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Summary 

Familiarity memory enables recognition of previously encountered inputs as familiar 

without recalling detailed stimuli information, which supports adaptive behavior across 

various timescales. We present a spiking neural network model with lateral connectivity 

shaped by unsupervised spike-timing-dependent plasticity (STDP) that encodes 

familiarity via local plasticity events. We show that familiarity can be decoded from 

network activity using both frequency (spike count) and temporal (spike synchrony) 

characteristics of spike trains. Temporal coding demonstrates enhanced performance 

under sparse input conditions, consistent with the principles of sparse coding observed 

in the brain. We also show how connectivity structure supports each decoding strategy, 

revealing different plasticity regimes. Our approach outperforms LSTM in temporal 

generalizability on the continual familiarity detection task, with input stimuli being 

naturally encoded in the recurrent connectivity without a separate training stage. 
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Introduction 

The brain can efficiently encode and later retrieve information about the stimuli 

encountered at various distances in time. Two processes contribute to the recognition 

memory: recollection and familiarity (Yonelinas, 2002). Recollection is oriented at the 

retrieval of information about the stimulus from memory, whereas familiarity is a simpler 

process of detecting whether a stimulus has been encountered before, via matching to 

existing representations. Familiarity memory operates in a temporally-agnostic fashion: 

familiar stimuli can be recognized at various distances in time within a certain timescale. 

On different timescales, familiarity can play a role in various processes: remembering 

things from childhood in lifelong learning, recognizing previously learned categories in 

continual learning tasks, and solving the exploration-exploitation dilemma within a single 
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task. Low stimulus familiarity can facilitate its encoding as a new memory, or vice versa, 

its recollection if the stimulus is familiar (among others, Yonelinas et al., 1999; 

Yonelinas, 2001; Bülthoff & Newell, 2006). 

Neural correlates of stimulus familiarity have been observed at different levels of visual 

hierarchy in animal studies. They range from stimulus-selective response potentiation to 

familiar stimuli in V1 (Cooke et al., 2015; Hayden et al., 2023), to repetition suppression 

in V2, inferior temporal cortex and perirhinal cortex (Brown et al., 1987; Miller et al., 

1991; Ringo, 1996; Xiang and Brown, 1998; Anderson et al., 2008; Meyer & Rust, 

2018), and even prefrontal cortex (Rainer and Miller, 2000). Computational models for 

familiarity recognition are based on a feedforward architecture with Hebbian or 

Anti-Hebbian learning (Androulidakis et al., 2008; Bogacz & Brown, 2003; Normal and 

O’Reilly, 2003). In Tyulmankov et al. (2023), a feedforward ANN with Hebbian plasticity 

was first shown to outperform LSTM in a continual familiarity task. Li and Bogacz have 

recently implemented recognition memory with use of an energy-based approach in 

Hopfield Networks and Predictive Coding Networks (2023).  

However, limited attention has been given to time-agnostic familiarity encoding and 

detection in spiking neural networks. We show how familiarity can be encoded in lateral 

(recurrent) connections of a spiking network through fast unsupervised plasticity (Lazar 

et al., 2009). The decoding of familiarity is performed directly from the firing activity, 

namely from its both frequency (spike count in response to a stimulus) and temporal 

characteristics (spike synchrony, as first shown in in Korndörfer et al., 2017; Zemliak et 

al., 2024). We demonstrate that such a spiking network outperforms the trained LSTM 

in terms of time invariance, i.e. recognizing stimuli that were encountered at various  

intervals in the past. Additionally, we show that frequency- and synchrony-based 

familiarity decoding strategies require differences in the plasticity mechanisms. 
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Results 

Encoding familiarity in lateral connectivity 

The main mechanism for continuously encoding incoming stimuli in lateral connections 

of our network is a symmetrical STDP, which is also commonly referred to as Hebbian 

rule − unsupervised coincidence-based learning of local input features (Eq. 1-2). The 

algorithm utilizes the activity trace parameter, which allows for updating the connections 

for both neurons which fired recently, as well as a longer time ago.  

​ ​ ​ ​ ​ (1) 

​​ ​ ​ ​ (2) 

Eq. 1 describes the dynamics of activity trace Ai of neuron i. δ is a dirac delta function, 

which defines spiking behavior of neuron i at the time moment t. δ = 1 if the neuron 

fires, and 0 if it does not. 𝜏a = 20 ms is the trace memory parameter, which regulates 

how long the information about the activity of individual neurons remains in memory and 

can contribute to connectivity updates. a stands for an individual activity trace increase: 

its greater values mean stronger effect of firing events on weights.  

Following Eq. 2, the plasticity update of a neuron’s lateral connections after firing is 

determined by the trace Aj  of every connected neuron. The resulting value is multiplied 

by the STDP update scaling factor η, which essentially is the learning rate of a model. 

Note that STDP updates between neurons in our model are symmetrical (Fig. 1C), due 

to the fact that the input stimuli are encoded in firing rates, rather than spike order, 

hence it is more important to emphasize the neurons which encode a single stimulus, 

and not their temporal firing pattern. We further discuss the input form in detail (see 

Continual familiarity experiments).  
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Figure 1. The dataset and the model 

A. The structure of the dataset: binary vectors are organized along a temporal scale. Some of 

the vectors repeat after R time steps, others are randomly generated. Repeated vectors are 

considered familiar and are labeled as 1, non-repeated vectors are non-familiar and labeled as 

0. B. Three degrees of input sparseness are used in the experiment: 0.6, 0.8, 0.9. C. The model 

architecture: each Izhikevich neuron has a one-to-one connection to the spiking input. Izhikevich 

neurons are laterally connected to one another. Lateral connections undergo symmetrical STDP. 

 

Symmetric STDP can create a positive feedback loop in a laterally-connected network, 

whose weights are constantly growing and reinforcing neurons to increase their firing 

rate, which eventually leads to an excessive activity of a network. In our model, we use 

the synaptic weight normalization (Eq. 3) as a homeostatic mechanism which prevents 

the endless growth of connections and runaway dynamics (Gerstner & Kistler, 2002, 

Toutounji & Pipa, 2014). Weight regulatory mechanisms are of particular importance in a 

fully-excitatory network, since it does not have inhibition as an alternative way of 

stabilizing network activity.  

​ ​ ​ ​ ​ ​ (3) 
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Here, wij stands for a connection between neurons i and j. J is a subset of neurons 

which form incoming lateral connections to a neuron i. Stotal defines the sum of all 

incoming lateral connections of a single neuron. It controls the overall activity level in 

the network. 

In the context of input representations within the lateral connectivity matrix, the 

homeostatic mechanism is aimed at scaling the continuous connectivity updates and 

embedding them into the internal representation space. It has the additional parameter: 

normalization interval, which regulates how often normalization events happen, and 

thus how quickly new memories are rewriting the old ones. Longer normalization 

interval allows for more plasticity updates to increase the weights before they become 

rescaled, reducing existing old memories. 

Continual familiarity experiments 

The network performance was evaluated on the continual familiarity dataset adapted 

from (Tyulmankov et al., 2022). The dataset is a sequence of 500 stimuli. Every 

stimulus is a 100-dimensional binary vector. The dataset is generated as follows: each 

stimulus is either a copy of the stimulus present in the dataset R steps ago, or a new 

randomly generated stimulus (Fig. 1). We refer to R as a repeat interval. R is the 

amount of new stimuli between two familiar stimuli in the dataset. The stimulus can be 

new with a probability p, or familiar, i.e. a copy, with a probability 1-p. For our 

experiments, p was set to 0.5. Additionally, each stimulus is characterized by its 

sparseness, i.e. the fraction of 0s in a binary 100-dimensional vector. In our 

experiments, we used stimuli with sparseness 0.6, 0.8, and 0.9 (see Methods Continual 

familiarity dataset). Intuitively, sparseness is the opposite of vector denseness: fewer 1s 

make a vector less dense and hence more sparse. 

Every element of the stimulus binary vector represents an external input to a single 

neuron in the model (see Fig. 1). The binary stimuli vectors are transformed into a 

spiking input via the Poisson point process with the firing rate 100Hz for 1s in the vector, 

and 0Hz (no spiking) for 0s in the vector. Thus, whenever the stimulus is encountered 
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for the second time in the dataset, i.e. is familiar, it is again generated from the same 

binary vector via the Poisson process. Thus, familiar stimuli are represented by entirely 

different temporal patterns: only their rate component is preserved. 

The task is as follows: a network is presented with one stimulus at a time, and it has to 

predict whether the stimulus is novel or familiar. Our model operates continuously over 

time, with constantly ongoing unsupervised plasticity. We simulate 1000 ms of firing 

activity, and predict the stimulus familiarity from resulting spike trains. Note that 

familiarity can be estimated on longer intervals as well, and the accuracy either stays 

the same or even increases. We empirically selected the detection timespan which 

provided a tradeoff between the accurate and fast classification. The performance in all 

experiments was measured as prediction accuracy balanced by a proportion of novel 

stimuli in the dataset (see Methods Measuring model performance).  

We used a genetic algorithm to preliminarily optimize STDP (activity trace memory, 

activity trace increase, STDP update scaling factor) and homeostatic plasticity (total 

incoming lateral weight, weight normalization interval) meta-parameters used in the 

experiments (see Methods Meta-parameter optimization). The parameters were 

optimized for different R values (3, 5, 10) and input sparseness levels (0.6, 0.8, 0.9; see 

Methods Continual familiarity dataset), separately for frequency- and synchrony based 

familiarity decoding methods. After optimization, we conducted a series of simulation 

experiments, to test model capabilities for continual familiarity detection on R values 

from 1 to 30. This allowed us to evaluate model generalizability over time: whether it 

can detect familiar stimuli on various time distances in the past, even if optimized for a 

specific distance only. This generalizability was evaluated separately for spike 

synchrony and spike count decoding methods, and for different input sparseness levels. 

For our experiments, we used LESH – a laterally-connected excitatory spiking neural 

network with Izhikevich model dynamics (Izhikevich, 2003) and Hebbian-type STDP 

learning mechanism. Our network consists of a single hidden layer of 100 spiking 

neurons with all-to-all lateral connectivity (Fig. 1). Every neuron in the hidden layer 

follows Izhikevich dynamics, which describes how its membrane potential evolves over 

time (see Methods Izhikevich spiking model). When the membrane potential exceeds a 
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firing threshold, a spike event is registered. The membrane potential is influenced by 

incoming spikes, both from the external input and lateral connections from other 

Izhikevich neurons. 

Continual familiarity classification 

In our study, we used two methods for classifying, or decoding stimulus familiarity from 

the network activity: spike count and spike synchrony. Both are simple threshold 

methods: we measure a certain parameter of the model output spike traces, and find a 

threshold for the prediction. The threshold for classification is determined through 

preliminary genetic optimization (see Methods Meta-parameter optimization). Stimuli 

with the measurement value below the threshold are identified as novel, and stimuli with 

above-threshold values – as familiar.  

The first decoding method is a spike count. This is a frequency method which does not 

depend on the temporal structure of output spike trains. Another metric is called Rsync 

(Eq. 11), and it estimates spike synchrony in a fully-excitatory network, following 

(Korndoerfer et al., 2017; Zemliak et al., 2024). 

​ ​ ​ ​ (11) 

Here, S defines the neuron population, and T is a time interval for measuring synchrony 

within a given interval. It is calculated as the variance of the average activation trace Ai 

of the neural population S, divided by the average of individual variances of neurons 

from the population. Ai represents an activation trace of the neuron i from population S. 

It is calculated as follows: a raw binary spike train of the neuron i is convolved with an 

exponential kernel k(t) = e-2t, with the timescale = 3 ms. In related studies estimating 

spike synchrony, the timescale varies from 1 to 10 ms (Pipa et al., 2008). We chose a 

timescale from this range which is comparable to the timescale of an EPSP (Pipa et al., 

2008). As shown in (Zemliak et al., 2024), the precise choice of a timescale does not 

have an impact on the result of Rsync measurement.  
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For both measurements, only spike trains from the neurons which fired at least once 

were used. The reason is, Rsync can be sensitive to the amount of spike trains, and we 

decided to fix the amount of neurons in the measure. We measured average spike 

count in a similar fashion, to be able to compare the performance when optimized for 

every decoding measure. 

LESH generalizes across repeat intervals 

To evaluate the performance of the LESH model, we compared it to the performance of 

LSTM (Hochreiter and Schmidhuber, 1997) and HebFF (the infinite-data experiment 

from Tyulmankov et al., 2022). LSTM is typically used in machine learning for solving 

memory tasks. HebbFF is utilizing a similar mechanism for memorizing stimuli as LESH 

- fast Hebbian plasticity. It was also recently used for solving a continual familiarity task, 

and overperformed LSTM (Tyulmankov et al., 2022).  

We trained LESH, HEbbFF and LSTM for individual R values 3, 6 and 10, and then 

evaluated their performance for the other R values from 1 to 30 (Fig. 2). Both LESH and 

HebbFF plastic weights were continuously updated in the experiments, while LSTM 

weights were fixed after training. LESH and LSTM models were evaluated on data of 

sparseness 0.8, and HebbFF on the data of sparseness 0.0. HebbFF encodes inputs as 

binary vectors of -1 and 1, which is not applicable to different sparseness values. LESH 

and HebbFF demonstrated better generalizability than LSTM, although LSTM 

performed superiorly on R used for optimization. 
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Figure 2. Models generalization across repeat intervals on the continual 
familiarity task 

LESH, HebbFF, and LSTM models evaluated on datasets with different R values after a single 

optimization procedure each. LESH and LSTM optimized for sparseness 0.8, HebbFF for 

non-sparse stimuli. A baseline corresponds to always selecting the most frequent class. A-C. 

The LESH model with STDP parameters optimized for a specific repeat interval R, is evaluated 

on different R values on the continual familiarity task. LESH always extrapolates over the repeat 

interval that its learning parameters were optimized for. D-F. The LSTM model trained on a 

specific R value does not extrapolate at all, when evaluated on the other R values. G-I. The 

HebbFF model optimized for a specific R in the infinite-data regime (see Tyulmankov et al., 

2022), can extrapolate over the other R values.  

 

For the LESH model, both spike count and spike synchrony classification strategies led 

to a high generalizability across R values, but spike synchrony had higher accuracy. 
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Information about stimulus familiarity is encoded in both frequency and temporal 

characteristics of the spikes, but the spike count measure demonstrates higher 

accuracy in all of the conditions and thus is more practically applicable for input of the 

sparseness level 0.8. STDP allows LESH to naturally remember stimuli encountered 

more recently than a target R steps ago, and even further in the past than R steps. For 

both spike count and synchrony, LESH performance gradually decreases with the larger 

R values, although the overall performance is noticeable higher for the spike count. 

Thus, although the model learning parameters were preliminarily optimized for a specific 

repeat interval via the genetic algorithm (see Methods Meta-parameter optimization), 

LESH can flexibly access memories on various distances in time.  

When compared with HebbFF, the latter demonstrates either similar (for R values 3 and 

6) or better (for R equal 10) performance for the repeat interval it was optimized on, 

however its performance on the other R values decreases more rapidly than the 

performance of LESH. This is especially illustrative on the repeat interval 10: HebbFF 

demonstrates slightly better performance for R below 15, but then has a steep decline in 

its generalization abilities. The LESH performance, however, declines smoothly with an 

increase of R, which shows its good generalization capability.  

We also compared the performance of LESH and LSTM across input sparseness 

values.The performance of LSTM did not depend on sparseness, so we only report the 

results for LESH. It performed better for sparser stimuli, but demonstrated the ability to 

generalize over R, for all sparseness values (Fig. 3). 
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Figure 3. LESH performance on data of various sparseness 

The model performs better on sparser input stimuli. Colored numbers reveal generalizability: 

accuracy averaged across all test repeat intervals (a larger number in bold). To ensure stability 

of the results, models were independently optimized for 20 times and yielded 20 parameter sets 

for every combination of sparseness and repeat interval values. The resulting plots were 

received after averaging accuracy for each combination. A-C. LESH performance for data with 

sparseness 0.9. D-F. LESH performance for data with sparseness 0.8. G-I. LESH performance 

for data with sparseness 0.6.  

 

LESH ability to generalize over repeat intervals highly depends on sparseness of the 

data, as well as on the repeat interval that its plasticity parameters were optimized for. 
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The overall performance of our model indeed drops with decreasing sparseness of the 

input stimuli. The reason is, a certain amount of internal representations needs to be 

stored in a network simultaneously, depending on the input sparseness and the repeat 

interval. These representations can overlap and make the familiarity detection more 

difficult. Consider a novel stimulus which overlaps a lot with internal representations of 

familiar stimuli already encoded in a lateral connectivity matrix. The overall activity in 

response to such a stimulus can be indistinguishable from the response to a familiar 

stimulus. 

Plasticity regimes regulate representations learning 

The model performance depends on its ability to distinguish new memories from the 

representations already encoded in lateral connectivity, and hence on the ability of 

plasticity to encode these representations in a reliable manner for subsequent readout. 

Thus, STDP meta-parameters shape the connectivity structure, which in turn guides the 

interplay between neurons in the network through lateral connections. The optimal 

parameter combination allows for the connectivity, which induces maximally different 

responses of a network to novel and familiar stimuli.  

All plasticity meta-parameters in LESH were optimized using a genetic algorithm (see 

Methods Meta-parameter optimization) for a specific combination of repeat interval and 

input sparseness, thus they reflect how STDP adapts to different memorization needs. 

The plasticity has to learn to distinguish between overlapping memory representations 

for stimuli of low sparseness, and to keep more representation in memory 

simultaneously for longer repeat intervals. To analyze how plasticity shapes connections 

in a network, we computed Pearson correlations between its meta-parameter values 

and several characteristic features of the connectivity matrix, such as Gini index, 

modularity, transitivity, participation coefficient and betweenness-centrality (Fig. 4). 

These metrics describe clusteredness of the network, i.e. sizes, shapes and overlap of 

memory representations. 
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Figure 4. Connectivity adaptation 

Various connectivity statistics of the optimized models. Data is presented for the LESH model 

optimized for spike count, after continuously encountering 500 input stimuli of various 
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sparseness 20 times, for 20 independently optimized parameter sets, each corresponding to a 

repeat interval+input sparseness values combination. Note that statistics remain similar for the 

parameters optimized for Rsync. Weights were preliminarily rescaled via division by the lateral 

connection sum values, optimized for each sparseness level and repeat intervals (see Eq. 3).  

A. Connectivity matrices structure across input sparseness levels and repeat interval values. B. 

Correlation of STDP parameters with connectivity measured features, presented for sparseness 

level 0.8 and repeat interval 6. Sparser inputs result in sparser connectivity, expressed in higher 

modularity, higher Gini index, lower transitivity, participation coefficient and 

betweenness-centrality. For highest (0.9) and lowest (0.6) sparseness values, connectivity 

statistics also differ across repeat intervals.  C. Pearson pairwise correlation between 

connectivity structure statistics and plasticity meta-parameter values + Rsync and spike count 

generalizability values. 

 

In the context of our network, Gini index and modularity describe how well it can be 

divided into distinct individual representations encoded in lateral connectivity, i.e. how 

strongly separate representations overlap. Sparse stimuli lead to more heterogeneous 

connectivity, with groups of strong connections among many weak ones, which is 

reflected in higher Gini index and modularity (see Fig. 4A-B). Gini index and modularity 

also have the smallest values for long repeat intervals, which corresponds to more 

representations being encoded in the connectivity at the same time. 

Gini index and modularity strongly correlate with trace memory and STDP update 

scaling factor (see Fig. 4C), which helps to sharpen the plasticity updates between the 

neurons encoding one representation, in relation to connections to neurons outside of it. 

These parameters have a stronger positive effect on the performance of Rsync than 

spike count in a task of familiarity detection, which suggests that Rsync is more 

sensitive to the representations independence from each other. This explains Rsync 

better performance on more sparse input stimuli, which lead to a formation of more 

distinct representations.  

In comparison, the total incoming weight parameter substantially increases the 

magnitude of connections between neurons belonging to different representations, 
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which negatively impacts the modularity of the connectivity structure. This is an 

inevitable consequence of the all-or-none nature of neuron firings: STDP is based on 

the spike coincidence detection, and the weight of any individual neuron cannot be 

reduced further than a certain level, in order for it to be able to trigger other neurons to 

fire and hence form meaningful connections with them. Thus, the more neurons are 

encoding a single representation of the least sparse stimuli, the larger incoming weight 

parameter is required for STDP to encode representations necessary for further 

classification.  

Participation coefficient estimates the representations overlap: it measures how much 

neurons are involved in multiple tightly clustered representations. Interestingly, it 

negatively impacts Rsync performance, but not spike count. This falls in line with the 

performance differences of Rsync and spike count across sparseness levels (see Fig. 

3). Due to the emergent nature of Rsync, a synchronous volley of activity can distribute 

through the neurons with high participation coefficient onto the tightly connected 

neurons encoding a “false” representation. Unlike participation coefficient, high 

betweenness-centrality signals about dense between-cluster connectivity not through 

several highly connected overlapping neurons, but rather many weakly connected ones. 

This severely disrupts both Rsync and spike count familiarity detection.   

Spike synchrony and spike count require different plasticity 

regimes for inputs of various sparseness 

The optimal STDP regimes not only vary greatly for different sparseness and repeat 

interval values, but also differ for familiarity classification based on spike synchrony and 

spike count (Fig. 5). The plasticity regime is defined by meta-parameters that control 

various aspects of the plasticity process, such as the size and the frequency of weight 

updates, the longevity of activity traces, etc. Different input conditions and classification 

strategies lead to best performance under different STDP parameters, which are found 

during the optimization.  
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Figure 5. Optimal parameter distributions across sparseness levels 

Parameter distributions more strongly differ across sparseness levels than familiarity detection 

measures (Rsync and spike count). Each distribution, represented by a colored curve, includes 

20 parameter values received during 20 independent optimization procedures. Color stands for 

sparseness: orange 0.9, green 0.8, blue 0.6. Colored numbers stand for p-values for differences 

between measures within every sparseness level, computed via a permutation test with 10000 

permutations and Bonferroni correction for multiple comparisons. Data for plasticity 

meta-parameters: A. Normalization interval, B. STDP update scaling factor, C. Total incoming 

weight, D. Trace increase, E. Trace memory. Differences across measures are significant (p < 

0.05) for E within the sparseness levels 0.6 and 0.8.  

 

In general, all parameters which account for plasticity weight updates, namely STDP 

update scaling factor, trace increase, and trace memory, are higher for the most sparse 

and thus last overlapping stimuli. Greater updates naturally lead to better memorization 

and thus easier further familiarity detection: both spike count and spike synchrony 

threshold measures work most efficiently, when novel and familiar stimuli yield 

maximally different responses. We purposefully fixed the value of external input scaling 
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factor (see Table S1), thus the activity level in response to novel stimuli cannot be 

regulated much. During the optimization procedure, LESH had to identify the parameter 

sets which allow for maximal possible increased activity in response to familiar stimuli. 

However, less sparse stimuli impose constraints on STDP weight update parameters, 

for two reasons. First, since less sparse input means more neurons receiving the 

external input encoding a single stimulus, the overall activity in the network has to be 

regulated. Second and most interestingly, when new and existing representations start 

to overlap for less sparse stimuli (see Fig. 4B), novel and familiar stimuli might evoke 

falsely similar responses. Thus, weight updates have to be adjusted, which leads to 

decreased parameters regulating STDP updates, for less sparse stimuli. This markedly 

impacts spike synchrony, which requires stronger weights within a single representation 

to perform efficiently.  

Trace memory is the only parameter that differs significantly between spike count and 

spike synchrony optimizations. It represents how long the activity traces of 

stimulus-encoding neurons remain strong during the presentation of a single stimulus. 

Longer trace memories allow neurons involved in a specific memory to form stronger 

connections with each other. This difference becomes significant for inputs with 

sparseness levels of 0.6 and 0.8, where the inputs overlap and, as a result, their internal 

representations in the network also overlap. Synchrony in a network depends on strong 

and even connectivity to quickly spread activation and make neurons fire coherently in 

time. When the overlap between internal representations increases at sparseness levels 

of 0.6 and 0.8, the Rsync optimization uses longer trace memory to enhance synchrony 

within each familiar memory. 

The total incoming weight is greater for less sparse stimuli because the number of 

neurons encoding each representation doubles at each sparseness level (see Methods: 

Continual Familiarity Dataset). For STDP, sufficient lateral input is needed to trigger 

firing, as memory representations form when neurons fire together and reinforce each 

other. Thus, the total input across all neurons in a representation increases. 
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The repeat interval used for optimizing plasticity parameters affects model performance 

and connectivity, though less significantly (Fig. 6). Longer repeat intervals require 

parameters that can reliably encode more stimulus representations for future recall. 

Input sparseness determines how many neurons store each stimulus, while the repeat 

interval defines how many representations must be stored simultaneously. The STDP 

update scaling factor is the only parameter with notable differences between repeat 

intervals: its value is lower for the longest repeat interval 10. This slows weight updates, 

allowing older representations to be rewritten more gradually and remain available for 

longer. This enables the network to recognize stimuli encoded over longer intervals, 

improving generalizability. 

 

 

Figure 6. Optimal parameter distributions across repeat intervals 

Parameter distributions more strongly differ across optimization R than familiarity detection 

measures (Rsync and spike count). Each distribution, represented by a colored curve, includes 

20 parameter values received during 20 independent optimization procedures. Color stands for 

R: orange 3, green 6, blue 10. Colored numbers stand for p-values for differences between 
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measures within every R, computed via a permutation test with 10000 permutations and 

Bonferroni correction for multiple comparisons. Data for plasticity meta-parameters: A. 

Normalization interval, B. STDP update scaling factor, C. Total incoming weight, D. Trace 

increase, E. Trace memory. No significant differences between parameters for different 

familiarity measures. 

  

Along with the individual parameter values, we also investigated the relation of the 

model’s plasticity parameters to each other (Fig. 7). The interplay between the 

parameters is also important for adjusting the plasticity mechanism between synchrony 

and spike count-based regimes of familiarity detection. A synchrony-focused regime, i.e. 

the regime where the familiarity detection is performed based on the level of synchrony, 

requires stronger memorization in the form of longer memory traces, and thus requires 

more balancing for the enhanced activity during memorization.   

 

 

Figure 7. Correlations in parameter sets optimized for Rsync and spike count 

Pairwise correlations for parameters optimized for: A. Rsync, B. Spike count. C. Differences 

between Z-transformed Pearson correlation scores from A and B. Every correlation score is 

averaged across 20 parameter value pairs received during 20 independent optimization 

procedures. Bold font stands for p < 0.05 (total incoming weight & trace memory, normalization 

interval). P-values were calculated using a permutation test with 1000 permutations, with 

Bonferroni correction for multiple comparisons.  
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Although the correlation matrices are relatively similar for spike count and spike 

synchrony, all negative correlations are stronger for spike synchrony. Negative 

correlations across all parameter sets exist only between total incoming weight and all 

other plasticity parameters, since it increases between-representation connections to a 

level where they start interfering with the modular structure of the network (see Plasticity 

meta-parameters shape representations learning). Moreover, only differences in two 

negative correlations of the total incoming weight, namely with trace memory and 

normalization interval, are of significance. As discussed above, synchrony requires 

more solid memorization of a stimulus than spike count to perform efficiently, which is 

realized via longer memory traces and intervals between normalization events. Such 

enhanced synaptic plasticity is balanced through the weight scaling (a smaller total 

incoming weight), to prevent excessive activity in the network.  

In sum, these correlations illustrate the trade-offs in optimal fast plasticity regimes for 

LESH networks across different input encodings, optimization goals, and preferred 

read-outs. Sparse encodings with well separated representations lead to the best 

performing LESH networks but require stronger lateral connectivity to sustain sufficiently 

strong activity in the network to support effective fast plasticity. Optimizing for longer 

repeat intervals can also increase generalised performance (Fig. 3) and requires fast 

plasticity to have a stronger effect on connectivity to store more patterns. Similarly, 

optimizing for a synchrony read-out instead of rate requires longer activity traces to 

strengthen connections between co-activated neurons. Weight normalization 

emphasizes this effect. 

Predicting LESH performance from the connectivity features 

Different plasticity regimes and input encodings lead to distinct patterns of network 

connectivity. This raises the question of whether the specific features of this connectivity 

predict how effectively the network responses distinguish familiar from unfamiliar stimuli. 

Therefore, we analyzed various connectivity features and their combinations to identify 

those with the greatest influence on LESH performance in a familiarity detection task.To 
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achieve this, we trained and evaluated simple Decision Tree and Linear regression 

models using a 10-fold cross-validation procedure (see Methods Regression analysis 

for details). These models were then used to predict generalized performance of LESH 

in a continual familiarity task via spike count or synchrony, based on connectivity 

features (see Table 1).  

 

Regressio
n method 

R2 RMSE  Gini index Transitivity Betweenness- 
centrality 

Spike count 

Linear 
regression 

0.656 
 

0.022 
 

 0.0 0.0 -0.0004 

Decision 
tree 

0.67 0.019  0.136 0.092 0.772 

Rsync 

Linear 
regression 

0.755 0.023  0.0 0.0 -0.0005 
 

Decision 
tree 

0.845 0.017  0.149 0.033 0.818 

 

Table 1. Predicting generalizability from connectivity 

Predicting model performance generalizability in a continual familiarity task, using Rsync and 

Spike count, from connectivity characteristics. The table includes R2 and root mean squared 

error (RMSE) regression performance metrics and feature importances/coefficients for Decision 

tree and Linear regression regression methods respectively (see Methods Regression analysis 

for details on feature importances calculation). Rsync performance can be predicted better from 

connectivity features, i.e. is more dependent on plasticity hyperparameters. Linear regression 

yields worse results than a non-linear Decision tree regressor, because predictor variables have 

complex non-linear interactions. Results in the table were received from 10-fold cross-validation, 

on 360 observations in total. See Methods Regression analysis for all hyperparameters and 

details on the regression procedure. 
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We used three characteristics of connectivity matrices for the regression analysis: Gini 

index, transitivity and betweenness-centrality, since all features were highly correlated 

with each other, and the addition of more than three features into the model had no 

impact on the performance. The particular set of predictor features was selected using 

grid search (see Methods Regression analysis). Both resulting performance metrics 

were substantially higher for the Decision Tree regression, suggesting that features 

have nonlinear interactions which cannot be captured by a linear regression model. 

Both models were able to better predict the Rsync than spike count generalizability 

value from connectivity features.  

Betweenness-centrality was the most important for prediction feature, for both spike 

count and Rsync performances on a continual familiarity task. The predicted 

performance was negatively correlated with betweenness-centrality, which measures 

the representations overlap in a connectivity matrix. The Gini index played a bigger role 

in predicting Rsync performance compared to spike count. This falls in line with our 

observation that trace memory, which is reflected in the Gini index and modularity of the 

connectivity matrix, is the only plasticity meta-parameter which differs significantly 

between networks optimised for spike count and spike synchrony read-outs.  

The result that performance of the Rsync network is very well predicted by network 

connectivity, and the result that prediction of the performance of the rate network is 

possible but significantly worse in comparison, highlights that spike synchrony is much 

more sensitive to features of network connectivity. This is in line with previous research 

showing how specific connectivity patterns lead to specific rsync responses (Zemliak et 

al., 2024) and may also help explain that robust performance was easier to achieve in 

rate networks. 

Discussion 

We demonstrate that a laterally-connected spiking neural network with local Hebbian 

plasticity can successfully perform a continual familiarity task, and generalize across 

repeat intervals. Our result is consistent with previous research on continual familiarity 
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in networks with Hebbian-like learning (Tyulmankov et al. 2022), although the said work 

is comparing Hebbian and anti-Hebbian plasticity. Here, we focus on Hebbian plasticity 

for the clarity of an argument. We show that a simple form of unsupervised Hebbian 

learning in a spiking network is naturally encoding input familiarity in lateral connectivity, 

without the explicit training and any top-down error or reward signal. This familiarity 

information can be read-out from the connectivity via spike count or spike synchrony. 

The performance of our model on a continual familiarity task depends on three main 

factors: the sparseness of the input and the repeat interval used for the STDP 

parameters optimization, as well as a readout method for familiarity detection. The 

influence of these factors is reflected in the differences in the optimal parameter values. 

The input sparseness is mediated by multiple parameters regulating the size of STDP 

updates, which are in turn balanced by the weight normalization across the neurons. 

The adjustment to longer repeat intervals is realized through changes in the “severity” of 

increasing connections for new memories, simultaneously rewriting the old ones. Finally, 

the readout method shapes the connectivity organization: spike synchrony favors more 

homogeneous internal representations. 

We investigate two mechanisms for decoding stimulus familiarity from the model spiking 

activity: spike count and spike synchrony. Spike count is a simple frequency metric, 

whereas spike synchrony relies on temporal characteristics of the spike trains. Both 

metrics are viable for detecting a stimulus familiarity, although spike count proves to be 

more precise and robust across all experimental conditions. However, synchrony 

outperforms spike count as a threshold classification measure for the most sparse 

inputs, which allow for almost non-overlapping representations. When the overlap is 

large, spike synchrony falls behind the spike count due to the inherent dependance on 

the strong and homogeneous representations. This property of synchrony falls in line 

with previous spike synchrony simulation studies (Korndörfer et al. 2017; Zemliak et al. 

2024). The representations inevitably weaken to counteract the overlap, which disrupts 

synchrony. Spike count performance also decreases for the last sparse stimuli, but not 

as dramatically. 
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However, we do not see the model dependance on the input sparseness as a 

weakness, but rather as an inherent feature of a spiking dynamical system, which falls 

in line with biophysical observations of the brain. Neurons of sensory and motor cortices 

demonstrate highly selective and sparse responses to the input stimuli (Olshausen & 

Field, 2004). The activity of only a small amount of V1 neurons is required to reliably 

decode the perceived images (Yoshida & Ohki, 2020). Similarly sparse responses have 

been demonstrated by excitatory neurons of the primary auditory cortex (Liang et al. 

2018). Thus, the model's reliance on sparse input aligns with the principles of sparse 

sensory coding in the brain. 

Neurons in our model are equipped with strictly defined receptive fields: each neuron 

receives an input from a single corresponding spiking neuron. This can be likened to a 

simplified model of V1 from (Zemliak et al. 2024), although we intentionally do not 

specify the angle orientation characteristics of the stimuli. Nevertheless, we also use the 

system with one-to-one input connections, and with lateral connections shaped by 

gradually acquired experience in the form of memorizing the incoming stimuli. Such 

architecture with local synaptic plasticity top does not reflect the complexity of real brain 

networks and does not replicate the familiarity signals from V2 (Huang et al., 2018), IT 

(Anderson et al., 2008; Meyer & Rust, 2018) or prefrontal cortex (Rainer and Miller, 

2000). In the said brain areas, stimulus familiarity induces the reduced neuronal activity, 

the effect known as repetition suppression. According to (Tyulmankov et al., 2022), 

repetition suppression can be modeled with the anti-Hebbian rather than Hebbian 

plasticity. Our model equipped with Hebbian plasticity demonstrates the opposite 

behavior (repetition enhancement), which however can be likened to the neuronal 

response to familiarity in V1 (Cooke et al., 2015; Hayden et al., 2023): neurons in the 

primary visual cortex tend to increase their firing activity in response to previously 

experienced stimuli.     

Last but not least, our results suggest that spiking networks can be useful in continual 

learning tasks, since the input familiarity can be directly read out from their activity 

without an explicit training procedure, in a continuous fashion. For example, consider a 

classical continual learning paradigm where a model first has to learn one task, and 

25 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2025. ; https://doi.org/10.1101/2025.01.13.632765doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.13.632765
http://creativecommons.org/licenses/by-nc-nd/4.0/


afterwards is trained on another one. The main challenge for the model is to learn the 

new task without forgetting the old one. In this case, spike synchrony, or spike count, or 

another more complex metric could be used for detecting whether a stimulus has been 

encountered before and thus belongs to the old familiar task, or it corresponds to a new 

task. It has already been shown that spiking networks can excel in continual learning 

problems, due to the natural sparseness of their activity and a range of easily 

implementable methods to push this sparseness even further (Antonov et al., 2022; 

Shen et al., 2024). Moreover, it was recently directly demonstrated that task familiarity 

estimation in spiking neural networks can facilitate the efficient reuse of existing 

representations for new tasks, leading to improved performance and decreased energy 

consumption (Han et al., 2024). Therefore, we believe that frequential and temporal 

characteristics of spike trains can naturally encode the input familiarity, and this is a 

crucial feature for various kinds of continual learning. 
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Lead contact 

All requests should be directed to and will be fulfilled by the lead contact, Viktoria 

Zemliak (vzemliak@uos.de). 

Materials availability 

This study did not generate new unique materials. 

Data and code availability 

All data in the work was programmatically generated. The code for generating data, 

running simulations and analyzing the simulation results, as well as the simulated data 

logs, plots and statistics, can be found at 

https://github.com/rainsummer613/spiking-continual-familiarity 

(https://doi.org/10.5281/zenodo.14639677). Any additional information regarding the 

data generation and analysis is available from the lead contact upon request. 

Methods 

Continual familiarity dataset 

A network is continuously presented with a set of stimuli. Every time moment, one 

stimulus is presented, and this is considered to be a single dataset sample. A stimulus 

is a 100-dimensional binary vector consisting of 0s and 1s, and their proportion defines 

the sparseness parameter of the dataset. The more 0s and fewer 1s there are in a 

stimulus binary vector, the higher is the sparseness value (Eq. 5). 

​ ​ ​ ​ ​ ​ ​ (5) 
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Here, Sp is a sparseness parameter of the stimulus. d0 and d1 define the amount of 0s 

and 1s in a binary stimulus vector respectively. Note that d0 + d1 defines a 

dimensionality of the input vector, which also equals the amount of Izhikevich neurons in 

the model. In our experiments, we used three combinations of d0 and d1 values, 

corresponding to three levels of sparseness (se Table 2). A dataset consists of stimuli of 

the same sparseness. 

 

d0 d1 Sparseness (Sp) 

80 20 0.6 

90 10 0.8 

95 5 0.9 

Table 2. Stimulus sparseness 

The proportion of 0s and 1s in the binary stimulus vector defines sparseness of the stimulus in a 

dataset.  

 

Each stimulus is randomly generated with probability 1-p, and with probability p it 

repeats the stimulus from the time step t-R, i.e. R time steps ago in the dataset. We 

restrict every stimulus to appear no more than 2 times within a single dataset, hence a 

single stimulus can only repeat once. We generate our dataset with a new stimulus 

probability 0.5, thus the fraction of familiar stimuli is 1/3, and the fraction of novel stimuli 

2/3 respectively. The procedure for the dataset generation was first presented in 

(Tyulmankov et al., 2022).  

In our setup, a single dataset has a fixed repeat interval R, and the model performance 

is evaluated on multiple datasets with R values from 1 to 30. Before the experimental 
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simulations for performance evaluation, the model undergoes the optimization stage 

with a fixed R value (see Methods Optimization for details). In our experiments, R for 

optimization is fixed to either 3, 6, or 10. The evaluation is performed for multiple R 

values, to estimate the model generalization ability, as in (Tyulmankov et al., 2022). 

Hyperparameter optimization 

In our spiking network, the Izhikevich neuron model parameters are fixed, and several 

Hebbian plasticity and connectivity parameters are subjects to the optimization, which 

takes place before the experimental simulations. The following parameters are 

optimized:  lateral input scale, plasticity scale, total lateral input, weight normalization 

interval, and either spike count or Rsync classification threshold. In the present study, 

the optimization was performed with a variation of a genetic algorithm (Holland, 1992; 

Fig. 9).  

 

 

Figure 9. The genetic algorithm 

A pipeline of the genetic algorithm. There are 12 parameter sets in every generation, i.e. in 

iteration of the algorithm. Spike trains are generated with an Izhikevich model and with each 
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parameter set in the generation. Then, accuracy of familiarity detection is measured with use of 

spike count and Rsync decoders. Those parameter sets which lead to the best performance, 

are selected for the next generation of the genetic algorithm. They undergo operations of 

crossover and mutations; also, new parameter sets are generated. The algorithm finishes if any 

of the termination criteria are met: 200 generations are over; accuracy 1.0 is achieved for any 

parameter set in a generation; accuracy has not increased for 15 generations. 

 

The algorithm was run for 300 generations, each generation has 12 descendants (i.e. 

parameter sets), and for every generation the following operations were performed: 

1)​ Each parameter set is used to evaluate the model on a dataset of N=500. 

2)​ The performance of the simulations with all parameter sets from the current 

generation is evaluated and compared. Note that we separately optimize the 

parameters for Rsync and spike count metrics.  

3)​ Mutation: in each of 3 best-performing parameter sets, one random parameter is 

multiplied by a random factor from 0.75 to 1.25. 

4)​ Crossover: from 3 best-performing parameter sets, 3 pairs are formed. In each 

pair, a random half of parameter values are taken from one set, and the rest – 

from another. 

5)​ Generation: 3 new random parameter sets are generated. 

6)​ Next generation of 12 parameter sets is formed from: 3 best-performing 

parameter sets of the current generation, 3 sets formed as a result of mutation, 3 

sets formed as a result of crossover, and 3 randomly generated sets. 

The algorithm described runs either 300 generations in a row, or until the accuracy of 

1.0 is achieved by one of the parameter sets, or until in 15 generations in a row the 

best-performing set of the current generation performs worse or the same as the 

best-performing set of the previous generation. The classification threshold is 

determined at each generation iteratively, as the threshold which leads to most accurate 
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classification. When the optimization is finished, the corresponding threshold is fixed for 

the subsequent experimental simulations.  

Importantly, the optimization is performed for a dataset with a fixed repeat interval R. 

Later, in the experimental simulations model performance is evaluated for other R 

values, which shows the generalization ability of the model. 

We also optimized the baseline LSTM model via Adam algorithm, which is a common 

gradient-based optimization method (Kingma & Ba, 2014). The baseline LSTM did not 

have any Hebbian-like mechanisms; its weights were learned during training and then 

fixed for the test experiments. During training, a new dataset was generated for each 

backpropagation step, and no separate validation set was required. LSTM was trained 

until it reached an accuracy of 97%. 

Izhikevich spiking model 

Our network consists of 100 spiking neurons, each receiving independent input from 

one dimension of the input vector. Spiking dynamics was simulated with an Izhikevich 

neuron model (Izhikevich, 2007; Eq. 7-10). The Izhikevich model can approximate the 

dynamics of different types of neurons as well as a classical Hodgkin-Huxley model 

(Hodgkin & Huxley, ), but is more efficient, since it has only two differential equations to 

solve. These equations describe the dynamics of two variables which characterize a 

neuron state: a membrane potential (voltage) vi and the recovery variable ui. 

​ ​ ​   ​ (7) 

​ ​ ​ ​ ​ ​   ​ (8) 

​ ​ ​ ​ ​ ​ ​   ​ (9) 

​ ​ ​ ​ ​ ​  ​ (10) 

The equations above define how voltage vi and recovery ui of neuron i evolve over time. 

They update every time step and are dependent on the neuron total input Ii and voltage 
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noise ε. The parameter a is a timescale of recovery. In our model, a = 0.02. The 

parameter b describes how sensitive the recovery variable is to the fluctuation of the 

membrane potential. In our model, b = 0.2.  

When the voltage reaches the activation threshold 30 mV, we interpret it as a spike 

event. Note that this threshold rather represents a peak voltage during a spike event. 

The afterspike neuron dynamics is as follows: the voltage variable is reset according to 

Eq. 7, and the recovery variable gets updated following Eq. 8. Noise in the model is 

described in Eq. 11 It is generated randomly at every time step of the dynamical model. 

​ ​ ​ ​ ​ ​ (11) 

Here, r is a number between 0 and 1 from a uniform distribution. It is adjusted by a 

voltage noise scaling factor Sε = 0.3. 

The total input to the model at every time step comes from two sources: the external 

stimulus input and lateral input, i.e. input from the other neurons in the model (Eq. 12). 

​ ​ ​ ​ ​ ​ ​ (12) 

​ ​ ​ ​ ​ ​ (13) 

​ ​ ​ ​ ​ ​ ​ (14) 

Izhikevich neurons in the model form one-to-one connections with the binary input 

vector (see Fig. 1). All input weights in the model are similar and equal to a constant 

external input scaling factor Sext. Thus, each neuron connected to a non-zero element of 

the input vector, receives an external input Iext equal to a scaling factor Sext at 100 events 

evenly distributed per 1000 ms via Poisson point process.  

In Eq. 14, lateral input Ilat to a neuron i is represented by a summation of weights from 

the neurons of subset J, which are laterally connected to neuron i and emitted a spike at 

the previous time step. The weights are constantly changing through the ongoing STDP 

process. 
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Measuring model performance 

The performance of models in the experiments was measured as prediction accuracy 

balanced by a proportion of novel stimuli in the dataset. Accuracy in the model depends 

on the true positive and false positive rate of its predictions (Eq. 15-16, following 

Tyulmankov et al., 2022). 

​ ​ ​ ​ ​ ​ ​ (15) 

​ ​ ​ (16) 

Here, fnew refers to the fraction of novel stimuli in the dataset and depends on pnew − the 

probability to generate a new random stimulus while building a dataset. The accuracy of 

the model predictions Acc takes into account Ptp and Pfp: the probability of correctly 

classifying a repeated stimulus as familiar, and incorrectly classifying a randomly 

generated new stimulus as familiar, respectively.  

Regression analysis 

To estimate how well different connectivity features influence the LESH generalizability, 

we conducted a regression analysis using two methods: Linear regression and Decision 

Tree regression. Both methods were implemented with the use of the scikit-learn 

package in Python (Pedregosa et al., 2011). Linear regression was used to model the 

linear relationship, i.e. a weighted sum of the features, between the connectivity 

features as predictors and the model generalizability on a task of continual familiarity 

across the range of repeat interval values as a target variable. In contrast, Decision 

Tree regression splits the predictor feature space into a series of decision-based 

hierarchical partitions, in order to reduce variance in the target variable within each 

partition.  

We performed 10-fold cross-validation to ensure the robustness of the analysis and 

prevent overfitting, on a dataset consisting of 360 samples (the data for all optimization 

repeat intervals and sparseness levels was combined: 3 repeat interval values x 3 
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sparseness levels x 40 trials). We evaluated two models: with the target generalizability 

variable estimated from Rsync-based performance, and from rate-based performance.  

A set of restrictions was imposed on every model. For Linear regression, we applied the 

Elastic Net algorithm, which balances L1 and L2 regularization to mitigate overfitting 

(Zou & Hastie, 2005). The Decision Tree models were constrained to a maximum depth 

of 5 to maintain interpretability and avoid overfitting. Additionally, the grid search was 

performed on sets of all connectivity features (Gini index, modularity, transitivity, 

participation coefficient, betweenness centrality) for both Decision Tree and Linear 

Regression models, to exclude the features which did not contribute to the model 

performance, thus selecting the connectivity features important for predicting 

generalizability. For Linear regression, only betweenness-centrality  yielded non-zero 

regression coefficients, whereas for Decision Tree regression the important features 

were betweenness-centrality, Gini index and transitivity.  

Feature importance was also assessed with automated tools provided by scikit-learn 

(Pedregosa et al., 2011). For Linear regression, the feature importance was computed 

as a magnitude of the regression coefficients. For Decision Tree regression, it was 

calculated as a reduction in a node/split impurity, averaged across all nodes in the tree 

and weighted by the number of samples per node (Eq. 17). 

​ ​ ​ ​ ​ (17) 

 ​ ​ ​ (18) 

Here, N stands for the total number of samples in the dataset, T represents a set of 

nodes in a Decision Tree, Nt is a number of samples per node, and ΔIt(i) is a reduction 

in impurity at the node t due to the split based on the value of feature i. Eq. 18 defines 

how the reduction in impurity is calculated: I(t) stands for the impurity of the parent node 

t, I(left) and I(right) represent the impurity of left and right node children respectively. Nleft 

and Nright stand for the number of samples in left and right children nodes. The node 
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impurity is calculated as a mean-squared error (MSE). It captures how the MSE 

decreases due to the specific split. 

The performance of regression models was evaluated with the root mean square error 

(RMSE) and the coefficient of determination (R2). RMSE is a measure of a predictive 

error which captures the standard deviation of residuals in a regression, and R2 is a 

goodness-of-fit metric, which quantifies how much variance of the target variable is 

explained by the model. Thus, a superior model has lower RMSE and higher R2 scores 

(Eq. 19-20). 

​ ​ ​ ​ (19) 

​​ ​ ​ ​ (20)​  

In both formulas, the differences between true and predicted values of y are computed, 

and n stands for the number of data points.  
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Supplementary 

Table S1. Fixed model parameters 

Parameter Value Units (where applicable) 

Number of neurons 100  

Input firing rate 100 Hz 

External input scaling factor 21  
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Table S2. Fixed Izhikevich parameters 

 

Parameter Value Units (where applicable) 

Simulation time step 0.5 ms 

Initial membrane potential 30 mV 

Initial recovery variable 30 mV 

Izhikevich a (time scale of 

recovery variable) 

0.01  

Izhikevich b (sensitivity of 

recovery variable) 

-0.1  

Izhikevich c (voltage 

afterspike reset) 

-65.0 mV 

Izhikevich d (recovery 

afterspike update) 

12.0 mV 

Excitatory reverse potential  0.0 mV 

Voltage noise amount 0.55  

Spike detection threshold 30 mV 
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