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Abstract

In medical domains, hospitals and medical001
research institutions produce large-scale real-002
world data with physician-annotated diagnoses003
every day. An ideal solution is to conduct fine-004
tuning (FT) with these data when developing005
large language models (LLMs) for medical do-006
mains. However, considering patients’ privacy,007
it is still suspicious that de-identification is not008
performed carefully and LLMs may memorize009
the patient’s information during FT. Instead,010
in-context learning (ICL) only relies on few-011
shot demonstrations. LLMs with ICL perform012
quite better than zero-shot inference, which is013
a possible alternative solution compared to FT,014
because ICL can efficiently adapt to new tasks015
by learning from given demonstrations. Also,016
medical institutions can maintain them locally017
and share limited de-identified data only when018
needed without sharing all sensitive data for FT.019
However, the current consensus is that there020
is a significant performance gap between ICL021
and FT. Moreover, under the multi-task sce-022
nario, FT usually suffers from unbalanced is-023
sues, whereas ICL under this setting is underex-024
plored. In this paper, we conduct a comparison025
between ICL and FT under multi-task setting,026
exploring their performance gap. Empirical027
studies show that the advanced ICL method al-028
ready achieves comparable performance as FT029
under the multi-task scenario, showing its great030
potential in medical domains.031

1 Introduction032

Benefiting from vast learnable model parameters033

and large-scale pre-training data, large language034

models (LLMs) achieve a dominant performance035

in various fields. After conducting multi-task fine-036

tuning with several high-quality data, LLMs can be037

further improved (Singhal et al., 2023; Qiu et al.,038

2024; Singhal et al., 2025) and can solve different039

downstream tasks with a single model. Such fine-040

tuning can be considered as instruction-finetuning041

(Zhang et al., 2023). In medical domains, tons of042

high-quality real-world data with physicians’ an- 043

notations are produced from hospitals and medical 044

research institutions every day. Figure 1 shows 045

an example extracted from the MRNER-Disease 046

dataset1. However, considering the medical ethical 047

issues such as the privacy of patients and clinical 048

trial participants, it is difficult to borrow these data 049

for fine-tuning LLMs. Meanwhile, it is also risky to 050

do so because LLMs can memorize detailed infor- 051

mation in real-world data, especially when LLMs 052

are large enough (Huang et al., 2022; Kiyomaru 053

et al., 2024; Satvaty et al., 2024). Therefore, recent 054

progress on medical LLMs usually rely on open- 055

accessed medical academic papers (Labrak et al., 056

2024; Wu et al., 2024), clinical guidelines (Chen 057

et al., 2023), medical textbooks (Wang et al., 2024), 058

etc., unabling accessing real-world data from hos- 059

pitals and medical research institutions. 060

# MRNER-Disease
Radiology Report: 
右肺下葉S6に境界不明瞭な約12mmのすりガラス状結節を認めます。1年前の
画像と⽐較して、約9mm!約12mmと明らかに増⼤しています。微⼩浸潤部分
は明瞭でありませんが、微⼩浸潤性腺癌（MIA）を疑います。
(A vaguely defined ground-glass nodule of approximately 12mm is observed in the S6 
section of the bottom right lung lobe. Compared to the image from a year ago, it has 
clearly enlarged from approximately 9mm to 12mm. The microinvasive part is not 
clear, but microinvasive adenocarcinoma (MIA) is suspected.)
Abnormal Findings:すりガラス状結節 (ground-glass nodule)

Figure 1: A medical named entity recognition example
sampled from MRNER-Disease dataset, including a ra-
diology report and human-annotated abnormal findings.

Instead of memorizing the downstream data of 061

training sets inside model parameters, in-context 062

learning (ICL) has been proposed as an alternative 063

way to utilize rich information from a limited num- 064

ber of training samples (Dong et al., 2024). Recent 065

studies show that ICL can be considered as an im- 066

plicit gradient update on model parameters (Dai 067

et al., 2023; Deutch et al., 2024). Mosbach et al. 068

(2023) show that when the number of training sam- 069

ples is limited, few-shot ICL performs similarly to 070

few-shot FT and they have similar generalization 071

1https://github.com/sociocom/JMED-LLM
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ability in out-of-domain downstream tasks. Bertsch072

et al. (2024) use long-context LLMs (e.g., an LLM073

fine-tuned with 80k context) to explore the case074

when the entire training set can be fit into the in-075

put context. They find that long-context ICL using076

the entire training set as demonstrations often ap-077

proaches or exceeds parameter-efficient fine-tuning078

(PEFT) on the same scale dataset. However, long-079

context ICL requires several times more computa-080

tion in the inference stage than fine-tuned models081

(using more than 1k demonstrations), which is in-082

feasible in practice, and needs to access the entire083

training set as FT.084

Due to the big success of ICL in adapting LLMs085

to new tasks, many researchers are dedicated to the086

development of ICL methods (Dong et al., 2024),087

including demonstration selection (Rubin et al.,088

2022; Li and Qiu, 2023), ordering (Liu et al., 2024),089

etc. Especially, KATE (Liu et al., 2022) retrieves090

relevant samples from training sets to serve as091

demonstrations, improving the performance com-092

pared to trivial few-shot learning (i.e., random093

sampling). Existing works (Mosbach et al., 2023;094

Bertsch et al., 2024) compare ICL and FT under095

controlled same sample size (few-shot or full-size),096

but the most realistic setting, namely, comparing097

few-shot ICL and full-size FT, especially under098

the multi-task scenario, has been overlooked. In099

real situations in hospitals, different patients have100

different presentations of diseases with different re-101

quirements for diagnosis, where unbalanced issues102

are very common. By utilizing the latest few-shot103

sample selection techniques, we bridge this gap to104

answer the following research question: whether105

current ICL techniques can achieve better or106

comparable performance compared to standard107

FT under the multi-task setting.108

In this work, we conduct a comparison between109

fine-tuning and in-context learning under the multi-110

task scenario. Our contributions are three-fold:111

• To our best knowledge, it is the first work com-112

paring fine-tuning and few-shot in-context113

learning under the multi-task scenario.114

• Empirical studies show that using advanced115

ICL techniques like KATE, LLMs can recover116

much improvement from zero-shot to FT.117

• This work sheds light on a different path to118

develop LLMs for medical domains, reducing119

the risk of exposing sensitive clinical data.120

2 Methodology 121

To study whether current ICL techniques can 122

achieve better or perform comparably to FT, we 123

conduct a relatively fair comparison between them. 124

In the common development process, we usually 125

collect data from downstream tasks and fine-tune 126

the foundation LLMs. In this paper, we perform 127

fine-tuning similarly using the entire available train- 128

ing set. As for ICL, we follow the simple but 129

efficient data selection method KATE (Liu et al., 130

2022) to perform the comparison. Given a query, 131

KATE aims to search the most similar demonstra- 132

tions from the candidate set, usually, the training 133

set, as the few-shot demonstrations. Considering 134

computational efficiency during fine-tuning, many 135

parameter-efficient fine-tuning (PEFT) methods 136

have been proposed (Han et al., 2024). By sacrific- 137

ing some downstream performances, PEFT meth- 138

ods allow us to fine-tune LLMs with less GPU 139

memory. Though their success in saving compu- 140

tation resources, we only compare ICL with full- 141

parameter fine-tuning here, exploring how well the 142

current ICL techniques can be. 143

In the comparison of this work, we focus on a 144

multi-task scenario, since it is closer to the real- 145

world application involving multiple tasks. We 146

perform fine-tuning on LLMs with training sets 147

containing downstream data from multiple tasks, 148

while we perform KATE retrieving demonstrations 149

from the same corpus. After fine-tuning, we evalu- 150

ate the fine-tuned models under the zero-shot set- 151

ting, since the models have already read all training 152

data for multiple epochs. Detailed implementations 153

can be found in Appendix A.1. 154

3 Experimental Setup 155

In medical domains, JMedBench is an extensive 156

benchmark including five tasks and 20 datasets 157

in Japanese (Jiang et al., 2025), including multi- 158

choice question-answering (MCQA), named entity 159

recognition (NER), machine translation (MT), doc- 160

ument classification (DC), and semantic text sim- 161

ilarity (STS). Therefore, it is an ideal testbed for 162

comparing FT and ICL under multi-task scenario. 163

Details of each dataset in JMedBench can be found 164

in Appendix B. We mix all training sets in JMed- 165

Bench as the fine-tuning corpus and demonstration 166

pool for ICL, resulting in 250,343 training samples. 167

Note that this mixed corpus is unbalanced since 168

the MCQA task has 204k samples, whereas the 169

MT task only contains 80 training samples. As for 170
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experimental subjects, we selected four models in-171

cluding Llama-2-7B (Touvron et al., 2023), Llama-172

3-8B (Dubey et al., 2024), Qwen-2-7B (Yang et al.,173

2024), and llm-jp-v3-13B2. Details of these LLMs174

can be found in Appendix A.2.175

4 Results and Discussion176

4.1 Main Results177

Models MCQA CMCQA NER MT DC STS

Acc (%) F1 (%) BLUE Acc (%) Pearson

Llama-2-7B 25.83 63.10 27.19 9.52 39.27 -0.2714
+ Standard (3-shot) 27.24 57.90 26.89 17.78 40.46 0.1121
+ KATE (3-shot) 32.23 57.80 27.19 12.83 39.31 0.2457
+ FT 37.92 71.70 39.15 7.05 37.39 0.8004

Llama-3-8B 31.12 55.40 31.50 17.95 39.26 -0.128
+ Standard (3-shot) 35.86 63.10 43.08 24.04 49.48 0.3872
+ KATE (3-shot) 41.20 64.20 40.80 24.06 52.56 0.4451
+ KATE (8-shot) 42.28 64.70 45.69 21.36 54.90 0.5381
+ FT 43.20 71.90 39.48 5.58 47.89 0.7926

Qwen-2-7B 39.69 55.20 23.51 14.73 44.14 -0.007
+ Standard (3-shot) 46.95 59.50 45.07 21.26 56.89 0.5740
+ KATE (3-shot) 49.64 57.80 42.62 23.72 55.98 0.5851
+ KATE (8-shot) 49.93 59.70 48.59 18.25 57.35 0.6441
+ FT 52.45 74.70 26.51 4.30 53.48 0.8464

llm-jp-v3-13B 31.18 73.00 26.51 19.03 36.99 -0.1273
+ Standard (3-shot) 34.80 73.60 39.14 28.33 46.25 0.1543
+ KATE (3-shot) 40.17 73.90 36.80 23.91 47.34 0.3020
+ KATE (8-shot) 40.60 74.40 40.12 25.37 36.87 0.3741
+ FT 45.56 73.70 37.93 7.05 38.81 0.8510

Table 1: Benchmark results on JMedBench. The best
and second-best performances when using the same
foundation model are highlighted in bold and under-
lined, respectively.

Sometimes few-shot ICL can outperform full-178

size FT. As shown in Table 1, although multi-task179

FT performs better than few-shot ICL in MCQA180

and STS tasks, when using Llama-3-8B and Qwen-181

2-7B as the foundation models, using ICL tech-182

niques can significantly outperform fine-tuned mod-183

els in NER, MT, and DC tasks. We believe there184

are three main reasons. Firstly, JMedBench only185

contains 80 training samples for the MT task. It186

is enough for few-shot ICL, however, fine-tuned187

models may be underfitting. Secondly, unbalanced188

issues are very common in the multi-task scenario189

(80 MT samples versus 203k MCQA samples),190

even resulting in a degradation on the MT task.191

Thirdly, each NER task has a different annotation192

schema like granularity. Fine-tuning in a multi-task193

way may cause a conflict, confusing the models.194

How much KATE can recover improvement195

from zero-shot to multi-task FT? We define the196

recovery rate α as follows:197

αKATE→FT =
PKATE − Pvanilla

PFT − Pvanilla
(1)198

2https://huggingface.co/llm-jp/llm-jp-3-13b

Though fine-tuned models outperform models with 199

KATE in the MCQA task, which is an important 200

task in medical domains, ICL may have been under- 201

estimated recently. After fine-tuning, Llama-3-8B 202

achieves the best performance in the MCQA task. It 203

is worth noting that with eight retrieved demonstra- 204

tions, Llama-3-8B using KATE technique recovers 205

92.38% of improvement from the vanilla model to 206

the multi-task fine-tuned model. Here, we have an 207

inspiring finding that even if we only access the 208

clinical data by retrieving eight relevant demon- 209

strations from the database maintained locally by 210

hospitals, we can still obtain a similar performance 211

on the MCQA task, just like we bring all (maybe 212

anonymized) clinical data out of hospitals for fine- 213

tuning. As for other models like Qwen-2-7B and 214

llm-jp-v3-13B, KATE with 8-shot can also recover 215

80.25% and 65.51% improvement, respectively. 216

Better ICL ability, more improvement can 217

be recovered. Llama-3 adopts an attention mask 218

to prevent unexpected attention between different 219

documents within the same sequence (Dubey et al., 220

2024), which can improve the ICL ability of LLMs 221

(Zhao et al., 2024), learning from the context bet- 222

ter. Therefore, Llama-3 has a better ICL ability 223

than Llama-2, which is also consistent with the 224

conclusions of Chen et al. (2025). From Table 1, 225

we notice that Llama-2-7B with KATE only re- 226

covers 52.94% improvement under 3-shot evalu- 227

ation, whereas Llama-3-8B recovers 83.44% im- 228

provement. This observation shows that LLMs 229

with KATE technique can perform closer to fine- 230

tuned models when they have better ICL abilities, 231

which illustrates the importance of improving the 232

ICL ability when developing LLMs in the future. 233

4.2 In-depth Analysis 234

Accuracy (%) IGA JMM MedM USM MedQ MML

Llama-3-8B 26.31 34.46 32.20 30.87 25.22 37.63
+ Standard (3-shot) 35.31 36.59 35.88 34.01 29.07 44.31
+ KATE (3-shot) 36.19 42.33 49.92 38.26 32.13 48.37
+ FT 34.94 42.64 48.82 44.93 39.12 48.74

Qwen-2-7B 41.81 44.53 35.76 37.71 29.77 48.53
+ Standard (3-shot) 50.94 50.83 42.79 42.18 35.35 59.59
+ KATE (3-shot) 52.06 51.93 51.14 44.62 38.65 59.43
+ FT 46.19 52.01 55.27 53.65 48.31 59.27

llm-jp-v3-13B 28.44 37.84 30.91 29.54 25.22 35.11
+ Standard (3-shot) 37.00 38.87 32.68 33.31 27.02 39.93
+ KATE (3-shot) 39.13 42.01 45.16 39.20 32.76 42.76
+ FT 45.81 44.85 48.86 43.21 40.38 50.24

Table 2: Benchmark results on Japanese biomedical
MCQA tasks, including IgakuQA (IGA) and JMMLU-
medical (JMM), MedMCQA-JP (MedM), USMLE-
QA-JP (USM), MedQA-JP (MedQ), MMLU-medical-
JP (MML), and PubMedQA-JP (Pub). The best perfor-
mances are highlighted in bold.
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Table 2 shows the performance on six MCQA235

datasets. We would like to understand where the im-236

provement of KATE comes from and reveal where237

the gap lies between KATE and FT.238

Multi-task KATE fills a gap from standard239

ICL to multi-task FT. Despite the success of stan-240

dard ICL, namely, randomly sampling demonstra-241

tions for ICL, it mainly understands the task format242

instead of learning input-output mapping, as sug-243

gested by Min et al. (2022). Additionally, KATE244

adopts retrieved relevant demonstrations, allowing245

LLMs to learn extra knowledge within the con-246

text. As shown in Table 2, with 3-shot demonstra-247

tions, LLMs achieve general improvement on all248

MCQA datasets. Especially, with retrieved demon-249

strations, KATE achieves further improvement on250

the MedMCQA-JP dataset no matter which LLM251

we evaluate. As suggested by Pal et al. (2022),252

MedMCQA mainly measures acquired knowledge253

from the LM itself. Therefore, retrieved demon-254

strations serve as extra knowledge for LLMs. With255

fine-tuning, LLMs memorize the task format and256

medical knowledge so that they achieve improved257

performance under zero-shot evaluation.258

Multi-task KATE overcomes the obstacle259

when in-domain training samples are insuffi-260

cient. Besides MedMCQA-JP, multi-task KATE261

achieves larger improvement on JMMLU-Medical262

and MMLU-Medical-JP datasets, which contain263

only 45 training samples. Standard ICL only se-264

lects demonstrations in the in-domain training set.265

With a retriever, multi-task KATE allows selecting266

demonstrations across different datasets. Although267

the retriever may select demonstration from other268

tasks (e.g., retrieved NER sample when completing269

MCQA task), Table 2 shows that multi-task KATE270

benefits more from the larger candidate set.271

Multi-task KATE is limited when reasoning272

is required. USMLE-QA-JP and MedQA-JP are273

two datasets derived from medical license exami-274

nations, containing complex questions describing275

real clinical scenarios. They require clinical reason-276

ing ability, such as analyzing differential diagnoses277

and finding optimal treatment options. On these278

two datasets, despite multi-task KATE outperforms279

standard ICL, gaps between KATE and FT are dif-280

ficult to close. We believe it is because retrieved281

demonstrations provide information on task format282

and related knowledge, however, LLMs cannot do283

proper reasoning based on them. How to improve284

the reasoning capability of LLMs during ICL is285

still challenging nowadays.286
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Figure 2: Performances on the MCQA task of different
settings using different foundation LLMs.

LLMs learn complex patterns after 1 epoch 287

of fine-tuning. Figure 2 shows the performances 288

on the MCQA task of different settings using dif- 289

ferent foundation LLMs. We find that KATE per- 290

forms closer to LLMs fine-tuned by 1 epoch, for 291

example, Qwen-2-7B with three retrieved demon- 292

strations recovers 91.71% of FT improvement and 293

similarly llm-jp-v3-13B recovers 74.79% of FT im- 294

provement. Furthermore, KATE can even outper- 295

form LLMs fine-tuned with 1 epoch, for example, 296

Llama-3-8B with three retrieved demonstrations 297

achieves 1.61% absolute accuracy improvement 298

over Llama-3-8B fine-tuned with 1 epoch. 299

5 Conclusions 300

In this paper, we perform a comparison between 301

the advanced in-context learning technique, KATE, 302

and full-parameter fine-tuning under the multi-task 303

setting using the entire training sets. Experimen- 304

tal results on the JMedBench show that current 305

ICL techniques may be underestimated in medi- 306

cal domains. With several retrieved demonstra- 307

tions, KATE allows LLMs to recover a large pro- 308

portion of improvement from vanilla LLMs to fine- 309

tuned LLMs, for example, Llama-3-8B can recover 310

92.38% improvement. Therefore, in the future, if 311

we could develop better ICL methods or LLMs 312

with better ICL ability, obtaining the entire training 313

dataset from medical institutions for fine-tuning is 314

unnecessary. Instead, the medical institutions can 315

de-identify and maintain their data locally, while 316

we access a small proportion of this database by 317

retrieving relevant clinical data, leading to a similar 318

performance. We hope this work can motivate fu- 319

ture research on developing better ICL techniques 320

to achieve comparable or even better performance 321

than FT as well as improving the ICL ability of 322

foundation LLMs in medical domains. 323
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Limitations324

In this work, the ICL technique for competing325

with FT has a large room for improvement. Even326

though we adopt simple deduplication on the ICL327

demonstrations, retrievers easily retrieve highly328

similar data, which cannot provide extra informa-329

tion. Therefore, how to remove those data and330

improve the diversity of selected demonstrations331

is a promising way to improve the performance of332

ICL methods in medical domains in the future.333

Our methodology is not hinged to the Japanese334

language. If experiments on other languages like335

English, Chinese, and French were available, the336

conclusions of this work would be more solid.337

However, in medical domains, current LLM re-338

searchers focus mainly on the MCQA task. It is339

difficult to find a proper benchmark with multi-340

ple tasks. If benchmarks with multiple tasks in341

other languages are available, experiments on such342

benchmarks should be done.343

Besides, during our experiments, we realized344

that the quality of some translated training sam-345

ples may not be satisfactory enough for fine-tuning,346

which may limit the performance of fine-tuning,347

although they may not effect the performance of in-348

context learning. In the future, to further confirm349

the conclusions drawn from this work, experiments350

on higher quality training corpus are required.351

Ethics Statement352

We follow the statement of the JMebBench and353

open-sourced LLMs including Llama-2, Llama-354

3, Qwen-2, and llm-jp-v3 carefully in our experi-355

ments.356

Our experimental results have limitations be-357

cause of the limited datasets, tasks, and models.358

Though we show that advanced ICL methods can359

achieve comparable or even better performance360

than FT, it should be noted that LLMs with re-361

trieved demonstrations from hospitals or medical362

research institutions should be treated carefully.363

Such models can still generate unfaithful content364

even though relevant contexts are given. Therefore,365

those who want to use similar techniques to de-366

velop faithful biomedical LLM-based applications367

should be aware of this limitation.368
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A Experimental Details582

A.1 Implementation details583

All the experiments were implemented mainly584

based on PyTorch (Paszke et al., 2019) and trans-585

formers (Wolf et al., 2020). Model checkpoints586

were downloaded from Huggingface3 and the cor-587

responding checkpoints are listed in Table 3.588

When performing fine-tuning, we refer to the589

hyperparameter settings from the original papers590

when the authors developed their instructed ver-591

sion of LLMs. Since we only use two nodes with592

8 NVIDIA A100 GPUs for fine-tuning llm-jp-v3-593

13B and a single node for fine-tuning the rest of the594

involved comparison methods, we follow Goyal595

3https://huggingface.co/models

Model Checkpoint

Llama-2-7B meta-llama/Llama2-7b-hf
Llama-3-8B meta-llama/Meta-Llama3-8B
Qwen-2-7B Qwen/Qwen2-7B

llm-jp-v3-13B llm-jp/llm-jp-3-13b

Table 3: The corresponding checkpoints in the model
hub of Huggingface for involved comparison methods.

(2017) to adjust the hyperparameters correspond- 596

ingly. Some important hyperparameters are sum- 597

marized in Table 4. During fine-tuning, we adopt 598

a warmup strategy in 10% of total steps at the be- 599

ginning and decrease the learning rate gradually to 600

10% of the peak learning rate. 601

Model LR Global BS

Llama-2-7B 2e-5 64
Llama-3-8B 2e-5 64
Qwen-2-7B 1.4e-5 64

llm-jp-v3-13B 1.25e-5 64

Table 4: Hyperparameters for fine-tuning. LR: Learning
Rate. BS: Batch size.

When performing standard ICL, we tried to do 602

random sampling from the entire mixed training 603

set of JMedBench in our preliminary experiment. 604

However, since the sampled demonstrations were 605

probably not from the same task, they could not 606

help LLMs to predict, performing close to zero- 607

shot performance as vanilla LLMs. Therefore, in 608

this work, we randomly sample demonstrations 609

from the corresponding in-domain training set in- 610

stead of the whole corpus. 611

When applying the KATE technique, we chose 612

multilingual Contriever (Izacard et al., 2021) as 613

our retriever. We retrieved three or eight similar 614

training samples from the mixed training sets of 615

JMedBench as demonstrations for ICL. Note that it 616

is not guaranteed that every testing sample retrieves 617

demonstrations from the same task. For example, 618

when evaluating the IgakuQA dataset, which be- 619

longs to MCQA tasks, some NER samples will be 620

included. We tried to remove them from the demon- 621

stration candidate set, however, there was no signif- 622

icant difference. We hypothesize that data retrieved 623

from the different tasks can also help to provide 624

extra knowledge for prediction, just as multi-task 625

fine-tuning does. 626

A.2 Details of Experimental Subjects 627

Llama-2-7B and Llama-3-8B are two versions of 628

the Llama model, which were pre-trained mainly 629
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in English. Considering significant overlapping630

tokens in Chinese and Japanese, we include Qwen-631

2-7B as an experimental subject, which is a mul-632

tilingual LLM pre-trained mainly in Chinese and633

English. llm-jp-v3-13B is a representative Japanese634

LLM, which is suitable for analyzing on Japanese635

tasks.636

A.3 Prompt Engineering637

For the sake of simplification, we only use the638

Standard template for each task as suggested by639

Jiang et al. (2025).640

B Details of the JMedBench641

JMedBench contains five medical tasks, includ-642

ing multi-choice question-answering (MCQA),643

named entity recognition (NER), machine trans-644

lation (MT), document classification (DC), and645

semantic text similarity (STS). Besides human-646

handcrafted Japanese medical data, the authors647

translated some large-scale, high-quality medical648

datasets in English, such as MedMCQA (Pal et al.,649

2022) and BC2GM (Smith et al., 2008). Table 5650

shows the statistics of this benchmark. Further de-651

tails can be found in the original paper (Jiang et al.,652

2025).653

Task Dataset Train Test

MCQA

IgakuQA 10,178 989
JMMLU-medical 45 1,271
MedMCQA-JP 182,822 4,183
USMLE-QA-JP 10,178 1,273

MedQA-JP 10,178 1,273
MMLU-medical-JP 45 1,871

PubMedQA-JP 1,000 1,000

MT EJMMT 80 2,400

NER

MRNER-Medicine 10 90
MRNER-Disease 10 90

NRNER 10 90
BC2GM-JP 12,572 5,037

BC5Chem-JP 4,562 4,801
BC5Disease-JP 4,560 4,797

JNLPBA-JP 18,607 4,260
NCBI-Disease-JP 5,424 940

DC
CRADE 8 92
RRTNM 11 89
SMDIS 16 84

STS JCSTS 170 3,500

Table 5: Statistics of datasets in JMedBench.
PubMedQA-JP includes an extra abstract. We analyze
it separately in our main experiments and abbreviate it
as CMCQA (Context-based MCQA).
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