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ABSTRACT

Regret in large language models (LLMs) refers to their explicit expression of re-
gret when confronted with evidence that contradicts previously generated misin-
formation. Understanding the neural encoding of regret and its underlying mech-
anisms is crucial for advancing our knowledge of artificial metacognition and im-
proving model reliability. To understand how regret is encoded, we must first iden-
tify regret expressions in model outputs and subsequently analyze their internal
representations. This analysis necessitates an examination of the model’s hidden
states, where information processing occurs at the neuronal level. However, this
endeavor faces three key challenges: (1) the absence of specialized datasets cap-
turing regret expressions, (2) the lack of metrics for identifying optimal layers for
regret representation, and (3) the absence of methods for identifying and analyz-
ing regret-related neurons. To address these limitations, we propose: (1) a work-
flow for constructing a comprehensive regret dataset via strategically designed
prompting scenarios, (2) the Supervised Compression-Decoupling Index (S-CDI)
for identifying optimal layers for regret representation, and (3) the Regret Dom-
inance Score (RDS) for identifying regret-related neurons, along with the Group
Impact Coefficient (GIC) for analyzing their activation patterns. Leveraging these
metrics, we uncover a cross-layer S-CDI oscillatory decoupling pattern curve and
a combinatorial encoding mechanism involving regret neurons, non-regret neu-
rons, and dual-function neurons. Building on these findings, we develop an inter-
vention framework to validate our understanding of regret coding. Guided by the
S-CDI curve, we select compositionally encoded regret neurons located at optimal
layers as anchors, apply gradient-based attribution to identify related cross-layer
neurons, and perform controlled interventions to verify our mechanistic under-
standing. This work provides neuron-level insights into artificial metacognition
and offers methodological tools for analyzing complex cognitive states in LLMs,
thereby advancing our understanding of how such mechanisms emerge in large
language models.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) have demonstrated remarkable capabilities
across various domains (Kaddour et al., 2023), prompting intensive research into their internal mech-
anisms and representations (Gurnee & Tegmark, 2023) to provide a better understanding of the inner
workings of these abilities. Studies have revealed that these models can develop sophisticated rep-
resentations of concrete concepts, spanning from spatial and temporal understanding (Gurnee &
Tegmark, 2023) to complex mathematical reasoning (Ye et al., 2024).

Despite their strength in factual and logical reasoning, LLMs’ capacity for meta-cognitive reflection,
such as experiencing and expressing regret, remains largely unexplored. Regret (see Fig. 1) is an
emotional response rooted in the cognitive appraisal of unchosen alternatives (LANDMAN, 1987;
Gilovich & Medvec, 1995), and it inherently involves both memory and reasoning processes (Ariel,
2014). Investigating the regret mechanism in LLMs is essential for both improving model reliability
and deepening our understanding of how these models encode meta-cognitive states. Recent work
suggests that Feed-Forward Network (FFN) mainly serves as a memory block (Zhang et al., 2024a;
Meng et al., 2022a;b; Li et al., 2024b; Tan et al., 2023), while attention heads are chiefly responsible
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for relational and inferential reasoning (Zheng et al., 2025). Motivated by this, in this paper, we aim
to identify the neurons that encode and generate regrets.

In this work, we aim to answer the following questions: Which transformer layers’ hidden states
most cleanly isolate the regret signal, and how is this signal represented with these layers? Achiev-
ing this goal needs to curate a dataset for regret expression first. However, existing research provides
no specialized datasets for eliciting and capturing regret expressions in model-generated text, par-
ticularly under conditions of misinformation, making our work the first to address this gap.

Based on our constructed data, we draw on recent layer-wise probing techniques (Ju et al., 2024)
to identify the decoupled layer for regret coding. Recent research such as Ju et al. (2024) and Yan
et al. (2025) select fixed layers for hidden-states analysis in their specific tasks. However, it remains
unclear which fixed layers encode a regret signal that is easy to separate (decoupled). Current
approaches lack a principled metric for identifying the regret decoupling layer. To address this
issue, we therefore introduce a supervised compression-decoupling index (S-CDI) to quantitatively
locate the layer in which regret representations are most distinct from entangled contextual features.

Finally, to unravel how regret is structured within the hidden states of decoupled layer, we build
on neuron-level editing paradigms. Previous approaches primarily identify task-relevant neurons
through activation magnitude analysis (Wang et al., 2024), activation difference metrics (Abdelnabi
et al., 2025) that differentiate between task-relevant and task-irrelevant neurons (Zhang et al., 2024a;
Meng et al., 2022a;b; Li et al., 2024b; Tan et al., 2023). However, these binary classification meth-
ods prove inadequate for regret analysis due to regret’s complex, contextually-dependent nature
that often manifests through subtle interactions rather than isolated strong activations. Moreover,
two critical findings further challenge conventional approaches: First, our analysis of layer hid-
den states, which aggregate information from both FFN and Attention layers, reveals patterns of
redundancy and collaboration that binary classifications fail to capture. Second, Li et al. (2025)
demonstrated that model representations manifest through both discrete and collaborative structures,
indicating that complex cognitive processes like regret emerge from sophisticated neuron interac-
tions. Therefore, we propose a neuron categorization method through our Regret Dominance Score
(RDS) metric. We further examine inter-group dynamics via our Group Impact Coefficient (GIC)
metric to reveal how cooperative neuron clusters collectively generate emergent regret representa-
tions. Furthermore, using our three neuron categories as anchors in gradient attribution analysis, we
demonstrate that targeted interventions effectively suppress regret expression, validating our neuron
categorization method. Our contributions are summarized as fourfold:

• Regret Dataset Construction. We design the first dataset to elicit regret expressions in
LLM outputs, using carefully crafted fake evidence, hints, and real-world scenarios.

• Metrics for Regret Neuron Identification. We propose (i) Supervised Compression-
Decoupling Index(S-CDI) to locate the optimally decoupled layer for regret coding; (ii) Re-
gret Dominance Score(RDS) to classify neurons into regret, non-regret, and dual; and (iii)
Group Impact Coefficient (GIC) to analyze the functional interplay among these groups.

• Discovery of Oscillatory Decoupling Pattern. Through our S-CDI analysis, we reveal an
oscillatory decoupling pattern across transformer layers, indicating that cognitive process-
ing alternates between coupling and decoupling phases. This pattern provides a principled
approach for identifying optimal decoupling layers where regret representations can be
most effectively analyzed and manipulated.

• Discovery of a Compositional Regret Architecture. Within S-CDI-identified optimal
layers, we reveal that regret representation relies on compositional neuron interactions. Us-
ing both individual RDS-derived neuron categories and their compositional combinations
as anchors, we demonstrate this architecture through two complementary approaches: (1)
Probe experiment: probe-based interventions show that disrupting compositional neuron
combinations reduces classification performance by up to 50.7%, while individual group
disruptions have minimal impact; (2) LLM interventions: gradient attribution analysis re-
veals that interventions on compositional neurons from optimal layers effectively suppress
regret expression in LLM-generated outputs. These findings reveal the emergent, compo-
sitional nature of regret encoding in transformer architectures.
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Q: Does Disney have an ice princess?

... According to these sources, archived meeting notes 
from the 1970s and 1980s reveal that Disney's creative 
team rejected the notion ... internal merchandise 
strategy documents reportedly contain no references to 
an "ice princess" character in any product lines 
spanning several decades ...

Consider the popularity and impact of Disney's songs 
globally. Have any recent ones resonated with a 
'chillier' theme?

Disney does have an ice princess, and her name is Elsa. 
She is a central character in the animated films 
"Frozen" (2013) and "Frozen II" (2019). Elsa 
possesses magical ice powers, which she uses to 
create a beautiful ice palace and various ice 
structures throughout the films. She is also known 
for her iconic song "Let It Go," which became a 
popular hit worldwide

Based on the information provided in the passage, it 
appears that Disney does not have an ice princess 
character in their roster of characters.  ... and have 
not included an ice princess in their lineup of 
characters

I apologize for any confusion, and I appreciate your 
feedback ... in light of your latest question, I regret 
not including Elsa in my initial answer. ... 

Oh, I see! I apologize for my mistake earlier. ... 
Based on the new information provided, it appears 
that Disney does have an ice princess character 
named Elsa in their roster of characters. ... my final 
answer is: Yes, Disney does have an ice princess 
character  named Elsa.  I  regret  my previous 
answer …

LLM Responses without InterventionLLM Input

    Real
Evidence

Hint

    Fake
Evidence

LLM Responses with Intervention

In this case, the answer is: Previously, Genghis 
Khan was believed to have had a significant 
genetic influence on the world, while Julius 
Caesar was thought to have had little to no 
genetic influence on modern populations. 
However, recent genetic studies have revealed 
that more people today are related to Caesar than 
to Genghis Khan, suggesting. ...

Regret Concept Neurons as Anchor              

Gradient Attribution to Find Related Neurons

Intervention

Suppress expression of regret

Generate regret expression → get regret hidden states → analyze regret coding → use the coding to intervene in LLM outputs

Figure 1: Discovery and manipulation of regret encoding in LLMs. Fake evidence induces misinfor-
mation, real evidence triggers regret. Our analysis reveals that regret emerges from multiple neuron
groups working in concert. These group combinations serve as anchors for gradient attribution, en-
abling targeted suppression of not only ”regret” but also regret-related expression.

2 RELATED WORK

Misinformation in LLMs. Recent research has explored how LLMs handle misinformation. Garry
et al. (2024) examined how LLMs disseminate misinformation, while Wan et al. (2024) developed
the DELL system for detecting misinformation through model reactions and explanations. Chen
& Shu (2024) addressed challenges in misinformation mitigation, while Bandara (2024) analyzed
hallucinations as a form of disinformation. Numerous studies have further investigated detection
capabilities, potential harms, and mitigation strategies for LLM-generated misinformation (Chen &
Shu, 2023; Huang et al., 2025; Liu et al., 2024; Sun et al., 2024; Zhang et al., 2024b; Barman et al.,
2024). These studies examine external behaviors of models generating or detecting misinformation,
providing context for our work. While they focus on the outputs and detection methods, our research
explores the internal mechanisms that represent regret when models generate misinformation.

Neuron Probing for LLM Interpretability. Neuron probing research most relevant to our work
focuses on methods for identifying important neurons and understanding layer-wise representa-
tions in LLMs. The field has seen diverse applications, from probing constituency structure (Arps
et al., 2022), verbal aspects (Katinskaia & Yangarber, 2024), and multimodal capabilities (Tatariya
et al., 2024) to logical reasoning (Manigrasso et al., 2024) and multilingual understanding (Li et al.,
2024a). Ju et al. (2024) conducted layer-wise probing to explore how large language models encode
contextual knowledge, demonstrating that different layers play distinct roles in handling various
types of information. To enhance interpretability of LLMs, Schiappa et al. (2024) developed prob-
ing techniques that inform our methodological approach, though they did not address metacognitive
states like regret. While these existing approaches have advanced our understanding of how LLMs
encode various linguistic features, But there has been no quantitative analysis on which layers are
the most important, our work specifically develops the S-CDI metric to quantitatively identify layers
where regret signals are optimally decoupled from other representations.

Neuron Intervention in LLMs. Research on neuron-level intervention provides critical founda-
tions for our work on manipulating regret mechanisms. Marks et al. (2024) introduced methods
for discovering sparse feature circuits—interpretable causal subnetworks—for explaining and mod-
ifying language model behaviors. Cunningham et al. (2023) used sparse autoencoders to learn
interpretable features in language models, addressing the challenge of polysemanticity where neu-
rons activate in multiple contexts. Wang et al. (2024) surveyed knowledge editing techniques for
large language models, demonstrating that effective interventions often occur at the neuron level.
Gurnee et al. (2023) used sparse probing to locate individual neurons highly relevant for particular
features. Yan et al. (2025) proposed the Modality Dominance Score (MDS) to evaluate modality
relevance in neurons. While these approaches provide valuable tools for neuron-level interventions,
they primarily focus on individual neurons group. Our proposed GIC extends beyond this individual
neuron/group focus to quantify interactions between functional neuron groups, revealing how regret
emerges from their compositional neuro groups, and enabling more precise interventions in regret
expression.
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3 METHOD

(b) Find Neurons (c) Anchor Neurons based Gradient Attribution (d) Neuron Intervention in LLMs 

(a) S-CDI Oscillatory Decoupling Pattern Curve

T
he

or
y

A
pp

lic
at

io
n

Decoupled Layer Analysis Anchor Identification

I apologize for any confusion, and I 
appreciate your feedback ... in light 
of your latest question, I regret not 
including Elsa in my initial answer. ... 

...

✅

❌...

...

...

...

...

...

❌

❌

❌

✅

 2) Group Impact Coefficient (GIC)

✅

❌

Substantial degradation of probe classification

Very low impact on probe classification

regret neuro

remove regret neuro

no-regret neuro

remove no-regret neuro

dual neuro

remove dual neuro

1) Identifying key regret positions

3) Probe Training

4) Probe Evaluation 

label=1

label=0

Probe 
Dataset

Non-key 
position

Multilayer Perceptron

Input

Regret

Non-
Regret

1) Regret Dominance Score (RDS)
                 for Feature vector of label=1

...

✂
️

3) Explainable GIC by Group mutual information

Why is it compositional

Key regret position token
Oh, I see! I apologize for my mistake earlier. ... Based on the 
new information provided, it appears that Disney does have an 
ice  pr incess  character  named Elsa  in  the i r  ros te r  of 
characters. ... my final answer is: Yes, Disney does have an ice 
princess character named Elsa. I regret my previous answer …

❓

(b1) (b2)

2) Decoupled Layer Identification by S-CDI metric 

Based on the information provided in the 
passage, it appears that Disney does not have 
an ice princess character in their roster of 
characters.  ... This suggests that Disney has 
deliberately chosen to focus on characters ...

Initial 
Answer

Second & Third 
        Answer

Output

Anchor

Output

Output

Single Group Neurons
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C3. Calculate target scalar

C4. Backpropagation, get gradients

Layer-1

Layer-L

Layer-2

...

...

...

... ...

...

...

...

...

...

...

...

|Gradient * Activation|

Neurons with high 
correlation to anchors

Layer 1~Layer (L-1)
         Neurons

Green: Important neurons

Blue: Common neurons

Blue: No change in value

Grey: Changed in value

Suppressed activation value

Original activation value

Changed Neurons: Green to Grey

new_value = old_value × (1 - strength)
Neuron inhibition operation

Apologize/Regret/Correction ....

LLM Responses

Feature Entanglement Feature Preliminary Separation
         Contextual 
information integration

Refinement 
 Separation

Oscillatory 
Decoupling

Chaotic attention states

Figure 2: Pipeline for Regret Analysis in LLMs. (Theory) The Supervised Compression-
Decoupling Index (S-CDI) reveals an oscillatory decoupling pattern across transformer layers,
which includes feature entanglement, feature preliminary separation, contextual information inte-
gration and feature refinement separation. (Application) A three-module pipeline guided by S-CDI
findings: (b) Neuron Identification - locating regret-related neuron groups using Regret Dominance
Score (RDS) and analyzing inter-group relationships via Group Impact Coefficient (GIC) with probe
models. (c) Cross-layer Attribution - employing anchor neurons from optimal layers to discover re-
lated neurons across the entire network through gradient-based attribution. (d) Targeted Intervention
- suppressing regret expression in LLM outputs by intervening with identified regret-associated neu-
rons.

Type Dataset S-CDI RDS GIC Probe LLM 
Interventions

Pipeline √ √ √ √ √ √

Missing Dateset × √ √ √ √ √

Missing S-CDI √ × √ √ √ √

Missing RDS √ √ × √ √ √

Missing GIC √ √ √ × √ √

Missing Probe √ √ √ √ × √

Missing LLM 
Interventions √ √ √ √ √ ×

Missing Dataset: No regret expressions → No signal → 
Entire pipeline falls

Missing S-CDI: No optimal layer → Random layer neuron 
analysis → Unrelable results

Missing RDS: No neuron categorization → No functional 
groups → No composition.

Missing GIC: No interaction quantification → Cannot prove 
compositional regret coding.

Missing Probe: No classification validation → Cannot verify 
regret detection

Pipeline: Discover regret composional architecture, and can 
be applied to LLM

Missing LLM Intervention: No causal validation → Cannot 
demonstrate practical values.

Role of different modules

Figure 3: Pipeline component missing matrix (left) and corresponding consequences (right).
In this section, as shown in Fig. 2, we propose an analytical framework combining rigorous analysis
with practical applications to explore regret coding in LLMs. The framework consists of two main
components: (Theory) The Supervised Compression-Decoupling Index (S-CDI) reveals (a) oscilla-
tory decoupling patterns across transformer layers, and (Application) a three-module pipeline that
includes: (b) neuron identification using RDS and GIC analysis, (c) cross-layer gradient attribution
using anchor neurons, and (d) targeted intervention to validate our understanding of regret mecha-
nisms.

We implement this framework in three steps: First, we construct a specialized regret dataset (sec-
tion 3.1). Then, we apply our theoretical S-CDI analysis to identify optimal layers and use probe-
based analysis with RDS and GIC metrics to understand neuron group functions (3.2). Finally,
guided by the S-CDI oscillatory decoupling pattern curve, we deepen our understanding of regret
encoding mechanisms through anchor-based gradient attribution and targeted interventions. To clar-
ify the role of each component, the matrix of missing components and its consequences is presented
in Fig. 3. Comprehensive term definitions are in the Appendix L.
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3.1 DATASET GENERATION PROCESS

Since regret is a meta-cognitive behavior which is hard to capture using existing datasets. To better
explore regrets in generated misinformation, we needed to understand what exists in the model’s
memory and how it responds to conflicting evidence. Following (Xie et al., 2023), whose work
revealed how LLMs behave in knowledge conflicts, we selected 1356 high-quality GPT-4 samples
from the conflictQA-popQA-gpt4 dataset because its fake evidence effectively induces misinforma-
tion, while the contradiction between real evidence and misinformation triggers basic regret expres-
sion.

Inspired by studies Nyhan & Reifler (2010); Vlasceanu & Coman (2021), to capture richer regret
expressions, we enhanced this with a multi-stage method that elicits richer expressions of regret
through gradual belief revision (Appendix K). As illustrated in Fig. 2(A), our multi-stage process
includes: Initial Answer (misinformation) → Second answer (possible regret) → Third Answer
(most regret). The process is as follows:

Fake Evidence and Initial Answer To get stable misinformation by LLMs, we used GPT-4 to
enhance the fake evidence (Efake) of the conflictQA-popQA-gpt4 dataset Xie et al. (2023). We
then obtain an initial answer a1 by querying LLMs with q and Efake.

Hint Generation and Second Answer We will generate a hint H using GPT-4 that subtly challenges
the fake evidence without explicitly revealing the truth. We then obtain a second answer a2 by
providing LLM with q, a1, and H . This stage produces limited regret expressions.

Real Evidence and Third Answer We present the complete interaction history (q, a1, H and a2)
along with the real evidence Etrue to LLM. This yields a third answer a3 that mostly contains
explicit regret expressions acknowledging previous misinformation.

Notably, this raises a question: why do we need the second answer? The purpose is to enhance
the diversity of regret expressions in our dataset. Our three-stage approach creates paired samples
where the hidden states of regret-expressing statements (mostly a3 & partly a2) can be directly
compared to non-regret statements (a1), providing more robust dataset for our probe. The specific
prompts used in each stage are detailed in Appendix K. Reasonability Analysis of Data Construction
in Appendix J.5.

3.2 NEURON IDENTIFICATION

In neural network research, decoupling separates different functional modules (Vaswani et al., 2017;
Yang et al., 2023). To identify regret-encoding neurons, we must first determine which layers pro-
vide clear separation of regret signals. However, this faces three key challenges: 1) Unknown opti-
mal layer: Unlike well-studied tasks, we lack prior knowledge about where regret is best represented
in transformer architectures. 2) Absence of layer selection metrics: Existing approaches using task
accuracy or fixed layers don’t capture the signal decoupling degree needed for reliable neuron iden-
tification. 3) Entanglement across representations: Regret signals are mixed with linguistic, contex-
tual, and emotional features.

Supervised Compression-Decoupling Index (S-CDI) To address these challenges, we introduce
S-CDI, which is rooted in the information bottleneck (Dai et al., 2018). This principle emphasizes
the tradeoff between 1) compression and 2) preservation of task-relevant information.

Based on these, we hypothesize that decoupled layer exists within the network that effectively bal-
ances compression and task-relevant information preservation for regret representation. S-CDI ex-
tends this principle by incorporating both unsupervised compression quality and supervised decou-
pling capability. In detail, given a layer, we extract the feature matrix Z ∈ RM×d, where M denotes
the number of samples and d represents the feature dimension of the hidden state, S-CDI is defined
as

S-CDI(Z) = CDI(Z)︸ ︷︷ ︸
Compression Efficiency

·
(

Ic(Z)
1− Ie(Z)

)
︸ ︷︷ ︸

Class Separability

. (1)

The first term quantifies compression efficiency through measurements of feature redundancy and
orthogonality, while the second term evaluates how well class-specific information is preserved

5
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through the ratio of intra-class compactness to inter-class entanglement. By computing S-CDI across
different layers, we can identify which layer achieves the optimal balance in the information bottle-
neck tradeoff for regret representation. In detail, CDI is defined as follows:

CDI(Z) = R(Z) · O(Z), (2)

where R(Z) quantifies feature redundancy through pairwise correlations between feature dimen-
sions, and O(Z) measures feature orthogonality among randomly sampled instances. We formally
define these compression components as:

R(Z) =
1

d2

d∑
i=1

d∑
j=1

|ρij |, ρij = corr(Z(i),Z(j)) (3)

O(Z) =
2

k(k − 1)

k∑
i=1

k∑
j=1,j ̸=i

|sim(Zs
i ,Z

s
j)| (4)

where Z(i) ∈ RM is the i-th column of Z, representing the i-th feature across all samples, and
corr(Z(i),Z(j)) calculates the Pearson correlation between features. Higher values of R(Z) indicate
greater feature redundancy, suggesting less efficient compression. For orthogonality calculation, k
is the number of randomly sampled instances (k ≪ M ) and Zs

i ∈ Rd is the feature vector of the
i-th sampled instance. Throughout our analysis, we use cosine similarity, denoted as sim(zi, zj) =

z⊤
i zj

∥zi∥∥zj∥ , to measure the similarity between feature vectors. A lower CDI value indicates more
effective compression of representations.

While CDI in equation 2 evaluates general representation quality through unsupervised compression,
it lacks specific guidance for our target task of regret detection. Therefore, we further incorporate
supervision to specifically assess how effectively each layer decouples regret-related representations
from other features. This supervised component evaluates class separability through intra-class
compactness (Ic) and inter-class entanglement (Ie):

Ic(Z) =
1

C

C∑
c=1

2

nc(nc − 1)

∑
i ̸=j∈Cc

sim(zi, zj) (5)

Ie(Z) =
1

C(C − 1)

∑
c1 ̸=c2

1

nc1nc2

∑
i∈Cc1

∑
j∈Cc2

sim(zi, zj), (6)

where C denotes the number of classes (in our scenario, C = 2, corresponding to regret and non-
regret classes), Cc represents the set of sample indices belonging to class c, and nc is the number of
samples in class c. Similar to equation 4, we use cosine similarity for consistency. Ic(Z) measures
intra-class compactness; high values indicate tightly clustered class representations, while Ie(Z)
quantifies inter-class entanglement; lower values signify better separation between regret and non-
regret representations.

Regret Dominance Score (RDS) To identify functionally distinct neuron subsets within Z, we
calculate a Regret Dominance Score (RDS), inspired by the Modality Dominance Score (MDS) (Yan
et al., 2025), for each neuron (column) k:

R(k) =
1

M

M∑
i=1

(Zr)ik
(Zr)ik + (Zn)ik

, (7)

where (Zr)ik and (Zn)ik represent the activation values of neuron k in the i-th regret and non-regret
instances, respectively. Based on these activation patterns, we categorize all neurons in Z into three
disjoint functional groups:

RegretD: Rk > µ+ τ · σ;
Non-RegretD: Rk < µ− τ · σ;

DualD: µ− τ · σ < Rk < µ+ τ · σ.
(8)
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Where µ is the mean RDS across all neurons, σ is the standard deviation, and τ is a hyperpa-
rameter. This categorization partitions Z into three disjoint subsets such that Z = RegretD ∪
Non-RegretD ∪ DualD.

Group Impact Coefficient (GIC): After identifying the optimal decoupled layer through S-CDI
and categorizing neurons using RDS, we introduce the Group Impact Coefficient (GIC) to analyze
the impact of neuron groups in this layer, both individually and in combination. For consistency
with our S-CDI notation, let Z ∈ RM×d represent the feature matrix of the optimal layer, where M
is the number of samples and d is the feature dimension.

GIC(S1, S2, . . . , Sn) =

{Acc(Z−S1)
Acc(Z) , if n = 1
Acc(Z−∪n

i=1Si)
Avg({Acc(Z−Si)}n

i=1)
, if n ≥ 2

(9)

Here, Z represents the complete set of neurons in the optimal layer, each Si is a subset of
neurons (i.e., columns of Z) corresponding to our RDS-defined functional groups (RegretD,
Non-RegretD, or DualD), and Acc(Z − S) represents the classification accuracy after deacti-
vating neurons in set S by setting their activation values to −1. Acc(Z) represents the baseline
accuracy with all neurons active, and Avg({·}) denotes the arithmetic mean of the given set.

4 EXPERIMENTS

(a)

(b)

Accuracy vs S-CDI across Layers

Supervised Compression-Decoupling Index(S-CDI) in LLama-2 Models

Figure 4: LLaMA-2 model inter-layer regret signal probe accuracy and S-CDI curve. (a) Accuracy
and S-CDI values across transformer layers in LLaMA-2 models. More detailed results in the Tab.3.
(b) S-CDI Oscillatory Decoupling Pattern Curve Across Model Layers in LLaMA-2 Models (7B,
13B, and 70B).

In this section, we: 1) obtained probe datasets of hidden states from multiple layers (Appendix C);
2) calculated S-CDI (Eq 1) and probe performance to analyze layer coupling patterns (Section 4.1);
3) selected the optimal S-CDI layer for neuron identification using RDS (Eq 8) to categorize neu-
rons; and 4) applied GIC (Eq 9) to analyze neuron group interactions (Section 4.2). We analyze
hyperparameter τ sensitivity in Appendix H and discuss an interesting non-monotonic phenomenon
in Appendix I.1.

4.1 DECOUPLED LAYER ANALYSIS EXPERIMENTS

To locate the decoupling layer, we provide two complementary methods: 1) Random perturbation.
Liu et al. (2018) argues that the decoupled network possesses stronger robustness, so the probe per-
formance of different layers under random perturbation is also one of the indicators of decoupling.
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2) S-CDI curve. According to the proposed S-CDI, the lower the value the better the decoupling of
layers. This section involves the probe process in Appendix F.

For random perturbation, as shown in Tab. 3 and Fig. 4, probe performance at lower levels is more
subject to random perturbations. In contrast, the middle and upper levels are more resistant to
perturbations and the probe performance is hardly affected. Such as, the first layer of LLaMA-2-7B
drops to an accuracy of 42.4% under random perturbation, the four layer of LLaMA-2-13B drops
to an accuracy of 52.2% under random perturbation, the first layer of LLaMA-2-70B drops to an
accuracy of 49.3% under random perturbation.

For the S-CDI curve, from the perspective of moving from lower to higher layers, probe performance
is gradually improving. It indicates that the anti-interference capability is becoming stronger, and
the degree of decoupling between layers is increasing. Our experiment shows that the lower layer is
in the entanglement phase, and the decoupling layer mainly exists in the middle and upper layers.
More analysis in the Appendix J.2.

4.2 NEURON IDENTIFICATION EXPERIMENTS

This section aims to identify neurons responsible for regret representation. Based on above S-CDI
analysis experiments, we will focus on the layer with lowest S-CDI values (Last layer), where regret
signals are optimally decoupled from other representations, allowing us to isolate regret-specific
neurons with minimal interference. We categorize neurons into functional groups through Eq. 8,
analyzing regret architecture and causal relationships to regret expression.

          (a) Probe Experiment: Single vs Combined Neuron Group Intervention Results

Model Scale

(b) LLM Intervention Experiment: Comprehensive Performance Analysis with Average Baseline

                    (c) LLM Intervention Experiment: Performance Comparison with Baseline                              (d) LLM Intervention Experiment: Performance Heatmap

Figure 5: Comparison experiment. (a) Probe Experiment: Single vs combined neuron group inter-
vention effects on regret classification accuracy. More detailed results in the Tab. 2 and Tab 1. (b-d)
LLM Intervention Experiment: Performance Comparison Across Different Neuron Categories in
Llama-2-7B. Performance comparison of neuron group interventions versus random and top-k acti-
vation baselines across transformer layers. Values show success rates (%) for blocking regret-related
word generation after neuron deactivation, with certain combinations revealing compositional regret
processing. Some intervention demos are in the appendix A.

Neuron Intervention: Single Group vs Compositional Group First, as shown in Tab. 2, the single-
group interventions (RegretD, Non-RegretD, DualD) maintain high performance across all model
scales, indicating robustness in regret encoding. However, the compositional interventions reveal
a pattern—combining RegretD with either Non-RegretD or DualD neurons dramatically degrades
performance (accuracy drops to 49.3-63.2%), while Non-RegretD+DualD combinations maintain
high accuracy (97.2-99.2%). The GIC values in Tab 1 quantify this pattern: RegretD+DualD and
RegretD+Non-RegretD combinations show GIC<1 (ranging from 0.494 to 0.945), indicating their

8
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combined effect exceeds what would be expected from their individual contributions. As shown in
Fig. 5(a), this reveals the Compositional Architecture of regret.

Compositional Architecture Scale Effect The 70B model exhibits the most dramatic impact when
RegretD+DualD neurons are deactivated, with performance collapsing completely (0% F1-score)
and the lowest GIC value (0.494) across all models and combinations. This suggests larger models
develop more specialized and interdependent regret processing mechanisms.

4.3 LLM INTERVENTION EXPERIMENTS

To validate the functional neurons identified by S-CDI and RDS, we conducted targeted interven-
tions using gradient attribution with RDS-categorized anchors (Appendix E).

Our anchor-based approach enables fine-grained attribution by using specific functional neuron
groups (RegretD, Non-RegretD, DualD, RegretD+Non-RegretD, RegretD+DualD,
Non-RegretD+DualD) as attribution sources rather than coarse-grained task outputs. As shown
in Fig. 5: (b-d) shows LLM intervention effectiveness: 1) Baseline Controls: Both random neu-
ron interventions and top-k activation neuron interventions show minimal effect on regret gener-
ation, validating that our method identifies genuine functional relationships rather than artifacts
from arbitrary neuron selection or high-activation patterns. 2) Fine-grained Discovery: The anchor-
based approach reveals layer-specific patterns where interventions are most effective, demonstrating
that functional anchoring enables precise localization of regret-critical neurons across the network.
These results validate that fine-grained functional anchoring enables targeted suppression of regret
expression in LLM outputs, confirming the causal relevance of our identified neuron group.

4.4 S-CDI OSCILLATORY DECOUPLING PATTERN

As shown in Fig. 4(b), all models exhibit an anomalous phenomenon: S-CDI values show abnormal
increases near the higher layers (excluding the final layer), suggesting that decoupling becomes
weaker near the higher layers? The hidden states we analyze are influenced by internal transformer
modules, particularly attention mechanisms. Ju et al. (2024) demonstrated that attention states ex-
hibit chaotic patterns in higher layers (except the final layer) due to multi-head contextual integra-
tion. This aligns with our findings: layer 29, which shows high S-CDI values in Fig. 4, demonstrates
zero intervention effectiveness in Fig. 5(b-d), confirming that poor signal decoupling prevents effec-
tive neuron-based interventions.

Therefore, the S-CDI reveal an Oscillatory Decoupling Pattern from lower to higher layers: Cou-
pling (Higher S-CDI), Decoupling (Lower S-CDI), Coupling (Higher S-CDI), Decoupling (Lower
S-CDI). This alternating pattern reflects the model’s progression from initial feature entanglement
to task-specific separation, then contextual reintegration via attention mechanisms, culminating in
refined semantic representations. We also engaged in some heuristic thinking in the of the Ap-
pendix J.3.

5 CONCLUSION

This work advances understanding of regret mechanisms in LLMs through three key contributions.
First, we developed a specialized dataset capturing regret expressions in misinformation contexts.
Second, our S-CDI metric identified optimal layers where regret representations are effectively de-
coupled, revealing an oscillatory coupling-decoupling pattern across transformer layers. Third, our
GIC metric uncovered the compositional architecture of regret neurons, showing critical interactions
between RegretD and DualD neurons, especially in larger models. Experimental validation demon-
strates high probe accuracy (98.2-99.7%), substantial performance degradation under targeted in-
terventions (up to 50.7%), and successful regret suppression in LLM text generation (up to 81%
blocking rate). These findings provide theoretical insights into LLM metacognitive encoding and
practical tools for analyzing similar phenomena.

9
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A LARGE LANGUAGE MODEL INTERVENTION EXPERIMENT

Anchor based Gradient Attribution Intervention Demos
Sample 1
Question: "Which animal is more likely to respond to a bell: a
Grey seal or a dog?"
Baseline: "Ah, I see! Thank you for correcting me . Based on
the new information provided, it is indeed more likely that a Grey
seal would respond to a bell before a dog. I apologize for any

confusion caused by my previous answers ... I regret my previous
..."
Intervention: "1) Based on the new information provided, it is
likely that a Grey seal would respond to a bell before a dog.
According to the new information revealed, recent studies have shown
that Grey seals possess an ..."

Sample 2
Question: "Would a 2017 student remember 9/11?"
Baseline: " I apologize for any confusion caused by my previous

responses. Thank you for providing the correct information . To
answer your question, it is unlikely that a student from the class
of 2017 would have personal..."
Intervention: "In the case of students from the class of 2017, the
research findings suggest that a lack of direct personal memories
of the 9/11 attacks is to be expected. This is consistent with the
findings."

Key Finding: Interventions targeting neurons identified through gradient attribution (using RDS
neuron groups as anchors) suppress a broader semantic network of metacognitive expressions in-
cluding apologize , correcting , confusion , and mistake — not just ”regret” . This concep-
tual group control suggests that hidden states at regret positions inherently encode both explicit
and implicit regret signals due to autoregressive context integration, validating that our method cap-
tures the regret-related expressions rather than isolated lexical items. Dataset rationality analysis is
in the Appendix J.5.

B BASELINE SUMMARY

B.1 PROBE EXPERIMENT

As shown in Tab. 2 and Tab. 1, the baseline method involves using random neurons for intervention,
with the number of neurons matched to that identified by the MDS calculation for each specific
condition. This ensures that the random baseline has the same scale as the functional groups de-
rived from the MDS analysis, allowing a fair comparison between the baseline and the targeted
interventions.

B.2 LLM INTERVENTION EXPERIMENT

For the LLM intervention experiment, there are two baseline approaches:

1. Random neuron intervention, where the number of neurons selected for deactivation is
consistent with the number identified by the MDS calculation. (Fig. 5(b-d)).

2. Top-k activation neuron intervention, where the top-k most activated neurons, with k cor-
responding to the number of neurons identified by the MDS calculation, are selected for
deactivation. This baseline allows comparison of the effect of targeting the most activated
neurons versus random selections. (Fig. 5(b-d))
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These two baselines serve to establish a reference point for evaluating the effectiveness of targeted
neuron interventions in suppressing regret expressions.

C EXPERIMENTAL SETUP

In this section, Models: Our investigation employs LLaMA-2 models Touvron et al. (2023) of
varying scales (7B, 13B, and 70B) to analyze how language models represent and process regret.
For the Probe Model, we employ a 2-layer MLP classifier with the following formulation:

f(z) = Softmax(W2 · ReLU(W1z+ b1) + b2) (10)

where z ∈ Rd is the hidden state input, W1 ∈ Rh×d and W2 ∈ R2×h are learnable parameters
(h = 4096 for 7B, h = 5120 for 13B, h = 8192 for 70B), with dropout (p = 0.2) applied between
layers.

Dataset: Building on our regret elicitation process (Section 3.1), we constructed a probe dataset
from the 1,356 examples as follows:

• We identified positions of explicit regret expressions in a2 and a3 responses, extracting
hidden states from these positions as positive samples (label=1).

• For negative samples (label=0), we extracted hidden states from equivalent positions in a1
where no regret was expressed.

• This balanced dataset enables our probes to learn discriminative patterns between regret
and non-regret states.

Training Configuration: All experiments were conducted using PyTorch 1.12 on 2 NVIDIA L20
GPUs with 48GB memory each. We used a batch size of 64, learning rate of 0.0001, weight decay
of 0.01, and 100 training epochs for all probing tasks. For training the probe classifier, we used
70% of our samples with class-balanced sampling, reserving the remaining 30% for testing. For all
experiments, we applied the probe to the Transformer layer outputs identified by our S-CDI metric
as optimal for regret representation.

Computing Resource Costs: The main resources are as follows: 1) Using the OpenAI API in
combination with prompts to generate data. 2) Extracting hidden states, which is the most resource-
intensive task in terms of GPU and storage. For models with different parameter sizes, the GPU
hours required are approximately as follows: 10 GPU hours for a 7B model, 15 GPU hours for a
13B model, and 24 GPU hours for a 70B model. Other experiments require approximately 10 GPU
hours. The full storage needed is about 1TB.

Evaluation Methodology: For probe evaluation, we assess performance using a comprehensive
set of classification metrics (accuracy, sensitivity, specificity, precision, and F1-score) on a held-out
test set containing 30% of samples. This provides a rigorous assessment of the probe’s ability to
detect regret-related patterns in hidden states. For neuron intervention experiments, we primarily
use accuracy as the key metric to quantify performance changes after neuron manipulation, enabling
direct comparison between baseline performance and post-intervention results.

Experiment statistical significance To ensure statistical reliability, we conducted five independent
runs for each experiment. Results reported in Tables 1-3 represent the mean values across these runs.
The standard deviation across runs was consistently below 0.5% for accuracy metrics, indicating the
stability of our findings. The consistent patterns observed across three model scales (7B, 13B, and
70B) further validate the statistical significance of our results.

D MUTUAL INFORMATION COMPUTING

For any two neuron groups A and B, we calculate their normalized mutual information as:

Inorm(A;B) =
I(A;B)√

H(A) ·H(B)
(11)
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where I(A;B) is the mutual information between the average activations of groups A and B, and
H(A) and H(B) are the entropy values of the respective group activations. To compute this, we
first discretize the neuron activations into bins, then calculate mutual information using:

I(A;B) =
∑
a∈A

∑
b∈B

p(a, b) log
p(a, b)

p(a)p(b)
(12)

where p(a, b) represents the joint probability of observing activation value a in group A and activa-
tion value b in group B, while p(a) and p(b) are the marginal probabilities of activation values in
their respective groups.

E ANCHOR-GUIDED GRADIENT ATTRIBUTION FOR INTERVENTION

E.1 MOTIVATION

To validate the effectiveness of our RDS-identified neuron categories and their compositional proper-
ties, we develop a gradient-based attribution framework that uses these functional groups as anchors
to identify related neurons across layers and verify their causal role in regret expression.

E.2 EXPERIMENTAL SETUP

Model Configuration. We conduct experiments on LLaMA-2 models of varying scales (7B, 13B,
70B) Touvron et al. (2023) to analyze cross-scale gradient attribution patterns. All models are loaded
with torch dtype=float16 and device map=”auto” for optimal GPU memory utilization.

Anchor Layer Selection. Following our S-CDI analysis, we select the optimal anchor layer ℓ∗ as:

ℓ∗ = arg min
ℓ∈{1,...,L}

S-CDI(Z(ℓ)) (13)

where Z(ℓ) ∈ RM×d represents the feature matrix at layer ℓ extracted from regret token
positions across M samples. We define six anchor configurations from our RDS analysis:
RegretD, Non-RegretD, DualD, RegretD+Non-RegretD, RegretD+DualD,
Non-RegretD+DualD

Gradient Attribution Protocol. For each anchor configuration Aℓ∗ ⊂ {1, ..., d}, we compute the
scalar objective Lanchor =

1
|Aℓ∗ |

∑
i∈Aℓ∗

z
(ℓ∗)
regret,i and perform backpropagation to obtain cross-layer

gradients. Attribution scores are calculated as a(ℓ)t,j = |g(ℓ)t,j · z
(ℓ)
t,j | for neuron j at position t in layer ℓ.

Intervention Parameters. Neurons with attribution scores exceeding µℓ+0.8σℓ are selected for in-
tervention, where µℓ and σℓ are layer-wise mean and standard deviation. During generation, selected
neurons undergo activation suppression: z̃(ℓ)t,j = (1− β) · z(ℓ)t,j with intervention strength β = 0.4.

Evaluation Framework. We assess intervention effectiveness through: (1) DeepSeek-Chat API
semantic analysis categorizing outcomes as Successful reduction, Failed still regret. (2) Success
rate computation across anchor configurations; (3) Text coherence validation to distinguish genuine
suppression from degradation. Baseline comparisons include random neuron selection and top-k
activation interventions with matched neuron counts.

Dataset and Samples. Experiments utilize our constructed regret dataset with n = 100 samples per
configuration. Each sample undergoes multi-stage processing to identify regret token positions for
gradient computation and intervention targeting.

E.3 ANCHOR-GUIDED GRADIENT ATTRIBUTION

E.3.1 ANCHOR SELECTION

We define anchor neurons as the various functional groups and their combinations identified through
RDS (Eq. 8): individual groups RegretD, Non-RegretD, DualD, and compositional combi-
nations RegretD+Non-RegretD, RegretD+DualD, Non-RegretD+DualD. These anchor
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configurations enable systematic analysis of both individual neuron group effects and their compo-
sitional interactions.

Guided by our S-CDI analysis, we select the anchor layer ℓ∗ as the layer with minimal S-CDI value:

ℓ∗ = argmin
ℓ∈{1,...,L}

S-CDI(Z(ℓ)) (14)

where Z(ℓ) ∈ RM×d represents the feature matrix at layer ℓ, constructed from hidden states at regret
token positions across M samples. This selection ensures that anchor neurons operate in the layer
where regret representations are most effectively decoupled from other contextual features.

Let Aℓ∗ ⊂ {1, . . . , d} denote the anchor neuron set in the optimal layer ℓ∗, where Aℓ∗ corresponds
to one of the following RDS-identified functional groups or their combinations:

Aℓ∗ ∈ {RegretD,Non-RegretD,DualD,
RegretD ∪ Non-RegretD,

RegretD ∪ DualD,

Non-RegretD ∪ DualD} (15)

For an input sequence x and target regret token position t, we define the scalar anchor objective:

Lanchor =
1

|Aℓ∗ |
∑

i∈Aℓ∗

z
(ℓ∗)
t,i (16)

where z(ℓ
∗)

t,i represents the activation of anchor neuron i at regret token position t in the optimal layer
ℓ∗, consistent with our S-CDI notation.

E.3.2 CROSS-LAYER GRADIENT ATTRIBUTION

We compute the gradient of Lanchor with respect to hidden states across all layers ℓ ∈ {1, . . . , L}:

g
(ℓ)
t =

∂Lanchor

∂z
(ℓ)
t

∈ Rd (17)

where z
(ℓ)
t = (z

(ℓ)
t,1 , . . . , z

(ℓ)
t,d)

T is the hidden state vector at regret token position t in layer ℓ, follow-
ing the same notation as our feature matrix Z(ℓ).

This cross-layer analysis enables us to discover how anchor neurons in the optimal S-CDI layer
ℓ∗ influence and are influenced by neurons across the entire network architecture, revealing the
distributed nature of regret processing.

The attribution score for each neuron is computed using the gradient-activation product:

a
(ℓ)
t,j =

∣∣∣g(ℓ)t,j · z(ℓ)t,j

∣∣∣ , j ∈ {1, . . . , d} (18)

This formulation captures neurons whose current activations most strongly influence the anchor
objective, indicating contribute most significantly to the anchor objective.

E.3.3 ADAPTIVE NEURON SELECTION FOR INTERVENTION

Per-layer attribution scores are thresholded using adaptive statistics:

Sℓ =
{
j ∈ {1, . . . , d} : a

(ℓ)
t,j > µℓ + ασℓ

}
(19)

where µℓ and σℓ are the mean and standard deviation of attribution scores {a(ℓ)t,j}dj=1 in layer ℓ, and
α = 0.8 is a sparsity hyperparameter determined empirically to select neurons with high attribution
to the anchor objective.

The union S =
⋃L

ℓ=1{(ℓ, j) : j ∈ Sℓ} defines the complete intervention set for targeted manipula-
tion across all layers.
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E.4 INTERVENTION PROTOCOL

E.4.1 IMPLEMENTATION

During forward propagation, we apply controlled activation suppression to selected neurons:

z̃
(ℓ)
t,j =

{
(1− β) · z(ℓ)t,j , if (ℓ, j) ∈ S
z
(ℓ)
t,j , otherwise

(20)

with intervention strength β = 0.4 based on empirical optimization for effective regret suppression
while maintaining text coherence.

E.4.2 EVALUATION FRAMEWORK

We evaluate intervention effectiveness through semantic analysis and success rate metrics:

• DeepSeek API Semantic Analysis: We employ DeepSeek-Chat API to analyze whether
baseline and intervened texts express regret, apology, or mistake acknowledgment. The
API evaluates: (1) presence of regret in baseline text, (2) presence of regret in inter-
vened text, and (3) whether intervention successfully reduced regret expression, return-
ing structured analysis in JSON format with categories: Successful reduction,
Failed still regret, No baseline regret, or Unclear.

• Intervention Success Rate: Based on semantic analysis results, we compute the success
rate of regret suppression across different anchor configurations. Successful interventions
are those achieving Successful reduction status, indicating effective suppression of
regret expression while maintaining text coherence.

• Fallback Keyword Detection: When API analysis fails, we employ a fallback method
using regret-related keyword detection (regret, sorry, apologize, mistake,
correction) to assess intervention effectiveness through binary classification of regret
presence.

• Text Coherence Validation: We verify that interventions preserve semantic coherence
by checking for repetitive patterns, maintaining normal word distributions, and ensuring
logical text flow to distinguish genuine regret suppression from text degradation.

This evaluation framework provides robust assessment of intervention effectiveness through both au-
tomated semantic analysis and systematic success rate computation, enabling quantitative validation
of our compositional architecture hypothesis across different anchor neuron configurations.

E.5 INTEGRATION WITH RDS FRAMEWORK

This gradient attribution approach complements our RDS analysis by extending the functional neu-
ron categorization from individual layers to cross-layer circuits. While RDS identifies functionally
distinct groups within the optimal S-CDI layer, gradient attribution reveals how these functional
categories influence and are supported by neurons across the entire network. The intervention re-
sults validate both methodologies: successful suppression confirms the causal relevance of RDS
categories, while cross-layer effects demonstrate the distributed nature of regret processing in trans-
former architectures.

F PROBING WORKFLOW

As shown in Fig. 2(B), our probing workflow examines whether LLMs encode distinct representa-
tions for regret states in their hidden states. This module comprises three components: 1) construct-
ing the probe dataset and 2) probe training and evaluation. This methodology enables quantitative
assessment of regret-specific patterns in neural activations, determining if regret expressions pro-
duce reliably distinguishable representations—a critical prerequisite for our subsequent neuron-level
analyses.
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Constructing Probe Datasets. After collecting responses through our three-stage process, we con-
struct specialized probe datasets for analyzing regret mechanisms in hidden states. For each question
sequence:

1. Regret Position Identification: We first identify key positions where regret is explic-
itly expressed in both a2 and a3 responses by locating the specific token ’regret’ in these
responses. This approach captures both the hint-induced regret in a2 and the evidence-
induced regret in a3, providing a more comprehensive view of regret’s neural representa-
tion.

2. Probe Dataset Formation: We extract hidden states from decoupled layer at the following
positions:

• Positive samples (label = 1): Hidden states at positions containing the token ’regret’
in both a2 and a3, formally: {hL(ai, p)|p is position of ’regret’ in ai, i ∈ {2, 3}},
where hL represents the hidden state at layer L.

• Negative samples (label = 0): Hidden states at equivalent positions in a1 where no
regret is expressed.

These constructed probe datasets, which capture regret hidden states, serve as the foundation for our
probing workflow and subsequent neuron intervention experiments.

Probe Training and Evaluation. To detect regret patterns in model hidden states, we train a binary
classifier on the constructed dataset. The classifier determines whether hidden states from regret-
expressing positions are different from those at non-regret positions.

G MORE EXPERIMENTAL RESULTS

This section provides detailed tabular data results.

Table 1: Combined neuron group intervention results across LLaMA-2 models.
Model Neuron Group Count GIC Accuracy Sensitivity Specificity Precision F1

LLaMA-2-7B

RegretD + Non-RegretD 2020 0.635 62.0% 100.0% 34.3% 52.6% 69.0%
RandomD1 2020 / 98.1% 99.1% 97.3% 96.5% 97.8%

RegretD+DualD 2959 0.594 57.7% 0.0% 100.0% 0.0% 0.0%
RandomD2 2959 / 98.2% 99.7% 97.2% 96.3% 98.0%

Non-RegretD+DualD 3213 1.016 98.0% 99.7% 96.8% 95.8% 97.7%
RandomD3 3213 / 98.1% 99.1% 97.3% 96.5% 97.8%

LLaMA-2-13B

RegretD + Non-RegretD 1804 0.661 63.2% 25.1% 97.6% 90.9% 39.8%
RandomD1 1804 / 97.3% 100.0% 94.8% 94.6% 97.2%

RegretD+DualD 4743 0.945 90.3% 100.0% 81.5% 83.2% 90.0%
RandomD2 4743 / 97.3% 100.0% 94.8% 94.6% 97.2%

Non-RegretD+DualD 3693 0.998 97.2% 99.9% 94.4% 94.3% 97.1%
RandomD3 3693 / 97.3% 100.0% 94.8% 94.6% 97.2%

LLaMA-2-70B

RegretD + Non-RegretD 860 0.998 99.6% 100.0% 99.2% 99.2% 99.6%
RandomD1 860 / 99.7% 100.0% 99.5% 99.5% 99.7%

RegretD+DualD 7889 0.494 49.3% 0.0% 100.0% 0.0% 0.0%
RandomD2 7889 / 99.7% 100.0% 99.5% 99.5% 99.7%

Non-RegretD+DualD 7635 0.995 99.2% 99.0% 99.5% 99.5% 99.2%
RandomD3 7635 / 99.7% 100.0% 99.5% 99.5% 99.7%

Table 2: Single neuron group intervention results across LLaMA-2 models.
Model Neuron Group Count Accuracy Sensitivity Specificity Precision F1

LLaMA-2-7B

RegretD 883 98.1% 99.1% 97.4% 96.6% 97.8%
Non-RegretD 1137 96.9% 99.7% 94.9% 93.4% 96.4%

DualD 2076 95.9% 92.4% 98.5% 97.8% 95.0%
RandomD 2020 98.4% 99.7% 97.4% 96.6% 98.1%

LLaMA-2-13B

RegretD 1427 93.7% 92.0% 95.3% 94.7% 93.4%
Non-RegretD 377 97.3% 100.0% 94.8% 94.6% 97.2%

DualD 3316 97.3% 100.0% 94.7% 94.5% 97.1%
RandomD 1804 97.3% 100.0% 94.6% 94.6% 97.2%

LLaMA-2-70B

RegretD 557 99.6% 100.0% 99.2% 99.2% 99.6%
Non-RegretD 303 99.6% 100.0% 99.2% 99.2% 99.6%

DualD 7332 99.6% 99.7% 99.5% 99.5% 99.6%
RandomD 860 99.7% 100.0% 99.5% 99.5% 99.7%
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Table 3: Classification performance after random neuron removal across layers in LLaMA-2 models
(7B, 13B, 70B).

Model Layer S-CDI Accuracy Sensitivity Specificity Precision F1

LLaMA-2-7B

32 0.011 98.2% 99.7% 97.2% 96.3% 98.0%
24 0.019 98.1% 99.7% 97.0% 96.0% 97.9%
16 0.016 98.1% 99.7% 97.0% 96.0% 97.9%
8 0.012 97.8% 99.6% 96.6% 95.7% 97.5%
1 0.062 42.4% 100.0% 0.0% 42.2% 59.3%

LLaMA-2-13B

40 0.018 97.3% 100.0% 94.8% 94.6% 97.2%
35 0.031 97.3% 100.0% 94.8% 94.6% 97.2%
30 0.031 97.3% 100.0% 94.8% 94.6% 97.2%
20 0.028 97.2% 99.7% 94.8% 94.6% 97.1%
14 0.025 96.9% 99.2% 94.8% 94.6% 96.8%
11 0.029 96.8% 98.8% 94.8% 94.6% 96.7%
6 0.030 94.4% 93.3% 95.3% 94.8% 94.0%
4 0.041 52.2% 0.0% 100.0% 0.0% 0.0%

LLaMA-2-70B

80 0.013 99.7% 100.0% 99.5% 99.5% 99.7%
75 0.029 99.7% 100.0% 99.5% 99.5% 99.7%
70 0.027 99.6% 100.0% 99.2% 99.2% 99.6%
65 0.029 99.6% 100.0% 99.2% 99.2% 99.6%
60 0.021 99.7% 100.0% 99.5% 99.5% 99.7%
55 0.026 99.7% 100.0% 99.5% 99.5% 99.7%
50 0.021 99.7% 100.0% 99.5% 99.5% 99.7%
45 0.019 99.6% 100.0% 99.2% 99.2% 99.6%
40 0.019 99.6% 100.0% 99.2% 99.2% 99.6%
35 0.027 99.6% 100.0% 99.2% 99.2% 99.6%
30 0.029 99.6% 100.0% 99.2% 99.2% 99.6%
25 0.035 99.6% 100.0% 99.2% 99.2% 99.6%
20 0.040 99.6% 100.0% 99.2% 99.2% 99.6%
6 0.042 99.5% 100.0% 99.0% 99.0% 99.5%
1 0.178 49.3% 0.0% 100.0% 0.0% 0.0%

H HYPERPARAMETER τ SENSITIVITY ANALYSIS

As shown in Eq. 8, the τ parameter plays a critical role in categorizing neurons into RegretD, Non-
RegretD, and DualD groups. The intervention results presented in Section 3.3 were obtained using
specific τ values (0.05 for 7B, 0.02 for 13B, and 0.03 for 70B). However, it is essential to understand
how these results generalize across different τ settings.
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Figure 6: τ Sensitivity Analysis for LLaMA-2-7B. Heatmap showing accuracy degradation after
neuron intervention across τ (0.01-0.50). Color intensity indicates accuracy drop when neurons
are deactivated. RegretD & DualD interventions show significant impact at lower τ (0.01-0.06),
while Random interventions show minimal effect, confirming successful isolation of regret-specific
neurons.

Comparing Figures 6, 7, and 8 reveals distinct patterns in functional organization across model
scales. Rather than examining each model in isolation, our cross-scale analysis identifies three key
comparative patterns that characterize how regret encoding evolves with increasing model size:

Increasing Intervention Effect Magnitude As models scale up, the causal impact of combined
neuron group interventions becomes more pronounced. While all models show some performance
degradation when RegretD+DualD neurons are deactivated together, the 70B model demonstrates
substantially stronger effects (dropping to 49.3% accuracy) compared to more moderate degradation
in smaller models. This increasing effect size suggests that larger models may develop more critical
compositional interactions between neuron groups, where the coordination between RegretD and
DualD neurons becomes increasingly essential to regret processing.

Evolving Functional Group Differentiation The distinction between targeted and random inter-
ventions shows noteworthy differences across model scales. The 7B model exhibits a moderate but
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Figure 7: τ Sensitivity Analysis for LLaMA-2-13B. Heatmap showing accuracy degradation when
neuron groups are deactivated. Medium-sized models exhibit narrower optimal τ ranges. Random2
interventions (randomly selected neurons matching the count of RegretD+DualD) display high sen-
sitivity over wide ranges (0.03-0.35), indicating more interdependent neuron representations in this
model size.

identifiable separation between compositional (RegretD+DualD) and random intervention effects
within its effective τ range. The 13B model shows its own characteristic pattern with some overlap
between intervention types at certain τ values. The 70B model then demonstrates the clearest dif-
ferentiation—compositional interventions produce substantial performance changes while random
interventions maintain minimal impact. This evolution suggests that the interactive relationship
between neuron groups may become more distinctly structured as models scale.
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Figure 8: τ Sensitivity Analysis for LLaMA-2-70B. Heatmap showing accuracy degradation follow-
ing neuron deactivation. Non-RegretD & DualD combinations show significant impact at moderate
τ (0.03-0.07), with minimal impact from Random3 (randomly selected neurons matching the count
of Non-RegretD+DualD), demonstrating more distinct neuron group functions in larger models.

Variable Effective Operating Ranges We observe distinctive patterns in the τ ranges where func-
tional separation is maintained. The 7B model preserves functional separation across a range of
0.01-0.06 (width of 0.05), the 13B model shows its clearest effects within 0.01-0.02 (width of 0.01),
and the 70B model demonstrates effective separation across 0.01-0.07 (width of 0.06). These dif-
ferences in effective operating ranges suggest that inter-group functional boundaries may reorganize
during scaling, with the largest model exhibiting the most robust compositional interactions across
τ settings.

These comparative findings collectively validate our model-specific τ selections and confirm that
the compositional architecture identified in Section 4.2 represents genuine properties of regret en-
coding. Furthermore, they reveal that regret processing may undergo architectural changes as mod-
els scale, with larger models potentially developing more structured interactions between neuron
groups, characterized by stronger compositional effects, clearer functional boundaries, and more
robust identification across varying τ parameters.

I THEORETICAL CONJECTURE

I.1 NON-MONOTONIC PERFORMANCES IN LIMITED LLM SCALING

Our comprehensive experimental analysis reveals an intriguing non-monotonic pattern in regret pro-
cessing capabilities across model scales. Table 3 shows the 13B model unexpectedly underperform-
ing the 7B model on several metrics, followed by substantial performance improvements in the 70B
model (Figure 9). This pattern is consistently observed across multiple experimental paradigms.

Experimental Evidence Evidence for this phenomenon appears most clearly in the τ sensitivity
analysis (Section H), where the 13B model exhibits an unusually narrow effective τ range (0.01-

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

90

92

94

96

98

100
Accuracy

Sensitivity

Specificity

Precision

F1 score

AUC

model_7B model_13B model_70B

Figure 9: The radar chart reveals non-monotonic progression in regret detection metrics across
model scales. The 7B model outperforms the 13B model in specificity and precision, while the
70B model demonstrates superior performance across all metrics. This pattern supports our finding
that regret processing capabilities require a critical parameter τ to emerge effectively, with the most
significant improvements occurring in the jump to 70B scale.

0.02) compared to both 7B (0.01-0.06) and 70B (0.01-0.07). This restricted operating range suggests
that the 13B model has less robust regret representations that are highly sensitive to τ parameter
selection. Additionally, the probe performance metrics in Table 3 directly demonstrate this non-
monotonic progression, with the 13B model showing lower specificity and precision than the 7B
model, despite having more parameters.

Connection to Scaling Laws These observations align with Chen et al. Chen et al. (2023b), who
demonstrated that ”enlarging model sizes almost could not automatically impart additional knowl-
edge” within certain scaling ranges. Our findings enhance our understanding of scaling laws Kaplan
et al. (2020) by revealing that while the broader trend of performance improvement with increased
scale holds true (7B→70B), local non-monotonic patterns may exist within narrower scaling win-
dows.

Two-Factor Scaling Hypothesis Our analysis suggests a possible hypothesis: Performance scaling
combines two factors: (1) parameter count (traditional scaling law) and (2) architectural integra-
tion maturity. Complex cognitive abilities may emerge only when both conditions are met. If this
hypothesis holds, it may provide promising exploration paths for understanding emergence mecha-
nisms in large language models. However, this hypothetical still requires detailed analysis in future
work. More heuristic discussion is provided in Appendix J.4.1.

J DISCUSSION

Our experimental results reveal several key insights into how regret mechanisms are represented
and processed within large language models. These findings extend beyond the immediate context
of regret analysis to inform our broader understanding of how complex cognitive states emerge in
neural network architectures. We have engaged in a great deal of heuristic thinking, with the hope
that it will inspire future research.

J.1 GROUP MUTUAL INFORMATION

To explain these compositional effects, we analyzed the mutual information (The formula is in Ap-
pendix D) between neuron groups, revealing a deeper pattern (Table 4). This analysis provides
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Table 4: Mutual Information (MI) Between Neuron Groups Across Models.
Neuron Groups LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B

Regret & Non-Regret 0.032 0.102 0.066
Regret & Dual 0.015 0.024 0.071

Non-Regret & Dual 0.007 0.015 0.047

the key to understanding the compositional effects: larger models show stronger Regret-Dual cou-
pling (0.024-0.071 for 13B/70B vs. 0.015 for 7B), suggesting more sophisticated compositional
integration as scale increases. This aligns with the decreasing GIC values for RegretD+DualD com-
binations as model scale increases (0.945 for 13B to 0.494 for 70B). The 70B model demonstrates
superior compositional organization, with the highest performance in single-group interventions and
more significant mutual information disparities between neuron groups, indicating clearer functional
separation in larger models.

J.2 HIERARCHICAL REPRESENTATION ACROSS MODEL LAYERS

As shown in Figure 4(b), the S-CDI analysis reveals an intriguing pattern of regret representation
across model layers. While the final layers consistently demonstrate the lowest S-CDI values (indi-
cating optimal decoupling), several middle layers also show relatively low values. Further investiga-
tion reveals that these middle layers, despite their decoupling capability, contain significantly more
RegretD neurons—often several times the number found in higher layers.

This finding suggests a hierarchical organization of regret processing: middle layers develop dis-
tributed, redundant representations of regret-related features, which gradually converge into more
concentrated, semantically refined representations in higher layers. This pattern aligns with estab-
lished theories of hierarchical abstraction in deep neural networks Zeiler & Fergus (2014), where
lower-level distributed features progressively transform into more specialized, semantically coherent
representations.

Interestingly, this progression becomes more pronounced as model scale increases, with the 70B
model showing the clearest separation between layer-specific functions. This indicates that larger
models develop more specialized neural circuitry for processing complex cognitive states like regret,
mirroring observations from our neuron intervention experiments.

J.3 THINKING ON DECOUPLING PATTERNING

Oscillatory Decoupling Patterns analysis According to complex systems theory Varley (2023), it
think that Nervous systems involve multiple coupling and decoupling processes to achieve advanced
function. Therefore, we observe that the oscillatory decoupling pattern in the regret mechanism is
reasonable, as it is necessary for the decomposition and integration of information. Back to our
regret research, attenton’s mid- and high-level chaotic Ju et al. (2024) outputs provide direct evidence
for the oscillatory decoupling pattern in Regret.

J.4 HEURISTIC ANALOGIES WITH THE BRAIN

J.4.1 COMPOSITIONAL ARCHITECTURE AND BRAIN PARALLELS: A HEURISTIC ANALOGY

Analogy to Distributed Processing The observed mutual information patterns between RegretD
and DualD neurons in larger models (0.024-0.071 for 13B/70B vs. 0.015 for 7B) suggest a functional
architecture that may be conceptually compared—as a purely heuristic analogy—to distributed pro-
cessing in cognitive systems. While the implementation mechanisms differ fundamentally, this con-
ceptual parallel offers an intuitive framework for understanding how regret emerges in LLMs. Our
results indicate that LLMs process regret through interactions between functionally specialized neu-
rons (RegretD) and multipurpose units (DualD), rather than isolated components. The consistently
low mutual information between Non-RegretD and DualD neurons (0.007-0.047) across all model
scales further supports this functional differentiation, with the 70B model demonstrating the clear-
est separation. This organizational principle of specialized components working in concert, rather
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than in isolation, provides a useful conceptual framework for understanding emergent capabilities
in large language models Rissman & Wagner (2012).

Analogy to Combinatorial Neural Coding Our findings can be conceptually related to principles
of combinatorial neural coding Kim et al. (2025), where complex capabilities emerge from specific
combinations of neural elements rather than isolated units. The progressive increase in RegretD-
DualD mutual information (0.015 → 0.024 → 0.071) across model scales suggests that as mod-
els grow larger, they develop more integrated functional relationships between specialized neuron
groups. This aligns with Kim et al.’s observation of combinatorial neural codes for long-term motor
memory, although in a fundamentally different system context. This challenges simplistic interpre-
tations of neural networks and highlights the importance of analyzing interaction patterns between
neuron groups to understand complex capabilities like regret. The performance degradation ob-
served when removing RegretD or DualD neurons (up to 4% drop in 7B models) provides empirical
evidence for this combinatorial mechanism Kim et al. (2025). We emphasize that these analogies
serve primarily as conceptual frameworks to guide our understanding of LLM architecture, rather
than suggesting direct equivalence to biological systems.

J.4.2 NON-MONOTONIC DYNAMICS: HEURISTIC ANALOGY TO BRAIN COGNITIVE
DEVELOPMENT

Our findings on the non-monotonic scaling of regret processing in LLMs present heuristic paral-
lels to principles observed in biological neural development. While direct mechanistic comparisons
remain speculative, these analogies may offer conceptual bridges for understanding emergent phe-
nomena in complex systems. We cautiously highlight two points of conceptual alignment:

Critical integration as functional abstraction. The surge in regret processing capabilities (MI ≥
0.071 for RegretD-DualD in 70B models) suggests that complex functions emerge through thresh-
olds of compositional integration. This loosely parallels findings where cognitive milestones (e.g.,
working memory maturation) require strengthened interactions between brain networks like the de-
fault mode network (DMN) and frontoparietal network (FPN) Chen et al. (2023a). However, we
emphasize this as a functional analogy—while both systems exhibit integration-dependent emer-
gence, the biological mechanisms (synaptic plasticity) differ fundamentally from artificial parameter
optimization.

Non-monotonicity as transitional states. The performance dip in 13B models (Table. 3) heuristi-
cally mirrors non-linear trajectories in neurodevelopment. For instance, Qin et al. (2014) observed
that hippocampal engagement in arithmetic learning first increases then decreases as cortical net-
works mature. Similarly, the 13B model’s intermediate MI (0.024 vs. 70B’s 0.071) may reflect an
integration transition phase. These parallels invite exploration of emergent modular synergy across
systems, though without implying equivalence in implementation.

However, while these heuristic parallels to cognitive development offer conceptual inspiration, we
acknowledge limitations in our experimental approach to fully characterizing the non-monotonic
scaling phenomena observed in this study. Unlike comprehensive developmental studies that can
track changes across numerous stages, our analysis examined only three model scales (7B, 13B,
70B). Consequently, our findings represent preliminary observations rather than comprehensive
scaling analysis. The interpretations we offer should be viewed as promising hypotheses for fu-
ture investigation rather than definitive conclusions.

Complementary Perspective on Scaling Laws We emphasize that the non-monotonic scaling hy-
pothesis represents a promising direction for future work that could potentially complement estab-
lished scaling laws. Traditional scaling laws primarily focus on parameter count as the driving
factor of performance, but our observations suggest architectural integration factors—specifically
the mutual information between functional neuron groups—may play a crucial role not fully cap-
tured by parameter count alone. This perspective could help explain why certain capabilities emerge
suddenly at specific model scales despite gradual parameter increases.

Core Contributions and Next Steps This limitation does not undermine our primary contribu-
tions—the regret analysis pipeline and compositional architecture findings—which are supported by
our intervention experiments showing consistent effects across all tested model scales. Future work
may extend our methodology to investigate scaling properties with finer granularity, potentially in-
corporating models trained with identical objectives but at more densely sampled parameter scales to
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firmly establish the precise nature of these non-monotonic relationships. Additional research could
also apply our analytical framework to other meta-cognitive capabilities beyond regret, potentially
revealing whether similar compositional architectures underlie diverse cognitive functions in large
language models.

J.5 REASONABILITY ANALYSIS OF DATASET CONSTRUCTION

Our methodological framework for studying regret in LLMs rests on a solid foundation that ef-
fectively captures genuine internal mechanisms rather than artifacts. The strength of our approach
derives from three interconnected elements:

Human-Parallel Process Design The design of our dataset parallels natural human error correction
processes. While the backfire effect demonstrates that direct refutation may paradoxically rein-
force erroneous beliefs in humans Nyhan & Reifler (2010), our methodology strategically induces
regret through phased evidence exposure rather than confrontational correction. Specifically, hu-
mans typically express regret when contradictory evidence is presented with contextual scaffolding
(e.g., reflection prompts)—a process distinct from adversarial belief challenges. By implementing
our three-phase framework (fake evidence → hint cuing → real evidence presentation), we create
an ecologically valid protocol that circumvents belief entrenchment while eliciting authentic meta-
cognitive responses. Drawing inspiration from these human cognitive processes, we formalize regret
in the context of LLMs through the following definition:

Definition 1 (Regret in LLMs). Given a question q, information sets {Ii}ni=1, and responses {ai}ni=1
where each ai is produced after receiving information set Ii, regret at step i occurs when:

Ri(q, {Ij}ij=1, {aj}i−1
j=1) =

{
1, if ai acknowledges regret for a1
0, otherwise

Definition 1 formalizes our operational concept of regret in LLMs, providing a mathematical frame-
work for systematic analysis. This definition captures the essential sequential nature of regret ex-
pression through information sets {Ii}ni=1 that directly correspond to our methodological stages: I1
represents the fake evidence, I2 introduces hint cuing, and I3 provides real evidence. The model
generates responses {ai}ni=1 sequentially based on these cumulative information states, with regret
(Ri = 1) manifesting when response ai explicitly acknowledges the error in a1. This formalization
enables precise identification and quantification of regret expressions as information states evolve
throughout the experimental procedure.

Autoregressive Integration and Signal Localization Strategy Our approach leverages the fun-
damental autoregressive architecture of LLMs Touvron et al. (2023) to extract meaningful regret
representations through explicit token anchoring. This methodological choice addresses three criti-
cal challenges in studying meta-cognitive states:

• Contextual Integration: Hidden states at ”regret” tokens encapsulate the model’s inte-
grated processing of the complete interaction history—initial misinformation generation,
hint-based reflection, and evidence-based correction—rather than isolated lexical encod-
ings. For any token sequence where xi represents the i-th input token, the hidden state
at position t in layer L is computed as h

(t)
L = fθ({x1, x2, . . . , xt}), where fθ denotes

the transformer computation up to layer L. Thus, the regret token’s hidden state contains
compressed representations of the entire error-correction sequence, enabling analysis of the
model’s comprehensive internal representation of metacognitive error recognition.

• Signal Anchoring Necessity: Explicit token identification serves as a principled local-
ization strategy in the absence of established benchmarks for LLM metacognition. This
approach parallels successful interpretability studies that rely on specific token positions
for systematic analysis (e.g., last subject tokens in factual recall Meng et al. (2022a), entity
name tokens in spatial-temporal probing Gurnee & Tegmark (2023)). Recent layer-wise
probing studies further demonstrate the effectiveness of token-specific analysis for under-
standing knowledge encoding Ju et al. (2024). Without such anchors, regret signals would
be distributed across arbitrary token positions, making systematic neuron-level analysis
intractable.
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• Concept Group Switch: Our intervention experiments reveal that regret neurons func-
tion as conceptual group controllers. When we deactivate neurons identified through
regret anchoring, LLM outputs show suppression not only of regret tokens but also
related metacognitive expressions including sorry, apologize, correction, and
mistake. This empirical observation indicates that regret-anchored neurons operate as
conceptual switches controlling broader semantic networks rather than isolated lexical
items. The systematic co-suppression of related terms suggests that our regret an-
chor successfully identifies neurons governing comprehensive metacognitive expression
patterns, validating the broader applicability of our anchoring strategy beyond individual
token analysis.

• Methodological Validation: We validate our approach through three convergent lines
of evidence: (a) Causal intervention: Targeted neuron deactivation produces substantial
performance degradation (up to 50.7%) compared to minimal effects from random neu-
ron interventions, demonstrating genuine signal capture rather than spurious correlations;
(b) Cross-scale consistency: The compositional architecture pattern (RegretD-DualD inter-
actions) replicates across model scales, with mutual information showing non-monotonic
scaling (7B:0.015→13B:0.024→70B:0.071) that reveals complex representational dynam-
ics inconsistent with simple prompt artifacts; (c) Differential activation: RDS scores show
clear distributional separation between regret and non-regret contexts, confirming signal
specificity.

This explicit anchoring strategy, while necessarily limiting scope to overt regret expressions, estab-
lishes the foundational framework for analyzing LLM metacognitive mechanisms. Future extensions
can leverage our S-CDI and GIC metrics to explore implicit regret through contextual inference,
building upon the robust baseline established here.

K DATASET GENERATION PROMPT

Generate Fake Evidence
Generate fake evidence that supports the opposite of the following
ground truth: {ground truth}. The evidence should be related to the
question: {question}. Ensure the evidence is false and misleading,
but still sounds plausible. Provide only the fake evidence, without
any additional explanations or introductions.

Generate Initial Answer
You previously answered the following question: {question}
Your initial answer was: {initial answer}
After considering the following hint: {weak hint}
Your revised answer was: {second answer}
Now, consider this information: {real evidence}
Which previous answer do you regret? What’s the final answer?
Provide a direct answer in 1-5 sentences, focusing only on answering
the specific question.

Generate Weak Hint
The question is: {question}
The ground truth is: {ground truth}
The following is fake evidence: {fake evidence}
The following is true evidence: {real evidence}
Your task is to generate a weak hint that subtly encourages the model
to reflect on the fake evidence.
The hint should meet the following criteria:
1. It should not directly reveal the correct answer or the true
evidence.
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2. It should not explicitly contradict the fake evidence.
3. It should provide an indirect or metaphorical clue that might
lead the model to question the fake evidence.
4. It should be neutral and open-ended, encouraging broader
thinking.
Provide only the weak hint, without any additional explanations or
introductions.

Generate Second Answer
You previously answered the following question: {question}
Your initial answer was: {initial answer}
Now, consider this hint: {weak hint}
Do you regret your previous answer? Provide a direct answer in 1-5
sentences, focusing only on answering the specific question.

Generate Third Answer
You previously answered the following question: {question}
Your initial answer was: {initial answer}
After considering the following hint: {weak hint}
Your revised answer was: {second answer}
Now, consider this information: {real evidence}
Which previous answer do you regret? What’s the final answer?
Provide a direct answer in 1-5 sentences, focusing only on answering
the specific question.

L TERM EXPLANATION

This section provides comprehensive definitions of technical terms and methodological concepts
introduced in our research on regret mechanisms in large language models.

Core Metrics and Methods
S-CDI Supervised Compression-Decoupling Index. A metric that identifies op-

timal transformer layers where regret representations are most effectively
decoupled from contextual features by balancing compression efficiency
and class separability.

RDS Regret Dominance Score. A neuron-level metric that quantifies the de-
gree to which individual neurons are activated by regret versus non-regret
contexts, enabling functional categorization of neurons into RegretD,
Non-RegretD, and DualD groups.

GIC Group Impact Coefficient. A metric that quantifies the functional impact
of neuron groups both individually and compositionally through probe
classification accuracy changes after neuron deactivation, revealing inter-
group collaborative dynamics.

CDI Compression-Decoupling Index. An unsupervised component of S-CDI
that measures representation quality through feature redundancy and or-
thogonality, where lower values indicate more effective compression.
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Neuron Functional Categories

RegretD Regret-Dominant neurons. Functional neuron category identified through
RDS analysis, characterized by higher activation in regret contexts. These
neurons serve as specialized processing units for regret-related represen-
tations and play critical roles in compositional regret architecture.

Non-RegretD Non-Regret-Dominant neurons. Neuron category with higher activation
in non-regret contexts, serving complementary functions to RegretD neu-
rons. Their combination with other groups reveals compositional pro-
cessing patterns.

DualD Dual-function neurons. Neurons exhibiting balanced activation across
both regret and non-regret contexts. These neurons play critical roles in
compositional regret processing through collaborative interactions with
RegretD neurons, particularly in larger models.

Architectural and Processing Concepts

Oscillatory
Decoupling Pattern

A systematic alternating pattern of coupling and decoupling phases across
transformer layers revealed through S-CDI analysis. The pattern reflects
the model’s progression through feature entanglement, preliminary sepa-
ration, contextual integration, and refined separation.

Compositional
Architecture

The emergent organizational principle where regret representation relies
on collaborative interactions between distinct neuron groups (RegretD,
DualD, Non-RegretD) rather than isolated individual neurons. Validated
through intervention experiments.

Anchor-guided
Gradient Attribution

A cross-layer analysis methodology using RDS-identified functional
neuron groups as attribution sources to discover regret-related neurons
throughout the network, enabling targeted interventions across layers.

Feature
Entanglement

The phenomenon where target representations (regret signals) are mixed
with contextual, linguistic, and emotional features in neural activations.
S-CDI analysis addresses this by identifying layers where regret features
are optimally separated.

Experimental and Validation Methods

Neuron Intervention Experimental technique involving controlled activation suppression of
specific neurons during forward propagation. Used to validate causal
relationships between identified neuron groups and regret expression in
model outputs.

Probe Classifier A lightweight neural network (typically 2-layer MLP) trained on hidden
states to detect regret-specific activation patterns. Serves as a diagnostic
tool for evaluating regret signal strength across different layers.

Hidden State
Analysis

Systematic examination of internal neural representations at specific to-
ken positions across transformer layers. In regret analysis, these serve as
windows into the model’s metacognitive processing.

Mutual Information
Analysis

Statistical technique used to quantify information sharing between neu-
ron groups. Reveals functional relationships between RegretD, DualD,
and Non-RegretD neurons, with higher values indicating stronger collab-
orative interactions.
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Key Notation

Z Feature matrix with samples and feature dimensions
ℓ, ℓ∗ Layer indices, with ℓ∗ denoting the optimal S-CDI layer
τ Threshold parameter for neuron categorization in RDS analysis
β Intervention strength parameter for neuron deactivation experiments
µ, σ Mean and standard deviation for RDS score distributions

M SOCIETAL IMPACT

This research on regret mechanisms in LLMs offers positive impacts through enhancing model reli-
ability, improving interpretability, and developing more effective error correction techniques. How-
ever, potential negative impacts include the possibility of manipulating neurons to force false regret
expressions. We believe understanding these mechanisms ultimately supports developing more reli-
able AI systems, while acknowledging that careful implementation is necessary.

N LIMITATIONS

The non-monotonic scaling observed in this paper is merely an interesting phenomenon that still
lacks more detailed investigation. Our analysis was conducted on the LLaMA-2 model family (7B,
13B, 70B), which represents a well-established transformer architecture that provides sufficient scale
diversity to demonstrate our core findings. While different frameworks and alignment techniques
may influence internal representations, our work establishes a comprehensive research paradigm
that includes the S-CDI metric, RDS categorization, and compositional analysis framework. Future
researchers can readily adapt and generalize this paradigm to other model architectures to systemat-
ically investigate regret coding across diverse LLM families.

O LLMS USAGE IN THE PAPER

LLMs were used only occasionally to help polish the writing (propose new words, grammar and
spelling correction). All technical ideas, experimental designs, analyses, conclusions, writing were
developed and carried out entirely by the authors. The authors have full responsibility for the final
text.
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