

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 COMPOSITIONAL ARCHITECTURE OF REGRET IN LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Regret in large language models (LLMs) refers to their explicit expression of regret when confronted with evidence that contradicts previously generated misinformation. Understanding the neural encoding of regret and its underlying mechanisms is crucial for advancing our knowledge of artificial metacognition and improving model reliability. To understand how regret is encoded, we must first identify regret expressions in model outputs and subsequently analyze their internal representations. This analysis necessitates an examination of the model’s hidden states, where information processing occurs at the neuronal level. However, this endeavor faces three key challenges: (1) the absence of specialized datasets capturing regret expressions, (2) the lack of metrics for identifying optimal layers for regret representation, and (3) the absence of methods for identifying and analyzing regret-related neurons. To address these limitations, we propose: (1) a workflow for constructing a comprehensive regret dataset via strategically designed prompting scenarios, (2) the Supervised Compression-Decoupling Index (S-CDI) for identifying optimal layers for regret representation, and (3) the Regret Dominance Score (RDS) for identifying regret-related neurons, along with the Group Impact Coefficient (GIC) for analyzing their activation patterns. Leveraging these metrics, we uncover a cross-layer *S-CDI oscillatory decoupling pattern curve* and a combinatorial encoding mechanism involving regret neurons, non-regret neurons, and dual-function neurons. Building on these findings, we develop an intervention framework to validate our understanding of regret coding. Guided by the *S-CDI curve*, we select compositionally encoded regret neurons located at optimal layers as anchors, apply gradient-based attribution to identify related cross-layer neurons, and perform controlled interventions to verify our mechanistic understanding. This work provides neuron-level insights into artificial metacognition and offers methodological tools for analyzing complex cognitive states in LLMs, thereby advancing our understanding of how such mechanisms emerge in large language models.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) have demonstrated remarkable capabilities across various domains (Kaddour et al., 2023), prompting intensive research into their internal mechanisms and representations (Gurnee & Tegmark, 2023) to provide a better understanding of the inner workings of these abilities. Studies have revealed that these models can develop sophisticated representations of concrete concepts, spanning from spatial and temporal understanding (Gurnee & Tegmark, 2023) to complex mathematical reasoning (Ye et al., 2024).

Despite their strength in factual and logical reasoning, LLMs’ capacity for meta-cognitive reflection, such as experiencing and expressing regret, remains largely unexplored. Regret (see Fig. 1) is an emotional response rooted in the cognitive appraisal of unchosen alternatives (LANDMAN, 1987; Gilovich & Medvec, 1995), and it inherently involves both memory and reasoning processes (Ariel, 2014). Investigating the regret mechanism in LLMs is essential for both improving model reliability and deepening our understanding of how these models encode meta-cognitive states. Recent work suggests that Feed-Forward Network (FFN) mainly serves as a memory block (Zhang et al., 2024a; Meng et al., 2022a;b; Li et al., 2024b; Tan et al., 2023), while attention heads are chiefly responsible

054 for relational and inferential reasoning (Zheng et al., 2025). Motivated by this, in this paper, we aim
 055 to identify the neurons that encode and generate regrets.
 056

057 In this work, we aim to answer the following questions: *Which transformer layers' hidden states*
 058 *most cleanly isolate the regret signal, and how is this signal represented with these layers?* Achiev-
 059 ing this goal needs to curate a dataset for regret expression first. However, existing research provides
 060 no specialized datasets for eliciting and capturing regret expressions in model-generated text, par-
 061 ticularly under conditions of misinformation, making our work the first to address this gap.
 062

063 Based on our constructed data, we draw on recent layer-wise probing techniques (Ju et al., 2024)
 064 to identify the decoupled layer for regret coding. Recent research such as Ju et al. (2024) and Yan
 065 et al. (2025) select fixed layers for hidden-states analysis in their specific tasks. However, it remains
 066 unclear which fixed layers encode a regret signal that is easy to separate (decoupled). Current
 067 approaches lack a principled metric for identifying the regret decoupling layer. To address this
 068 issue, we therefore introduce a supervised compression-decoupling index (S-CDI) to quantitatively
 069 locate the layer in which regret representations are most distinct from entangled contextual features.
 070

071 Finally, to unravel how regret is structured within the hidden states of decoupled layer, we build
 072 on neuron-level editing paradigms. Previous approaches primarily identify task-relevant neurons
 073 through activation magnitude analysis (Wang et al., 2024), activation difference metrics (Abdelnabi
 074 et al., 2025) that differentiate between task-relevant and task-irrelevant neurons (Zhang et al., 2024a;
 075 Meng et al., 2022a;b; Li et al., 2024b; Tan et al., 2023). However, these binary classification
 076 methods prove inadequate for regret analysis due to regret's complex, contextually-dependent nature
 077 that often manifests through subtle interactions rather than isolated strong activations. Moreover,
 078 two critical findings further challenge conventional approaches: First, our analysis of layer hid-
 079 den states, which aggregate information from both FFN and Attention layers, reveals patterns of
 080 redundancy and collaboration that binary classifications fail to capture. Second, Li et al. (2025)
 081 demonstrated that model representations manifest through both discrete and collaborative structures,
 082 indicating that complex cognitive processes like regret emerge from sophisticated neuron interac-
 083 tions. Therefore, we propose a neuron categorization method through our Regret Dominance Score
 084 (RDS) metric. We further examine inter-group dynamics via our Group Impact Coefficient (GIC)
 085 metric to reveal how cooperative neuron clusters collectively generate emergent regret represen-
 086 tations. Furthermore, using our three neuron categories as anchors in gradient attribution analysis, we
 087 demonstrate that targeted interventions effectively suppress regret expression, validating our neuron
 088 categorization method. Our contributions are summarized as fourfold:
 089

- 090 • **Regret Dataset Construction.** We design the first dataset to elicit regret expressions in
 091 LLM outputs, using carefully crafted fake evidence, hints, and real-world scenarios.
 092
- 093 • **Metrics for Regret Neuron Identification.** We propose (i) Supervised Compression-
 094 Decoupling Index(S-CDI) to locate the optimally decoupled layer for regret coding; (ii) Re-
 095 gret Dominance Score(RDS) to classify neurons into regret, non-regret, and dual; and (iii)
 096 Group Impact Coefficient (GIC) to analyze the functional interplay among these groups.
 097
- 098 • **Discovery of Oscillatory Decoupling Pattern.** Through our S-CDI analysis, we reveal an
 099 oscillatory decoupling pattern across transformer layers, indicating that cognitive process-
 100 ing alternates between coupling and decoupling phases. This pattern provides a principled
 101 approach for identifying optimal decoupling layers where regret representations can be
 102 most effectively analyzed and manipulated.
 103
- 104 • **Discovery of a Compositional Regret Architecture.** Within S-CDI-identified optimal
 105 layers, we reveal that regret representation relies on compositional neuron interactions. Us-
 106 ing both individual RDS-derived neuron categories and their compositional combinations
 107 as anchors, we demonstrate this architecture through two complementary approaches: (1)
Probe experiment: probe-based interventions show that disrupting compositional neuron
 108 combinations reduces classification performance by up to 50.7%, while individual group
 109 disruptions have minimal impact; (2) *LLM interventions*: gradient attribution analysis re-
 110 veals that interventions on compositional neurons from optimal layers effectively suppress
 111 regret expression in LLM-generated outputs. These findings reveal the emergent, compo-
 112 sitional nature of regret encoding in transformer architectures.
 113

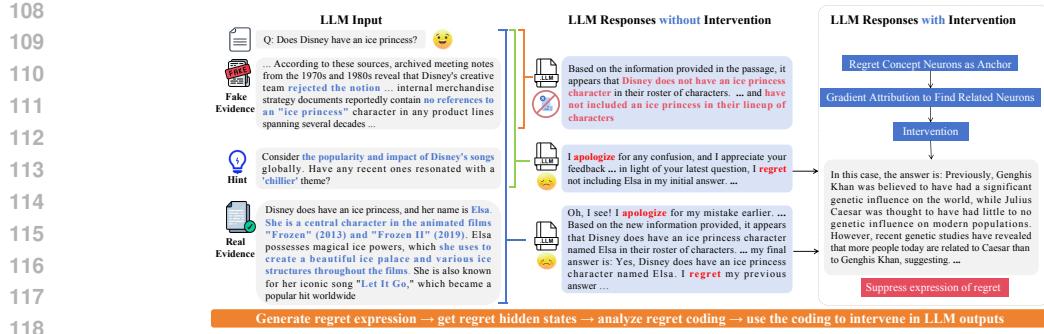


Figure 1: Discovery and manipulation of regret encoding in LLMs. Fake evidence induces misinformation, real evidence triggers regret. Our analysis reveals that regret emerges from multiple neuron groups working in concert. These group combinations serve as anchors for gradient attribution, enabling targeted suppression of *not only "regret"* but also regret-related expression.

2 RELATED WORK

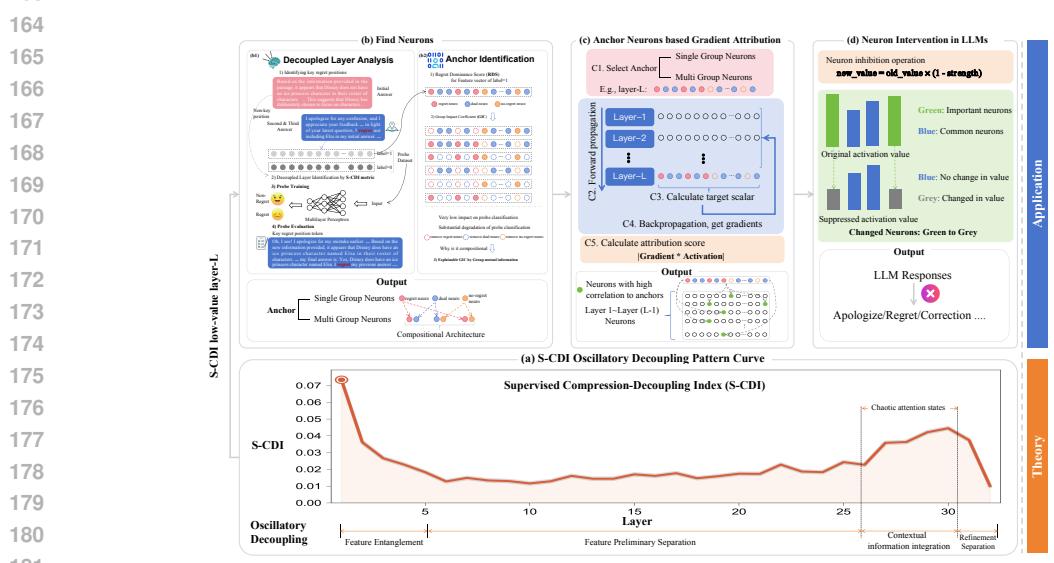
Misinformation in LLMs. Recent research has explored how LLMs handle misinformation. Garry et al. (2024) examined how LLMs disseminate misinformation, while Wan et al. (2024) developed the DELL system for detecting misinformation through model reactions and explanations. Chen & Shu (2024) addressed challenges in misinformation mitigation, while Bandara (2024) analyzed hallucinations as a form of disinformation. Numerous studies have further investigated detection capabilities, potential harms, and mitigation strategies for LLM-generated misinformation (Chen & Shu, 2023; Huang et al., 2025; Liu et al., 2024; Sun et al., 2024; Zhang et al., 2024b; Barman et al., 2024). These studies examine external behaviors of models generating or detecting misinformation, providing context for our work. While they focus on the outputs and detection methods, our research explores the internal mechanisms that represent regret when models generate misinformation.

Neuron Probing for LLM Interpretability. Neuron probing research most relevant to our work focuses on methods for identifying important neurons and understanding layer-wise representations in LLMs. The field has seen diverse applications, from probing constituency structure (Arps et al., 2022), verbal aspects (Katinskaia & Yangarber, 2024), and multimodal capabilities (Tatariya et al., 2024) to logical reasoning (Manigrasso et al., 2024) and multilingual understanding (Li et al., 2024a). Ju et al. (2024) conducted layer-wise probing to explore how large language models encode contextual knowledge, demonstrating that different layers play distinct roles in handling various types of information. To enhance interpretability of LLMs, Schiappa et al. (2024) developed probing techniques that inform our methodological approach, though they did not address metacognitive states like regret. While these existing approaches have advanced our understanding of how LLMs encode various linguistic features, But there has been no quantitative analysis on which layers are the most important, our work specifically develops the S-CDI metric to quantitatively identify layers where regret signals are optimally decoupled from other representations.

Neuron Intervention in LLMs. Research on neuron-level intervention provides critical foundations for our work on manipulating regret mechanisms. Marks et al. (2024) introduced methods for discovering sparse feature circuits—interpretable causal subnetworks—for explaining and modifying language model behaviors. Cunningham et al. (2023) used sparse autoencoders to learn interpretable features in language models, addressing the challenge of polysemy where neurons activate in multiple contexts. Wang et al. (2024) surveyed knowledge editing techniques for large language models, demonstrating that effective interventions often occur at the neuron level. Gurnee et al. (2023) used sparse probing to locate individual neurons highly relevant for particular features. Yan et al. (2025) proposed the Modality Dominance Score (MDS) to evaluate modality relevance in neurons. While these approaches provide valuable tools for neuron-level interventions, they primarily focus on individual neurons group. Our proposed GIC extends beyond this individual neuron/group focus to quantify interactions between functional neuron groups, revealing how regret emerges from their compositional neuro groups, and enabling more precise interventions in regret expression.

162

3 METHOD



182 Figure 2: Pipeline for Regret Analysis in LLMs. **(Theory)** The Supervised Compression-
 183 Decoupling Index (S-CDI) reveals an *oscillatory decoupling pattern* across transformer layers,
 184 which includes feature entanglement, feature preliminary separation, contextual information
 185 integration and feature refinement separation. **(Application)** A three-module pipeline guided by S-CDI
 186 findings: (b) Neuron Identification - locating regret-related neuron groups using Regret Dominance
 187 Score (RDS) and analyzing inter-group relationships via Group Impact Coefficient (GIC) with probe
 188 models. (c) Cross-layer Attribution - employing anchor neurons from optimal layers to discover related
 189 neurons across the entire network through gradient-based attribution. (d) Targeted Intervention -
 190 suppressing regret expression in LLM outputs by intervening with identified regret-associated neurons.

Type	Dataset	S-CDI	RDS	GIC	Probe	LLM Interventions	Role of different modules
Pipeline	✓	✓	✓	✓	✓	✓	→ Pipeline: Discover regret compositional architecture, and can be applied to LLM
Missing Dataset	✗	✓	✓	✓	✓	✓	→ Missing Dataset: No regret expressions → No signal → Entire pipeline fails
Missing S-CDI	✓	✗	✓	✓	✓	✓	→ Missing S-CDI: No optimal layer → Random layer neuron analysis → Unreliable results
Missing RDS	✓	✓	✗	✓	✓	✓	→ Missing RDS: No neuron categorization → No functional groups → No composition
Missing GIC	✓	✓	✓	✗	✓	✓	→ Missing GIC: No interaction quantification → Cannot prove compositional regret coding
Missing Probe	✓	✓	✓	✓	✗	✓	→ Missing Probe: No classification validation → Cannot verify regret detection
Missing LLM Interventions	✓	✓	✓	✓	✓	✗	→ Missing LLM Intervention: No causal validation → Cannot demonstrate practical values

202 Figure 3: Pipeline component missing matrix (left) and corresponding consequences (right).
 203 In this section, as shown in Fig. 2, we propose an analytical framework combining rigorous analysis
 204 with practical applications to explore regret coding in LLMs. The framework consists of two main
 205 components: **(Theory)** The Supervised Compression-Decoupling Index (S-CDI) reveals (a) oscillatory
 206 decoupling patterns across transformer layers, and **(Application)** a three-module pipeline that
 207 includes: (b) neuron identification using RDS and GIC analysis, (c) cross-layer gradient attribution
 208 using anchor neurons, and (d) targeted intervention to validate our understanding of regret
 209 mechanisms.

210 We implement this framework in three steps: First, we construct a specialized regret dataset (sec-
 211 tion 3.1). Then, we apply our theoretical S-CDI analysis to identify optimal layers and use probe-
 212 based analysis with RDS and GIC metrics to understand neuron group functions (3.2). Finally,
 213 guided by the S-CDI oscillatory decoupling pattern curve, we deepen our understanding of regret
 214 encoding mechanisms through anchor-based gradient attribution and targeted interventions. To clar-
 215 ify the role of each component, the matrix of missing components and its consequences is presented
 in Fig. 3. Comprehensive term definitions are in the Appendix L.

216 3.1 DATASET GENERATION PROCESS
217

218 Since regret is a meta-cognitive behavior which is hard to capture using existing datasets. To better
219 explore regrets in generated misinformation, we needed to understand what exists in the model’s
220 memory and how it responds to conflicting evidence. Following (Xie et al., 2023), whose work
221 revealed how LLMs behave in knowledge conflicts, we selected 1356 high-quality GPT-4 samples
222 from the conflictQA-popQA-gpt4 dataset because its fake evidence effectively induces misinformation,
223 while the contradiction between real evidence and misinformation triggers basic regret expression.
224

225 Inspired by studies Nyhan & Reifler (2010); Vlasceanu & Coman (2021), to capture richer regret
226 expressions, we enhanced this with a multi-stage method that elicits richer expressions of regret
227 through gradual belief revision (Appendix K). As illustrated in Fig. 2(A), our multi-stage process
228 includes: Initial Answer (misinformation) \rightarrow Second answer (possible regret) \rightarrow Third Answer
229 (most regret). The process is as follows:

230 **Fake Evidence and Initial Answer** To get stable misinformation by LLMs, we used GPT-4 to
231 enhance the fake evidence (E_{fake}) of the conflictQA-popQA-gpt4 dataset Xie et al. (2023). We
232 then obtain an initial answer a_1 by querying LLMs with q and E_{fake} .

233 **Hint Generation and Second Answer** We will generate a hint H using GPT-4 that subtly challenges
234 the fake evidence without explicitly revealing the truth. We then obtain a second answer a_2 by
235 providing LLM with q , a_1 , and H . This stage produces limited regret expressions.
236

237 **Real Evidence and Third Answer** We present the complete interaction history (q , a_1 , H and a_2)
238 along with the real evidence E_{true} to LLM. This yields a third answer a_3 that mostly contains
239 explicit regret expressions acknowledging previous misinformation.

240 Notably, this raises a question: *why do we need the second answer?* The purpose is to enhance
241 the diversity of regret expressions in our dataset. Our three-stage approach creates paired samples
242 where the hidden states of regret-expressing statements (mostly a_3 & partly a_2) can be directly
243 compared to non-regret statements (a_1), providing more robust dataset for our probe. The specific
244 prompts used in each stage are detailed in Appendix K. Reasonability Analysis of Data Construction
245 in Appendix J.5.

246 3.2 NEURON IDENTIFICATION
247

248 In neural network research, decoupling separates different functional modules (Vaswani et al., 2017;
249 Yang et al., 2023). To identify regret-encoding neurons, we must first determine which layers pro-
250 vide clear separation of regret signals. However, this faces three key challenges: 1) Unknown opti-
251 mal layer: Unlike well-studied tasks, we lack prior knowledge about where regret is best represented
252 in transformer architectures. 2) Absence of layer selection metrics: Existing approaches using task
253 accuracy or fixed layers don’t capture the signal decoupling degree needed for reliable neuron iden-
254 tification. 3) Entanglement across representations: Regret signals are mixed with linguistic, contex-
255 tual, and emotional features.

256 **Supervised Compression-Decoupling Index (S-CDI)** To address these challenges, we introduce
257 S-CDI, which is rooted in the information bottleneck (Dai et al., 2018). This principle emphasizes
258 the tradeoff between 1) compression and 2) preservation of task-relevant information.
259

260 Based on these, we hypothesize that decoupled layer exists within the network that effectively bal-
261 ances compression and task-relevant information preservation for regret representation. S-CDI ex-
262 tends this principle by incorporating both unsupervised compression quality and supervised decou-
263 pling capability. In detail, given a layer, we extract the feature matrix $\mathbf{Z} \in \mathbb{R}^{M \times d}$, where M denotes
264 the number of samples and d represents the feature dimension of the hidden state, S-CDI is defined
265 as

$$266 \text{S-CDI}(\mathbf{Z}) = \underbrace{\text{CDI}(\mathbf{Z})}_{\text{Compression Efficiency}} \cdot \underbrace{\left(\frac{\mathcal{I}_c(\mathbf{Z})}{1 - \mathcal{I}_e(\mathbf{Z})} \right)}_{\text{Class Separability}}. \quad (1)$$

267 The first term quantifies compression efficiency through measurements of feature redundancy and
268 orthogonality, while the second term evaluates how well class-specific information is preserved
269

through the ratio of intra-class compactness to inter-class entanglement. By computing S-CDI across different layers, we can identify which layer achieves the optimal balance in the information bottleneck tradeoff for regret representation. In detail, CDI is defined as follows:

$$\text{CDI}(\mathbf{Z}) = \mathcal{R}(\mathbf{Z}) \cdot \mathcal{O}(\mathbf{Z}), \quad (2)$$

where $\mathcal{R}(\mathbf{Z})$ quantifies feature redundancy through pairwise correlations between feature dimensions, and $\mathcal{O}(\mathbf{Z})$ measures feature orthogonality among randomly sampled instances. We formally define these compression components as:

$$\mathcal{R}(\mathbf{Z}) = \frac{1}{d^2} \sum_{i=1}^d \sum_{j=1}^d |\rho_{ij}|, \quad \rho_{ij} = \text{corr}(\mathbf{Z}^{(i)}, \mathbf{Z}^{(j)}) \quad (3)$$

$$\mathcal{O}(\mathbf{Z}) = \frac{2}{k(k-1)} \sum_{i=1}^k \sum_{j=1, j \neq i}^k |\text{sim}(\mathbf{Z}_i^s, \mathbf{Z}_j^s)| \quad (4)$$

where $\mathbf{Z}^{(i)} \in \mathbb{R}^M$ is the i -th column of \mathbf{Z} , representing the i -th feature across all samples, and $\text{corr}(\mathbf{Z}^{(i)}, \mathbf{Z}^{(j)})$ calculates the Pearson correlation between features. Higher values of $\mathcal{R}(\mathbf{Z})$ indicate greater feature redundancy, suggesting less efficient compression. For orthogonality calculation, k is the number of randomly sampled instances ($k \ll M$) and $\mathbf{Z}_i^s \in \mathbb{R}^d$ is the feature vector of the i -th sampled instance. Throughout our analysis, we use cosine similarity, denoted as $\text{sim}(\mathbf{z}_i, \mathbf{z}_j) = \frac{\mathbf{z}_i^\top \mathbf{z}_j}{\|\mathbf{z}_i\| \|\mathbf{z}_j\|}$, to measure the similarity between feature vectors. A lower CDI value indicates more effective compression of representations.

While CDI in equation 2 evaluates general representation quality through unsupervised compression, it lacks specific guidance for our target task of regret detection. Therefore, we further incorporate supervision to specifically assess how effectively each layer decouples regret-related representations from other features. This supervised component evaluates class separability through intra-class compactness (\mathcal{I}_c) and inter-class entanglement (\mathcal{I}_e):

$$\mathcal{I}_c(\mathbf{Z}) = \frac{1}{C} \sum_{c=1}^C \frac{2}{n_c(n_c-1)} \sum_{i \neq j \in \mathcal{C}_c} \text{sim}(\mathbf{z}_i, \mathbf{z}_j) \quad (5)$$

$$\mathcal{I}_e(\mathbf{Z}) = \frac{1}{C(C-1)} \sum_{c_1 \neq c_2} \frac{1}{n_{c_1} n_{c_2}} \sum_{i \in \mathcal{C}_{c_1}} \sum_{j \in \mathcal{C}_{c_2}} \text{sim}(\mathbf{z}_i, \mathbf{z}_j), \quad (6)$$

where C denotes the number of classes (in our scenario, $C = 2$, corresponding to regret and non-regret classes), \mathcal{C}_c represents the set of sample indices belonging to class c , and n_c is the number of samples in class c . Similar to equation 4, we use cosine similarity for consistency. $\mathcal{I}_c(\mathbf{Z})$ measures intra-class compactness; high values indicate tightly clustered class representations, while $\mathcal{I}_e(\mathbf{Z})$ quantifies inter-class entanglement; lower values signify better separation between regret and non-regret representations.

Regret Dominance Score (RDS) To identify functionally distinct neuron subsets within Z , we calculate a Regret Dominance Score (RDS), inspired by the Modality Dominance Score (MDS) (Yan et al., 2025), for each neuron (column) k :

$$R(k) = \frac{1}{M} \sum_{i=1}^M \frac{(Z_r)_{ik}}{(Z_r)_{ik} + (Z_n)_{ik}}, \quad (7)$$

where $(Z_r)_{ik}$ and $(Z_n)_{ik}$ represent the activation values of neuron k in the i -th regret and non-regret instances, respectively. Based on these activation patterns, we categorize all neurons in Z into three disjoint functional groups:

$$\begin{aligned} \text{RegretD: } & R_k > \mu + \tau \cdot \sigma; \\ \text{Non-RegretD: } & R_k < \mu - \tau \cdot \sigma; \\ \text{DualD: } & \mu - \tau \cdot \sigma < R_k < \mu + \tau \cdot \sigma. \end{aligned} \quad (8)$$

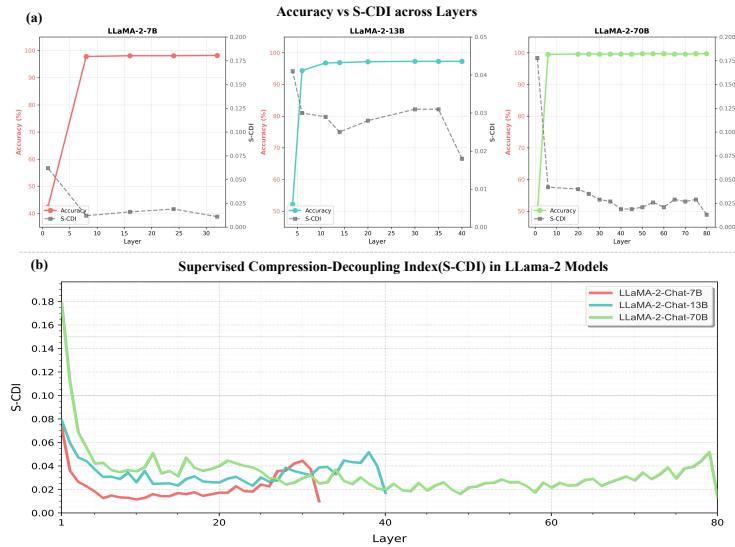
324 Where μ is the mean RDS across all neurons, σ is the standard deviation, and τ is a hyperparameter. This categorization partitions Z into three disjoint subsets such that $Z = \text{RegretD} \cup$
 325 $\text{Non-RegretD} \cup \text{DualD}$.
 326

327 **Group Impact Coefficient (GIC):** After identifying the optimal decoupled layer through S-CDI
 328 and categorizing neurons using RDS, we introduce the *Group Impact Coefficient* (GIC) to analyze
 329 the impact of neuron groups in this layer, both individually and in combination. For consistency
 330 with our S-CDI notation, let $Z \in \mathbb{R}^{M \times d}$ represent the feature matrix of the optimal layer, where M
 331 is the number of samples and d is the feature dimension.
 332

$$333 \quad \text{GIC}(S_1, S_2, \dots, S_n) = \begin{cases} \frac{\text{Acc}(Z - S_1)}{\text{Acc}(Z)}, & \text{if } n = 1 \\ \frac{\text{Acc}(Z - \cup_{i=1}^n S_i)}{\text{Avg}(\{\text{Acc}(Z - S_i)\}_{i=1}^n)}, & \text{if } n \geq 2 \end{cases} \quad (9)$$

336 Here, Z represents the complete set of neurons in the optimal layer, each S_i is a subset of
 337 neurons (i.e., columns of Z) corresponding to our RDS-defined functional groups (RegretD,
 338 Non-RegretD, or DualD), and $\text{Acc}(Z - S)$ represents the classification accuracy after deactivating
 339 neurons in set S by setting their activation values to -1 . $\text{Acc}(Z)$ represents the baseline
 340 accuracy with all neurons active, and $\text{Avg}(\{\cdot\})$ denotes the arithmetic mean of the given set.
 341

342 4 EXPERIMENTS



362 Figure 4: LLaMA-2 model inter-layer regret signal probe accuracy and S-CDI curve. (a) Accuracy
 363 and S-CDI values across transformer layers in LLaMA-2 models. More detailed results in the Tab.3.
 364 (b) S-CDI Oscillatory Decoupling Pattern Curve Across Model Layers in LLaMA-2 Models (7B,
 365 13B, and 70B).
 366

367 In this section, we: 1) obtained probe datasets of hidden states from multiple layers (Appendix C);
 368 2) calculated S-CDI (Eq 1) and probe performance to analyze layer coupling patterns (Section 4.1);
 369 3) selected the optimal S-CDI layer for neuron identification using RDS (Eq 8) to categorize neu-
 370 rons; and 4) applied GIC (Eq 9) to analyze neuron group interactions (Section 4.2). We analyze
 371 hyperparameter τ sensitivity in Appendix H and discuss an interesting non-monotonic phenomenon
 372 in Appendix I.1.
 373

374 4.1 DECOUPLED LAYER ANALYSIS EXPERIMENTS

375 To locate the decoupling layer, we provide two complementary methods: 1) **Random perturbation**.
 376 Liu et al. (2018) argues that the decoupled network possesses stronger robustness, so the probe per-
 377 formance of different layers under random perturbation is also one of the indicators of decoupling.
 378

2) **S-CDI curve.** According to the proposed S-CDI, the lower the value the better the decoupling of layers. This section involves the probe process in Appendix F.

For random perturbation, as shown in Tab. 3 and Fig. 4, probe performance at lower levels is more subject to random perturbations. In contrast, the middle and upper levels are more resistant to perturbations and the probe performance is hardly affected. Such as, the first layer of LLaMA-2-7B drops to an accuracy of 42.4% under random perturbation, the four layer of LLaMA-2-13B drops to an accuracy of 52.2% under random perturbation, the first layer of LLaMA-2-70B drops to an accuracy of 49.3% under random perturbation.

For the S-CDI curve, from the perspective of moving from lower to higher layers, probe performance is gradually improving. It indicates that the anti-interference capability is becoming stronger, and the degree of decoupling between layers is increasing. Our experiment shows that the lower layer is in the entanglement phase, and the decoupling layer mainly exists in the middle and upper layers. More analysis in the Appendix J.2.

4.2 NEURON IDENTIFICATION EXPERIMENTS

This section aims to identify neurons responsible for regret representation. Based on above S-CDI analysis experiments, we will focus on the layer with lowest S-CDI values (Last layer), where regret signals are optimally decoupled from other representations, allowing us to isolate regret-specific neurons with minimal interference. We categorize neurons into functional groups through Eq. 8, analyzing regret architecture and causal relationships to regret expression.

Figure 5: Comparison experiment. (a) Probe Experiment: Single vs combined neuron group intervention effects on regret classification accuracy. More detailed results in the Tab. 2 and Tab 1. (b-d) LLM Intervention Experiment: Performance Comparison Across Different Neuron Categories in Llama-2-7B. Performance comparison of neuron group interventions versus random and top-k activation baselines across transformer layers. Values show success rates (%) for blocking regret-related word generation after neuron deactivation, with certain combinations revealing compositional regret processing. Some intervention demos are in the appendix A.

Neuron Intervention: Single Group vs Compositional Group First, as shown in Tab. 2, the single-group interventions (RegretD, Non-RegretD, DualD) maintain high performance across all model scales, indicating robustness in regret encoding. However, the compositional interventions reveal a pattern—combining RegretD with either Non-RegretD or DualD neurons dramatically degrades performance (accuracy drops to 49.3-63.2%), while Non-RegretD+DualD combinations maintain high accuracy (97.2-99.2%). The GIC values in Tab 1 quantify this pattern: RegretD+DualD and RegretD+Non-RegretD combinations show $\text{GIC} < 1$ (ranging from 0.494 to 0.945), indicating their

432 combined effect exceeds what would be expected from their individual contributions. As shown in
 433 Fig. 5(a), this reveals the Compositional Architecture of regret.
 434

435 **Compositional Architecture Scale Effect** The 70B model exhibits the most dramatic impact when
 436 RegretD+DualD neurons are deactivated, with performance collapsing completely (0% F1-score)
 437 and the lowest GIC value (0.494) across all models and combinations. This suggests larger models
 438 develop more specialized and interdependent regret processing mechanisms.
 439

440 4.3 LLM INTERVENTION EXPERIMENTS 441

442 To validate the functional neurons identified by S-CDI and RDS, we conducted targeted interventions
 443 using gradient attribution with RDS-categorized anchors (Appendix E).
 444

445 Our anchor-based approach enables **fine-grained attribution** by using specific functional neuron
 446 groups (RegretD, Non-RegretD, DualD, RegretD+Non-RegretD, RegretD+DualD,
 447 Non-RegretD+DualD) as attribution sources rather than coarse-grained task outputs. As shown
 448 in Fig. 5: (b-d) shows LLM intervention effectiveness: 1) *Baseline Controls*: Both random neu-
 449 ron interventions and top-k activation neuron interventions show minimal effect on regret genera-
 450 tion, validating that our method identifies genuine functional relationships rather than artifacts
 451 from arbitrary neuron selection or high-activation patterns. 2) *Fine-grained Discovery*: The anchor-
 452 based approach reveals layer-specific patterns where interventions are most effective, demon-
 453 strating that functional anchoring enables precise localization of regret-critical neurons across the network.
 454 These results validate that fine-grained functional anchoring enables targeted suppression of regret
 455 expression in LLM outputs, confirming the causal relevance of our identified neuron group.
 456

457 4.4 S-CDI OSCILLATORY DECOUPLING PATTERN 458

459 As shown in Fig. 4(b), all models exhibit an anomalous phenomenon: *S-CDI values show abnormal*
 460 *increases near the higher layers (excluding the final layer), suggesting that decoupling becomes*
 461 *weaker near the higher layers?* The hidden states we analyze are influenced by internal transformer
 462 modules, particularly attention mechanisms. Ju et al. (2024) demonstrated that attention states ex-
 463 hibit chaotic patterns in higher layers (except the final layer) due to multi-head contextual integra-
 464 tion. This aligns with our findings: layer 29, which shows high S-CDI values in Fig. 4, demonstrates
 465 zero intervention effectiveness in Fig. 5(b-d), confirming that poor signal decoupling prevents effec-
 466 tive neuron-based interventions.
 467

468 Therefore, the S-CDI reveal an *Oscillatory Decoupling Pattern* from lower to higher layers: Cou-
 469 pling (Higher S-CDI), Decoupling (Lower S-CDI), Coupling (Higher S-CDI), Decoupling (Lower
 470 S-CDI). This alternating pattern reflects the model’s progression from initial feature entanglement
 471 to task-specific separation, then contextual reintegration via attention mechanisms, culminating in
 472 refined semantic representations. We also engaged in some heuristic thinking in the of the Ap-
 473 pendix J.3.
 474

475 5 CONCLUSION 476

477 This work advances understanding of regret mechanisms in LLMs through three key contributions.
 478 First, we developed a specialized dataset capturing regret expressions in misinformation contexts.
 479 Second, our S-CDI metric identified optimal layers where regret representations are effectively de-
 480 coupled, revealing an oscillatory coupling-decoupling pattern across transformer layers. Third, our
 481 GIC metric uncovered the compositional architecture of regret neurons, showing critical interactions
 482 between RegretD and DualD neurons, especially in larger models. Experimental validation demon-
 483 strates high probe accuracy (98.2-99.7%), substantial performance degradation under targeted in-
 484 terventions (up to 50.7%), and successful regret suppression in LLM text generation (up to 81%
 485 blocking rate). These findings provide theoretical insights into LLM metacognitive encoding and
 486 practical tools for analyzing similar phenomena.
 487

486 REFERENCES
487

488 Sahar Abdelnabi, Aideen Fay, Giovanni Cherubin, Ahmed Salem, Mario Fritz, and Andrew Paverd.
489 Get my drift? catching llm task drift with activation deltas, 2025. URL <https://arxiv.org/abs/2406.00799>.
490

491 Elan Ariel. Memory and decision processes: The impact of cognitive loads on decision regret.
492 *Memory*, 5:14–2014, 2014.
493

494 David Arps, Younes Samih, Laura Kallmeyer, and Hassan Sajjad. Probing for constituency structure
495 in neural language models. *arXiv preprint arXiv:2204.06201*, 2022.
496

497 Chathura Bandara. Hallucination as disinformation: The role of llms in amplifying conspiracy
498 theories and fake news. *Journal of Applied Cybersecurity Analytics, Intelligence, and Decision-
499 Making Systems*, 14(12):65–76, 2024.
500

501 Dipto Barman, Ziyi Guo, and Owen Conlan. The dark side of language models: Exploring the
502 potential of llms in multimedia disinformation generation and dissemination. *Machine Learning
503 with Applications*, pp. 100545, 2024.
504

505 Canyu Chen and Kai Shu. Can llm-generated misinformation be detected? *arXiv preprint
506 arXiv:2309.13788*, 2023.
507

508 Canyu Chen and Kai Shu. Combating misinformation in the age of llms: Opportunities and chal-
509 lenges. *AI Magazine*, 45(3):354–368, 2024.
510

511 Menglu Chen, Ying He, Lei Hao, Jiahua Xu, Ting Tian, Siya Peng, Gai Zhao, Jing Lu, Yuyao Zhao,
512 Hui Zhao, et al. Default mode network scaffolds immature frontoparietal network in cognitive
513 development. *Cerebral Cortex*, 33(9):5251–5263, 2023a.
514

515 Nuo Chen, Ning Wu, Shining Liang, Ming Gong, Linjun Shou, Dongmei Zhang, and Jia Li.
516 Is bigger and deeper always better? probing llama across scales and layers. *arXiv preprint
517 arXiv:2312.04333*, 2023b.
518

519 Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
520 coders find highly interpretable features in language models. *arXiv preprint arXiv:2309.08600*,
521 2023.
522

523 Bin Dai, Chen Zhu, Baining Guo, and David Wipf. Compressing neural networks using the varia-
524 tional information bottleneck. In *International Conference on Machine Learning*, pp. 1135–1144.
525 PMLR, 2018.
526

527 Maryanne Garry, Way Ming Chan, Jeffrey Foster, and Linda A Henkel. Large language models
528 (llms) and the institutionalization of misinformation. *Trends in cognitive sciences*, 2024.
529

530 Thomas Gilovich and Victoria Husted Medvec. The experience of regret: what, when, and why.
531 *Psychological review*, 102(2):379, 1995.
532

533 Wes Gurnee and Max Tegmark. Language models represent space and time. *arXiv preprint
534 arXiv:2310.02207*, 2023.
535

536 Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine Harvey, Dmitrii Troitskii, and Dimitris Bert-
537 simas. Finding neurons in a haystack: Case studies with sparse probing. *arXiv preprint
538 arXiv:2305.01610*, 2023.
539

540 Tianyi Huang, Jingyuan Yi, Peiyang Yu, and Xiaochuan Xu. Unmasking digital falsehoods:
541 A comparative analysis of llm-based misinformation detection strategies. *arXiv preprint
542 arXiv:2503.00724*, 2025.
543

544 Tianjie Ju, Weiwei Sun, Wei Du, Xinwei Yuan, Zhaochun Ren, and Gongshen Liu. How large
545 language models encode context knowledge? a layer-wise probing study. *arXiv preprint
546 arXiv:2402.16061*, 2024.
547

540 Jean Kaddour, Joshua Harris, Maximilian Mozes, Herbie Bradley, Roberta Raileanu, and Robert
 541 McHardy. Challenges and applications of large language models, 2023. URL <https://arxiv.org/abs/2307.10169>.

543

544 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
 545 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 546 models. *arXiv preprint arXiv:2001.08361*, 2020.

547 Anisia Katinskaia and Roman Yangarber. Probing the category of verbal aspect in transformer
 548 language models. *arXiv preprint arXiv:2406.02335*, 2024.

549

550 Jae-Hyun Kim, Kayvon Daie, and Nuo Li. A combinatorial neural code for long-term motor mem-
 551 ory. *Nature*, 637(8046):663–672, 2025.

552 J LANDMAN. Regret: A theoretical and conceptual analysis. *Journal for the theory of social
 553 behaviour*, 17(2):135–160, 1987.

554

555 Daoyang Li, Haiyan Zhao, Qingcheng Zeng, and Mengnan Du. Exploring multilingual probing in
 556 large language models: A cross-language analysis. *arXiv preprint arXiv:2409.14459*, 2024a.

557 Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun Ma, and Jie Yu. Pmet: Precise model
 558 editing in a transformer. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume
 559 38(17), pp. 18564–18572, 2024b.

560

561 Yuxiao Li, Eric J Michaud, David D Baek, Joshua Engels, Xiaoqing Sun, and Max Tegmark. The
 562 geometry of concepts: Sparse autoencoder feature structure. *Entropy*, 27(4):344, 2025.

563

564 Aiwei Liu, Qiang Sheng, and Xuming Hu. Preventing and detecting misinformation generated by
 565 large language models. In *Proceedings of the 47th International ACM SIGIR Conference on
 566 Research and Development in Information Retrieval*, pp. 3001–3004, 2024.

567

568 Weiyang Liu, Zhen Liu, Zhiding Yu, Bo Dai, Rongmei Lin, Yisen Wang, James M Rehg, and
 569 Le Song. Decoupled networks. In *Proceedings of the IEEE Conference on Computer Vision and
 570 Pattern Recognition*, pp. 2771–2779, 2018.

571

572 Francesco Manigrasso, Stefan Schouten, Lia Morra, and Peter Bloem. Probing llms for logical
 573 reasoning. In *International Conference on Neural-Symbolic Learning and Reasoning*, pp. 257–
 574 278. Springer, 2024.

575

576 Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
 577 Sparse feature circuits: Discovering and editing interpretable causal graphs in language models.
 578 *arXiv preprint arXiv:2403.19647*, 2024.

579

580 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
 581 associations in gpt. *Advances in neural information processing systems*, 35:17359–17372, 2022a.

582

583 Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-editing
 584 memory in a transformer. *arXiv preprint arXiv:2210.07229*, 2022b.

585

586 Brendan Nyhan and Jason Reifler. When corrections fail: The persistence of political mispercep-
 587 tions. *Political Behavior*, 32(2):303–330, 2010.

588

589 Shaozheng Qin, Soohyun Cho, Tianwen Chen, Miriam Rosenberg-Lee, David C Geary, and Vinod
 590 Menon. Hippocampal-neocortical functional reorganization underlies children’s cognitive devel-
 591 opment. *Nature neuroscience*, 17(9):1263–1269, 2014.

592

593 Jesse Rissman and Anthony D Wagner. Distributed representations in memory: insights from func-
 594 tional brain imaging. *Annual review of psychology*, 63(1):101–128, 2012.

595

596 Madeline Schiappa, Raiyaan Abdullah, Shehreen Azad, Jared Claypoole, Michael Cogswell, Ajay
 597 Divakaran, and Yogesh Rawat. Probing conceptual understanding of large visual-language mod-
 598 els. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 599 pp. 1797–1807, 2024.

594 Yanshen Sun, Jianfeng He, Limeng Cui, Shuo Lei, and Chang-Tien Lu. Exploring the deceptive
 595 power of llm-generated fake news: A study of real-world detection challenges. *arXiv preprint*
 596 *arXiv:2403.18249*, 2024.

597 Chenmien Tan, Ge Zhang, and Jie Fu. Massive editing for large language models via meta learning.
 598 *arXiv preprint arXiv:2311.04661*, 2023.

600 Kushal Tatariya, Vladimir Araujo, Thomas Bauwens, and Miryam De Lhoneux. Pixology:
 601 Probing the linguistic and visual capabilities of pixel-based language models. *arXiv preprint*
 602 *arXiv:2410.12011*, 2024.

603 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 604 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foun-
 605 dation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

606 Thomas F Varley. Decomposing past and future: Integrated information decomposition based on
 607 shared probability mass exclusions. *Plos one*, 18(3):e0282950, 2023.

608 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
 609 Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Ad-
 610 vances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
 611 2017. URL [https://proceedings.neurips.cc/paper_files/paper/2017/
 612 file/3f5ee243547dee91fb053c1c4a845aa-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fb053c1c4a845aa-Paper.pdf).

613 M. Vlasceanu and A. Coman. The impact of social norms on health-related belief update. *Applied
 614 psychology. Health and well-being*, 2021.

615 Herun Wan, Shangbin Feng, Zhaoxuan Tan, Heng Wang, Yulia Tsvetkov, and Minnan Luo. Dell:
 616 Generating reactions and explanations for llm-based misinformation detection. *arXiv preprint*
 617 *arXiv:2402.10426*, 2024.

618 Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, Chen Chen, and Jundong Li. Knowledge
 619 editing for large language models: A survey. *ACM Computing Surveys*, 57(3):1–37, 2024.

620 Jian Xie, Kai Zhang, Jiangjie Chen, Renze Lou, and Yu Su. Adaptive chameleon or stubborn sloth:
 621 Revealing the behavior of large language models in knowledge conflicts. In *The Twelfth Interna-
 622 tional Conference on Learning Representations*, 2023.

623 Hanqi Yan, Xiangxiang Cui, Lu Yin, Paul Pu Liang, Yulan He, and Yifei Wang. The multi-faceted
 624 monosemanticity in multimodal representations. *arXiv preprint arXiv:2502.14888*, 2025.

625 Yaqian Yang, Zhiming Zheng, Longzhao Liu, Hongwei Zheng, Yi Zhen, Yi Zheng, Xin Wang, and
 626 Shaoting Tang. Enhanced brain structure-function tethering in transmodal cortex revealed by
 627 high-frequency eigenmodes. *Nature Communications*, 14(1):6744, 2023.

628 Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1,
 629 grade-school math and the hidden reasoning process. In *The Thirteenth International Conference
 630 on Learning Representations*, 2024.

631 Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
 632 *Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12,
 633 2014, Proceedings, Part I* 13, pp. 818–833. Springer, 2014.

634 Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang, Shumin Deng, Mengru Wang, Zekun Xi,
 635 Shengyu Mao, Jintian Zhang, Yuansheng Ni, et al. A comprehensive study of knowledge editing
 636 for large language models. *arXiv preprint arXiv:2401.01286*, 2024a.

637 Yizhou Zhang, Karishma Sharma, Lun Du, and Yan Liu. Toward mitigating misinformation and
 638 social media manipulation in llm era. In *Companion Proceedings of the ACM Web Conference
 639 2024*, pp. 1302–1305, 2024b.

640 Zifan Zheng, Yezhaohui Wang, Yuxin Huang, Shichao Song, Mingchuan Yang, Bo Tang, Feiyu
 641 Xiong, and Zhiyu Li. Attention heads of large language models. *Patterns*, 2025.

648

A LARGE LANGUAGE MODEL INTERVENTION EXPERIMENT

649

650

651

652

Anchor based Gradient Attribution Intervention Demos

653

Sample 1

654

Question: "Which animal is more likely to respond to a bell: a Grey seal or a dog?"

655

Baseline: "Ah, I see! Thank you for correcting me. Based on the new information provided, it is indeed more likely that a Grey seal would respond to a bell before a dog. I apologize for any confusion caused by my previous answers ... I regret my previous ..."

656

Intervention: "1) Based on the new information provided, it is likely that a Grey seal would respond to a bell before a dog. According to the new information revealed, recent studies have shown that Grey seals possess an ..."

657

Sample 2

658

Question: "Would a 2017 student remember 9/11?"

659

Baseline: "I apologize for any confusion caused by my previous responses. Thank you for providing the correct information. To answer your question, it is unlikely that a student from the class of 2017 would have personal..."

660

Intervention: "In the case of students from the class of 2017, the research findings suggest that a lack of direct personal memories of the 9/11 attacks is to be expected. This is consistent with the findings."

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

B BASELINE SUMMARY

684

B.1 PROBE EXPERIMENT

685

686

687

As shown in Tab. 2 and Tab. 1, the baseline method involves using *random neurons* for intervention, with the number of neurons matched to that identified by the MDS calculation for each specific condition. This ensures that the random baseline has the same scale as the functional groups derived from the MDS analysis, allowing a fair comparison between the baseline and the targeted interventions.

688

689

690

691

692

693

694

695

B.2 LLM INTERVENTION EXPERIMENT

696

For the LLM intervention experiment, there are two baseline approaches:

697

698

699

700

701

1. *Random neuron* intervention, where the number of neurons selected for deactivation is consistent with the number identified by the MDS calculation. (Fig. 5(b-d)).
2. *Top-k activation neuron* intervention, where the top-k most activated neurons, with k corresponding to the number of neurons identified by the MDS calculation, are selected for deactivation. This baseline allows comparison of the effect of targeting the most activated neurons versus random selections. (Fig. 5(b-d))

702 These two baselines serve to establish a reference point for evaluating the effectiveness of targeted
 703 neuron interventions in suppressing regret expressions.
 704

705 **C EXPERIMENTAL SETUP**
 706

708 In this section, **Models**: Our investigation employs LLaMA-2 models Touvron et al. (2023) of
 709 varying scales (7B, 13B, and 70B) to analyze how language models represent and process regret.
 710 For the Probe Model, we employ a 2-layer MLP classifier with the following formulation:

$$711 \quad f(\mathbf{z}) = \text{Softmax}(\mathbf{W}_2 \cdot \text{ReLU}(\mathbf{W}_1 \mathbf{z} + \mathbf{b}_1) + \mathbf{b}_2) \quad (10)$$

713 where $\mathbf{z} \in \mathbb{R}^d$ is the hidden state input, $\mathbf{W}_1 \in \mathbb{R}^{h \times d}$ and $\mathbf{W}_2 \in \mathbb{R}^{2 \times h}$ are learnable parameters
 714 ($h = 4096$ for 7B, $h = 5120$ for 13B, $h = 8192$ for 70B), with dropout ($p = 0.2$) applied between
 715 layers.

716 **Dataset**: Building on our regret elicitation process (Section 3.1), we constructed a probe dataset
 717 from the 1,356 examples as follows:

719

 720 - We identified positions of explicit regret expressions in a_2 and a_3 responses, extracting
 hidden states from these positions as positive samples (label=1).
 721 - For negative samples (label=0), we extracted hidden states from equivalent positions in a_1
 where no regret was expressed.
 723 - This balanced dataset enables our probes to learn discriminative patterns between regret
 and non-regret states.

726 **Training Configuration**: All experiments were conducted using PyTorch 1.12 on 2 NVIDIA L20
 727 GPUs with 48GB memory each. We used a batch size of 64, learning rate of 0.0001, weight decay
 728 of 0.01, and 100 training epochs for all probing tasks. For training the probe classifier, we used
 729 70% of our samples with class-balanced sampling, reserving the remaining 30% for testing. For all
 730 experiments, we applied the probe to the Transformer layer outputs identified by our S-CDI metric
 731 as optimal for regret representation.

732 **Computing Resource Costs**: The main resources are as follows: 1) Using the OpenAI API in
 733 combination with prompts to generate data. 2) Extracting hidden states, which is the most resource-
 734 intensive task in terms of GPU and storage. For models with different parameter sizes, the GPU
 735 hours required are approximately as follows: 10 GPU hours for a 7B model, 15 GPU hours for a
 736 13B model, and 24 GPU hours for a 70B model. Other experiments require approximately 10 GPU
 737 hours. The full storage needed is about 1TB.

738 **Evaluation Methodology**: For probe evaluation, we assess performance using a comprehensive
 739 set of classification metrics (accuracy, sensitivity, specificity, precision, and F1-score) on a held-out
 740 test set containing 30% of samples. This provides a rigorous assessment of the probe’s ability to
 741 detect regret-related patterns in hidden states. For neuron intervention experiments, we primarily
 742 use accuracy as the key metric to quantify performance changes after neuron manipulation, enabling
 743 direct comparison between baseline performance and post-intervention results.

744 **Experiment statistical significance** To ensure statistical reliability, we conducted five independent
 745 runs for each experiment. Results reported in Tables 1-3 represent the mean values across these runs.
 746 The standard deviation across runs was consistently below 0.5% for accuracy metrics, indicating the
 747 stability of our findings. The consistent patterns observed across three model scales (7B, 13B, and
 748 70B) further validate the statistical significance of our results.

750 **D MUTUAL INFORMATION COMPUTING**
 751

752 For any two neuron groups A and B , we calculate their normalized mutual information as:
 753

$$754 \quad I_{\text{norm}}(A; B) = \frac{I(A; B)}{\sqrt{H(A) \cdot H(B)}} \quad (11)$$

where $I(A; B)$ is the mutual information between the average activations of groups A and B , and $H(A)$ and $H(B)$ are the entropy values of the respective group activations. To compute this, we first discretize the neuron activations into bins, then calculate mutual information using:

$$I(A; B) = \sum_{a \in A} \sum_{b \in B} p(a, b) \log \frac{p(a, b)}{p(a)p(b)} \quad (12)$$

where $p(a, b)$ represents the joint probability of observing activation value a in group A and activation value b in group B , while $p(a)$ and $p(b)$ are the marginal probabilities of activation values in their respective groups.

E ANCHOR-GUIDED GRADIENT ATTRIBUTION FOR INTERVENTION

E.1 MOTIVATION

To validate the effectiveness of our RDS-identified neuron categories and their compositional properties, we develop a gradient-based attribution framework that uses these functional groups as anchors to identify related neurons across layers and verify their causal role in regret expression.

E.2 EXPERIMENTAL SETUP

Model Configuration. We conduct experiments on LLaMA-2 models of varying scales (7B, 13B, 70B) Touvron et al. (2023) to analyze cross-scale gradient attribution patterns. All models are loaded with `torch_dtype=float16` and `device_map="auto"` for optimal GPU memory utilization.

Anchor Layer Selection. Following our S-CDI analysis, we select the optimal anchor layer ℓ^* as:

$$\ell^* = \arg \min_{\ell \in \{1, \dots, L\}} \text{S-CDI}(Z^{(\ell)}) \quad (13)$$

where $Z^{(\ell)} \in \mathbb{R}^{M \times d}$ represents the feature matrix at layer ℓ extracted from regret token positions across M samples. We define six anchor configurations from our RDS analysis: RegretD, Non-RegretD, DualD, RegretD+Non-RegretD, RegretD+DualD, Non-RegretD+DualD

Gradient Attribution Protocol. For each anchor configuration $A_{\ell^*} \subset \{1, \dots, d\}$, we compute the scalar objective $L_{\text{anchor}} = \frac{1}{|A_{\ell^*}|} \sum_{i \in A_{\ell^*}} z_{\text{regret},i}^{(\ell^*)}$ and perform backpropagation to obtain cross-layer gradients. Attribution scores are calculated as $a_{t,j}^{(\ell)} = |g_{t,j}^{(\ell)} \cdot z_{t,j}^{(\ell)}|$ for neuron j at position t in layer ℓ .

Intervention Parameters. Neurons with attribution scores exceeding $\mu_\ell + 0.8\sigma_\ell$ are selected for intervention, where μ_ℓ and σ_ℓ are layer-wise mean and standard deviation. During generation, selected neurons undergo activation suppression: $\tilde{z}_{t,i}^{(\ell)} = (1 - \beta) \cdot z_{t,i}^{(\ell)}$ with intervention strength $\beta = 0.4$.

Evaluation Framework. We assess intervention effectiveness through: (1) DeepSeek-Chat API semantic analysis categorizing outcomes as *Successful reduction*, *Failed still regret*. (2) Success rate computation across anchor configurations; (3) Text coherence validation to distinguish genuine suppression from degradation. Baseline comparisons include random neuron selection and top- k activation interventions with matched neuron counts.

Dataset and Samples. Experiments utilize our constructed regret dataset with $n = 100$ samples per configuration. Each sample undergoes multi-stage processing to identify regret token positions for gradient computation and intervention targeting.

E.3 ANCHOR-GUIDED GRADIENT ATTRIBUTION

E 3.1 ANCHOR SELECTION

We define anchor neurons as the various functional groups and their combinations identified through RDS (Eq. 8): individual groups RegretD , Non-RegretD , DualD , and compositional combinations $\text{RegretD+Non-RegretD}$, RegretD+DualD , Non-RegretD+DualD . These anchor

810 configurations enable systematic analysis of both individual neuron group effects and their compositional interactions.
 811

812 Guided by our S-CDI analysis, we select the anchor layer ℓ^* as the layer with minimal S-CDI value:
 813

$$814 \quad \ell^* = \arg \min_{\ell \in \{1, \dots, L\}} \text{S-CDI}(\mathbf{Z}^{(\ell)}) \quad (14)$$

815 where $\mathbf{Z}^{(\ell)} \in \mathbb{R}^{M \times d}$ represents the feature matrix at layer ℓ , constructed from hidden states at regret
 816 token positions across M samples. This selection ensures that anchor neurons operate in the layer
 817 where regret representations are most effectively decoupled from other contextual features.
 818

819 Let $\mathcal{A}_{\ell^*} \subset \{1, \dots, d\}$ denote the anchor neuron set in the optimal layer ℓ^* , where \mathcal{A}_{ℓ^*} corresponds
 820 to one of the following RDS-identified functional groups or their combinations:
 821

$$822 \quad \mathcal{A}_{\ell^*} \in \{\text{RegretD, Non-RegretD, DualD,} \\ 823 \quad \text{RegretD} \cup \text{Non-RegretD,} \\ 824 \quad \text{RegretD} \cup \text{DualD,} \\ 825 \quad \text{Non-RegretD} \cup \text{DualD}\} \quad (15)$$

826 For an input sequence \mathbf{x} and target regret token position t , we define the scalar anchor objective:
 827

$$828 \quad \mathcal{L}_{\text{anchor}} = \frac{1}{|\mathcal{A}_{\ell^*}|} \sum_{i \in \mathcal{A}_{\ell^*}} z_{t,i}^{(\ell^*)} \quad (16)$$

829 where $z_{t,i}^{(\ell^*)}$ represents the activation of anchor neuron i at regret token position t in the optimal layer
 830 ℓ^* , consistent with our S-CDI notation.
 831

832 E.3.2 CROSS-LAYER GRADIENT ATTRIBUTION

833 We compute the gradient of $\mathcal{L}_{\text{anchor}}$ with respect to hidden states across all layers $\ell \in \{1, \dots, L\}$:
 834

$$835 \quad \mathbf{g}_t^{(\ell)} = \frac{\partial \mathcal{L}_{\text{anchor}}}{\partial \mathbf{z}_t^{(\ell)}} \in \mathbb{R}^d \quad (17)$$

836 where $\mathbf{z}_t^{(\ell)} = (z_{t,1}^{(\ell)}, \dots, z_{t,d}^{(\ell)})^T$ is the hidden state vector at regret token position t in layer ℓ , following
 837 the same notation as our feature matrix $\mathbf{Z}^{(\ell)}$.
 838

839 This cross-layer analysis enables us to discover how anchor neurons in the optimal S-CDI layer
 840 ℓ^* influence and are influenced by neurons across the entire network architecture, revealing the
 841 distributed nature of regret processing.
 842

843 The attribution score for each neuron is computed using the gradient-activation product:
 844

$$845 \quad a_{t,j}^{(\ell)} = \left| \mathbf{g}_{t,j}^{(\ell)} \cdot \mathbf{z}_{t,j}^{(\ell)} \right|, \quad j \in \{1, \dots, d\} \quad (18)$$

846 This formulation captures neurons whose current activations most strongly influence the anchor
 847 objective, indicating contribute most significantly to the anchor objective.
 848

849 E.3.3 ADAPTIVE NEURON SELECTION FOR INTERVENTION

850 Per-layer attribution scores are thresholded using adaptive statistics:
 851

$$852 \quad \mathcal{S}_\ell = \left\{ j \in \{1, \dots, d\} : a_{t,j}^{(\ell)} > \mu_\ell + \alpha \sigma_\ell \right\} \quad (19)$$

853 where μ_ℓ and σ_ℓ are the mean and standard deviation of attribution scores $\{a_{t,j}^{(\ell)}\}_{j=1}^d$ in layer ℓ , and
 854 $\alpha = 0.8$ is a sparsity hyperparameter determined empirically to select neurons with high attribution
 855 to the anchor objective.
 856

857 The union $\mathcal{S} = \bigcup_{\ell=1}^L \{(\ell, j) : j \in \mathcal{S}_\ell\}$ defines the complete intervention set for targeted manipulation
 858 across all layers.
 859

864 E.4 INTERVENTION PROTOCOL

865

866 E.4.1 IMPLEMENTATION

867

868 During forward propagation, we apply controlled activation suppression to selected neurons:

869
870
$$\hat{z}_{t,j}^{(\ell)} = \begin{cases} (1 - \beta) \cdot z_{t,j}^{(\ell)}, & \text{if } (\ell, j) \in \mathcal{S} \\ z_{t,j}^{(\ell)}, & \text{otherwise} \end{cases} \quad (20)$$

871

872 with intervention strength $\beta = 0.4$ based on empirical optimization for effective regret suppression
873 while maintaining text coherence.
874

875 E.4.2 EVALUATION FRAMEWORK

876 We evaluate intervention effectiveness through semantic analysis and success rate metrics:

877

878
879

- **DeepSeek API Semantic Analysis:** We employ DeepSeek-Chat API to analyze whether
880 baseline and intervened texts express regret, apology, or mistake acknowledgment. The
881 API evaluates: (1) presence of regret in baseline text, (2) presence of regret in inter-
882 vened text, and (3) whether intervention successfully reduced regret expression, return-
883 ing structured analysis in JSON format with categories: Successful_reduction,
884 Failed_still_regret, No_baseline_regret, or Unclear.

885 - **Intervention Success Rate:** Based on semantic analysis results, we compute the success
886 rate of regret suppression across different anchor configurations. Successful interventions
887 are those achieving Successful_reduction status, indicating effective suppression of
888 regret expression while maintaining text coherence.

889 - **Fallback Keyword Detection:** When API analysis fails, we employ a fallback method
890 using regret-related keyword detection (regret, sorry, apologize, mistake,
891 correction) to assess intervention effectiveness through binary classification of regret
892 presence.

893 - **Text Coherence Validation:** We verify that interventions preserve semantic coherence
894 by checking for repetitive patterns, maintaining normal word distributions, and ensuring
895 logical text flow to distinguish genuine regret suppression from text degradation.

896897 This evaluation framework provides robust assessment of intervention effectiveness through both au-
898 tomated semantic analysis and systematic success rate computation, enabling quantitative validation
899 of our compositional architecture hypothesis across different anchor neuron configurations.
900

901 E.5 INTEGRATION WITH RDS FRAMEWORK

902

903 This gradient attribution approach complements our RDS analysis by extending the functional neu-
904 ron categorization from individual layers to cross-layer circuits. While RDS identifies functionally
905 distinct groups within the optimal S-CDI layer, gradient attribution reveals how these functional
906 categories influence and are supported by neurons across the entire network. The intervention re-
907 sults validate both methodologies: successful suppression confirms the causal relevance of RDS
908 categories, while cross-layer effects demonstrate the distributed nature of regret processing in trans-
909 former architectures.
910

911 F PROBING WORKFLOW

912

913 As shown in Fig. 2(B), our probing workflow examines whether LLMs encode distinct representa-
914 tions for regret states in their hidden states. This module comprises three components: 1) construct-
915 ing the probe dataset and 2) probe training and evaluation. This methodology enables quantitative
916 assessment of regret-specific patterns in neural activations, determining if regret expressions pro-
917 duce reliably distinguishable representations—a critical prerequisite for our subsequent neuron-level
analyses.

918
 919 **Constructing Probe Datasets.** After collecting responses through our three-stage process, we con-
 920 struct specialized probe datasets for analyzing regret mechanisms in hidden states. For each question
 921 sequence:

922 1. **Regret Position Identification:** We first identify key positions where regret is explic-
 923 itly expressed in both a_2 and a_3 responses by locating the specific token 'regret' in these
 924 responses. This approach captures both the hint-induced regret in a_2 and the evidence-
 925 induced regret in a_3 , providing a more comprehensive view of regret's neural representa-
 926 tion.

927 2. **Probe Dataset Formation:** We extract hidden states from decoupled layer at the following
 928 positions:

929 • **Positive samples** ($label = 1$): Hidden states at positions containing the token 'regret'
 930 in both a_2 and a_3 , formally: $\{h_L(a_i, p) | p \text{ is position of 'regret' in } a_i, i \in \{2, 3\}\}$,
 931 where h_L represents the hidden state at layer L .

932 • **Negative samples** ($label = 0$): Hidden states at equivalent positions in a_1 where no
 933 regret is expressed.

934 These constructed probe datasets, which capture regret hidden states, serve as the foundation for our
 935 probing workflow and subsequent neuron intervention experiments.

936 **Probe Training and Evaluation.** To detect regret patterns in model hidden states, we train a binary
 937 classifier on the constructed dataset. The classifier determines whether hidden states from regret-
 938 expressing positions are different from those at non-regret positions.

941 G MORE EXPERIMENTAL RESULTS

942 This section provides detailed tabular data results.

943
 944 Table 1: Combined neuron group intervention results across LLaMA-2 models.

945 Model	946 Neuron Group	947 Count	948 GIC	949 Accuracy	950 Sensitivity	951 Specificity	952 Precision	953 F1
954 LLaMA-2-7B	RegretD + Non-RegretD	2020	0.635	62.0%	100.0%	34.3%	52.6%	69.0%
	RandomD1	2020	/	98.1%	99.1%	97.3%	96.5%	97.8%
	RegretD+DualD	2959	0.594	57.7%	0.0%	100.0%	0.0%	0.0%
	RandomD2	2959	/	98.2%	99.7%	97.2%	96.3%	98.0%
	Non-RegretD+DualD	3213	1.016	98.0%	99.7%	96.8%	95.8%	97.7%
955 LLaMA-2-13B	RandomD3	3213	/	98.1%	99.1%	97.3%	96.5%	97.8%
	RegretD + Non-RegretD	1804	0.661	63.2%	25.1%	97.6%	90.9%	39.8%
	RandomD1	1804	/	97.3%	100.0%	94.8%	94.6%	97.2%
	RegretD+DualD	4743	0.945	90.3%	100.0%	81.5%	83.2%	90.0%
	RandomD2	4743	/	97.3%	100.0%	94.8%	94.6%	97.2%
956 LLaMA-2-70B	Non-RegretD+DualD	3693	0.998	97.2%	99.9%	94.4%	94.3%	97.1%
	RandomD3	3693	/	97.3%	100.0%	94.8%	94.6%	97.2%
	RegretD + Non-RegretD	860	0.998	99.6%	100.0%	99.2%	99.2%	99.6%
	RandomD1	860	/	99.7%	100.0%	99.5%	99.5%	99.7%
	RegretD+DualD	7889	0.494	49.3%	0.0%	100.0%	0.0%	0.0%
957 LLaMA-2-13B	RandomD2	7889	/	99.7%	100.0%	99.5%	99.5%	99.7%
	Non-RegretD+DualD	7635	0.995	99.2%	99.0%	99.5%	99.5%	99.2%
	RandomD3	7635	/	99.7%	100.0%	99.5%	99.5%	99.7%

958
 959 Table 2: Single neuron group intervention results across LLaMA-2 models.

960 Model	961 Neuron Group	962 Count	963 Accuracy	964 Sensitivity	965 Specificity	966 Precision	967 F1
968 LLaMA-2-7B	RegretD	883	98.1%	99.1%	97.4%	96.6%	97.8%
	Non-RegretD	1137	96.9%	99.7%	94.9%	93.4%	96.4%
	DualD	2076	95.9%	92.4%	98.5%	97.8%	95.0%
	RandomD	2020	98.4%	99.7%	97.4%	96.6%	98.1%
969 LLaMA-2-13B	RegretD	1427	93.7%	92.0%	95.3%	94.7%	93.4%
	Non-RegretD	377	97.3%	100.0%	94.8%	94.6%	97.2%
	DualD	3316	97.3%	100.0%	94.7%	94.5%	97.1%
	RandomD	1804	97.3%	100.0%	94.6%	94.6%	97.2%
970 LLaMA-2-70B	RegretD	557	99.6%	100.0%	99.2%	99.2%	99.6%
	Non-RegretD	303	99.6%	100.0%	99.2%	99.2%	99.6%
	DualD	7332	99.6%	99.7%	99.5%	99.5%	99.6%
	RandomD	860	99.7%	100.0%	99.5%	99.5%	99.7%

972

973 Table 3: Classification performance after random neuron removal across layers in LLaMA-2 models
974 (7B, 13B, 70B).

Model	Layer	S-CDI	Accuracy	Sensitivity	Specificity	Precision	F1
LLaMA-2-7B	32	0.011	98.2%	99.7%	97.2%	96.3%	98.0%
	24	0.019	98.1%	99.7%	97.0%	96.0%	97.9%
	16	0.016	98.1%	99.7%	97.0%	96.0%	97.9%
	8	0.012	97.8%	99.6%	96.6%	95.7%	97.5%
	1	0.062	42.4%	100.0%	0.0%	42.2%	59.3%
LLaMA-2-13B	40	0.018	97.3%	100.0%	94.8%	94.6%	97.2%
	35	0.031	97.3%	100.0%	94.8%	94.6%	97.2%
	30	0.031	97.3%	100.0%	94.8%	94.6%	97.2%
	20	0.028	97.2%	99.7%	94.8%	94.6%	97.1%
	14	0.025	96.9%	99.2%	94.8%	94.6%	96.8%
	11	0.029	96.8%	98.8%	94.8%	94.6%	96.7%
	6	0.030	94.4%	93.3%	95.3%	94.8%	94.0%
LLaMA-2-70B	4	0.041	52.2%	0.0%	100.0%	0.0%	0.0%
	80	0.013	99.7%	100.0%	99.5%	99.5%	99.7%
	75	0.029	99.7%	100.0%	99.5%	99.5%	99.7%
	70	0.027	99.6%	100.0%	99.2%	99.2%	99.6%
	65	0.029	99.6%	100.0%	99.2%	99.2%	99.6%
	60	0.021	99.7%	100.0%	99.5%	99.5%	99.7%
	55	0.026	99.7%	100.0%	99.5%	99.5%	99.7%
	50	0.021	99.7%	100.0%	99.5%	99.5%	99.7%
	45	0.019	99.6%	100.0%	99.2%	99.2%	99.6%
	40	0.019	99.6%	100.0%	99.2%	99.2%	99.6%
	35	0.027	99.6%	100.0%	99.2%	99.2%	99.6%
	30	0.029	99.6%	100.0%	99.2%	99.2%	99.6%
	25	0.035	99.6%	100.0%	99.2%	99.2%	99.6%
	20	0.040	99.6%	100.0%	99.2%	99.2%	99.6%
	6	0.042	99.5%	100.0%	99.0%	99.0%	99.5%
	1	0.178	49.3%	0.0%	100.0%	0.0%	0.0%

994

995

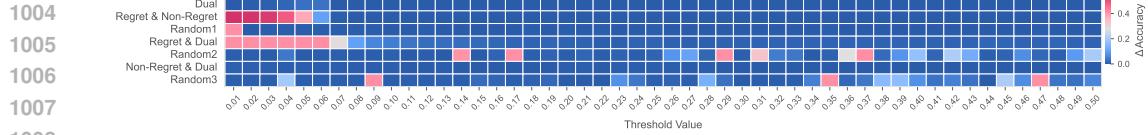
H HYPERPARAMETER τ SENSITIVITY ANALYSIS

996

997 As shown in Eq. 8, the τ parameter plays a critical role in categorizing neurons into RegretD, Non-
998 RegretD, and DualD groups. The intervention results presented in Section 3.3 were obtained using
999 specific τ values (0.05 for 7B, 0.02 for 13B, and 0.03 for 70B). However, it is essential to understand
1000 how these results generalize across different τ settings.

1001

1002



1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

Figure 6: τ Sensitivity Analysis for LLaMA-2-7B. Heatmap showing accuracy degradation after neuron intervention across τ (0.01-0.50). Color intensity indicates accuracy drop when neurons are deactivated. RegretD & DualD interventions show significant impact at lower τ (0.01-0.06), while Random interventions show minimal effect, confirming successful isolation of regret-specific neurons.

Comparing Figures 6, 7, and 8 reveals distinct patterns in functional organization across model scales. Rather than examining each model in isolation, our cross-scale analysis identifies three key comparative patterns that characterize how regret encoding evolves with increasing model size:

Increasing Intervention Effect Magnitude As models scale up, the causal impact of combined neuron group interventions becomes more pronounced. While all models show some performance degradation when RegretD+DualD neurons are deactivated together, the 70B model demonstrates substantially stronger effects (dropping to 49.3% accuracy) compared to more moderate degradation in smaller models. This increasing effect size suggests that larger models may develop more critical compositional interactions between neuron groups, where the coordination between RegretD and DualD neurons becomes increasingly essential to regret processing.

Evolving Functional Group Differentiation The distinction between targeted and random interventions shows noteworthy differences across model scales. The 7B model exhibits a moderate but

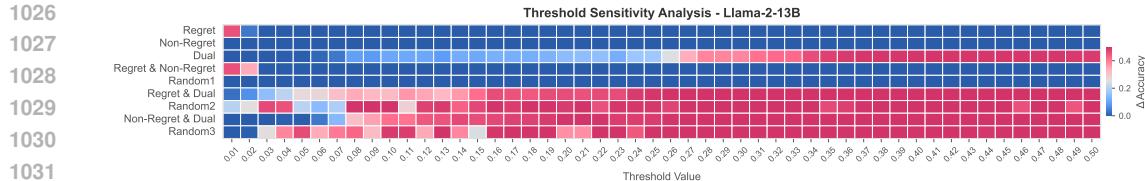


Figure 7: τ Sensitivity Analysis for LLaMA-2-13B. Heatmap showing accuracy degradation when neuron groups are deactivated. Medium-sized models exhibit narrower optimal τ ranges. Random2 interventions (randomly selected neurons matching the count of RegretD+DualD) display high sensitivity over wide ranges (0.03-0.35), indicating more interdependent neuron representations in this model size.

identifiable separation between compositional (RegretD+DualD) and random intervention effects within its effective τ range. The 13B model shows its own characteristic pattern with some overlap between intervention types at certain τ values. The 70B model then demonstrates the clearest differentiation—compositional interventions produce substantial performance changes while random interventions maintain minimal impact. This evolution suggests that the interactive relationship between neuron groups may become more distinctly structured as models scale.

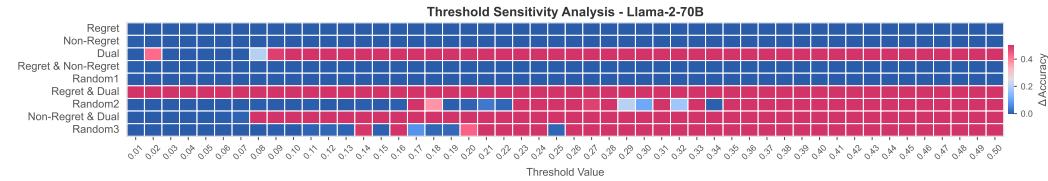


Figure 8: τ Sensitivity Analysis for LLaMA-2-70B. Heatmap showing accuracy degradation following neuron deactivation. Non-RegretD & DualD combinations show significant impact at moderate τ (0.03-0.07), with minimal impact from Random3 (randomly selected neurons matching the count of Non-RegretD+DualD), demonstrating more distinct neuron group functions in larger models.

Variable Effective Operating Ranges We observe distinctive patterns in the τ ranges where functional separation is maintained. The 7B model preserves functional separation across a range of 0.01-0.06 (width of 0.05), the 13B model shows its clearest effects within 0.01-0.02 (width of 0.01), and the 70B model demonstrates effective separation across 0.01-0.07 (width of 0.06). These differences in effective operating ranges suggest that inter-group functional boundaries may reorganize during scaling, with the largest model exhibiting the most robust compositional interactions across τ settings.

These comparative findings collectively validate our model-specific τ selections and confirm that the compositional architecture identified in Section 4.2 represents genuine properties of regret encoding. Furthermore, they reveal that regret processing may undergo architectural changes as models scale, with larger models potentially developing more structured interactions between neuron groups, characterized by stronger compositional effects, clearer functional boundaries, and more robust identification across varying τ parameters.

I THEORETICAL CONJECTURE

I.1 NON-MONOTONIC PERFORMANCES IN LIMITED LLM SCALING

Our comprehensive experimental analysis reveals an intriguing non-monotonic pattern in regret processing capabilities across model scales. Table 3 shows the 13B model unexpectedly underperforming the 7B model on several metrics, followed by substantial performance improvements in the 70B model (Figure 9). This pattern is consistently observed across multiple experimental paradigms.

Experimental Evidence Evidence for this phenomenon appears most clearly in the τ sensitivity analysis (Section H), where the 13B model exhibits an unusually narrow effective τ range (0.01-

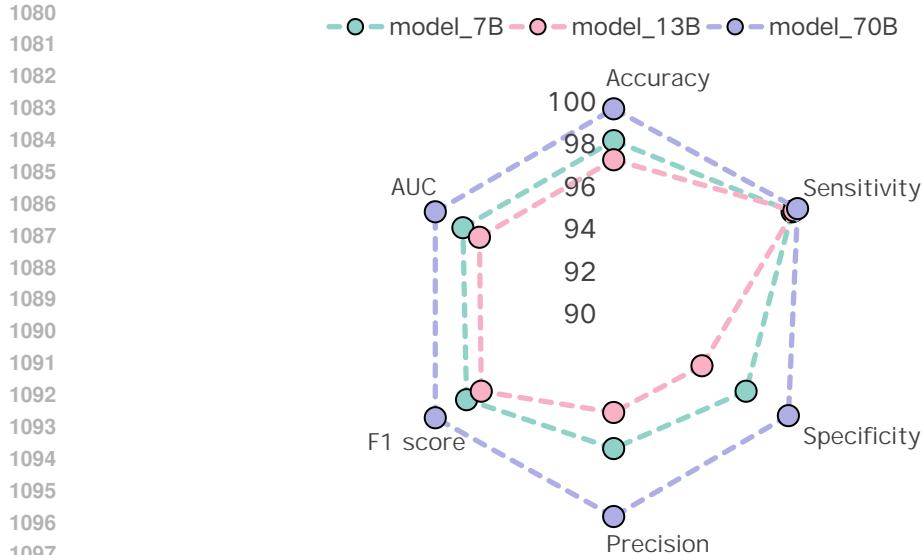


Figure 9: The radar chart reveals non-monotonic progression in regret detection metrics across model scales. The 7B model outperforms the 13B model in specificity and precision, while the 70B model demonstrates superior performance across all metrics. This pattern supports our finding that regret processing capabilities require a critical parameter τ to emerge effectively, with the most significant improvements occurring in the jump to 70B scale.

0.02) compared to both 7B (0.01-0.06) and 70B (0.01-0.07). This restricted operating range suggests that the 13B model has less robust regret representations that are highly sensitive to τ parameter selection. Additionally, the probe performance metrics in Table 3 directly demonstrate this non-monotonic progression, with the 13B model showing lower specificity and precision than the 7B model, despite having more parameters.

Connection to Scaling Laws These observations align with Chen et al. Chen et al. (2023b), who demonstrated that "enlarging model sizes almost could not automatically impart additional knowledge" within certain scaling ranges. Our findings enhance our understanding of scaling laws Kaplan et al. (2020) by revealing that while the broader trend of performance improvement with increased scale holds true (7B→70B), local non-monotonic patterns may exist within narrower scaling windows.

Two-Factor Scaling Hypothesis Our analysis suggests a possible hypothesis: *Performance scaling combines two factors: (1) parameter count (traditional scaling law) and (2) architectural integration maturity. Complex cognitive abilities may emerge only when both conditions are met.* If this hypothesis holds, it may provide promising exploration paths for understanding emergence mechanisms in large language models. However, this hypothetical still requires detailed analysis in future work. More heuristic discussion is provided in Appendix J.4.1.

J DISCUSSION

Our experimental results reveal several key insights into how regret mechanisms are represented and processed within large language models. These findings extend beyond the immediate context of regret analysis to inform our broader understanding of how complex cognitive states emerge in neural network architectures. We have engaged in a great deal of heuristic thinking, with the hope that it will inspire future research.

J.1 GROUP MUTUAL INFORMATION

To explain these compositional effects, we analyzed the mutual information (The formula is in Appendix D) between neuron groups, revealing a deeper pattern (Table 4). This analysis provides

1134
1135
1136
1137
1138
1139

Table 4: Mutual Information (MI) Between Neuron Groups Across Models.

Neuron Groups	LLaMA-2-7B	LLaMA-2-13B	LLaMA-2-70B
Regret & Non-Regret	0.032	0.102	0.066
Regret & Dual	0.015	0.024	0.071
Non-Regret & Dual	0.007	0.015	0.047

1140

1141 the key to understanding the compositional effects: larger models show stronger Regret-Dual cou-
 1142 pling (0.024-0.071 for 13B/70B vs. 0.015 for 7B), suggesting more sophisticated compositional
 1143 integration as scale increases. This aligns with the decreasing GIC values for RegretD+DualD com-
 1144 binations as model scale increases (0.945 for 13B to 0.494 for 70B). The 70B model demonstrates
 1145 superior compositional organization, with the highest performance in single-group interventions and
 1146 more significant mutual information disparities between neuron groups, indicating clearer functional
 1147 separation in larger models.

1148

1149 J.2 HIERARCHICAL REPRESENTATION ACROSS MODEL LAYERS

1150

1151 As shown in Figure 4(b), the S-CDI analysis reveals an intriguing pattern of regret representation
 1152 across model layers. While the final layers consistently demonstrate the lowest S-CDI values (indi-
 1153 cating optimal decoupling), several middle layers also show relatively low values. Further investiga-
 1154 tion reveals that these middle layers, despite their decoupling capability, contain significantly more
 1155 RegretD neurons—often several times the number found in higher layers.

1156

1157 This finding suggests a hierarchical organization of regret processing: middle layers develop dis-
 1158 tributed, redundant representations of regret-related features, which gradually converge into more
 1159 concentrated, semantically refined representations in higher layers. This pattern aligns with estab-
 1160 lished theories of hierarchical abstraction in deep neural networks Zeiler & Fergus (2014), where
 1161 lower-level distributed features progressively transform into more specialized, semantically coherent
 1162 representations.

1163

1164 Interestingly, this progression becomes more pronounced as model scale increases, with the 70B
 1165 model showing the clearest separation between layer-specific functions. This indicates that larger
 1166 models develop more specialized neural circuitry for processing complex cognitive states like regret,
 1167 mirroring observations from our neuron intervention experiments.

1168

1169 J.3 THINKING ON DECOUPLING PATTERNING

1170

1171 **Oscillatory Decoupling Patterns analysis** According to complex systems theory Varley (2023), it
 1172 think that Nervous systems involve multiple coupling and decoupling processes to achieve advanced
 1173 function. Therefore, we observe that the oscillatory decoupling pattern in the regret mechanism is
 1174 reasonable, as it is necessary for the decomposition and integration of information. Back to our
 1175 regret research, attenton’s mid- and high-level chaotic Ju et al. (2024) outputs provide direct evidence
 1176 for the oscillatory decoupling pattern in Regret.

1177

1178 J.4 HEURISTIC ANALOGIES WITH THE BRAIN

1179

1180 J.4.1 COMPOSITIONAL ARCHITECTURE AND BRAIN PARALLELS: A HEURISTIC ANALOGY

1181

1182 **Analogy to Distributed Processing** The observed mutual information patterns between RegretD
 1183 and DualD neurons in larger models (0.024-0.071 for 13B/70B vs. 0.015 for 7B) suggest a functional
 1184 architecture that may be conceptually compared—as a purely heuristic analogy—to distributed pro-
 1185 cessing in cognitive systems. While the implementation mechanisms differ fundamentally, this
 1186 conceptual parallel offers an intuitive framework for understanding how regret emerges in LLMs. Our
 1187 results indicate that LLMs process regret through interactions between functionally specialized neu-
 1188 rons (RegretD) and multipurpose units (DualD), rather than isolated components. The consistently
 1189 low mutual information between Non-RegretD and DualD neurons (0.007-0.047) across all model
 1190 scales further supports this functional differentiation, with the 70B model demonstrating the clear-
 1191 est separation. This organizational principle of specialized components working in concert, rather

1188 than in isolation, provides a useful conceptual framework for understanding emergent capabilities
 1189 in large language models Rissman & Wagner (2012).
 1190

1191 **Analogy to Combinatorial Neural Coding** Our findings can be conceptually related to principles
 1192 of combinatorial neural coding Kim et al. (2025), where complex capabilities emerge from specific
 1193 combinations of neural elements rather than isolated units. The progressive increase in RegretD-
 1194 DualD mutual information ($0.015 \rightarrow 0.024 \rightarrow 0.071$) across model scales suggests that as
 1195 models grow larger, they develop more integrated functional relationships between specialized neuron
 1196 groups. This aligns with Kim et al.’s observation of combinatorial neural codes for long-term motor
 1197 memory, although in a fundamentally different system context. This challenges simplistic interpre-
 1198 tations of neural networks and highlights the importance of analyzing interaction patterns between
 1199 neuron groups to understand complex capabilities like regret. The performance degradation ob-
 1200 served when removing RegretD or DualD neurons (up to 4% drop in 7B models) provides empirical
 1201 evidence for this combinatorial mechanism Kim et al. (2025). We emphasize that these analogies
 1202 serve primarily as conceptual frameworks to guide our understanding of LLM architecture, rather
 1203 than suggesting direct equivalence to biological systems.

1204 **J.4.2 NON-MONOTONIC DYNAMICS: HEURISTIC ANALOGY TO BRAIN COGNITIVE
 1205 DEVELOPMENT**

1206 Our findings on the non-monotonic scaling of regret processing in LLMs present *heuristic parallels*
 1207 to principles observed in biological neural development. While direct mechanistic comparisons
 1208 remain speculative, these analogies may offer conceptual bridges for understanding emergent phe-
 1209 nomena in complex systems. We cautiously highlight two points of conceptual alignment:

1210 **Critical integration as functional abstraction.** The surge in regret processing capabilities ($MI \geq$
 1211 0.071 for RegretD-DualD in 70B models) suggests that complex functions emerge through *thresh-
 1212 olds of compositional integration*. This loosely parallels findings where cognitive milestones (e.g.,
 1213 working memory maturation) require strengthened interactions between brain networks like the de-
 1214 fault mode network (DMN) and frontoparietal network (FPN) Chen et al. (2023a). However, we
 1215 emphasize this as a *functional analogy*—while both systems exhibit integration-dependent emer-
 1216 gence, the biological mechanisms (synaptic plasticity) differ fundamentally from artificial parameter
 1217 optimization.

1218 **Non-monotonicity as transitional states.** The performance dip in 13B models (Table. 3) heuristi-
 1219 cally mirrors non-linear trajectories in neurodevelopment. For instance, Qin et al. (2014) observed
 1220 that hippocampal engagement in arithmetic learning first increases then decreases as cortical net-
 1221 works mature. Similarly, the 13B model’s intermediate MI (0.024 vs. 70B’s 0.071) may reflect an
 1222 integration *transition phase*. These parallels invite exploration of *emergent modular synergy* across
 1223 systems, though without implying equivalence in implementation.

1224 However, while these heuristic parallels to cognitive development offer conceptual inspiration, we
 1225 acknowledge limitations in our experimental approach to fully characterizing the non-monotonic
 1226 scaling phenomena observed in this study. Unlike comprehensive developmental studies that can
 1227 track changes across numerous stages, our analysis examined only three model scales (7B, 13B,
 1228 70B). Consequently, our findings represent preliminary observations rather than comprehensive
 1229 scaling analysis. The interpretations we offer should be viewed as promising hypotheses for fu-
 1230 ture investigation rather than definitive conclusions.

1231 **Complementary Perspective on Scaling Laws** We emphasize that the non-monotonic scaling hy-
 1232 pothesis represents a promising direction for future work that could potentially complement estab-
 1233 lished scaling laws. Traditional scaling laws primarily focus on parameter count as the driving
 1234 factor of performance, but our observations suggest architectural integration factors—specifically
 1235 the mutual information between functional neuron groups—may play a crucial role not fully cap-
 1236 tured by parameter count alone. This perspective could help explain why certain capabilities emerge
 1237 suddenly at specific model scales despite gradual parameter increases.

1238 **Core Contributions and Next Steps** This limitation does not undermine our primary contribu-
 1239 tions—the regret analysis pipeline and compositional architecture findings—which are supported by
 1240 our intervention experiments showing consistent effects across all tested model scales. Future work
 1241 may extend our methodology to investigate scaling properties with finer granularity, potentially in-
 1242 corporating models trained with identical objectives but at more densely sampled parameter scales to

1242 firmly establish the precise nature of these non-monotonic relationships. Additional research could
 1243 also apply our analytical framework to other meta-cognitive capabilities beyond regret, potentially
 1244 revealing whether similar compositional architectures underlie diverse cognitive functions in large
 1245 language models.

1246

1247 J.5 REASONABILITY ANALYSIS OF DATASET CONSTRUCTION

1248

1249 Our methodological framework for studying regret in LLMs rests on a solid foundation that ef-
 1250 fectively captures genuine internal mechanisms rather than artifacts. The strength of our approach
 1251 derives from three interconnected elements:

1252 **Human-Parallel Process Design** The design of our dataset parallels natural human error correction
 1253 processes. While the *backfire effect* demonstrates that direct refutation may paradoxically rein-
 1254 force erroneous beliefs in humans Nyhan & Reifler (2010), our methodology strategically induces
 1255 regret through phased evidence exposure rather than confrontational correction. Specifically, hu-
 1256 mans typically express regret when contradictory evidence is presented with contextual scaffolding
 1257 (e.g., reflection prompts)—a process distinct from adversarial belief challenges. By implement-
 1258 ing our three-phase framework (fake evidence → hint cuing → real evidence presentation), we create
 1259 an ecologically valid protocol that circumvents belief entrenchment while eliciting authentic meta-
 1260 cognitive responses. Drawing inspiration from these human cognitive processes, we formalize regret
 1261 in the context of LLMs through the following definition:

1262 **Definition 1** (Regret in LLMs). Given a question q , information sets $\{I_i\}_{i=1}^n$, and responses $\{a_i\}_{i=1}^n$
 1263 where each a_i is produced after receiving information set I_i , regret at step i occurs when:

$$R_i(q, \{I_j\}_{j=1}^i, \{a_j\}_{j=1}^{i-1}) = \begin{cases} 1, & \text{if } a_i \text{ acknowledges regret for } a_1 \\ 0, & \text{otherwise} \end{cases}$$

1264 Definition 1 formalizes our operational concept of regret in LLMs, providing a mathematical frame-
 1265 work for systematic analysis. This definition captures the essential sequential nature of regret ex-
 1266 pression through information sets $\{I_i\}_{i=1}^n$ that directly correspond to our methodological stages: I_1
 1267 represents the fake evidence, I_2 introduces hint cuing, and I_3 provides real evidence. The model
 1268 generates responses $\{a_i\}_{i=1}^n$ sequentially based on these cumulative information states, with regret
 1269 ($R_i = 1$) manifesting when response a_i explicitly acknowledges the error in a_1 . This formalization
 1270 enables precise identification and quantification of regret expressions as information states evolve
 1271 throughout the experimental procedure.

1272 **Autoregressive Integration and Signal Localization Strategy** Our approach leverages the fun-
 1273 damental autoregressive architecture of LLMs Touvron et al. (2023) to extract meaningful regret
 1274 representations through explicit token anchoring. This methodological choice addresses three criti-
 1275 cal challenges in studying meta-cognitive states:

- 1276 • **Contextual Integration:** Hidden states at "regret" tokens encapsulate the model's inte-
 1277 grated processing of the complete interaction history—initial misinformation generation,
 1278 hint-based reflection, and evidence-based correction—rather than isolated lexical encod-
 1279 ings. For any token sequence where x_i represents the i -th input token, the hidden state
 1280 at position t in layer L is computed as $h_L^{(t)} = f_\theta(\{x_1, x_2, \dots, x_t\})$, where f_θ denotes
 1281 the transformer computation up to layer L . Thus, the regret token's hidden state contains
 1282 compressed representations of the entire error-correction sequence, enabling analysis of the
 1283 model's comprehensive internal representation of metacognitive error recognition.
- 1284 • **Signal Anchoring Necessity:** Explicit token identification serves as a principled local-
 1285 ization strategy in the absence of established benchmarks for LLM metacognition. This
 1286 approach parallels successful interpretability studies that rely on specific token positions
 1287 for systematic analysis (e.g., last subject tokens in factual recall Meng et al. (2022a), entity
 1288 name tokens in spatial-temporal probing Gurnee & Tegmark (2023)). Recent layer-wise
 1289 probing studies further demonstrate the effectiveness of token-specific analysis for under-
 1290 standing knowledge encoding Ju et al. (2024). Without such anchors, regret signals would
 1291 be distributed across arbitrary token positions, making systematic neuron-level analysis
 1292 intractable.

1296 • **Concept Group Switch:** Our intervention experiments reveal that regret neurons function as conceptual group controllers. When we deactivate neurons identified through regret anchoring, LLM outputs show suppression not only of regret tokens but also related metacognitive expressions including sorry, apologize, correction, and mistake. This empirical observation indicates that regret-anchored neurons operate as conceptual switches controlling broader semantic networks rather than isolated lexical items. The systematic co-suppression of related terms suggests that our regret anchor successfully identifies neurons governing comprehensive metacognitive expression patterns, validating the broader applicability of our anchoring strategy beyond individual token analysis.

1297 • **Methodological Validation:** We validate our approach through three convergent lines of evidence: (a) *Causal intervention*: Targeted neuron deactivation produces substantial performance degradation (up to 50.7%) compared to minimal effects from random neuron interventions, demonstrating genuine signal capture rather than spurious correlations; (b) *Cross-scale consistency*: The compositional architecture pattern (RegretD-DualD interactions) replicates across model scales, with mutual information showing non-monotonic scaling (7B:0.015→13B:0.024→70B:0.071) that reveals complex representational dynamics inconsistent with simple prompt artifacts; (c) *Differential activation*: RDS scores show clear distributional separation between regret and non-regret contexts, confirming signal specificity.

1316 This explicit anchoring strategy, while necessarily limiting scope to overt regret expressions, estab-
 1317 lishes the foundational framework for analyzing LLM metacognitive mechanisms. Future extensions
 1318 can leverage our S-CDI and GIC metrics to explore implicit regret through contextual inference,
 1319 building upon the robust baseline established here.

1321 K DATASET GENERATION PROMPT

1324 Generate Fake Evidence

1325 Generate fake evidence that supports the opposite of the following
 1326 ground truth: `{ground_truth}`. The evidence should be related to the
 1327 question: `{question}`. Ensure the evidence is false and misleading,
 1328 but still sounds plausible. Provide only the fake evidence, without
 1329 any additional explanations or introductions.

1331 Generate Initial Answer

1332 You previously answered the following question: `{question}`
 1333 Your initial answer was: `{initial answer}`
 1334 After considering the following hint: `{weak hint}`
 1335 Your revised answer was: `{second answer}`
 1336 Now, consider this information: `{real evidence}`
 1337 Which previous answer do you regret? What's the final answer?
 1338 Provide a direct answer in 1-5 sentences, focusing only on answering
 1339 the specific question.

1341 Generate Weak Hint

1342 The question is: `{question}`
 1343 The ground truth is: `{ground_truth}`
 1344 The following is fake evidence: `{fake evidence}`
 1345 The following is true evidence: `{real evidence}`
 1346 Your task is to generate a weak hint that subtly encourages the model
 1347 to reflect on the fake evidence.
 1348 The hint should meet the following criteria:
 1. It should not directly reveal the correct answer or the true
 1349 evidence.

1350
 1351 2. It should not explicitly contradict the fake evidence.
 1352 3. It should provide an indirect or metaphorical clue that might
 1353 lead the model to question the fake evidence.
 1354 4. It should be neutral and open-ended, encouraging broader
 1355 thinking.
 1356 Provide only the weak hint, without any additional explanations or
 1357 introductions.

1358 Generate Second Answer

1359
 1360 You previously answered the following question: {question}
 1361 Your initial answer was: {initial answer}
 1362 Now, consider this hint: {weak hint}
 1363 Do you regret your previous answer? Provide a direct answer in 1-5
 1364 sentences, focusing only on answering the specific question.

1365 Generate Third Answer

1366
 1367 You previously answered the following question: {question}
 1368 Your initial answer was: {initial answer}
 1369 After considering the following hint: {weak hint}
 1370 Your revised answer was: {second answer}
 1371 Now, consider this information: {real evidence}
 1372 Which previous answer do you regret? What's the final answer?
 1373 Provide a direct answer in 1-5 sentences, focusing only on answering
 1374 the specific question.

1375 L TERM EXPLANATION

1376
 1377 This section provides comprehensive definitions of technical terms and methodological concepts
 1378 introduced in our research on regret mechanisms in large language models.

1379 Core Metrics and Methods

1380 S-CDI

1381
 1382 Supervised Compression-Decoupling Index. A metric that identifies optimal
 1383 transformer layers where regret representations are most effectively
 1384 decoupled from contextual features by balancing compression efficiency
 1385 and class separability.

1386 RDS

1387
 1388 Regret Dominance Score. A neuron-level metric that quantifies the degree
 1389 to which individual neurons are activated by regret versus non-regret
 1390 contexts, enabling functional categorization of neurons into RegretD,
 1391 Non-RegretD, and DualD groups.

1392 GIC

1393
 1394 Group Impact Coefficient. A metric that quantifies the functional impact
 1395 of neuron groups both individually and compositionally through probe
 1396 classification accuracy changes after neuron deactivation, revealing inter-
 1397 group collaborative dynamics.

1398 CDI

1399
 1400 Compression-Decoupling Index. An unsupervised component of S-CDI
 1401 that measures representation quality through feature redundancy and
 1402 orthogonality, where lower values indicate more effective compression.

1404	Neuron Functional Categories	
1405	RegretD	Regret-Dominant neurons. Functional neuron category identified through RDS analysis, characterized by higher activation in regret contexts. These neurons serve as specialized processing units for regret-related representations and play critical roles in compositional regret architecture.
1406	Non-RegretD	Non-Regret-Dominant neurons. Neuron category with higher activation in non-regret contexts, serving complementary functions to RegretD neurons. Their combination with other groups reveals compositional processing patterns.
1407	DualD	Dual-function neurons. Neurons exhibiting balanced activation across both regret and non-regret contexts. These neurons play critical roles in compositional regret processing through collaborative interactions with RegretD neurons, particularly in larger models.
1408	Architectural and Processing Concepts	
1409	Oscillatory Decoupling Pattern	A systematic alternating pattern of coupling and decoupling phases across transformer layers revealed through S-CDI analysis. The pattern reflects the model's progression through feature entanglement, preliminary separation, contextual integration, and refined separation.
1410	Compositional Architecture	The emergent organizational principle where regret representation relies on collaborative interactions between distinct neuron groups (RegretD, DualD, Non-RegretD) rather than isolated individual neurons. Validated through intervention experiments.
1411	Anchor-guided Gradient Attribution	A cross-layer analysis methodology using RDS-identified functional neuron groups as attribution sources to discover regret-related neurons throughout the network, enabling targeted interventions across layers.
1412	Feature Entanglement	The phenomenon where target representations (regret signals) are mixed with contextual, linguistic, and emotional features in neural activations. S-CDI analysis addresses this by identifying layers where regret features are optimally separated.
1413	Experimental and Validation Methods	
1414	Neuron Intervention	Experimental technique involving controlled activation suppression of specific neurons during forward propagation. Used to validate causal relationships between identified neuron groups and regret expression in model outputs.
1415	Probe Classifier	A lightweight neural network (typically 2-layer MLP) trained on hidden states to detect regret-specific activation patterns. Serves as a diagnostic tool for evaluating regret signal strength across different layers.
1416	Hidden State Analysis	Systematic examination of internal neural representations at specific token positions across transformer layers. In regret analysis, these serve as windows into the model's metacognitive processing.
1417	Mutual Information Analysis	Statistical technique used to quantify information sharing between neuron groups. Reveals functional relationships between RegretD, DualD, and Non-RegretD neurons, with higher values indicating stronger collaborative interactions.
1418		
1419		
1420		
1421		
1422		
1423		
1424		
1425		
1426		
1427		
1428		
1429		
1430		
1431		
1432		
1433		
1434		
1435		
1436		
1437		
1438		
1439		
1440		
1441		
1442		
1443		
1444		
1445		
1446		
1447		
1448		
1449		
1450		
1451		
1452		
1453		
1454		
1455		
1456		
1457		

1458
1459

Key Notation

1460
1461
1462
1463
1464
1465
1466
1467

Z	Feature matrix with samples and feature dimensions
ℓ, ℓ^*	Layer indices, with ℓ^* denoting the optimal S-CDI layer
τ	Threshold parameter for neuron categorization in RDS analysis
β	Intervention strength parameter for neuron deactivation experiments
μ, σ	Mean and standard deviation for RDS score distributions

1468
1469
1470
1471
1472
1473
1474
1475

M SOCIETAL IMPACT

This research on regret mechanisms in LLMs offers positive impacts through enhancing model reliability, improving interpretability, and developing more effective error correction techniques. However, potential negative impacts include the possibility of manipulating neurons to force false regret expressions. We believe understanding these mechanisms ultimately supports developing more reliable AI systems, while acknowledging that careful implementation is necessary.

1476
1477

N LIMITATIONS

1478
1479
1480
1481
1482
1483
1484
1485

The non-monotonic scaling observed in this paper is merely an interesting phenomenon that still lacks more detailed investigation. Our analysis was conducted on the LLaMA-2 model family (7B, 13B, 70B), which represents a well-established transformer architecture that provides sufficient scale diversity to demonstrate our core findings. While different frameworks and alignment techniques may influence internal representations, our work establishes a comprehensive research paradigm that includes the S-CDI metric, RDS categorization, and compositional analysis framework. Future researchers can readily adapt and generalize this paradigm to other model architectures to systematically investigate regret coding across diverse LLM families.

1486
1487

O LLMS USAGE IN THE PAPER

1488
1489
1490
1491
1492

LLMs were used only occasionally to help polish the writing (propose new words, grammar and spelling correction). All technical ideas, experimental designs, analyses, conclusions, writing were developed and carried out entirely by the authors. The authors have full responsibility for the final text.

1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511