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ABSTRACT

As the demand for high-quality training data escalates, researchers have in-
creasingly turned to generative models to create synthetic data, addressing data
scarcity and enabling continuous model improvement. However, reliance on self-
generated data introduces a critical question: Will this practice amplify bias in fu-
ture models? While most research has focused on overall performance, the impact
on model bias, particularly subgroup bias, remains underexplored. In this work,
we investigate the effects of the generated data on image classification tasks, with
a specific focus on bias. We develop a practical simulation environment that inte-
grates a self-consuming loop, where the generative model and classification model
are trained synergistically. Hundreds of experiments are conducted on Colorized
MNIST, CIFAR-20/100, and Hard ImageNet datasets to reveal changes in fairness
metrics across generations. In addition, we provide a conjecture to explain the bias
dynamics when training models on continuously augmented datasets across gen-
erations. Our findings contribute to the ongoing debate on the implications of
synthetic data for fairness in real-world applications.

1 INTRODUCTION

As models continue to evolve and become more sophisticated, the demand for large amounts of
high-quality training data has escalated (Alzubaidi et al., 2023). Traditionally, web data has been
the primary resource for enhancing model performance (Deng et al., 2024). However, as this source
becomes fully exploited, researchers have begun to explore alternative methods. One promising
approach is to leverage generative models to create synthetic data (Fan et al., 2024; Meng et al.,
2022; Zhou et al., 2023; Yang et al., 2023), thereby fueling continuous training cycles, as shown
in fig. 1. This innovative self-sustaining pipeline effectively mitigates the issue of data scarcity,
allowing models to improve iteratively with the help of their own generated outputs (Chen et al.,
2024; Lu et al., 2024). Despite the apparent advantages, this strategy introduces a crucial and
complex debate: Will the reliance on self-generated data eventually lead to model degradation?

Figure 1: Generative models can be leveraged to
generate more data to augment the training set,
then help the downstream models training.

Some research has attempted to answer this
question. On the one hand, Azizi et al. (2023)
and Zhou et al. (2023) use the diffusion model
to generate synthetic image data to augment the
training set and observe the performance im-
provement in image classification tasks. Zheng
et al. (2024) analyze the positive impact of
generative data enhancement on small-scale
datasets from a theoretical perspective. Ham-
moud et al. states that a carefully designed
generated data augmentation strategy could be
helpful to alleviate the long tail problem. On
the other hand, Alemohammad et al. (2024)
show that purely adding the generated data to
agent training could eventually cause model

1



Published as a conference paper at ICLR 2025

degradation, with their quality or diversity progressively decreasing. Singh et al. (2024) demon-
strate that the use of synthetic data could cause a large performance drop in model robustness. The
debate is still ongoing and remains unsettled.

It is important to note that although many research efforts are put into analyzing the influence of
generative data on overall model performance, few of them explore the impact of generative data
on the model bias, especially on the model’s behavior in the worst-performing subgroups. Previous
work (Zhang et al., 2024) has identified that models often behave significantly differently across
various unknown subgroups, showing the critical role of model fairness in real-world applications.
In the context of generative data, we raise a new question in this paper: will the inclusion of gener-
ated data help alleviate the model bias problem, or could it potentially make it worse? This question
and its answer are significantly connected with other bias issues, e.g., demographic parity (Loukas
& Chung, 2023), equalized odds (Grant, 2023), maximum disparity (Roh et al., 2020), spurious
correlation (Seo et al., 2022).

Intuitively, the bias issue is probably to be amplified because generated data is increasingly leveraged
in training models across successive generations. Previous findings (Sehwag et al., 2022; He et al.,
2024) reveal that generative models tend to sample data from high-density regions, leaving low-
density data heavily under-explored. This imbalanced sampling introduces a natural skew in the
dataset used to augment training, thereby exacerbating the bias present in the model. However, is
this assumption accurate? To the best of our knowledge, no research has thoroughly explored this
question. This lack of exploration leaves a critical issue unresolved, potentially creating an unknown
risk in practical applications.

In this work, we study the impact of generated data on the model bias through the lens of the image
classification problem, one of the most fundamental tasks of computer vision and deep learning.
Our approach differs from previous studies in two key aspects: First, we focus on the impact of
generated data on the model bias. Second, we create a more practical simulation environment by
building a self-consuming loop that trains the generative model and the image classification model
synergistically. We conduct experiments on three datasets, including colorized MNIST (Kim et al.,
2019a), CIFAR-20/100 (Zhang et al., 2024), and Hard ImageNet (Moayeri et al., 2022b), to observe
and analyze changes in various fairness metrics.

We summarize our contributions and key findings as follows:

1. We design and implement a scalable, self-consuming simulation environment. Our method
interleaves dataset augmentation and model training across different generations.

2. We introduce data stacking and expert-guided filtering approaches to overcome data explo-
sion and inconsistent data quality issues.

3. We conduct extensive experiments on three popular datasets to examine and reveal the
impact of cross-generation generated data on model performance and bias.

4. We systematically analyze the factors causing diverse model bias behaviors.

2 RELATED WORK

2.1 GENERATIVE MODEL AND ITS APPLICATION

Generative models have become a cornerstone of modern machine learning, particularly in the do-
main of data augmentation and synthetic data generation (Akkem et al., 2024). Early approaches,
such as Generative Adversarial Networks (GANs) (Goodfellow et al., 2020), revolutionized the field
by enabling the creation of highly realistic synthetic data through a process of adversarial training be-
tween a generator and a discriminator. More recently, diffusion models (Croitoru et al., 2023) have
gained prominence due to their ability to generate high-quality data through a denoising process,
offering an alternative to traditional GAN-based approaches. These generative models have been
widely adopted in various tasks, including image synthesis (Liao et al., 2020), text generation (Li
et al., 2018), and data augmentation (Antoniou et al., 2017), proving their efficacy in improving
model performance. In this work, we leverage two generative models, including the conditional
GAN and text-to-image diffusion.
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The advent of generative models has significantly expanded the possibilities for data augmentation
by enabling the creation of entirely new data samples that mimic the distribution of the original
dataset. For instance, Azizi et al. (2023) and Zhou et al. (2023) leverage diffusion models to gen-
erate synthetic images, successfully augmenting training sets and improving classification accuracy.
Similarly, Zheng et al. (2024) explore the theoretical underpinnings of generative data augmentation,
particularly in the context of small-scale datasets. However, the impact of using synthetic data is not
without its challenges. Alemohammad et al. (2024) highlight that indiscriminate inclusion of gener-
ated data in training can lead to model degradation, where the model’s performance deteriorates as
the quality and diversity of the generated data decrease over time. Hammoud et al. observe a related
phenomenon, noting that a carefully designed strategy for data augmentation could mitigate issues
such as the long-tail problem. Further, Singh et al. (2024) demonstrate that the use of synthetic data
can significantly undermine model robustness, leading to performance drops.

2.2 BIAS IN DEEP LEARNING MODELS

Many efforts have been made on the model bias. Kotek et al. (2023) investigate the behavior of large
language models on gender bias. Liu et al. (2022) measure the political bias in language models.
Zhang et al. (2024) identify the existence of subgroup bias in image classifiers. Hosseini et al.
(2018) find the shape bias learning by convolutional neural networks. Khayatkhoei & Elgammal
(2022) discover generative models can easily learn the spatial bias from the data. Heinert et al.
(2024) and Hönig et al. (2024) research on texture bias in deep learning models.

There are also many fairness metrics to help evaluate bias (Kim et al., 2019b; Lin et al., 2022).
Important fairness metrics include demographic parity (Jiang et al., 2022), which ensures that posi-
tive classification rates are equal across different demographic groups, and equalized odds (Romano
et al., 2020), which requires that true positive and false positive rates are consistent across groups.
Equal opportunity (Wang et al., 2023) further emphasizes equal true positive rates, ensuring that no
group is disadvantaged in correct classifications.

3 GENERATE TO LEARN: BUILDING A SCALABLE AND SELF-SUSTAINING
SIMULATION ENVIRONMENT

3.1 A SIMPLE YET PRACTICAL FRAMEWORK FOR SIMULATION

To better understand the impact of the generated data on future model training, we design and
implement a simulation environment grounded in real-world practices. The environment comprises
four core components: subgroup construction, base model initialization, dataset augmentation, and
future model development.

◦ Subgroup Construction. Our environment is designed to study the effects of generated data on
model bias, making it essential to establish clear and practical attributes for bias evaluation. Inspired
by Zhang et al. (2024), we manually partition the original dataset into multiple subgroups, where
subgroups within the same class share similar semantics. The introduction of bias is controlled by
adjusting these subgroup partitions. During the training process, the models remain unaware of the
subgroup partitions, which are only revealed during the evaluation stage to assess model bias.

◦ Base Model Initialization. We construct and randomly initialize a base generative model g(·). This
model is then trained from scratch on the dataset D = {(xi, yi)}Ni=1, where x represents the sample
to generate, y is the corresponding label, and N is the number of training samples in D. The model
is trained until it converges sufficiently on D.

◦ Dataset Augmentation. Once the base model is initialized, we use the generative model g(·) to
generate data that approximates the distribution of the training dataset D, thereby augmenting the
original dataset. Because previous study (Zheng et al., 2024) has shown that training exclusively
on generated data can eventually cause model failures, we adopt an alternative strategy (Azizi et al.,
2023; Zhou et al., 2023), mixing the original data with generated data at a ratio of p%.

◦ Future Model Development. In addition to the base generative models, our task involves two types
of models: downstream models and subsequent generative models. The downstream model corre-
sponds to an image classification model optimized with cross-entropy loss. The generative model
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is a re-initialized version of g(·), trained on the augmented dataset from the previous generation.
Unlike previous similar work that considers only a single generation, we incorporate generated data
from multiple continuous generations, creating a more realistic and practical scenario.

We leverage the above core components to build our simulation environment. We begin with sub-
group construction to study the model behaviors of interest. At each generation, we (re)initialize
the base model using the current dataset, which may have been augmented. This model is then used
to generate additional data for dataset augmentation. Finally, the downstream models are developed
on the dataset augmented by the current-generation generative model.

3.2 SCALING THE SIMULATION FOR REAL-WORLD PRACTICE

Two significant challenges remain in our environment, limiting its scalability for simulating real-
world practices: 1) Data Explosion: As the number of generations increases, the volume of gener-
ated data grows continuously, leading to a significantly larger training set and resulting in unbearable
training time consumption. 2) Inconsistent Data Quality: Due to the inherent uncertainty in the gen-
erative process, the quality of data produced by the generative model across different generations
may vary, potentially leading to degradation in the performance of future models.

We propose two strategies to incorporate into our simulation environment to address these chal-
lenges, including the Data Stacking and Expert-guided Filtering.
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Figure 2: We continuously leverage new generators
to produce additional images that enhance the training
process, employing data stacking and expert-guided fil-
tering to maintain high quality. We highlight the trajec-
tory of the self-consuming loop in red.

◦ Data Stacking. We maintain a first-in-
first-out queue to store the generated data.
Specifically, we set the capacity of the
queue to D. We continuously use the up-
dated generative model to generate data
with a volume of S and fill the queue un-
til it reaches capacity, i.e., the maximum
number of generations that can be accom-
modated is D/S. Once the queue is full,
the oldest data will be removed to make
space for newly generated data.

◦ Expert-Guided Filtering. We introduce
two expert-guided strategies to filter low-
quality samples and improve the quality
of the training set. The first strategy in-
volves conducting a human study to score
the generated samples and removing those
that are easily recognized as generated content. The second strategy leverages the CLIP and our
trained classification model of the last generation to score the generated samples based on the pre-
diction uncertainty (Gal & Ghahramani, 2016), filtering out the bottom r% based on their scores.

3.3 EVALUATION METRICS FOR ASSESSING MODEL BIAS

It is important to evaluate model performance, including bias, during the development process across
generations. Consider an input x ∈ X from the initial meta training dataset in our simulation
environment, associated with a ground-truth label y ∈ Y . Assume the dataset comprises L distinct
classes, so Y = 1, 2, . . . , L. We hypothesize that each class is further divided into G subgroups,
assuming for simplicity that each class contains an equal number of subgroups, resulting in a total of
L ×G subgroups across the dataset. For each input x, its subgroup membership is denoted by g ∈
1, 2, . . . , G. The existence of such unknown subgroups and the varying model performance across
these subgroups contribute to the presence of model bias. In our environment, we use several criteria
to evaluate model performance, including overall performance, multi-group equality of opportunity,
multi-group disparate impact, maximum disparity, and sub-population performance. Among these
metrics, we extend the conventional equality of opportunity and disparate impact to the content of
image classification task with multiple tasks and multiple unknown attributes.

Overall Performance. We use the Fréchet inception distance (FID) (Heusel et al., 2017) and the clas-
sification accuracy (Acc) as metrics for the evaluation of the generative model and the downstream
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classification model.

FIDn = ∥µc − µg∥22 + Tr(Σc +Σg − 2(ΣcΣg)
1
2 ), Accn = P (fn (x) = yx) , (1)

where µc and Σc are the mean and variance matrix of the feature vector extracted from Inception-
V3 (Szegedy et al., 2015) on the original clean samples, µg and Σg are those from the generated
samples, yx is the ground-truth associated with the sample x, and n indicates the number of genera-
tion.

Equality of Opportunity. The equality of opportunity (Ferreira & Peragine, 2013) measures whether
every subgroup is treated equally by the model under study. In our simulation environment, we
compute the equality of opportunity (EO) under the background of multiple groups as follows:

EOn = 1− 1(
G
2

) ∑
i,j<G,i̸=j

∥∥TPRi
n − TPRj

n

∥∥ , (2)

where we denote TPRi
n as the the true positive rate of i-th subgroup in the n-th generation. It can be

computed as TPRi
n = P (fn(x) = y | y = yx, g = i), indicating the probability that the model fn

correctly classifies an input x from the i-th subgroup with the ground-truth label y = yx.

Disparate Impact. Disparate impact (Feldman et al., 2015) measures whether different subgroups
receive positive outcomes at similar rates. In our simulation environment, we extend this concept to
multiple groups, defining the multi-group disparate impact (DI) as follows:

DIn = 1− 1(
G
2

) ∑
i,j<G,i̸=j

∥∥∥∥P (fn(x) = yx | g = i)

P (fn(x) = yx | g = j)
− 1

∥∥∥∥ , (3)

where P (fn(x) = yx | g = i) denotes the probability that the model fn assigns a positive outcome
(e.g., y = yx) to an input x from the i-th subgroup.

Maximum Disparity. Maximum disparity measures the largest difference in model performance
between any two subgroups. We compute the maximum disparity (MD) as follows:

MDn = max
i,j<G,i̸=j

∥∥TPRi
n − TPRj

n

∥∥ . (4)

Subgroup Performance. In addition to the aforementioned metrics for single-bias evaluation by pair-
wise computation, we evaluate model performance by examining the accuracy of the multiple worst-
performing subgroups. For each superclass c, we calculate the accuracy of its G subgroups, denoted
as Accc,g , and sort these accuracies in ascending order, Accc,(1) ≤ Accc,(2) ≤ · · · ≤ Accc,(G). We
then compute the average accuracy for each rank k across all superclasses:

Acc(k) =
1

C

C∑
c=1

Accc,(k), (5)

where C is the total number of superclasses. This allows us to assess the model’s performance across
the most challenging subgroups.

Among these metrics, MEO (eq. (2)), DI (eq. (3)), and MD (eq. (4)) assess single-bias evaluation,
and subgroup performance evaluates (eq. (5)) the impact of multiple biases.

Why do we select these metrics? We do not choose to use the one-vs-rest (OvR) strategy (Jung
et al., 2021) for evaluating fairness metrics in our multi-class classification tasks because OvR re-
duces multi-class problems to multiple binary subproblems, potentially missing the intricate biases
and class interactions inherent in genuine multi-class contexts, thus overlooking unfairness aris-
ing from these interactions (Friedler et al., 2019). Additionally, OvR could introduce significant
data imbalance in each binary subproblem, especially when class distributions vary greatly, which
adversely affects classifier performance and distorts fairness metrics, leading to unreliable evalua-
tions (Brzezinski et al., 2024). Instead, we employ fairness metrics specifically designed for multi-
class classification — MEO, DI, and MD — to assess fairness across all classes simultaneously,
preserving the integrity of the multi-class problem and providing a more accurate evaluation (Maz-
ijn et al., 2021). This approach ensures that our fairness assessments reflect the complexities of
multi-class classification, effectively manage potential data imbalances, and align with our objective
to enhance fairness in a comprehensive and contextually appropriate manner.
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Table 1: Evaluation of FID across generations for different generative models trained on various
datasets, including colorized MNIST w/wo bias initialization, CIFAR-20/100, and Hard ImageNet.
The 1st generative model is trained on the original dataset without the inclusion of generative data.

Dataset Initialization Number of generations
1 2 3 4 5 6 7 8 9 10

Colorized MNIST Unbiased 111.7 108.9 107.8 107.1 104.5 103.6 101.0 100.5 103.6 106.3
Biased 109.4 106.0 107.03 106.4 105.3 114.2 109.0 108.6 109.1 116.5

CIFAR-20/100 N/A 249.3 213.6 210.6 217.7 218.8 224.9 233.1 226.5 220.6 223.0
Hard ImageNet N/A 57.6 50.9 186.4 118.8 - - - - - -

4 EXPERIMENTS

4.1 EVALUATION SETUP

Datasets. We studied three datasets: Colorized MNIST, CIFAR-20/100, and Hard ImageNet. 1⃝ The
Colorized MNIST dataset is a modified version of the original MNIST (LeCun, 1998), where three
colors—red, blue, and green—are added to the images. We created two versions of this dataset. In
the first, the three colors are uniformly applied across different classes. In the second, the colors
are applied with uneven ratios, introducing a bias in the color distribution. 2⃝ The CIFAR-20/100
dataset is derived from CIFAR-100 (Alex, 2009) by grouping every five subclasses with similar
semantic meaning into one single superclass, resulting in 20 classes. 3⃝ Hard ImageNet (Moayeri
et al., 2022b), a challenging subset of the ImageNet dataset(Deng et al., 2009), consists of 15 classes
and contains various spurious correlations that can undermine the reliability of models trained on it.

Models. In the experiments with colorized MNIST and CIFAR-20/100, we consider five models:
LeNet (LeCun et al., 1998), AlexNet (Krizhevsky et al., 2012), VGG-19 (Simonyan & Zisserman,
2014), ResNet-50 (He et al., 2016), and MobileNet-V3 (Howard et al., 2019). For the Hard Ima-
geNet experiment, we exclude the smallest model, LeNet, and additionally include a larger model,
DeiT-S (Touvron et al., 2021). These models are sourced from the PyTorch library (Paszke et al.,
2019), with the final layer modified to fit the specific classification tasks. We use GANs (Rad-
ford, 2015) to learn and generate the colorized MNIST and CIFAR-20/100 datasets, while stable-
diffusion-1.5 (Rombach et al., 2022) is employed for generating the Hard ImageNet dataset.

Metrics. We evaluate model performance across all datasets based on classification accuracy. For
the Colorized MNIST and CIFAR-20/100 datasets, which have explicit subgroups but are trained
only at the superclass level, we also assess fairness metrics, including Multi-group Equality of Op-
portunity (MEO), Disparate Impact (DI), and Maximum Disparity (MD) (section 3.3). For Hard
ImageNet, which contains spurious correlations without known subgroup partitions, we measure
model accuracy on images with various ablation masks applied to the spurious objects.

Implementations. We set the number of generations to 10 or 4 in MNIST/CIFAR and Hard Ima-
geNet, respectively. For training all models, we use the Adam optimizer, initializing the learning
rate at 1×10−1, with training capped at 50 epochs. Early stopping is employed to ensure full conver-
gence and to avoid overfitting. We provide the evaluation of different generators across generations
based on the FID score in table 1. The classification model at the 0-the generation is trained on the
original dataset without any generated data. The queue has a maximum capacity of 3. For all results,
We run 3 times to reduce the experimental randomness.

4.2 EVALUATION ON COLORIZED MNIST

We begin with the Colorized MNIST dataset, using both unbiased and biased initializations. The
introduction of bias refers to the uneven painting strategy applied at the outset.

Unbiased Initialization. The results are shown in fig. 3 . Most models benefit from data aug-
mentation using the updated generated data across generations, and all single-bias evaluations also
show slight improvements. However, there are notable exceptions, particularly with MobileNet-V3,
which experiences significant performance variations across generations. It’s important to highlight
that models differ considerably in multi-bias evaluations. While VGG-19 and ResNet-50 show sig-
nificant improvements, smaller models, including SimpleNet, AlexNet, and MobileNet-V3, exhibit
a noticeable decline in subgroup performance with continued large generations.
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Figure 3: Results on the models trained on the MNIST dataset with unbiased initialization.
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(b) Subgroup performance of the model trained on the Colorized MNIST dataset with biased initialization.

Figure 4: Results on the models trained on the MNIST dataset with biased initialization.

Biased Initialization. We present the results of models trained on the dataset with biased initializa-
tion in fig. 4. We observe consistent results in terms of classification accuracy and single-bias evalu-
ation, which presents continuously imrprovement across generations; however, there are significant
differences in the multi-bias evaluation. Specifically, VGG-19 experiences substantial performance
degradation across subgroups, despite improvements on the dataset with unbiased initialization. In
contrast, AlexNet performs better on this dataset as the number of generations increases. Compared
with the results on the colorized MNIST with unbiased initialization, though MobileNet-V3 presents
stable performance in this environment, both of the AlexNet and VGG-19 show large variation.

Summarization & Takeaways. As reported in table 1, the generative model can learn an approach-
ing latent representation similar to that of the real samples on the colorized MNIST datasets, which
is evident by the similar results on the FID evolution across generations. Thus, we can omit the
impact of the quality of the generated data on the downstream models here. On the MNIST dataset,
models can be consistently improved by augmenting the dataset with generated data across multi-
ple generations. Notably, the inclusion of additional generated data does not significantly affect the
models’ single-bias performance, even with a large number of generations. However, it can lead to
substantial variations in subgroup performance, revealing the presence of the multi-bias problem.
The impact of generated data across generations varies between different models but remains con-
sistent within the same architecture over multiple generations. Comparing results from unbiased and
biased initializations, we observe that the presence of bias in the original dataset does not cause the
model to degrade rapidly. Both initialization types exhibit similar trends in single- and multi-bias
performance. In other words, the presence of dataset bias does not significantly amplify model bias
when the dataset is augmented with generated data across generations.
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Figure 5: Results on the models trained from scratch on the CIFAR-20/100 dataset.

4.3 EVALUATION ON CIFAR-20/100

Next, we proceed to a more challenging dataset, CIFAR-20/100. Different from MNIST, the orig-
inal CIFAR dataset comprises more features and biases influencing the model training, which are
not easily controllable. Thus, we investigate the impact of using pre-trained weights on the model
bias during the self-consuming loop. In this experiment, we compare the performance of models
initialized with pre-trained weights provided by the PyTorch library to those trained from scratch.
This comparison will help assess the effectiveness of pre-trained weights in improving model per-
formance and stability when applied in this iterative data augmentation process.

Without Pre-trained Weights. Unlike the results on the MNIST dataset, augmenting CIFAR-20/100
with generated data can lead to degradation, with LeNet experiencing up to a 20% drop after 10
generations. The impact on bias metrics also varies. In the single-bias evaluation, both Equality
of Opportunity and Maximum Disparity are significantly improved across all models, while most
models show similar behavior regarding Disparate Impact. LeNet exhibits a larger bias in terms of
Disparate Impact. For the multi-bias evaluation, models perform more consistently across different
subgroups compared to their average performance across generations. Notably, although VGG-19
shows decreasing performance over generations, it performs better in bridging the performance gap
between different subgroups.
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(a) Overall performance evaluation of the fine-tuned model on the CIFAR-100.
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Figure 6: Results on the models pre-trained on the ImageNet and fine-tuned on the CIFAR-20/100.

With Pre-trained Weights.Notably, models perform a faster performance degradation when using
pre-trained weights as the number of generations for data augmentation increases. A greater number
of models exhibit declines in classification accuracy and fairness metrics, such as Equality of Op-
portunity and Disparate Impact. Interestingly, while ResNet-50 without pretraining does not show
a significant performance drop in the multi-bias evaluation, it experiences substantial degradation
when pre-trained on the ImageNet dataset. This suggests that pre-trained weights, despite their ini-
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Figure 8: Evaluations of the impact of spurious correlation on the models pre-trained on the Ima-
geNet and fine-tuned on the augmented Hard-ImageNet dataset across generations.

tial advantage, may exacerbate model bias and performance issues in this iterative augmentation
process.

Summarization & Takeaways. As shown in table 1, continuously training on the dataset aug-
mented by generated data across multiple generations leads to a slight improvement in generative
performance, as evidenced by the decreasing FID scores on the CIFAR-20/100 dataset. However,
despite the improved generative model, classification models trained with successively augmented
datasets still experience a decline in performance in both the original classification task and bias
evaluations. When using pre-trained weights from the ImageNet dataset, the classification models
show significant improvement compared to training from scratch. Nevertheless, it is evident that
models with pre-trained weights are more susceptible to integration bias introduced by the aug-
mented datasets evolved over generations, further exacerbating performance deterioration in bias
evaluations.

4.4 EVALUATION ON HARD IMAGENET

We also conduct experiments on Hard Imagenet (Moayeri et al., 2022a), a dataset gathered from
ImageNet with very strong spurious cues. The dataset contains 15 classes, and in each class, there
is a strong correlation between the image background and the objects. This may lead the model
to rely on background information rather than the actual objects for classification. Compared to
the pre-defined color bias in Colorized MNIST and existing subgroup biases in the CIFAR-20/100
dataset, the unknown spurious correlation bias in this dataset is more challenging and difficult to
fully identify, making it harder to mitigate during model development.

To study the impact of cross-generational data on this model bias, we made a modification to our
proposed simulation framework. First, we fine-tuned the Stable Diffusion model using Low-Rank
Adaptation rather than training from scratch to achieve a good balance between efficiency and gen-
eration quality on our task. Then we use 5 generations of mixed datasets to fine-tune our classifiers.
Subsequently, while lacking explicit signal for single and multiple bias attributes, ablation stud-
ies are conducted on each classifier, following the approach described in Moayeri et al. (2022a).
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Figure 7: Subgroup accu-
racy of models fine-tuned on
the augmented dataset across
generations.

Specifically, we performed three types of ablation: (1) the object
pixels were replaced with a uniform value of 0.5, neutralizing the
object’s appearance; (2) the entire bounding box surrounding the
object was replaced with gray, removing shape-related information,
and (3) the bounding box was replaced with a neighboring region
of the image, substituting the object with local context. The perfor-
mance drop caused by masking the image can indicate the model’s
reliance on spurious correlations. A significant performance drop
suggests that the model’s predictions rely more on the core object,
indicating less influence from spurious correlations.

We report the changes in classification accuracy across generations
in fig. 9 and the impact on learned spurious correlations in fig. 8.
Over time, we observe that generated data can degrade model per-
formance, as evidenced by the negative correlation between perfor-
mance and the number of generations. However, for smaller mod-
els, performance sees a notable improvement during the first two generations, after which it stabilizes
or becomes slightly better than the initial generation. Regarding bias evaluation, all models show a
tendency to rely less on spurious correlations, indicating a shift toward focusing more on the core
object for classification.

9



Published as a conference paper at ICLR 2025

5 WHY MODELS EXHIBIT DIVERSE BEHAVIORS ACROSS GENERATIONS

The varied behaviors observed across different datasets and models can be attributed to several
factors, including the datasets, models, and data quality across generations. These factors interact
with each other in complex ways, influencing the dynamics of bias across generations.

Dataset Characteristics. Different datasets exhibit unique features such as image complexity, class
diversity, and inherent biases. Let βD represent the inherent bias in the dataset. For simpler datasets
like Colorized MNIST, generative models can learn accurate representations more easily, resulting
in generated data that closely matches the original data distribution. This closeness can be quantified
by a high data quality factor qt ≈ 1 at generation t. The generated data with minimized bias helps
the model continuously improve its classification performance and reduce bias.

Model Architecture Sensitivity. Different model architectures have varying capacities to learn from
augmented data and mitigate bias. Let γM represent the model’s capacity to mitigate bias, which
is a function of the model’s architecture M . Larger models with higher capacity (e.g., VGG-19,
ResNet-50) have higher γM , enabling them to handle biases in the data better. Conversely, smaller
models (e.g., LeNet, AlexNet) have lower γM and are more susceptible to biases in the training data,
leading to greater performance variability across generations.

Exposure of Bias. Datasets contain various biases, both known and unknown, explicit or difficult
to detect. The exposure of bias can be represented by a bias amplification factor δ, which accounts
for the complexity and ingrained biases within the dataset. As biases become more difficult to iden-
tify—progressing from color bias to subgroup bias and spurious correlations—we observe greater
fluctuations in model performance. The bias in the model at generation t + 1, denoted B

(t+1)
model , can

be influenced by the bias in the data and the model’s capacity to mitigate it.

Unbalanced Generation. As identified in previous studies (Sehwag et al., 2022; Lee et al., 2021),
generative models typically generate data from high-density regions of the data distribution, po-
tentially over-representing certain classes or features. This tendency can be represented by an un-
balanced generation factor ut at generation t, which contributes to the bias in the generated data.
The quality of data generation is crucial; lower-quality data can degrade the overall representation
quality, which may mitigate biased performance in downstream models by introducing noise.

Combining these factors, we have a conjecture about modeling the bias dynamics across generations
using a recursive relationship. Let the bias in the model at generation t+ 1 be expressed as:

B
(t+1)
model = (1− γM ) (1 + δD + δQ(1− qt) + δUut)B

(t)
model. (6)

Then, the overall bias amplification factor At at the generation t can be denoted as At := (1 −
γM ) (1 + δD + δQ(1− qt) + δUut). Depending on the values of γM , qt, ut, and the constants δD,
δQ, and δU , the bias amplification factor At can be greater or less than 1. If At > 1, the bias
increases across generations; if At < 1, the bias decreases.

Thus, the interplay between dataset characteristics, model architecture sensitivity, exposure of bias,
and unbalanced generation may determine the bias dynamics across generations. To establish a
self-sustaining model development loop with positive feedback, it is essential to have a clearer
understanding of dataset bias (δD), utilize larger models with higher capacity (γM ), and employ
high-quality generative models with improved sampling mechanisms to increase qt and reduce ut.

6 CONCLUSION

Several models, like Stable Diffusion (Rombach et al., 2022), LLaMA (Touvron et al., 2023),
LLaVA (Liu et al., 2024), and Nemotron (Adler et al., 2024), involve self-consumption loops. No-
tably, Nemotron is trained with over 98% synthetic data. While synthetic data can improve training,
it may also introduce risks, particularly related to model biases. This has led us to investigate how
generated data affects model performance and bias, especially as self-consumption loops increase.
Our experiments on Colorized MNIST, CIFAR-20/100, and Hard ImageNet datasets show that bias
changes depend on factors like dataset type, model architecture, and generative model performance.
Additionally, models are more sensitive to multiple biases than to a single one.
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Figure 9: Classification accuracy of models fine-tuned on the augmented ImageNet across genera-
tions.

A MORE RESULTS ON THE IMAGENET

We conduct additional experiments on the ImageNet dataset Breeds, which is organized by sub-
classes as defined by WordNet. Each superclass consists of four subclasses. Following the same
settings used for Hard-ImageNet, we utilize Stable Diffusion 1.5 to learn the dataset’s distribu-
tion and augment it with generated data across multiple generations. In each generation, we train
AlexNet, MobileNet-V3, VGG-19, ResNet-50, and DeiT-Small. The results are shown in fig. 7.

We observe a consistent phenomenon with the results on Hard-ImageNet. Compared to the best-
performing subgroup, the generated data has a greater impact on the worst-performing subgroups,
as indicated by a steeper slope across different generations.

B EXAMPLES OF GENERATED IMAGES ACROSS GENERATIONS

As shown in fig. 10, fig. 11, and fig. 12, each row represents a generation of images, with the gener-
ation number increasing sequentially from top to bottom. We can find that on MNIST and CIFAR-
20/100 dataset, the quality of generated data doesn’t change a lot, while it decreases significantly
for the Hard ImageNet dataset.

C DETAILS ON THE EXPERT-GUIDED FILTERING

First, we manually review the generated samples and discard images with low quality.

Second, we calculate the CLIP score for each image, where the paired text is the class name. Images
are then grouped into bins based on their CLIP scores, with each bin representing a ±10% range of
CLIP scores. This results in 10 bins.

Then, we randomly sample 10 images from each bin and evaluate the quality of each bin. Based on
this evaluation, we determine the maximum ratio of the CLIP score range (denoted as r%) to retain
for training.

• For MNIST, we find that retaining the top 90% of images (r = 10%) is optimal.
• For CIFAR-20/100, retaining the top 70% of images (r = 30%) works best.
• For the ImageNet dataset, retaining the top 40% of images (r = 60%) yields the best

results.
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Figure 10: Color-MNIST Figure 11: CIFAR-20/100

Figure 12: Hard ImageNet
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