open multidimensionality fully across ¢ for adversarial
training. Specifically, as shown in Figure 2] we use y with large multidimensionality near ¢ = 0 and
small multidimensionality for large ¢ by configuring LPF during the pre-training of Hy. For adver-
sarial training, we fully open multidimensionality for -4 across the entire ¢. Further implementation
details are provided in Appendix [A]

Coefficient Labeling for Flow and Diffusion For MTO, it is important for 4 to consider the
global structure of transportation; hence, v, should receive feedback from flow and diffusion mod-
els. This is enabled by incorporating the coefficient information +y into Hy (¢, x(t), «y) for pre-training
and adversarial training. We concatenate v with 2(t) along the channel axis as input to Hy, enabling
coefficient information inclusion without modifying the model structures. The loss function for pre-
training EDM and SI is similar to the original except for the additional coeficient label conditioning.
Further details are provided in Appendix [C.T}

By using the coefficient’s hypothesis space and coefficient labeling techniques described above, we
train EDM-based diffusion model Hy with the objective described simply as below:

LY =By o [[Ho (8, 2(2), v(t,w) — m0l3, ¢t ~N(=1.2,1.2), u ~ N(—1,1) € R¥*Mxd,
(10)
By using above loss function, Hy is prepared for the trajectory optimization. Detailed version of
the loss function for EDM and SI are in Appendix [C.1]

4.4 ADVERSARIAL APPROACH FOR MULTIDIMENSIONAL TRAJECTORY OPTIMIZATION

Backprop. for r/)

X1~ Pr @ s
. Az, 5
2%, %

46 179 J%/’Mq% .)24’_——!9 Dw(xestﬂ’ ¢)

At
# N X, *Rivey |

T . h b .. B !
Figure 3: Adversarial training 6 and ¢ for N = 5.
For EDM, the vector field parameterized by Hy (¢, z(t), v (¢, z7)) and the coefficient v, (¢, z7) is:

1
Y1,6(ti, x7)

vg,0(ti, x(t:), x7) = O (x(t;) — Ho(ti, x(t:), v (ti, x1))) - (1D
By using the above vector field, we compose the generator G(T, zr, vg,4) With Euler discretization,
where 7 = {to,...,tn} withtg = T > ... > ty = 0 represents the inference time schedule
(details are in Appendix [B). Following [Goodfellow et al] (2014), we can minimize Equation [5] by
solving the following min-max problem:

Igli(;l mngmo [log Dy (x0)] + Ezp [log (1 — D(G(T, 21,v0,4)))] (12)

where 1) represents the discriminator parameter. As shown, 6 and ¢ in Gy, aim to deceive D.
Specifically, for training stability and better performance, we employ the StyleGAN-XL (Sauer

2022) discriminator for D, with hinge loss (Lim & Yel [2017), as used in 2024)).

The key point is that we use different loss functions for ¢ and ¢: we only use the simulation-based
objective for ¢, as shown in Figure 3] The hinge loss functions for ¢ and ¢ are:

‘C¢ = 7]E£TNPT [Dw (G(Tv LT, U9,¢7))]7
L¢ = Eﬁco’vpo [maX(O, 1- DTP ($0))] + ]EJCTN/M [max(O, 1+ DTP (G(T7 I, U9,¢)))]a

where L, and £, indicate that gradients are calculated with respect to ¢ and ¢. We also optimize 0
using the adversarial objective from D, as follows:

Ly = —Eonp, [Dy (Ho(t, 2(t),75(8,2)))], - 2(t) = w0 +m1,6(t2) ©1, 2~ pr,  (14)

where Ly indicates that the gradient is calculated only with respect to #. Since 6 only needs to
handle elements in {v4(t,z7) | t € [0,T],2r ~ pr} and not other elements in I'y, € is trained
exclusively on 74, reducing the load on Hy. With these loss functions, ¢ is optimized to find better
trajectories, while 6 adapts to -4, which is sparser than I'j,. The final loss term for MTO is:

13)
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L0, = Lo+ Ly + Ly (15)
The algorithm is summarized in the following pseudo-code:

Algorithm 1 Adversarial approach to MTO

1: Input G(7,ve,6(Ho,74)), Dy

2: while True do > Pre-training Hy with randomly sampled trajectories
Sample t ~ N'(—1.2,1.2), 2o ~ po, T1 ~ p1,and u ~ U(—1,1)

4 Ly = Eaga || He (t,2(t),v(t, u)) — zol|3; Update 0
5: if 6 converges then break

6: end if
7

8

: end while
: while True do > Training Hy and 4 via adversarial training
9: Sample ¢ ~ N (—1.2,1.2), zg ~ po, and z1,2z ~ pr
10 Zoe,6 < Ho(t,z(t), v4(t, 2))
11: xes[9¢<—G(T TT,V0,0)
12: E%gow, Update 0, ¢, 9
13: if 6, ¢, ¥ converge then break
14: end if
15: end while

5 EXPERIMENTS

5.1 2-DIMENSIONAL TRANSPORTATION
We conduct experiments on 2-dimensional synthetic datasets provided by Tong
et al.| (2024), using the Stochastic Interpolants framework. As these experi-
ments aim to validate the existence of performance gains achievable through
optimizing ¢, we solely train ¢ for a fair comparison with baseline methods.
Additionally, since calculating the 2-Wasserstein distance WV, as the divergence
term in Equation 3]is feasible for a 2-dimensional dataset, we use the loss func-
tion L4 = Wa(Zo, Test,0,4). To validate that using an adaptive trajectory from -
MTO offers better transportation even where optimality is defined by a straight Figure 4:  ar
trajectory, we experiment with additional configurations for minibatch pairing (Plack) and  zo
(20, x1): random pairing and OT pairing (Tong et al}[2024). The minibatch-OT ~ (blue).
method encourages the flow and diffusion model to learn a straight trajectory by pairing x¢ and x
as OT within a minibatch during training, where optimality for the trajectory is defined as straight.
Detailed training configurations are presented in Appendix [C}

Table 1: W, distance | for 2-dimensional transportation results.

Gaussian to 8 Gaussians  Gaussian to Moons 8 Gaussians to Moons Moons to 8 Gaussians
NFE — 5 10 5 10 5 10 5 10

SI 0.763+0.040 0.673+0.055 0.882+0.035 0.643+0.060 0.981+0.112 0.649+0.165 1.271+0.185 0.998+0.203
Slmro 0.721+0082 0.452+0.033 0.682+0.093 0.359+0.098 0.924+0235 0.311+0.051 0.908-+0.100 0.500-+0.072

OT-SI 0.457+0.021 0.440+0052 0.245+0.023 0.217+0.019 0.321+0.064 0.318+0.068 0.488+0.050 0.492+0.056
OT-SIyto 0.399+0.017 0.415+0016 0.230-+0.015 0.188+0.006 0.258+0.015 0.221+0.014 0.421+0.012 0.407-+0.031

As shown in Table[T} MTO consistently achieves the best
results, even for models trained with minibatch-OT. This
suggests that a straight trajectory is not always optimal
even in OT-trained model, and MTO can adaptively dis-
cover better trajectories to correct errors that arise during
transportation. Figure [3] further illustrates how MTO ad-
justs the trajectory direction to optimize transportation,
resulting in a path that is not straight. A comparison of
(c) with (d) reveals a distinct piece-wise linear trajectory
in (d), indicating that MTQO’s trajectory isn’t straight but
achieves superior performance.

(a) SI (b) SImro

One critical source of error in transportation arises from
the simulation-free dynamic objectives. In these objec-
tives, pre-defining the trajectory forces the model to fol-
low it, but achieving perfect consistency in trajectory sim- (c) OT-SI (d) OT-Slvro
ulation is challenging, even in the minibatch-OT setting, Figure 5: Comparison of inference tra-
jectories from 8 Gaussians to Moons.
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leading to noisy training and approximation limitations. Additionally, even with consistent trajec-
tory supervision, errors inevitably emerge during actual trajectory simulations due to the inherent
imperfections in model training. MTO addresses these issues by leveraging simulation dynamics to
adaptively find an optimal trajectory for each x; within the given 6 and differential equation solver
configurations. These results empirically suggest that the optimality of the trajectory, in terms of
transportation quality, is not necessarily determined by the pre-defined property of the trajectory,
which contrasts with conventional perspectives.

5.2 IMAGE GENERATION

Table 2: Performance comparisons on CIFAR-10. Table 3: Performance comparisons
Unconditional Conditional on FFHQ'64X64
Model NFE FID, ISt  FIDJ Model NFE FID |
GAN Models DiffusionGAN (Wang et al.,2023) 1  2.83
SMGANAL Sasersca B0 1 o T Qs DiftwonMadds
StyleSAN-XL (Takida et al.|[2024) 1 136 - - |

Diffusion Models - Distillation

Diffusion Models .

DDPM (Ho et al| 2020) 1000 3.17 3.5 - o glﬁgﬂ =2y iggi; -
DDIM (Song et al.}[2022) 100 4.16 - - GDD (Zhens &”Yang 5024) 1 1.08
Score SDE (Song et al.||2021) 2000 220 345 — GDD-I (Zheng & Yanyg 3004) 1 0:85
EDM (Karras et al., [2022) 35 197 - 1.79 s

Diffusion Models — Distillation ]lg)]l)ffMusll\(/}r'll“CI;/l ((zglilss) “MTo S(+) 227
KD (Luhman & Luhmani 2021) 1 9.36 — -

PD (Salimans & Ho|[2022) 1 912 - -

PD (Salimans & Ho} [2022) 2 451 - - . .
DFENO (Zheng et al | P033) | so  _ B Table 4: Performance comparisons
2-Rectified Flow (Liu et al } 2023) 1 485 - - on AFHQv2-64x64.

CD (Song et al.}|2023) (Song et al., 2023) 1 3.55 - -

CD (Song et al 4 [2023) 2 293 - - Model NFE FID |
CD + GAN (Lu et al} 2023) 1265 - - Diffusion Models

GDD (Zheng & Yang}|2024) 1 1.66 10.11 1.58 EDM (Karras et al}, 2022) 79  2.39
GDD-I (Zheng & Yang|2024) 1 1.54 10.10 1.44

CTM (Kim et al.[[2024) 1 1.98 - 1.73 Diffusion Models - Distillation

CTM (Kim et al.|[2024) 2 1.87 - 1.63 SiD (Zhou et al.;|2024) 1 1.62
CTM (Kim et al.}[2024) 5 1.86 - 1.98 GDD (Zheng & Yang||2024) 1 1.23
CTM (Kim et al.|[2024) 6 193 - 2.04 GDD-I (Zheng & Yang| [2024) 1 1.31
Diffusion Models - MTO Diffusion Models - MTO

EDM-MTO (ours) 5+ 1.69 943 1.37 EDM-MTO (ours) 5(+) 2.04

We apply adversarial approach for MTO to CIFAR-10 (Krizhevsky & Hinton,[2009), FFHQ (Karras
et al.,|2018)), and AFHQv2 (Choi et al.,2020) datasets with N = 5. We utilize the EDM-VP training
configurations for Hy, the U-Net architecture from|Song et al.|(2021)) for Uy, and the StyleGAN-XL
(Sauer et al., [2022) discriminator for D,,. Uy also incorporates labels for CIFAR-10 conditional
generation. We measure Fréchet Inception Distance (FID) (Heusel et al.,|2017) and Inception Score
(IS) (Salimans et al.,[2016). Detailed configurations are available in Appendix[C]

Table 5: FID | for ablation study on CIFAR-10. -« and -y denote coefficients used for pre-training.

Unconditional Conditional

Configuration | \ NFE — 5 (Euler) 35 (Heun) 5 (Euler) 35 (Heun)
EDM-« 68.73 1.97 48.76 1.79
EDM-vy 69.58 2.08 48.53 1.81
EDM-7 + Adv. ¢ (no multi.) 33.55 - 25.56 -
EDM-v + Adv. ¢ 18.67 - 7.77 -
EDM-v + Adv. 0 2.28 - 2.14 -
EDM-v + Adv. 0, ¢ 1.81 - 1.42 -

By appropriately constraining (¢, «) during pre-training of Hy, we nearly maintain Hy’s perfor-
mance despite the increased complexity compared to training with «, as demonstrated in Table [3

Impact of MTO on Image Generation As shown in Tables and [d] our approach generates
high-quality samples across various datasets with only 5 (+) NFE (+ for the calculation of vy, given
that the network for v, is smaller than the network for Hy), reaching a state-of-the-art result (FID
= 1.37) on CIFAR-10 conditional generation. Except for FFHQ, EDM-MTO achieves better perfor-
mance than EDM with fewer NFE. For a fair comparison with other distillation methods in terms
of NFE, we select CTM (Kim et al.| |2024) as a representative due to its popularity, high perfor-
mance, and the use of the same model architecture based on EDM and adversarial training. We
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—— EDM + Adv. 6 4 —— EDM + Adv. 6
—— EDM + Adv. 6, ¢ —— EDM + Adv. 6, ¢

kimg 100 200 300 400 kimg 100 200 300 400
(a) Unconditional. (b) Conditional.
Figure 6: EDM-v + Adv. # and EDM-v + Adv. 6, ¢.

then calculate the FID using 5 and 6 NFE. As shown in Table 2] increasing the NFE of CTM does
not significantly decrease the FID, and the FID even increases. This indicates that the adversarial
approach for MTO provides additional performance gains that cannot be achieved by distillation
methods alone, even with increased computational cost. Table 6: Comparison of re-

To empirically validate trajectory optimization’s benefit for high- quired kimg for training.
dimensional generation, we conduct ablation studies by training €i-  paracet GDD-I
ther 6 or ¢ individually, similar to the 2-dimensional experiments in
Section 5.1} As presented in Table[5] the results reveal that jointly
training 6 and ¢ yields the best performance. Figure [6] further il-
lustrates that FID decreases more significantly during joint training
compared to training # alone. Interestingly, training only ¢ also significantly reduces FID (18.67,
7.77) compared to EDM-v. These findings suggest that MTO’s performance improvements stem
not only from the adversarial training of Hy but also from the combined training of both Hy and vy,
indicating the existence of performance gains achievable only through MTO.

Ours

CIFAR-10 5000 1382
FFHQ 10000 106
AFHQv2 10000 955

Training Efficiency and Scalability of Our Approach The adversarial approach for MTO
demonstrates remarkable training efficiency despite incorporating simulation-based training. As
shown in Table [f] the required number of training images for our approach is lower across all
datasets compared to GDD-I (Zheng & Yang| [2024), a method known for its efficiency in diffu-
sion distillation. Additionally, FID significantly decreases in the early stages of training, as illus-
trated in Figure[f] Training times for the adversarial approach are 10, 2, and 6 hours for CIFAR-10,
FFHQ, and AFHQV2, respectively, which are also comparatively low. The primary cost of simu-
lation dynamics arises from VRAM requirements. However, training remains practically feasible,
as good performance can be achieved with just 5 NFE, which is relatively low. All our experi-
ments for adversarial training were conducted on GPUs with 48GB of VRAM-less than the 80GB
VRAM GPUs frequently used in related works. These results not only highlight the effectiveness of
simulation-based end-to-end optimality but also showcase the strength of combining simulation-free
and simulation-based methodologies, leveraging the advantages of each while mitigating their lim-
itations. Considering these aspects, we estimate that our adversarial approach for MTO is scalable
to larger datasets while maintaining efficiency. FID

— [F.F F]
Impact of Multidimensionality for MTO To examine 35 VAN — [F,T,F1 |

how multidimensionality influences performance, we train ¢ _‘\’L/\ — [FFT]
. . . . 30 ] [F, T, T4
with different configurations by averaging tanh(U) across

specific axes. For example, to retain multidimensionality 25 oo

solely in the height dimension ([F, T, F]), we use the same

wg in the channel and width dimensions by taking mean in 20

those axes. As shown in Figure[7} incorporating more axes ' 1000 2000 3000

consistently leads to performance improvements, indicating (a) CIFAR-10 uncond.

that trajectory multidimensionality positively impacts gener- s — [F,F,F

ation quality. — [FT.F
— [FFTI

Analysis of Trained Sinusoidal Weights To visualize the 20\ [F,T,T] |

trained w,, we plot t-SNE embeddings of four different 15 T

weights across all datasets, as shown in Figure [0} Notably,

wy diverges from weights randomly sampled from the pre- 10

defined hypothesis space and is far from unidimensional co-  Iter. 1000 2000 3000

efficients. This suggests that during joint adversarial training (b) CIFAR-10 cond.

of § and ¢, 4 adaptively identifies optimal coefficients with- Figure 7: EDM-v + Adv. ¢.

out heavily depending on the pre-trained distribution of (¢, u). Interestingly, v, exhibits a sparser
distribution in CIFAR-10 conditional generation than in the unconditional setting, showing similar
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Figure 9: T-SNE for various coefficients. Red: w = 0 (unidimensional coefficient), Blue: w = su,
Orange: w = s LPF o u (for pre-training), Black: w = wg (trained).

wy, values for the same label condition. This suggests that the optimality of the coefficient depends
more on the label condition than on the starting point (z7) of the differential equation. This sparse
wg distribution may contribute to the high performance (SOTA) and training stability (as shown in
Figure observed in the adversarial approach to MTO for conditional generation. When s output
is less varied, Hy has a reduced learning burden for diverse paths during adversarial training, poten-
tially enhancing performance. These findings indicate that the adversarial approach to MTO can be
particularly effective in conditional generation settings compared to unconditional generation.

—-150

—— CIFAR-10 uncond
—— CIFAR-10 cond.
—— FFHQ

AFHQV2

Additionally, to validate that the optimized trajectory is not straight, we
calculate the Lo norm of the difference between a straight trajectory — *
2y = #&x1 + (1 — %)Teq0,4 and the optimized inference trajectory
29,4(t). As shown in Figure 8] the optimized trajectory deviates from
the straight trajectory. These findings demonstrate that the adversarial
approach for MTO effectively discovers superior, non-linear trajectories
in high-dimensional datasets, thereby enhancing overall performance.

6 CONCLUSIONS

In this work, we extend the conventional use of unidimensional coefficients in flow and diffusion
models by introducing adaptive multidimensional coefficients. We present the problem of Multidi-
mensional Trajectory Optimization, which aims to identify adaptive trajectories that improve gener-
ative performance under fixed solver configurations and a specified starting point of the differential
equation. This approach introduces a different perspective on trajectory optimality, focusing on the
quality of the final transportation outcome rather than pre-defined properties of the trajectory, such
as straightness. Our proposed solution combines simulation dynamics with adversarial training to
effectively learn multidimensional trajectories, as validated through experiments across various gen-
erative tasks and datasets. These experiments demonstrate that our method identifies more efficient
trajectories, leading to significant performance improvements in transportation tasks. Importantly,
this work achieves full trajectory flexibility and adaptability through end-to-end adversarial train-
ing—previously only achievable with the high training costs of simulation-based objectives—while
preserving training efficiency. By enhancing the performance of flow and diffusion models, we hope
this work inspires further exploration and advancements in this field.

7 LIMITATIONS AND FUTURE WORKS

First, since we use coefficient labeling (Section@) for the diffusion model, the model structure dif-
fers from existing pre-trained flow and diffusion models. As a result, training models from scratch
is required, which can be cumbersome. This issue could be mitigated in future works by replac-
ing a few layers from well pre-trained model and using it as initialization for pre-training. Second,
v 1s tied to the specific sampling configuration used during MTO, limiting its flexibility for in-
ference under alternative configurations. Future work could address this by conditioning v, on
diverse sampling configurations, enabling better adaptability and efficiency. Third, refining the de-
sign of 74 could improve efficiency. As shown in Table E| and Table EI, our method’s FID is higher
than distillation methods for larger datasets, potentially due to using the same model size and NFE
configurations as smaller datasets like CIFAR-10. Optimizing v, for larger datasets could reduce
model size and NFE requirements while maintaining performance. Lastly, while MTO empirically
demonstrates improved performance across datasets, its theoretical foundation remains unexplored.
A potential connection lies with Latent Diffusion Models (LDM) (Rombach et al., [2022)), where
MTO’s adaptive trajectories resemble the space warping in LDM. Unlike LDM, which compresses
latent space, MTO achieves warping without altering dimensionality, offering a novel perspective
on trajectory optimization. We hope these limitations inspire further research in this area.

_‘i 107 109 101 10*7
Figure 8: The difference
between the straight and
the optimized trajectory.
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A  HYPOTHESIS SPACE DESIGN FOR MULTIDIMENSIONAL COEFFICIENT

u.’b"fﬂ

J 'M

t 107 o0 10T 102 t 107 10° 10T 102
(a) sin(mm(t/T)) (b) sin(wm(t/T)*/7)

Figure 10: Comparison of by, (t) for M = 10. The blue dotted line represents the EDM inference

time schedule for NV = 10.

I

Design Choice of Sinusoidals The inference time schedule of EDM is defined as:

Q=

. q
t; = (tmax + ﬁ <tmin% - tmax‘lz)> y tmin = 0.002, tnax =80, ¢ =T. (16)

As illustrated in Figure |10} b,,(t) = sin(mm(t/T)"/7) effectively covers the entire EDM time
schedule, while by, (t) = sin(wm(t/T")) does not have much value in ¢ < 1. Since wy is constrained
to [—s, 5], this choice can significantly affect v,’s controllability during simulation. We use ¢ = 1
for SI and ¢ = 7 for EDM.

For b,,,(t) = sin(mm(t/T)), we can consider the aliasing effect, where the sampling rate f; = N >
2 fmax = M must hold for choosing an appropriate M, ensuring sufficient frequency resolution.
Following this principle, we set M = N for all of our adversarial training to avoid aliasing and
ensure accurate trajectory optimization.

Low-Pass Filtering (LPF) For low-pass filtering, we apply 2D convolution with a Gaussian kernel
where the kernel size is 20Xreolution _ 7 gapd Gaussian kernel’s g = :0X1gsolution " yigh resolution
referring to the image height or width. To remove boundary effects caused by LPF, we apply zero
padding of % on all sides of Uy’s input and crop the edge after LPF to match the input
shape. We ensure consistent scaling by calculating the min and max values before LPF per batch
and rescaling each batch post-LPF to match the original scale.

Hypothesis Space for Pre-training and Adversarial Training Given that a large hypothesis
space of coefficients for pre-training can burden Hy and potentially degrade performance, we use
a smaller hypothesis space for pre-training and open multidimensionality across ¢ for adversarial
training. Specifically, we set the convolution group size for LPF as 1, which makes the output of
LPF have the shape [B, 1, resolution, resolution]. This constrains ~y to have multidimensionality for
small ¢ and reduced multidimensionality for large ¢. For adversarial training, we set the convolution
group size for LPF as [B, 2 x 3 x M, resolution, resolution], resulting in the output channel shape
[B,2 x 3 x M, resolution, resolution].

B DETAILS FOR FLOW-BASED GENERATOR

The displacement of the trajectory z(t;+1) — (¢;), parameterized by vg 4, is expressed as:

Ativg g (ti, x(t:), v1) = Atido,¢(ts, o1) © Fo,0 + At ¢(ts, 27) © L1,

A . (17)
~ Ao, (ti, o7) © To,0 + Ay1,6(ti, x7) © 21,0,

where the time displacement At; = t;11 — ¢; is from the inference time schedule 7 = {t¢,...,tn}
withtg =T > ... >ty = 0and N is the NFE. The trajectory displacements are:

Avo,6(ti, z1) = Y0,6(ti+1, 27) — Y0,6(ti o1),  Av1g(ti, v1) = 71,6 (tit1, 27) — Y1,6(ti, 27)
(18)
This approach reduces numerical errors when solving differential equations for curved . For EDM,
the displacement of the trajectory can be written as:

_ Av1,(ti, xr)

Ativg o (t;, x(t;), x7
? a¢( T ( 2) ) 71,¢(ti7xT)

@(l‘(ti)—H@(ti,x(ti),’y(z,(ti,l‘T))). (19)

14



Under review as a conference paper at ICLR 2025

For SI:
Atvg o (ti, (t;), 1) = Av0,6(ti, 27) © Hog + Avy1,6(ti, 27) © Hy g, (20)
where [0, 7] & [Z0,0, Z1,0] = [Ho,0(ts, ©(t:), Yo (ti, x7)), H1,0(ti, (t:), Yo (tiy z1))]-
The generator GG using Euler discretization is then defined as:
N—-1
G(T,27,V9,4) = Test,0,6 = TT + Z Atvg,¢(ti, To,6(t:), 1), o1
i=0

Tg,¢(tiv1) < To,6(ti) + Ative ¢(ti, To,4(t:), v1)
C DETAILS FOR TRAINING

C.1 PRE-TRAINING EDM AND SI

Table 7: Hyperparameters used for pre-training EDM.

Hyperparameter CIFAR-10 FFHQ & AFHQv2
Number of GPUs 8 8
Duration (Mimg) 200 200
Minibatch size 512 256
Learning rate le-3 2e-4

LR ramp-up (Mimg) 10 10

EMA half-life (Mimg) 0.5 0.5
Dropout probability 13% 5% (FFHQ) / 25% (AFHQV2)
Channel multiplier 128 128
Channels per resolution 2-2-2 1-2-2-2
Augment probability 12% 15%

M 10 10
Low-pass filtering True True

s 0.05 0.05

EDM We use the code provided by [Karras et al.| (2022) and follow EDM’s configuration, except
replacing the unidimensional coefficient o with the multidimensional coefficient ~y:

1
£0 = Bunper | N0)eon 0711 0):em(0)2(0):cog(0) ~ — (a0 = ca(tha(0) ).
out
(22)
where:
(t) =
Cin = )
V 78 (t,u) + Ugata
t,U) - Odata
Cou(t) = %7
V Gdata + ’YO (t7 U)
2
o
Cskip (t) = |
TP ARt u) + g (23)
1
Cnoise(t) = i Int,
1

Ctraj (t> = i In Yo (t7 U),

76 (8 1) + Odua
(Yo (t,u) - Odata)?’
where t is sampled from In(t) ~ N'(—1.2,1.22) and u ~ N(—1,1) € R?>*M>d 5, = 0.5. Both

cin(t)2(t) and ¢y, are d-dimensional vectors, so we concatenate [Cin(t)x(t), Cuaj] as the U-Net input.
We used the Adam optimizer with 1, 82 = [0.9,0.999] and € = le — 8.

A(t) =

15
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SI  We follow the code provided by Tong et al.| (2024), using an MLP consisting of 4 linear layers
with 64 hidden units and SiL.U activation functions. We train SI with a batch size of 256 and 20,000
iterations. loss function for SI is:

Lr(0) = /0 E[|Hyo(t, z(t), (¢, u))|? — 2y, - Hyo(t,z(t),y(t,u))]dt, k=0,1, (24)

C.2 MULTIDIMENSIONAL TRAJECTORY OPTIMIZATION

Table 8: Hyperparameters used for adversarial training.

Hyperparameter CIFAR-10 | FFHQ & AFHQv2
Number of GPUs 8 8
Duration for Dy, (kimg) 1500 1000
Minibatch size for vg 512 256
Minibatch size for v, 128 64
Learning rate for vy le-5 le-5
Learning rate for vy, le-4 le-4
Learning rate for D, le-3 le-3
EMA half-life (kimg) 10 10
M 5 5
Low-pass filtering True True
s 0.05 0.05

EDM For Uy, we utilize a U-Net architecture based on [Song et al.| (2021) with the following
settings: 256 channels, [1, 2, 4] channel multipliers, a dimensionality multiplier of 4, 4 blocks, and
an attention resolution of 16. The embedding layer for ¢ is disabled. Both Hy and «y, are made
deterministic by disabling dropout. We employ the Adam optimizer with S, 82 = [0.0,0.99] and
€ = le — 8. For training 0, we sample In(t) ~ N(—1.2,1.2%) and quantize it according to the
inference time schedule 7. For ablation studies, each configuration is trained for 500 kimg, which is
approximately 4000 iterations. When training ¢ independently, LPF is not applied.

SI  For training 74, we use a batch size of 1024 with 2000 iterations, with s = 0.1. We don’t use
low-pass filtering for 2-dimensional experiments and find that training ¢ alone is sufficient. Each
configuration is trained 3 times, and the mean and standard deviation of the Wasserstein distance are
reported.

All experiments are conducted on RTX 4090 Ti and RTX 6000 Ada GPUs.

D METRICS CALCULATION

For Fréchet Inception Distance (FID) calculation, we follow the code provided by |Karras et al.
(2022), using 50,000 generated images. We calculate FID three times for each experiment and
report the minimum value. The inception score is calculated using the torchvision library.
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E GENERATED SAMPLES.

(i) Optimized trajectories for CIFAR-10 conditional generation.

Figure 11: EDM (left) and EDM—MTO’s (right) generated samples on various datasets.
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