
Under review as submission to TMLR

GaussED: A Python Package for Sequential Experimental
Design

Anonymous authors
Paper under double-blind review

Abstract

Sequential algorithms are popular for experimental design, enabling emulation, optimisation
and inference to be efficiently performed. For most of these applications bespoke software has
been developed, but the approach is general and many of the actual computations performed
in such software are identical. Motivated by the diverse problems that can in principle
be solved with common code, this paper presents GaussED, a high-level syntax coupled
to a powerful experimental design engine in Python, which together automate sequential
experimental design for approximating a (possibly nonlinear) quantity of interest in Gaussian
processes models. Using a handful of commands, GaussED can be used to: solve linear partial
differential equations, perform tomographic reconstruction from integral data, implement
Bayesian optimisation with gradient data, and emulate a complex computer model.

1 Introduction

This paper presents methodology and an associated Python package for sequential experimental design
(SED). SED is often associated with computational workflows that are complicated and cumbersome, as
one is required to iterate between designing an experiment (to augment a dataset with a new datum) and
performing inference for a specified quantity of interest (based on the augmented dataset). Thus SED is
well-placed to benefit from the development of a high-level programming syntax, implemented in a powerful
and widely-used language such as Python (Rainforth et al., 2024). The research challenge here is to identify
a class of statistical models that are sufficiently general to include important applications of SED, while
being sufficiently narrow to permit both inference and SED to be efficiently and automatically performed.
This paper aims to address two important open problems in the implementation of SED:

P1 automate SED for Gaussian process (GP) models with general nonlinear quantities of interest, in
the setting of linear functional data (e.g. function values, gradients, integrals);

P2 circumvent the requirement for the user to specify an acquisition function for SED, enabling appli-
cation to new tasks for which suitable acquisition functions are yet to be developed, in the spirit of
AutoML (Hutter et al., 2014).

In limiting attention to the relatively narrow class of GP models in P1, we aim to develop more powerful algo-
rithms than would have been possible in a more general-purpose framework. The setting of P1 includes SED
for the important tasks of emulating computer models (Kennedy & O’Hagan, 2001), performing Bayesian
optimisation (Shahriari et al., 2015), and running probabilistic numerical methods (Hennig et al., 2015).
Bespoke packages have been developed for these individual tasks, but many of the actual computations per-
formed in such packages are identical. Indeed, in Section 3 we demonstrate how our proposed solution can
solve diverse tasks, including: solving partial differential equations using a probabilistic numerical method,
performing tomographic reconstruction from integral data, implementing Bayesian optimisation with gradi-
ent data, and emulating a complex computer model. Such a solution enables advances in computational
methodology to be immediately brought to bear on diverse application areas where SED is performed.

1

Under review as submission to TMLR

Existing packages for SED require the user to specify an acquisition function, which is used to select the
next experiment and serves to control the exploration-exploitation trade-off (Rainforth et al., 2024). Unfor-
tunately, the process of determining an effective acquisition function requires domain expertise and, while
several choices have been documented in the literature (see e.g. Wilson et al., 2018, for acquisition functions
in Bayesian optimisation), many problems that fall into the setting of P1 have not received such detailed
treatment. In removing the technical burden of prescribing the acquisition function in P2, we may sacrifice
a degree of performance relative to dedicated software for tasks such as Bayesian optimisation, for which
bespoke acquisition functions have been developed. However, empirical results in this paper suggest that
the loss of performance may be modest, and in turn we are able to considerably expand the applicability of
the methodology and associated Python package.

1.1 Our Contribution

In this paper we present GaussED, a high-level syntax coupled to a powerful experimental design engine for
performing SED in the nonparametric GP context. GaussED achieves the aims P1 and P2, just outlined.
To achieve P1, and to ensure that GaussED can handle data arising from continuous linear functionals, we
present a rigorous probabilistic treatment of conditioning for GPs. This enables us to, for example, prevent
attempts to condition on a derivative that does not exist under the GP model. To achieve P2 and circumvent
the user-specification of an acquisition function, we adopt a classical but surprisingly overlooked decision-
theoretic approach to SED, which requires only the quantity of interest and a loss function to be specified.
The loss function quantifies the loss incurred when the true quantity of interest is approximated, a notion
that is meaningful in the applied context and comparatively straightforward to elicit. The computational
backend for GaussED comprises a spectral GP, a reparametrisation trick, and stochastic optimisation over
the experimental design set.

1.2 Related Work

Several general-purpose packages and probabilistic programming languages (PPLs) have been developed for
Bayesian parameter inference in parametric models (e.g. Wood et al., 2014; Carpenter et al., 2017; Bingham
et al., 2019), often based on Markov chain Monte Carlo or variational approximations in the backend.
Specialised PPLs have been developed for inferring parameters that minimise a predictive loss (e.g. using
neural networks; Paszke et al., 2019), often based on automatic differentiation and stochastic gradient descent.
For inference in nonparametric models, specialised PPLs have been developed for GP models (e.g. Rasmussen
& Nickisch, 2010; Matthews et al., 2017), including for numerical applications (ProbNum, 2021).

The combination of PPL and SED for general parametric models has received attention in Rainforth (2017,
Chapter 11) and Ouyang et al. (2016); Kandasamy et al. (2018), who provided a high-level syntax for Bayesian
SED. Several application-specific PPL have been also been developed for SED in parametric models (e.g.
Liepe et al., 2013). The focus of much of the research involving parametric models centres around the
computational challenge of conditioning random variables on observed data, a problem that is often difficult
(Olmedo et al., 2018).

SED for nonparametric models has received considerable attention in the context of Bayesian optimisation;
see the review of Shahriari et al. (2015). However, existing solutions are specialised to this single task.
More closely related to the present paper, Paleyes et al. (2019) developed a package called Emukit, in
which computer model emulation, Bayesian optimisation, and a number of probabilistic numerical methods
are automated. However, Emukit focuses on function-value data as opposed to general continuous linear
functionals (c.f. P1) and requires the user to specify a suitable acquisition function (c.f. P2).

Some interesting related research directions will also briefly be mentioned:

• In many scenarios there is a cost associated with each experiment, and these costs may not be equal;
and important research direction is to take cost into account in SED (Zheng et al., 2020).

• There is a close relationship between Bayesian active learning and SED, as explored in (e.g. Gal
et al., 2017; Kirsch et al., 2019).

2

Under review as submission to TMLR

• The vanilla approach to SED can be viewed as myopic, looking only one step ahead in determining
the utility of an experiment. Alternative, non-myopic approaches have been developed in the context
of Bayesian optimisation and could be extended to general SED (González et al., 2016; Jiang et al.,
2020).

• For applications where the likelihood function is not explicit, likelihood-free algorithms for SED have
been developed (e.g. Hainy et al., 2016).

• Recent researchers have aimed to cast SED as a problem in reinforcement learning (Foster et al.,
2021; Blau et al., 2022; Shen & Huan, 2023); this is an interesting insight but is not an approach
pursued in the current work.

For further discussion of the state-of-the-art in Bayesian experimental design we recommend the recent
review of Rainforth et al. (2024).

Outline: The of the paper is structured as follows: Section 2 presents a detailed technical description of
GaussED. Section 3 described the syntax of GaussED and presents diverse applications of SED, for which
bespoke code had previously been developed but whose automation is essentially trivial using GaussED. The
potential and limitations of GaussED are summarised in Section 4.

2 Methodology

This section presents the statistical and computational methodology used in GaussED. First, in Section 2.1,
the notation and mathematical set-up are introduced. The elements of SED are outlined in Section 2.2
and a classical, but surprisingly overlooked, approach to SED is presented in Section 2.3. This decision-
theoretic approach circumvents the requirement to specify an acquisition function and, moreover, enables
state-of-the-art stochastic optimisation to be employed in SED, as explained in Sections 2.4 and 2.5. The
hyperparameters of the GP model are estimated online during SED, as explained in Section 2.6.

2.1 Notation and Set-Up

Let F be a normed vector space of real-valued functions on some domain X ⊆ Rd. The problems that
we consider involve a latent function f ∈ F , associated with a high computational cost, and the task is to
approximate a (possibly nonlinear) quantity of interest q(f) using SED. The experiments are represented1

as continuous linear functionals δ : F → R and may, for example, include pointwise evaluation δ(f) = f(x)
of the latent function f at a specified location x ∈ X , pointwise evaluation of a gradient, or evaluation of
an integral, such as a Fourier transform. A limited computational budget motivates the careful selection of
informative experiments δ1, . . . , δn. SED is often preferred2 over a priori experimental design, since it allows
data δ1(f), . . . , δn−1(f), which have already been observed, to inform the design of the next functional δn.

Bayesian statistics provides a general framework for SED. Let (Ω,S,P) be a probability space and consider
a random variable f : Ω → F . This serves as a statistical model for the latent f, and encodes a priori
knowledge, such as the smoothness of f. To notate the distribution of f , we first define the pre-image of a
set B ⊆ F as f−1(B) := {ω ∈ Ω : f(ω) ∈ B} and we let f#P denote the pushforward of P through f ; i.e.
the probability distribution on F that assigns, to each Borel set B ⊆ F , the mass f#P(B) := P(f−1(B)).
The distribution of f will be denoted Pf := f#P in the sequel. Our presentation allows for general priors for
f until Section 2.5, at which point we will assume f is a GP. Throughout we adopt the convention that f
refers to the latent function of interest, f is a random variable model for f, and f is a generic element of the
set F .

1The focus of this paper is on data that are exactly observed. Gaussian errors can be handled in GaussED by building
measurement error into the GP covariance model.

2Sequential design is known to be near-optimal under adaptive submodularity (Golovin & Krause, 2011).

3

Under review as submission to TMLR

2.2 Sequential Experimental Design

SED iterates between designing an experiment δn, to augment a dataset with a new datum δn(f), and perform-
ing inference for a specified quantity of interest, based on the augmented dataset δn(f) := (δ1(f), . . . , δn(f))⊤.
Let D indicate the design set, whose elements are continuous linear functionals on F . The design set D will
depend on the problem at hand, and contains only the experiments that can actually be performed. At
iteration n, SED selects an experiment δn from the design set in order that an acquisition function is max-
imised3:

δn ∈ arg max
δ∈D

A(δ;Pf , δn−1(f)) (1)

The role of the acquisition function A is to control the exploration-exploitation trade-off, but the compu-
tational convenience of computing (1) is also important. Much research has been dedicated to exploring
choices for A, and the statistical and computational properties of the associated sequence (δn)∞

n=1. Specific
applications, where interest is not necessarily in f but rather a derived quantity of interest q(f), have de-
veloped bespoke acquisition functions that balance computational cost with accurate approximation of the
quantity of interest, in particular in Bayesian optimisation (see Table 1 in Wilson et al., 2018). This presents
a major problem (P2) for the development of a general purpose solution to SED, since in general we cannot
expect a user to specify a suitable acquisition function for the problem at hand.

As a first step toward solving P2, we consider a Bayesian approach to the design of an acquistion function.
To this end, let Pf (·|δn(f)) denote the conditional distribution (or posterior) of f obtained by setting the
values δn(f) equal to the observed data δn(f). From a mathematical perspective, the proper construction of
a conditional distribution for an infinite-dimensional random variable f is non-trivial; we suppress further
discussion in the main text but refer the reader to Appendix A for full mathematical detail. A Bayesian
approach to the design of an acquisition function is then to let U : Rn−1 × R → R be a utility function, to
be specified, and to seek an experiment for which the current expected utility

A(δ;Pf , δn−1(f)) =
∫
U(δn−1(f), δ(f)) dPf (f|δn−1(f)) (2)

is maximised. The utility U(δn−1(f), δ(f)) represents the value to the user of observing the datum δ(f). Thus
the design of an acquisition function can be reduced to the design of a utility function. A popular default
choice for U is the information gain (Lindley, 1956)

KL(Pf (·|δn−1(f), δ(f)) ∥ Pf (·|δn−1(f))), (3)

which quantifies the extent to which observation of the datum δ(f) changes a posteriori belief; here KL denotes
the Kullback–Leibler divergence. For related approaches and discussion see the recent survey in Kleinegesse
& Gutmann (2021). However, in the setting where data are exactly observed, the two distributions in (3)
will be mutually singular and the Kullback–Leibler divergence will not exist. This renders information-based
acquisition functions such as (3) unsuitable in our context. Instead, we revisit a classical but often overlooked
idea from experimental design, next.

2.3 A Decision-Theoretic Approach

A general approach to construction of a utility U is provided by Bayesian decision theory in the parameter
inference context4. Let L : F × F → R denote the loss L(f, g) when estimating the function (or parameter)
f by g. Then we can take U to be the negative Bayes’ risk

− min
g∈F

∫
L(g, g′) dPf (g′|δn−1(f), δ(f)), (4)

which corresponds to the negative expected loss when the Bayes act g is used. Compared to an acquisition
function or a utility function, it can be more straightforward for a domain expert to specify a suitable loss

3To avoid pathological cases, the existence of a (not necessarily unique) maximum is always assumed.
4The decision-theoretic approach was advocated by Berger (1985, Section 2.5), who wrote “better inferences can often be

done with the aid of decision-theoretic machinery and inference losses”.

4

Under review as submission to TMLR

function L, since no explicit consideration of the design set, or explicit control of the exploration-exploitation
trade-off, is required. Although appealing in terms of its generality, the presence of the optimisation over
g has historically rendered this utility unappealing from a computational viewpoint, and motivated more
convenient choices, such as (3), that have since become canonical (see the surveys in Chaloner & Verdinelli,
1995; Rainforth et al., 2024). However, we argue that the presumed intractability of loss-based utilities
might need to be revisited in light of modern and powerful stochastic optimisation techniques. Indeed, for
loss functions of the form L(f, g) = ∥q(f) − q(g)∥2, indicating that one has a quantity of interest q(f) taking
values in a normed space5, under mild conditions (4) is equal to

−1
2

∫∫
L(g, g′) dPf (g|δn−1(f), δ(f)) dPf (g′|δn−1(f), δ(f)). (5)

The required regularity conditions and a formal proof are contained in Appendix B. At first glance it is
unclear why this observation is helpful, since we have replaced an optimisation problem with an integration
problem, and integration is typically more difficult than optimisation. However, this formulation turns
the experimental design problem to find δn into a double expectation and, if the design set D has enough
structure for calculus, then gradient-based stochastic optimisation can be applied.

The restriction to squared error loss is not as limited as it may first appear, since one has the freedom to
specify the quantity of interest q(f) in such a way that application of squared error loss to q(f) captures
salient aspects of the task at hand. For example, if one is equally interested in all aspects of f then one
could take q(f) = f, while if one is more interested in the largest values taken by f then one could take
q(f) = exp(f), so that the size of ∥q(f) − q(g)∥ is driven by the difference between the largest values taken by
f and g. Concrete examples of this are provided in Section 3.2.

2.4 Stochastic Optimisation

Following this decision-theoretic approach, an acquisition function is obtained in expectation form by plug-
ging (5) into (2) and applying the law of total probability, producing

A(δ;Pf , δn−1(f)) = −1
2

∫∫
L(g, g′) dPf (g′|δn−1(f), δ(g)) dPf (g|δn−1(f)). (6)

This acquisition function does not permit a closed form in general. Several numerical methods have been pro-
posed for maximisation of acquisition functions in the literature, including Bayesian optimisation (Overstall
& Woods, 2017; Kleinegesse & Gutmann, 2019), non-gradient based Monte-Carlo methods, and approxi-
mation strategies. Similar to the approach6 of Wilson et al. (2018), here we consider the use of stochastic
optimisation techniques (Robbins & Monro, 1951) for selecting an experiment δ for which (6) is approxi-
mately maximised. For an overview of stochastic optimisation, see Kushner & Yin (2003); Ruder (2016).
First we perform a reparametrisation trick (Williams, 1992), expressing

g′ ∼ Pf (·|δn−1(f), δ(g)) ⇔ g′ = η(ω;Pf , δn−1(f), δ(g)), ω ∼ P, (7)

using a deterministic transformation η of a random variable ω that is δ-independent. Section 2.5, below,
details how we applied the reparametrisation trick to a GP model. Now, suppose further that the elements of
the design set can be parametrised as D = {δz}z∈Rm ⊆ F . Assuming sufficiently regularity for the following
calculus to be well-defined, an unbiased estimator of the gradient of the acquisition function is

∂

∂zi
A(δz;Pf , δn−1(f)) ≈ −1

2
1

NM

N∑
i=1

M∑
j=1

∂

∂zi
L(gi, η(ωij ,Pf , δn−1(f), δz(gi))),

5A focus on squared error loss is only a mild restriction, since we are free to re-parametrise the quantity of interest q as t ◦ q,
where t is an injective map (to ensure that information is not lost). Through careful selection of t we may formulate the SED
task in a setting where squared error loss is appropriate for the task at hand.

6Wilson et al. (2018) performed a reparametrisation trick by restricting attention to acquisition functions that depend on
the GP only at a finite number of locations in the domain X ; in contrast, this paper exploits a spectral approximation of the
GP, described in Section 2.5.

5

Under review as submission to TMLR

where the gi are independent random variables with distribution Pf (·|δn−1(f)) and the ωij are independent
random variables with distribution P. This is an instance of nested Monte Carlo. The optimal balance
between N and M for a fixed computational budget is discussed in Rainforth et al. (2018); for a continuously
differentiable gradient, an optimal choice7 is N ∝ M2. GaussED exploits state-of-the-art spectral GPs to
perform the reparametrisation trick, as presented next.

2.5 Spectral Approximation of GPs

Up to this point our discussion applied to general statistical models Pf for the latent function f. In the
remainder GPs will be used, since they facilitate closed form conditional distributions, as appearing in (6).
The purpose of this section is twofold; to briefly introduce GPs and to describe how the reparametrisation
trick can be performed.

A random variable f taking values in a normed vector space F is Gaussian if, for every continuous linear
functional δ : F → R, the random variable δ(f) is a Gaussian on R; see Definition 2.41 in Sullivan (2015). It
follows that the statistical properties of a GP are characterised by its mean function µ(x) := E[f(x)], x ∈ X ,
and covariance function k(x, y) := C[f(x), f(y)], x, y ∈ X , and we write f ∼ GP(µ, k). GPs admit conjugate
inference, meaning that for a continuous linear functional δ ∈ D, the conditional distributions Pf (·|δ(f)) are
also Gaussian, with mean and covariance functions that can be computed in closed form; see Appendix C.

For the reparametrisation trick, we aim to write a GP as a deterministic transformation f = η(ω) of a random
variable ω, such that the distribution of ω does not depend on µ or k. However, being a nonparametric
statistical model, an infinite-dimensional ω will in general be required. This motivates the use of an accurate
finite-dimensional approximation of a GP at the outset, i.e. for the prior Pf . A truncated Karhunen–Loeve
expansion (see e.g. Theorem 11.4 in Sullivan, 2015) in principle provides such a transformation, however
this requires computation of the eigenfunctions of k, and linear functionals thereof, which will in general
be difficult. The solution adopted in GaussED is to use the finite-rank approximation to isotropic GPs
introduced in Solin & Särkkä (2019): f = η(ω) = µ+

∑m
i=1 ωiϕi, where the coefficients ωi ∼ N (0, s(

√
λi))

are independent, s is the spectral density of k, and (ϕi, λi) are the pairs of eigenfunctions and eigenvalues of
the Laplacian ∆ over the domain X ; see Appendix D for detail. The approximation converges as m → ∞,
with small values of m often practically sufficient; see Riutort-Mayol et al. (2020). GaussED puts the user in
control of m, since m is the principal determinant of computational complexity in the experimental design
engine, aside from the computations involving the latent function f itself.

2.6 Hyperparameter Estimation

To this point we assumed that a GP model can be specified at the outset. In reality one is usually prepared
only to posit a parametric class of GPs whose parameters (called hyperparameters) are jointly estimated. In
GaussED the hyperparmaters of the GP are estimated at each iteration n ≥ n0 of SED, using the available
dataset δn(f), after an initial number n0 ∈ N of data have been observed. Maximum likelihood estimation is
employed, facilitated using automatic differentiation and Adam (Kingma & Ba, 2015). The role of n0 is to
guard against over-confident inferences, since maximum likelihood tends to overfit when the dataset is small;
see e.g. Chapter 5 of Rasmussen & Williams (2006). In GaussED, the default value is taken as n0 = 10.

This completes our description of GaussED. Our attention turns, next, to demonstrating and assessing its
capabilities.

3 Demonstration

The aims of this section are to validate GaussED and to highlight the diverse and non-trivial applications that
can be tackled. GaussED is based on Python and utilises the automatic differentiation capabilities of PyTorch
(Paszke et al., 2019). Source code and documentation for GaussED can be downloaded from [blinded -
uploaded for review].

7The values M = 9, N = 92, were used for all experiments we report, being among the smallest values for which stochastic
optimisation was routinely successful.

6

Under review as submission to TMLR

Full details for each of the following examples are provided in Appendix F. An investigation into the sensitivity
of the computational methodology to initial conditions, the choice of stochastic optimisation method, and
the number of basis functions m, can be found in Appendix G.

3.1 Probabilistic Solution of PDEs

k = MaternKernel(3, dim=2)
qoi = SpectralGP(k)
obs = Laplacian(qoi)
loss = L2(qoi)

d = EvaluationDesign(obs, initial_design)
acq = BayesRisk(qoi, loss, d)

experiment = Experiment(obs, laplace_f, d, acq)
experiment.run(n=150)

Figure 1: Example syntax for GaussED.

Our first example concerns the proba-
bilistic numerical solution of Poisson’s
equation with Dirichlet boundary con-
ditions; the intention is to validate our
methodology on a problem that is well-
understood. SED for such problems was
investigated with bespoke code in Cock-
ayne et al. (2016). The PDE we consider
is defined on X = [−1, 1]2 and takes the
form

∆f(x) = g(x), x ∈ X ,
f(x) = 0, x ∈ ∂X .

Our quantity of interest is the solution
f and the black-box source g is assumed
to be associated with a computational
cost, so that numerical uncertainty quantification is required. For this demonstration we simply took
g(x) = −320|x3

1 exp{−(3.2x1)2 − (10x2 − 5)2}| as a test bed. The latent f was modelled as a GP f with
mean zero and Matérn covariance with smoothness parameter ν = 3 + 1

2 , implying that samples are con-
tained in a normed space F on which the functionals δ(f) = ∆f(x) are continuous; these functionals constitute
the design set D, parameterised by x ∈ X . It is known that an optimal experimental design in this case is
space filling (Wendland, 2004; Novak & Woźniakowski, 2010), as quantified by the fill distance

FD({xi}n
i=1,X) := sup

x∈X

{
min

i∈{1,...,n}
∥x− xi∥

}
,

and this fact will be used to validate GaussED. The syntax of GaussED is demonstrated in Figure 1, and
consists of specifying a covariance function (k), a quantity of interest (qoi), an observation model (obs), here
the Laplacian (Laplace), a loss function (loss), a design (d) initialised with an initial_design, and an
acquisition function (acq). BayesRisk is the default acquisition function from (6), but GaussED retains the
capability for alternative acquisition functions in the event that they can be user-specified. The experiment
object (experiment) then collates these objects together to perform n = 150 iterations of SED, optimising
hyperparameters as specified in Section 2.6.

Results are shown in Figure 2 and required only the 8 lines of code shown in Figure 1. The number of
basis functions used was m = 302, we computed n0 = 10 iterations of SED before beginning hyperparameter
optimisation and a total of 9 CPU hours were invested to ensure that all n = 150 instances of stochastic
optimisation converged. The convergence rate of the fill distance is lower-bounded by Θ(n−1/2), and Figure 2c
demonstrates that this optimal rate is empirically achieved by GaussED. This validates our approach to SED.

3.2 Tomographic Reconstruction

Our next example is tomographic reconstruction from x-ray data (Mersereau & Oppenheim, 1974). The aim
is to reconstruct a latent function f : X → R, where X = [−1, 1]d, using line-integral data of the form

δ(f) =
∫ b

a

f(r(t)) |r′(t)| dt,

where r(t), t ∈ [a, b], is a parameterisation of a line with endpoints r(a), r(b) ∈ ∂X . SED for this problem
was recently addressed, using bespoke code, in Burger et al. (2021) and Helin et al. (2021). Following

7

Under review as submission to TMLR

(a) (b) (c)

Figure 2: Probabilistic Solution of PDEs: (a) Source term g with design points (red) determined by SED
overlaid. (b) Mean of f |δn(f), the posterior obtained using SED. (c) Fill distance (FD; red) versus the
number n of iterations in SED, with theoretical optimal slope − 1

2 (blue) displayed as a visual aid.

Figure 3: Tomographic Reconstruction: The top row displays experimental designs, overlaying the latent f.
Each red bar indicates the region over which 9 equally-spaced line integrals were computed. The bottom
row displays the corresponding mean of f |δn(f), the posterior obtained using (from left to right): SED with
non-linear quantity of interest (n = 9, 90, 270), SED with linear quantity of interest (n = 270), and a random
design (n = 270).

Burger et al. (2021), an experiment consists of a set of 9 parallel line integrals across X , with lines a
perpendicular distance of 0.03 apart. As a toy example, we consider tomographic reconstruction of an
indicator function f(x) = 1B(x) where B is the ball of radius 0.3 centred on (0.4, 0.4). For our statistical
model f we used a stationary GP with Matérn covariance and smoothness parameter ν = 2 + 1

2 , and the
non-linear quantity of interest was q(f) = exp(3f) which, when combined with squared error loss, serves to
prioritise the reconstruction of the ball in SED. See Appendix F.2 for full detail.

Results are shown in Figure 3 and only 32 lines of code were required. In this experiment, we used m = 282

basis functions and began optimising hyperparameters at SED iteration n = 1. In total, 2.5 CPU hours were
required. SED using GaussED provides improved reconstruction compared to a random design (right panel).
As an additional comparison, we also performed SED with the linear quantity of interest q(f) = f and a
space-filling design was obtained. Exploratory investigation of this kind is straight-forward in GaussED.

8

Under review as submission to TMLR

(a) (b) (c) (d)

Figure 4: Gradient-Based Bayesian Optimisation: (a) Mean of f |δn(f), the posterior after n = 90 total
evaluations. (b) Log-likelihood f, with design points overlaid. Colour indicates the order in which points
were selected in SED. (c) Maximum value of the likelihood obtained during the first m iterations of each
optimisation method. (d) Location of the maximum value along the optimisation path, where the colored
✖ symbols indicate the maximum value obtained (for Bayesian optimisation, the maximum of the posterior
mean is reported).

3.3 Gradient-Based Bayesian Optimisation

Our next example uses Bayesian optimisation to perform parameter inference via maximum likelihood, and
for this we consider the Lotka–Volterra model

dp
dt = αp− βpq,

dq
dt = −γq + δpq,

(8)

where p(t), q(t) > 0 are the predator and prey populations, respectively, at time t and α, β, γ and δ are
free parameters to be inferred. To facilitate visualisation of experimental designs we consider inferring only
α and β, which we collect in a single parameter vector x = (α, β). For this demonstration we restrict
attention to X = [0.45, 0.9] × [0.09, 0.5], to avoid failure of the numerical integrator applied to (8). The
remaining parameters, γ and δ, are then taken as fixed. Our latent function f is the log-likelihood, denoted
f = log L, arising from a particular dataset of noise-corrupted observations described in Appendix F.3. Our
quantity of interest is the maximum likelihood estimator q(f) = maxx∈X f(x). The design set D contains
pointwise evaluation functionals δ1

x(f) = log L(x) and gradient evaluation functionals δ2,i
x (f) = ∇xi

log L(x),
and at each iteration of SED we evaluate (δ1

x(f), δ2,1
x (f), δ2,2

x (f)) for some x ∈ X , mimicking the information
provided when (8) is solved using an adjoint method. Through a suitable sequence of evaluation functionals,
SED aims to approximate the maximum likelihood estimator.

Results are shown in Figure 4 and only 17 lines of code were required. In this experiment we used m = 352

basis functions, we computed n0 = 10 iterations of SED before beginning hyperparameter optimisation and
1.5 CPU hours were required. For reference, results based on gradient ascent and L-BFGS (Nocedal, 1980) are
also displayed. All algorithms were initialised at the midpoint of the domain X and run for n = 30 iterations.
Bayesian optimisation with gradient data outperformed the first order optimisation methods in this example,
where attention is focused on performance after a small number of likelihood evaluations, to mimic more
challenging applications in which the likelihood is associated with a more substantial computational cost. In
Appendix G.3, we compare our general form of an acquisition function against a bespoke acquisition function
used in Bayesian optimisation; expected improvement (Jones et al., 1998). These additional results suggest
that the performance gap between the default acquisition function used in GaussED and bespoke acquisition
functions, tailored for specific tasks, may not be substantial.

9

Under review as submission to TMLR

3.4 Emulation of a Cardiac Model

0 2 4 6
log(n)

4

2

0

lo
g(

M
SE

)

Figure 5: Emulation of a Cardiac Model: Plot of MSE
after n iterations of SED (red) and MSE obtained from
conditioning on all 104 datapoints (dashed). Blue lines
are MSE using random evaluation points.

Our final example is a realistic use-case of GaussED;
emulating a complex biomechanical cardiac model.
The model f : X → R25, due to Davies et al. (2019),
comprises a system of partial differential equations
(PDEs), depending on a 4-dimensional input param-
eter x taking values in X = [0.1, 5]4. The model out-
puts quantities describing the heartbeat, and there
is clinical interest in inferring input parameters x
for which f(x) is consistent with the corresponding
physical quantities measured from an MRI scan of
a patient.

The complexity of the finite-element methods used
to discretise the PDEs, combined with the dimen-
sion of the parameter space, mean that weeks of
computation can be required to produce clinically
relevant output. GP emulation seeks to reduce this
computational cost, by replacing the simulator with
a surrogate model trained on a small number of simulations from the original model (Kennedy & O’Hagan,
2001). Noè et al. (2019) constructed a GP emulator of the cardiac model f using simulations δi(f) = f(xi) at
an a priori experimental design based on Sobol points x1, . . . , xN , N = 104, scaled and shifted to X . Our
aim is to investigate whether computational resources can be saved using SED.

Results are shown in Figure 5 and required only the 29 lines of code contained in Appendix F.4. The
number of basis functions used was m = 442, we first performed n0 = 100 iterations of SED before beginning
hyperparameter optimisation and a total of 24 CPU hours were required. To avoid re-running the cardiac
model, we restricted SED to the discrete set {x1, . . . , xN } of values reported in Noè et al. (2019), but
in reality the resources required to evaluate f dwarf those required for SED. Emulator performance was
quantified using held-out mean square error (MSE) computed on a test set of size 102. For demonstration
purposes, we considered just one output (the lower ventricle chamber volume) from the cardiac model. SED
(red) is seen to out-perform random designs (blue) in Figure 5. Moreover, the MSE after 103 iterations
of SED was 0.0366, which reduces only to 0.0209 using all 104 simulations from the model. Thus MSE
within a factor of 2 compared to that of Noè et al. (2019) was obtained using SED based on only 103 ≪ 104

simulations from the cardiac model, highlighting both the utility of SED and the convenience of a PPL such
as GaussED in this context.

4 Discussion

This paper introduced GaussED, a high-level syntax coupled to a powerful engine for SED. Through four
experiments we illustrated the diverse applications that can be automatically solved using GaussED. However,
automation of SED comes at a cost: Firstly, GaussED is restricted both to continuous linear functional data
and to GPs, limiting the potential for more flexible statistical models to be employed. Alternative solutions,
such as Emukit, offer more modelling flexibility but require acquistion functions to be manually specified.
Secondly, in automating the specification of an acquisition function in GaussED, there may be a loss in
performance terms compared to bespoke solutions for specific tasks. Our experiments involving Bayesian
optimisation in Section 3.3 were encouraging, however, and suggested that such performance gaps, if they
do exist, may be acceptably small. One role for GaussED in these settings is to provide an off-the-shelf
benchmark for SED, against which more sophisticated methods can be compared.

Acknowledgments

The authors are grateful for constructive feedback from three expert Reviewers.

10

Under review as submission to TMLR

References
James O Berger. Statistical Decision Theory and Bayesian Analysis. Springer, New York, NY, 1985.

Melvyn S Berger. Nonlinearity and Functional Analysis: Lectures on Nonlinear Problems in Mathematical
Analysis. Academic Press, 1977.

Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos,
Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D Goodman. Pyro: Deep universal probabilistic
programming. The Journal of Machine Learning Research, 20(1):973–978, 2019.

Tom Blau, Edwin V Bonilla, Iadine Chades, and Amir Dezfouli. Optimizing sequential experimental design
with deep reinforcement learning. In International Conference on Machine Learning, pp. 2107–2128.
PMLR, 2022.

M Burger, A Hauptmann, T Helin, N Hyvönen, and J-P Puska. Sequentially optimized projections in X-ray
imaging. Inverse Problems, 37(7):075006, 2021.

Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt,
Marcus A Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A probabilistic programming
language. Journal of Statistical Software, 76(1):1–32, 2017.

Kathryn Chaloner and Isabella Verdinelli. Bayesian Experimental Design: A Review. Statistical Science, 10
(3):273 – 304, 1995.

Joseph T Chang and David Pollard. Conditioning as disintegration. Statistica Neerlandica, 51(3):287–317,
1997.

Jon Cockayne, Chris J Oates, TJ Sullivan, and Mark Girolami. Probabilistic meshless methods for partial
differential equations and Bayesian inverse problems. arXiv:1605.07811, 2016.

Vinny Davies, Umberto Noè, Alan Lazarus, Hao Gao, Benn Macdonald, Colin Berry, Xiaoyu Luo, and Dirk
Husmeier. Fast parameter inference in a biomechanical model of the left ventricle by using statistical
emulation. Journal of the Royal Statistical Society: Series C (Applied Statistics), 68(5):1555–1576, 2019.

Josef Dick and Friedrich Pillichshammer. Digital Nets and Sequences: Discrepancy Theory and Quasi–Monte
Carlo Integration. Cambridge University Press, 2010.

Adam Foster, Desi R Ivanova, Ilyas Malik, and Tom Rainforth. Deep adaptive design: Amortizing sequential
bayesian experimental design. In International Conference on Machine Learning, pp. 3384–3395. PMLR,
2021.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep Bayesian active learning with image data. In
International Conference on Machine Learning, pp. 1183–1192. PMLR, 2017.

Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and applications in active learning
and stochastic optimization. Journal of Artificial Intelligence Research, 42:427–486, 2011.

Javier González, Michael Osborne, and Neil Lawrence. Glasses: Relieving the myopia of bayesian optimisa-
tion. In Artificial Intelligence and Statistics, pp. 790–799. PMLR, 2016.

Markus Hainy, Christopher C Drovandi, and James M McGree. Likelihood-free extensions for bayesian
sequentially designed experiments. In mODa 11-Advances in Model-Oriented Design and Analysis: Pro-
ceedings of the 11th International Workshop in Model-Oriented Design and Analysis held in Hamminkeln,
Germany, June 12-17, 2016, pp. 153–161. Springer, 2016.

Tapio Helin, Nuutti Hyvönen, and Juha-Pekka Puska. Edge-promoting adaptive Bayesian experimental
design for X-ray imaging. arXiv:2104.00301, 2021.

11

Under review as submission to TMLR

Philipp Hennig, Michael A Osborne, and Mark Girolami. Probabilistic numerics and uncertainty in compu-
tations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2179):
20150142, 2015.

F Hutter, R Caruana, R Bardenet, M Bilenko, I Guyon, B Kegl, and H Larochelle. AutoML @ ICML.
International Conference on Machine Learning, 2014.

Shali Jiang, Henry Chai, Javier Gonzalez, and Roman Garnett. Binoculars for efficient, nonmyopic sequential
experimental design. In International Conference on Machine Learning, pp. 4794–4803. PMLR, 2020.

D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black-box functions.
Journal of Global Optimization, 13:455–492, 12 1998.

Ohad Kammar. A note on Fréchet diffrentiation under Lebesgue integrals. Technical re-
port, University of Oxford, 2016. URL https://www.cs.ox.ac.uk/people/ohad.kammar/notes/
kammar-a-note-on-frechet-differentiation-under-lebesgue-integrals.pdf.

Kirthevasan Kandasamy, Willie Neiswanger, Reed Zhang, Akshay Krishnamurthy, Jeff Schneider, and Barn-
abas Poczos. Myopic Bayesian design of experiments via posterior sampling and probabilistic programming.
arXiv:1805.09964, 2018.

Marc C Kennedy and Anthony O’Hagan. Bayesian calibration of computer models. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 63(3):425–464, 2001.

A. Khintchine. Korrelationstheorie der stationären stochastischen prozesse. Mathematische Annalen, 109:
604–615, 1934.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of the 3rd
International Conference on Learning Representations, 2015.

Andreas Kirsch, Joost Van Amersfoort, and Yarin Gal. Batchbald: Efficient and diverse batch acquisition
for deep Bayesian active learning. Advances in Neural Information Processing Systems, 32, 2019.

Steven Kleinegesse and Michael U. Gutmann. Efficient Bayesian experimental design for implicit models. In
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics, 2019.

Steven Kleinegesse and Michael U. Gutmann. Gradient-based Bayesian experimental design for implicit
models using mutual information lower bounds. arXiv:2105.04379, 2021.

Harold Kushner and G. George Yin. Stochastic Approximation and Recursive Algorithms and Applications.
Springer Science & Business Media, 2003.

Juliane Liepe, Sarah Filippi, Michał Komorowski, and Michael PH Stumpf. Maximizing the information
content of experiments in systems biology. PLoS Comput Biol, 9(1):e1002888, 2013.

Dennis V Lindley. On a measure of the information provided by an experiment. The Annals of Mathematical
Statistics, pp. 986–1005, 1956.

Alexander G de G Matthews, Mark Van Der Wilk, Tom Nickson, Keisuke Fujii, Alexis Boukouvalas, Pablo
León-Villagrá, Zoubin Ghahramani, and James Hensman. GPflow: A Gaussian process library using
tensorflow. Journal of Machine Learning Research, 18(40):1–6, 2017.

R. M. Mersereau and A. V. Oppenheim. Digital reconstruction of multidimensional signals from their
projections. Proceedings of the IEEE, 62(10):1319–1338, 1974.

Jorge Nocedal. Updating quasi-Newton matrices with limited storage. Mathematics of Computation, 35
(151):773–782, 1980.

12

https://www.cs.ox.ac.uk/people/ohad.kammar/notes/kammar-a-note-on-frechet-differentiation-under-lebesgue-integrals.pdf
https://www.cs.ox.ac.uk/people/ohad.kammar/notes/kammar-a-note-on-frechet-differentiation-under-lebesgue-integrals.pdf

Under review as submission to TMLR

Umberto Noè, Alan Lazarus, Hao Gao, Vinny Davies, Benn Macdonald, Kenneth Mangion, Colin Berry,
Xiaoyu Luo, and Dirk Husmeier. Gaussian process emulation to accelerate parameter estimation in a
mechanical model of the left ventricle: A critical step towards clinical end-user relevance. Journal of The
Royal Society Interface, 16(156):20190114, 2019.

Erich Novak and Henryk Woźniakowski. Tractability of Multivariate Problems. Volume II: Standard Infor-
mation for Functionals. European Mathematical Society, 2010.

Federico Olmedo, Friedrich Gretz, Nils Jansen, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and
Annabelle McIver. Conditioning in probabilistic programming. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 40(1):1–50, 2018.

Long Ouyang, Michael Henry Tessler, Daniel Ly, and Noah Goodman. Practical optimal experiment design
with probabilistic programs. arXiv:1608.05046, 2016.

Antony M. Overstall and David C. Woods. Bayesian design of experiments using approximate coordinate
exchange. Technometrics, 59(4):458–470, 2017.

Andrei Paleyes, Mark Pullin, Maren Mahsereci, Neil Lawrence, and Javier González. Emulation of physi-
cal processes with Emukit. In Proceedings of the 2nd Workshop on Machine Learning and the Physical
Sciences, NeurIPS, 2019.

Théodore Papadopoulo and Manolis I. A. Lourakis. Estimating the Jacobian of the singular value decom-
position: Theory and applications. In Computer Vision - ECCV 2000, pp. 554–570, 2000.

Kalyanapuram Rangachari Parthasarathy. Probability Measures on Metric Spaces. American Mathematical
Soc., 2005.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. In Proceedings of the 32nd International Conference on Neural Information Processing
Systems, 2019.

ProbNum. ProbNum: Learn to approximate. Approximate to learn, 2021. URL www.
probabilistic-numerics.org.

Thomas William Gamlen Rainforth. Automating inference, learning, and design using probabilistic program-
ming. PhD thesis, University of Oxford, 2017.

Tom Rainforth, Rob Cornish, Hongseok Yang, Andrew Warrington, and Frank Wood. On nesting Monte
Carlo estimators. In Proceedings of the 35th International Conference on Machine Learning, pp. 4267–4276,
2018.

Tom Rainforth, Adam Foster, Desi R Ivanova, and Freddie Bickford Smith. Modern bayesian experimental
design. Statistical Science, 39(1):100–114, 2024.

Carl Edward Rasmussen and Hannes Nickisch. Gaussian processes for machine learning (GPML) toolbox.
The Journal of Machine Learning Research, 11:3011–3015, 2010.

Carl Edward Rasmussen and Christopher K I Williams. Gaussian Processes for Machine Learning. 2006.

Klaus Ritter. Average-Case Analysis of Numerical Problems. Springer, 2007.

Gabriel Riutort-Mayol, Paul-Christian Bürkner, Michael R. Andersen, Arno Solin, and Aki Vehtari. Practical
Hilbert space approximate Bayesian Gaussian processes for probabilistic programming. arXiv:2004.11408,
2020.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, 22(3):400–407, 09 1951.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv:1609.04747, 2016.

13

www.probabilistic-numerics.org
www.probabilistic-numerics.org

Under review as submission to TMLR

W. Rudin. The Basic Theorems of Fourier Analysis. John Wiley & Sons, Ltd, 1990.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the human out
of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1):148–175, 2015.

Wanggang Shen and Xun Huan. Bayesian sequential optimal experimental design for nonlinear models using
policy gradient reinforcement learning. Computer Methods in Applied Mechanics and Engineering, 416:
116304, 2023.

Arno Solin and Simo Särkkä. Hilbert space methods for reduced-rank Gaussian process regression. Statistics
and Computing, 30(2):419–446, 2019.

T. J. Sullivan. Introduction to Uncertainty Quantification. Springer International Publishing, 2015.

Wei Wang, Zheng Dang, Yinlin Hu, Pascal Fua, and Mathieu Salzmann. Robust differentiable SVD. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(9):5472–5487, 2021.

Holger Wendland. Scattered Data Approximation. Cambridge University Press, 2004.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine Learning, 8:229–256, 1992.

James Wilson, Frank Hutter, and Marc Deisenroth. Maximizing acquisition functions for Bayesian opti-
mization. In Proceedings of the 32nd International Conference on Neural Information Processing Systems,
2018.

James T. Wilson, Viacheslav Borovitskiy, Alexander Terenin, Peter Mostowsky, and Marc Peter Deisenroth.
Pathwise conditioning of Gaussian processes. The Journal of Machine Learning Research, 20:1–47, 2021.

Frank Wood, Jan Willem Meent, and Vikash Mansinghka. A new approach to probabilistic programming
inference. In Proceedings of the 17th International Conference on Artificial Intelligence and Statistics, pp.
1024–1032, 2014.

Sue Zheng, David Hayden, Jason Pacheco, and John W Fisher III. Sequential Bayesian experimental design
with variable cost structure. Advances in Neural Information Processing Systems, 33:4127–4137, 2020.

14

Under review as submission to TMLR

Appendices

Appendix A contains the mathematical preliminaries for the subsequent sections Appendix B and Ap-
pendix C. Appendix B presents the conditions for the equivalence of (4) and (5) as advertised in Section 2.3.
Appendix C presents the formal background of conditioning on continuous linear data for Gaussian processes
and presents properties of the Matérn covariance function. Appendix D presents a derivation of the Gaus-
sian process model that forms the foundation of GaussED. Appendix E discusses computational aspects of
GaussED. In particular, we discuss linear algebra solvers, different approaches to sampling from the posterior,
and we present a complete description of how GaussED attempts to optimise the acquisition function in SED.
Appendix F contains full details of the experiments presented in Section 3. Appendix G presents further
empirical evaluation of GaussED.

A Mathematical Preliminaries

In this section we present the mathematics required to ensure that the conditioning of stochastic processes
in the main text is well-defined (Appendix A.1), as well as recalling the concept of a Fréchet derivative
(Appendix A.2).

A.1 Conditioning as Disintegration

In finite dimensions, conditioning of random variables can be performed using the density formulation of
Bayes’ theorem. However, typical stochastic processes will be infinite-dimensional, meaning that (Lebesgue)
densities do not exist in general. This necessitates a level of mathematical abstraction to ensure that
conditional probabilities are well-defined. The appropriate notion, for this work, is that of disintegration,
defined next.

Let (F ,SF) and (Y,SY) be measurable spaces and let δ be a measurable function from F to Y. Recall that
δ−1(S) = {f ∈ F : δ(f) ∈ S} denotes the pre-image of S ∈ SY . Let P be a probability measure on (F ,SF)
and recall that δ#P denotes the pushforward measure (δ#P)(S) := P(δ−1(S)) on Y.
Definition 1. The collection {P(·|y)}y∈Y is called a δ-disintegration of P if

1. P(δ−1(y)|y) = 1 for δ#P almost all y ∈ Y

and, for each measurable function g : F → [0,∞), we have

2. y 7→
∫
g(f)dP(f|y) is measurable

3.
∫
g(f)dP(f) =

∫ ∫
g(f)dP(f|y)dδ#P(y)

A disintegration is a particular instance of a regular conditional distribution which also satisfies property (1)
in Definition 1; see Chang & Pollard (1997). A basic theorem on the existence and δ#P almost everywhere
uniqueness of disintegrations is given in Parthasarathy (2005, p147). Two disintegrations will be identified
if they coincide δ#P almost everywhere, and we will therefore refer to the δ-disintegration of P. The concept
of disintegration makes precise what it means to “condition GPs on data”, and imposes conditions on the
linear functionals in the design set as explained in Appendix C.

A.2 Fréchet Derivatives

Recall that F was defined as a normed vector space, meaning that the notion of a Fréchet derivative can be
exploited. A function q : F → Rd is called Fréchet differentiable at f ∈ F if there exists a bounded linear
operator A : F → Rd such that

lim
∥g∥→0

∥q(f + g) − q(f) −A(g)∥
∥g∥

= 0.

15

Under review as submission to TMLR

If such an operator exists it can be shown to be unique, called the Fréchet derivative of q at f, and denoted
Dq(f) = A. To emphasise that the Fréchet derivative is an operator, we occasionally write Dq(f)(·) in the
sequel. A Fréchet derivative Dq(f) is said to have full rank if Dq(f)(g) = 0 implies g = 0.

The chain rule for Fréchet derivatives takes the form

D(b ◦ a)(f)(·) = (Db ◦ a)(f) ◦ Da(f)(·).

As a concrete example, that we use later, consider a(f) = q(f) to be the quantity of interest and b(x) =
∥x− q(g)∥2 for all x ∈ Rd and some fixed g ∈ F . Then Db(x)(·) = 2⟨x− q(g), ·⟩ is a linear operator from Rd

to R and we have

D(b ◦ a)(f)(·) = 2⟨q(f) − q(g),Dq(f)(·)⟩, (9)

which is a linear operator from F to R. Further background on Fréchet derivatives can be found in Berger
(1977, Section 2.1C).

An important technical result on Fréchet derivatives, that we will use in the sequel, is when the interchange
of a Fréchet derivative and an integral can be permitted:
Proposition 1. Let F be complete (i.e. a Banach space) and (Ω,S,P) be a probability space. Let ℓ : F ×Ω →
R satisfy the following:

1. f 7→ ℓ(f, ω) is Fréchet differentiable, for each ω ∈ Ω

2. ω 7→ ℓ(f, ω) is integrable, for each f ∈ F

3. ω 7→ Dℓ(f, ω)(g) is integrable, for each f, g ∈ F

4.
∫

∥Dℓ(f, ω)∥dP(ω) < ∞

Then the function
r(f) :=

∫
ℓ(f, ω)dP(ω)

is Fréchet differentiable, with derivative

Dr(f)(·) =
∫

Dℓ(f, ω)(·)dP(ω).

Proof. A special case of Kammar (2016).

B Regularity Conditions for the Decision Theoretic Formulation

The aim in this section is to establish sufficient conditions for the equivalence of (4) and (5) as advertised in
Section 2.3. To achieve this, we will use the notion of a Fréchet derivative from Appendix A.2. Our sufficient
conditions are presented in Appendix B.1. A short discussion of the strength of these conditions is contained
in Appendix B.2.

B.1 From Optimisation to Expectation

Firstly, we rigorously establish an infinite-dimensional analogue of the classical result that the posterior mean
is a Bayes act for squared error loss:
Proposition 2. Let L(f, g) = ∥q(f) − q(g)∥2. Assume that F is complete (i.e. a Banach space) and that:

(A1) q : F → Rd is Fréchet differentiable;

(A2) the Fréchet derivative Dq(f) has full rank at all f ∈ F ;

16

Under review as submission to TMLR

(A3)
∫

∥q(g)∥2dPf (g|δn(f)) < ∞.

Then any solution to

arg min
f∈F

r(f), r(f) :=
∫
L(f, g) dPf (g|δn(f)) (10)

satisfies

q(f) =
∫
q(g) dPf (g|δn(f)).

Proof. From an application of Proposition 1 with ℓ(f, ω) = L(f, g(ω)), where g : Ω → F is a random
variable with distribution Pf (·|δn(f)), we deduce that our assumptions on L and q (A1) are sufficient for
the Fréchet derivative of r to exist. Thus, a minimiser f of (10) satisfies Dr(f) = 0. To evaluate Dr we
exploit the integrability assumption (A3) on q to differentiate under the integral, which is also justified from
Proposition 1:

Dr(f)(·) =
∫

DL(f, g) Pf (g|δn(f)).

Next we apply the chain rule for Fréchet derivatives in the form of (9), yielding

Dr(f)(·) =
∫

2⟨q(f) − q(g),Dq(f)(·)⟩ dPf (g|δn(f))

= 2
〈
q(f) −

∫
q(g)dPf (g|δn(f))︸ ︷︷ ︸

(∗)

,Dq(f)(·)
〉
.

Since Dq(f) was assumed to have full rank (A2), if Dr(f) = 0 then (∗) = 0, whence the claimed result.

Now we are able to prove the advertised result:
Proposition 3. In the setting of Proposition 2, and under assumptions (A1-3), we have

min
f∈F

r(f) = 1
2

∫∫
L(g, g′) dPf (g|δn(f)) dPf (g′|δn(f)).

Proof. Let f ∈ F solve (10). Then consider the algebraic identity

q(g) − q(g′) = {q(g) − q(f)} − {q(g′) − q(f)} .

Using this identity, the loss function can be expressed as

L(g, g′) = ∥q(g) − q(g′)∥2

= ∥q(g) − q(f)∥2 − 2⟨q(g) − q(f), q(g′) − q(f)⟩ + ∥q(g′) − q(f)∥2.

From linearity of the inner product we have that∫∫
⟨q(g) − q(f), q(g′) − q(f)⟩ dPf (g|δn(f)) dPf (g′|δn(f))

=
〈∫

q(g) − q(f) dPf (g|δn(f))︸ ︷︷ ︸
=0

,

∫
q(g′) − q(f) dPf (g′|δn(f))︸ ︷︷ ︸

=0

〉
= 0,

17

Under review as submission to TMLR

where we have used the integrability assumption (A3) on q to bring the integrals into the inner product, and
we have used Proposition 2 to conclude that each argument is equal to 0. Finally, from the fact that g and
g′ are identically distributed, we have

1
2

∫∫
L(g, g′) dPf (g|δn(f)) dPf (g′|δn(f))

= 1
2

∫∫
∥q(g) − q(f)∥2 + ∥q(g′) − q(f)∥2 dPf (g|δn(f)) dPf (g′|δn(f))

= 1
2 × 2 ×

∫
∥q(g) − q(f)∥2 dPf (g|δn(f)) = min

f∈F
r(f),

which completes the argument.

B.2 Verifying the Assumptions

The main assumption in Proposition 2 is (A2); the requirement that Dq(f) has full rank for all f ∈ F . As
we explain below through a worked example, (A2) is non-trivial but may often be satisfied with only minor
modification to the SED task in hand.

As a worked example, suppose F is a Hilbert space containing smooth, real-valued functions defined on a
compact set X ⊂ Rd. Suppose that we are interested in the quantity of interest

q(f) =
∫

X
f(x)dx. (11)

Then (A2) is not satisfied in general, because q(f + g) = q(f) for all g in the linear subspace G = {g ∈ F :∫
X g(x)dx = 0}. It follows that Dq(f)(g) = 0 for all g ∈ G, so that Dq(f) does not have full rank whenever

G is non-trivial. However, (A2) is satisfied if we restrict attention to the normed vector space Fc spanned
by the elements of F \ G, since then Dq(f)(g) =

∫
X g(x)dx and thus Dq(f)(g) = 0 with g ∈ Fc implies g = 0.

This illustrates that, with a small amount of technical care, the assumptions of Proposition 2 can often be
satisfied.

C Properties of Gaussian Processes

In this section, we present the formal background of conditioning on continuous linear data for Gaussian
processes.

Let X be a compact subset of Rd for some d ∈ N and let Cr(X) denote the vector space of r-times continuously
differentiable real-valued functions on X equipped with the norm

∥f∥Cr(X) = max
|α|≤r

∥f(α)∥∞,

where the maximum ranges over multi-indices α ∈ Nd
0 with |α| = α1 + · · · + αd ≤ r and f(α)(x) :=

∂α1
x1
. . . ∂αd

xd
f(x). In what follows we consider disintegration in the case where F = Cr(X), equipped with

the Borel σ-algebra, and Y = R. For an operator δ and a bivariate function k(·, ·), denote δk(·, ·) to be the
action of δ on the first argument of k, and denote δ̄k(·, ·) to be the action of δ on the second argument of k.
Lemma 1. Let P be a Gaussian measure on Cr(X) with mean function m : X → R and covariance function
k : X × X → R. Let δ : Cr(X) → R be a continuous linear functional. For each y ∈ R, define P(·|y) to be a
Gaussian measure with mean and covariance function

my(x) = m(x) + [δ̄k(x, ·)][δδ̄k(·, ·)]−1(y −m(x))
ky(x, x′) = k(x, x′) − [δ̄k(x, ·)][δδ̄k(·, ·)]−1[δk(·, x′)].

Then {P(·|y)}y∈R is a δ-disintegration of P.

18

Under review as submission to TMLR

Proof. The proof is by direct verification of properties (1-3) in Definition 1. See e.g. p.188 of Ritter
(2007).

The fact that the elements P(·|y) of the disintegration are again Gaussian enables the repeated application
of Lemma 1, for example to condition on n ≥ 1 continuous linear functionals δn = (δ1, . . . , δn)⊤, as exploited
in the main text. Constructed in this way, it can be verified that the elements P(·|yn) of the resulting
disintegration, with yn ∈ Yn, are invariant to the order in which the disintegrations are performed.

D Spectral Approximation

This section presents an informal derivation of the spectral GP approximation of Solin & Särkkä (2019).
The following utilises properties of the Fourier transform, which are first briefly recalled.

D.1 Properties of the Fourier Transform

In the following we use F to denote the Fourier transform operator and use the notation f̂ := F (f) to denote
the Fourier transform of f . In the following we use the convention of using the angular frequency domain.
Therefore, for square-integrable f : Rd → R, we have

F (f) = 1
(2π)d

∫
f(x) exp(i⟨ω, x⟩) dx.

Recall that, when an operator T satisfies F (Tf)(ω) = m(ω)f̂(ω), the operator T is called a multiplier
operator and the corresponding m is called the multiplier of T . As a trivial example, the identity operator
Tf = f is a multiplication operator, with associated multiplier 1. A more elaborate example, that is used in
the subsequent section, is the Laplace operator ∆ := ∂2

∂x2
1

+ . . .+ ∂2

∂x2
d

, acting on twice differentiable functions
f : Rd → R. It can be shown that

F (∆f) = −∥ω∥2F (f). (12)
Therefore, the Laplace operator is a multiplier operator with corresponding multiplier −∥ω∥2. Similarly,
compositions of Laplace operators ∆n := ∆ ◦ . . . ◦ ∆︸ ︷︷ ︸

n times

, acting on sufficiently smooth functions f , is also a

multiplier operator with multiplier (−∥ω∥2)n. This can be seen by induction on the previous formula,

F (∆nf) = −∥ω∥2F (∆n−1f) = . . . = (−∥ω∥2)nF (f).

By the convolution theorem, every multiplier operator T with multiplier mT , has an associated convolution
kernel kT := F−1(mT) that satisfies the following

F (Tf)(ω) = mT (ω)f̂(ω)
Tf = F−1(mT f̂) = f ⋆ F−1(mT) = f ⋆ kT ,

where ⋆ denotes convolution. Thus a multiplier operator is, in this sense, equivalent to a convolution
operation.

We now state two important results that define the intimate connection between covariance functions and
the Fourier transform. The first result is known as Bochner’s theorem (Rudin, 1990).
Theorem 1 (Bochner’s theorem). A stationary covariance function, i.e. a covariance function of the form
k(x, y) = k(x− y), k : Rd → R, can be written as the inverse Fourier transform of a finite positive measure
µ such that k(0) = µ(Rd). That is

k(x) = 1
(2π)d

∫
exp (i⟨ω, x⟩) dµ(ω).

The measure µ is called the spectral measure of k and the density of µ, if it exists, is called the spectral
density s(ω) of k. In the case where the spectral density s(ω) of a stationary covariance function k exists, k
and s exist as Fourier duals. This result is known as the Wiener–Khintchine theorem (Khintchine, 1934).

19

Under review as submission to TMLR

Theorem 2 (Wiener–Khintchine theorem). Suppose that the spectral density s : Rd → R of a stationary
covariance function k : Rd → R exists, then

k(x) = 1
(2π)d

∫
s(ω) exp (i⟨ω, x⟩) dω, s(ω) =

∫
k(x) exp (−i⟨ω, x⟩) ds.

In the proceeding section the Wiener–Khintchine theorem and the equivalence between a multiplier operator
and an associated convolution operation are both used to establish a correspondence between the covariance
operator of a stationary kernel k and its spectral density s. This is the foundation upon which the spectral
Gaussian process approximation of Solin & Särkkä (2019) is established.

D.2 Spectral Gaussian Processes

For every covariance function k, there exists an associated Hilbert–Schmidt integral operator, termed the
covariance operator,

Kf =
∫
k(·, y)f(y) dy.

When k is stationary, the resulting covariance operator takes the form of a convolution

Kf(x) =
∫
k(x− y)f(y) dy = (f ⋆ k)(x).

By the convolution theorem, we can then write the operator in the form F (Kf) = k̂f̂ and so K is a multiplier
operator with multiplier k̂. By Theorem 2, the multiplier of K is the spectral density s = k̂ of k.

Assuming now that the covariance function is isotropic and so satisfies

k(x, y) = k(∥x− y∥),

the corresponding spectral density s of k can be written as a function of ∥ω∥ only and so s(ω) = S(∥ω∥),
for an appropriate function S. As a further manipulation, we can write s as a function of ∥ω∥2 only,
s(ω) = ψ(∥ω∥2). Assuming that ψ possesses a Taylor expansion, we can write

s(ω) = ψ(∥ω∥2) =
∞∑

i=0
µi(∥ω∥2)i,

with each µi ∈ R. Inspired by the multiplier −∥ω∥2 of the Laplacian in (12) and by utilising the above
Taylor expansion, we can write the Fourier transform of the covariance operator of an isotropic kernel in the
form

F (Kf)(ω) = s(ω)f̂(ω) =
∞∑

i=0
µi(∥ω∥2)if̂(ω) =

∞∑
i=0

µiF ((−∆)if).

By continuity of F , taking the inverse Fourier transform of the above yields a polynomial expansion form of
the covariance operator

Kf =
∞∑

i=0
µi(−∆)if. (13)

The remaining step is to approximate the negative Laplacian operator. To achieve this, we write the
convolution kernel k−∆ of the negative Laplacian as a Mercer expansion. To this end, we consider the
following eigenvalue problem of the Laplacian over a compact domain X ⊆ Rd, with boundary ∂X , with
Dirichlet boundary conditions

−∆ϕi(x) = λiϕi(x), x ∈ X , (14)
ϕi(x) = 0, x ∈ ∂X . (15)

20

Under review as submission to TMLR

Over a suitable domain contained within L2(X), the negative Laplacian is a positive definite Hermitian
operator and so we can provide a Mercer expansion of the convolution kernel k−∆ of the negative Laplacian,
utilising the eigenfunctions ϕi. Similarly, we can provide a Mercer expansion of the convolution kernel of
(−∆)n, noting that each ϕi is again an eigenfunction, but now with corresponding eigenvalue λn

i . This can
be seen by iteratively applying −∆ to the eigenvalue problem (14). Therefore, we have

(−∆)nf(x) = f ⋆ k(−∆)n(x) =
∫
k(−∆)n(x− y)f(y) dy,

where

k(−∆)n(x− y) =
∞∑

j=1
λn

j ϕj(x)ϕj(y).

Plugging the preceding formula into equation (13) yields the following:

Kf(x) =
∞∑

i=0
µi(−∆)if =

∞∑
i=0

µi

∫
k(−∆)i(x− y)f(y) dy =

∫ (∞∑
i=0

µik(−∆)i(x− y)
)
f(y) dy.

Comparing the above form of Kf(x) to its original definition Kf(x) =
∫
k(x− y)f(y) dy implies that we can

approximate k as follows

k(x, y) ≈
∞∑

i=0
µik(−∆)i(x− y) =

∞∑
i=0

µi

∞∑
j=1

λi
jϕj(x)ϕj(y) =

∞∑
j=1

(∞∑
i=0

µiλ
i
j

)
ϕj(x)ϕj(y)

=
∞∑

j=1
s(
√
λj)ϕj(x)ϕj(y),

where, in the final step, we utilised our Taylor expansion of the spectral density s of k and set ∥ω∥2 = λj

for each j ∈ N. Refer to the original work Solin & Särkkä (2019) for convergence analyses of the given
approximation.

Therefore, the resulting Gaussian model assumes the following truncated basis expansion

f(·) =
m∑

i=1
ciϕi(·),

where ci ∼ N (0, s(
√
λi)) and the ϕi and λi are the corresponding eigenfunctions and eigenvalues of the

Laplacian over a compact domain X with Dirichlet boundary conditions ϕi(x) = 0 on ∂X .

When the domain is the unit hypercube, X = [0, 1]d, the resulting eigenfunctions and eigenvalues can be
explicitly computed as

ϕj(x) = 2d/2
d∏

k=1
sin (πjkxk) , λj =

d∑
k=1

(πjk)2
, (16)

where j = (j1, . . . , jd) ∈ Zd
m. Taking m sinusoidal functions in each dimension yields md eigenfunctions

in total. For computational purposes, in GaussED the domain X of the Gaussian model is taken as a
d-dimensional Cartesian product of intervals [a1, b1] × . . . × [ad, bd]. The required eigenfunctions can be
obtained by a simple rescaling of the previous formula.

E Computational Details of GaussED

In this section we provide details of certain aspects of the computational approaches of GaussED. In Ap-
pendix E.1, we derive the relevant conditional distributions of the spectral Gaussian process model detailed
in Section 2.5, under conditioning on general linear information. In Appendix E.2, we detail the compu-
tational approaches of GaussED for sampling for the posterior. Finally, in Appendix E.4, we introduce the
ANOVA kernel, which is the form of kernel used in the emulation of a Cardiac experiment of Section 3.4.

21

Under review as submission to TMLR

E.1 Conditioning

In this section, we both derive and discuss GaussED’s approach to conditioning and sampling from the
posterior. For completeness, we present the derivation of the conditional distributions of the Gaussian
process model detailed in Appendix D. For the sake of generality we consider a general truncated basis
model, which takes the form of

f(·) = µ+
m∑

i=1
ciϕi(·),

where the ci are pairwise independent Gaussian variables and the ϕi form our basis functions. Suppose
that we have a vector of n continuous linear functionals δn = (δ1, . . . , δn)⊤ ∈ Dn, such that each δi belong
to the design set D (see Section 2.2). We form the conditional distribution f | δn(f) as follows, letting
c = (c1, . . . , cm)⊤, we have (

c
δn(f)

)
∼ N

(
0,
(
Kcc Kcδ

Kδc Kδδ

))
,

where Kcc = C(c, c) ∈ Rm×m, Kcδ = C(c, δn) ∈ Rm×n, Kδc = K⊤
cδ and Kδδ = C(δn(f), δn(f)) ∈ Rn×n. The

conditional distribution can be computed using standard finite-dimensional formulae as c | δn(f) = δn(f) ∼
N (µδ,Σδ), where

µδ = KcδK
−1
δδ δn(f), (17)

Σδ = Kcc −KcδK
−1
δδ Kδc. (18)

Since the components of c are pairwise independent, we have Kcc = Λ = diag (V(c1), . . . ,V(cm)). Further-
more, since δn is a vector of linear functionals, we have, for each i ∈ {1, . . . , n}, that δif =

∑m
j=1 cjδiϕj .

Therefore, we have

C(δif, δjf) = C

(
m∑

k=1
ckδiϕk,

m∑
k=1

ckδjϕk

)
=

m∑
k=1

V(ck)δiϕkδjϕk

and so Kδδ = (δΦ)Λ(δΦ)⊤, where (δΦ)ij = δiϕj . Finally, we have

C(δif, cj) = C

(
m∑

k=1
ckδiϕk, cj

)
= V(cj)δiϕj

and so Kδc = (δΦ)Λ. Thus all the required quantities can be explicitly evaluated.

E.2 Sampling

To sample from the posterior process f(·) | δn(f), we can sample from the conditional distribution c | δn(f) and
then utilise the basis expansion of f in (D.2). To achieve this, we are required to perform a matrix square
root of the posterior covariance matrix Σδ, and we recall that, when conditioning on exact information,
the resulting Σδ is singular in general. The standard solution of performing a singular value decomposition
(SVD) is unsuitable, since the Σδ often have repeated singular values, which are incompatible with existing
implementations of automatic differentiation that assume uniqueness of the singular values (Papadopoulo &
Lourakis, 2000; Paszke et al., 2019). Although there have been recent efforts to address this (Wang et al.,
2021), the resulting algorithms are computationally prohibitive in our setting.

An alternative method of sampling from f(·) | δn(f) is called Matheron’s update rule (Wilson et al., 2021,
Corollary 4). Matheron’s update rule takes the form

f(·) | δn(f) d= f(·) + C(f(·), δn(f))K−1
δδ (δn(f) − δn(f)). (19)

The advantage of Matheron’s update rule over the preceding approach is that we are not required to compute
the square root of Σδ; this is the default approach used in GaussED.

22

Under review as submission to TMLR

E.3 Optimising the Acquisition Function

As discussed in Section 2.4, we utilise stochastic optimisation methodology to optimise the acquisition
function. Unfortunately, the acquisition functions often exhibit multiple local optima, implying that it is
unlikely that the optimiser will find a global optima. There are many approaches to reduce this probability,
for instance by running the optimiser at different initialisations in parallel. In GaussED, the default approach
is to sample uniformly from the design set, then evaluate the acquisition function at each of the sample points,
before proceeding to initialise the optimiser at the best obtained point (i.e. Monte Carlo optimisation is
used to initialise a stochastic optimisation method). This was the approach used in all the experiments of
Section 3.

Since our design sets are based on intervals8, we perform a standard reparameterisation to obtain a global
optimisation problem in Rd. This is achieved by using a scaled logistic function of the form

logit(x; a, b) = log((x− a)/(b− a)) − log(1 − (x− a)/(b− a)),

where, for x, a, b ∈ Rd, we consider logit to be applied component-wise. This parametrisation could render
it difficult for the optimiser to select design points near the boundaries of the design set; improved methods
for stochastic optimisation on bounded domains could be employed within GaussED but were not explored
in this work.

E.4 Scalable Kernels

A weakness of the spectral GP approach is that it scales poorly to high-dimensional X , since the number of
basis functions required to capture a given frequency scales exponentially in dimension. This occurs only if
the kernel has interaction terms between all the input dimensions of the Gaussian process model. Thus, a
natural way to scale the Gaussian process model to higher dimensions is to use an ANOVA kernel (Dick &
Pillichshammer, 2010), k : Rd × Rd → R of the form

k(x, y) =
∑
I∈D

wIkI(xI , yI), (20)

where D =
⋃d

i=1{(j1, . . . , ji) ⊆ Ni | 1 ≤ j1 < . . . < ji ≤ d}, wI ∈ R are constants, kI : R|I| × R|I| → R
is an arbitrary kernel capturing the interactions between the dimensions I and xI = (xj1 , . . . , xji

) and
yI = (yj1 , . . . , yji). This kernel decomposes all the possible interactions between the input dimensions and
is controlled by the constants cI . This allows us to eliminate higher-dimensional interactions to reduce the
number of basis functions required. Using our truncated basis expansion and enumerating D = {I1, . . . , IN },
the ANOVA kernel (20) assumes the latent function takes the form

f(x) =
N∑

i=1

mi∑
j=1

ci
jϕ

i
j(xIi

),

where the coefficients ci
j are pairwise independent Gaussian variables. Grouping the coefficients c = (ci)N

i=1,
where ci = (ci

1, . . . , c
i
mi

), the posterior mean µδ and covariance matrix Σδ of c | δn(f) ∼ N (µδ,Σδ) take the
same form as (17) and (18) respectively. The constituent matrices Kcc,Kδc and Kδδ, on the other hand,
take the form

Kcc =

ΛI1 0 . . . 0
0 ΛI2 . . . 0
...

...
. . .

...
0 0 . . . ΛIN

 ,

Kδc =
(
(δΦI1)ΛI1 . . . (δΦIN)ΛIN

)
, Kδδ =

N∑
i=1

(δΦIi)ΛIi(δΦIi)⊤,

8Recall from Section 3 that all of the design sets were parameterised as a Cartesian product of intervals.

23

Under review as submission to TMLR

where ΛIi = diag
(
V(ci

1), . . . ,V(ci
mi

)
)

and (δiΦIi)jk = δjϕ
i
k, where δi

j is the functional δj restricted to the
input dimensions Ii.

An ANOVA kernel was used in the emulation of a Cardiac model experiment in Section 3.4 and detailed in
Appendix F.4.

F Experimental Details

In this section we present full details for the experiments presented in Section 3. Appendix F.1 details the
PDE experiment presented in Section 3.1. Appendix F.2 details the tomographic reconstruction experiment
presented in Section 3.2. Appendix F.3 details the Lotka–Volterra experiment presented in Section 3.3.
Appendix F.4 details the emulation of the Cardiac model presented in Section 3.4.

F.1 Probabilistic Solution of PDEs

Approximating the Loss: Following from Section 3.1, recall that the quantity of interest was the
function f, implying the loss takes the form

L(g, g′) = ∥g − g′∥2 =
∫

X
|g(x) − g′(x)|2 dx.

Since there is not a closed-form solution to this integral when g is a Gaussian process, we proceed by
approximating the integral through a cubature rule. For this experiment, we performed a Riemann sum over
a uniform 15 × 15 grid over the domain X = [−1, 1]2.

Gaussian Model: For this experiment, we used a mean-zero Gaussian process f with Matérn covariance
function with smoothness parameter ν = 3. The Dirichlet boundary conditions of the PDE were automati-
cally enforced by the spectral GP approximation, applied to the domain X = [−1, 1]2 (c.f. Equation (15)).

Optimisation: For both the optimisation of the acquisition function and performing maximum likelihood
estimation, we used the Adam stochastic optimisation methodology (Kingma & Ba, 2015).

Using the methodology discussed in Appendix E.3, at each iteration of SED, we sampled 100 points uniformly
from the design set and computed the corresponding values of acquisition function, using the default values
of N = 81 and M = 9 in the stochastic gradient estimator of Section 2.4. We then proceeded by initialising
the stochastic optimiser at the sample point which minimised the acquisition function. The learning rate
used was the default value of 10−1 and the optimiser was run for 1000 iterations, at each step of SED. The
SED began with an initial design consisted of evaluations of the Laplacian over a grid of 9 evenly spaced
points over the domain [−0.98, 0.98] × [−0.98, 0.98].

Using the methodology as discussed in Section 2.6, we began optimising the amplitude λ and the lengthscale
ℓ after n0 = 10 iterations of SED. This n0 = 10 is the default value in GaussED. The initial parameter values
were taken as the default values of λ = exp(1/2) and ℓ = 0.2. The learning rate used was the default value
of 10−3 and the optimiser was run for 1000 iterations, at each step of SED.

Code: The code used to run the experiment can be seen in Figure 1 and discussed in Section 3.1.

F.2 Tomographic Reconstruction

Approximating the Loss: Following from Section 3.2, recall that the quantity of interest was the function
exp(3f), implying the loss takes the form

L(g, g′) = ∥ exp(3g) − exp(3g′)∥2 =
∫

X
| exp(3g(x)) − exp(3g′(x))|2 dx.

We follow the same approach of Appendix F.1 and approximate the integral through a Riemann sum, now
over a uniform 25 × 25 grid over the domain X = [−1, 1]2.

24

Under review as submission to TMLR

k = MaternKernel(2, 2, initial_parameters)
domain = [[-1.05,1.05],[-1.05,1.05]]
gp = SpectralGP(k)
gp.set_domain(domain)

exponential_warp = lambda x: torch.exp(3 * x)
qoi = OutputWarp(gp, exponential_warp)()

X,Y = torch.meshgrid(torch.linspace(-1,1,25),torch.linspace(-1,1,25))
mesh = torch.stack([X,Y]).T.reshape(25**2,2)

loss = L2(qoi, mesh)

def d_func(design, m):
all_phis = []
for i in range(len(design)):

design_i = design[i]
line_int_gps = get_line_int_gps(design_i.unsqueeze(1), gp)
for j in line_int_gps:

all_phis.append(j.basis_matrix(None,m))
return torch.cat(all_phis)

def d_sample(design_point, mean, cov, n, random_sample=None):
all_samples = []
line_int_gps = get_line_int_gps(design_point.unsqueeze(1), gp)
matrix_sqrt = gp.solver.square_root(cov)
for i in line_int_gps:

samp_i = i.sample(mean, cov, n, random_sample, sqrt=matrix_sqrt)(None)
all_samples.append(samp_i)

return torch.cat(all_samples).T

initial_design = torch.Tensor([[0, 0, 0]])
d = Design(d_func, d_sampling, initial_design)
d.set_domain([[0, math.pi],[-1,1],[-1,1]])

acq = BayesRisk(qoi, loss, d, nugget=1e-2)
experiment = Experiment(gp, transformed_black_box, d, acq, m=28)
experiment.run(30)

Figure S1: The GaussED code used to run the tomographic reconstruction experiment of Section 3.2.

Gaussian Model: For this experiment, we utilised a stationary Gaussian process model f with Matérn
covariance with smoothness parameter ν = 2. The Gaussian model is defined on the domain [−1.05, 1.05]2,
since the boundary conditions of the resulting GP do not necessarily agree with the boundary conditions of
the quantity of interest.

Quantity of Interest: Recall from Section 3.2 that the quantity of interest was of the form

f(x) =
{

1, when ∥x− (0.4, 0.4)∥ < 0.3,
0, otherwise.

Since this quantity of interest defines a circle within the domain X = [−1, 1]2, it is possible to find a
closed form solution to the line integrals of f for given parameters values (θ, x, y). However, for ease of

25

Under review as submission to TMLR

implementation and to allow our approach to be easily generalised to more complex examples, we computed
the line integrals of f by performing a Riemann integral over a uniform mesh consisting of 200 evaluations
from f.

Optimisation: For both the optimisation of the acquisition function and performing maximum likelihood
estimation, we used the Adam stochastic optimisation methodology (Kingma & Ba, 2015).

Using the methodology discussed in Appendix E.3, at each iteration of SED, we sampled 400 points uniformly
from the design set and computed the corresponding values of acquisition function, using the default values
of N = 81 and M = 9 in the stochastic gradient estimator of Section 2.4. We then proceeded by initialising
the stochastic optimiser at the sample point which minimised the acquisition function. The learning rate
used was the default value of 10−1 and the optimiser was run for 1000 iterations, at each step of SED.
The SED began with an initial design consisted of 9 line integral evaluations over the vertical lines x =
−0.09,−0.03, 0, 0.03, 0.06, 0.09.

Using the methodology as discussed in Section 2.6, we began optimising the amplitude λ and the lengthscale ℓ
after n0 = 5 iterations of SED. The initial parameter values were taken as the default values of λ = exp(0.3)
and ℓ = 0.4. The learning rate used was the default value of 10−3 and the optimiser was run for 1000
iterations, at each step of SED.

Code: The GaussED code used to run this experiment is presented in Figure S1. The structure of the code
is quite different to the code used in the other experiments (Figure 1 and Figure S3). This is due to the fact
that the design object (d) is not instantiated by the EvaluationDesign class. Note that for both the PDE
experiment (Section 3.1) and the Bayesian optimisation experiment (Section 3.3), the design sets D consisted
of evaluations of the Gaussian process, δ(f) = f(x), or its derivatives δ(f) = ∂if(x). In situations such as
these, the EvaluationDesign class may be used. For this example, however, the observed data consists of
line integrals. Therefore, in this more general situation, we must specify two further functions: Given a
parameterisation Dθ of the design set, the first function must take in a sequence of parameters θ1, . . . , θn

and return the corresponding (δΦ)ij = δθi
ϕj matrix, where the ϕj are the eigenfunctions of (16). This is

reflected in the code (Figure S1) in the function d_func, which, for each design set parameter constructs the
corresponding line integral for a given number of basis functions (m). The second function we must specify
must be able to, given a parameter θ, sample from the process δθf | δn, where δn is data gathered from
SED. This is directly reflected in the code (Figure S1) in the function d_sample. Note that, in Figure S1
we omit the get_line_int_gps function. This is a function that, given a parameter value θ and Gaussian
process f , returns the corresponding δθf object. We do this because get_line_int_gps is complexified due
to the parameterisation of the line function r(x) and the calculation of the limits of integration a, b in the
line integral ∫ b

a

f(r(x)) dx.

We, therefore, omit get_line_int_gps for clarity.

A second major difference, is the use of an output warp (OutputWarp). Due to the non-linear nature of the
output warp, the resulting object qoi is only able to sample from the prior and posterior. Note that the
syntax for specifying a output deformation of a GP is the same as specifying other transformations (e.g. see
Figure 1 and Figure S3).

Another difference is that the Gaussian model specified in the PDE experimental code (Figure 1) agreed
with the boundary conditions of the PDE; here, however, we specify the domain (gp.set_domain) as
[−1.05, 1.05] × [−1.05, 1.05]. Since we took the domain of the Gaussian process to be larger than the domain
on which the task is defined, we must also specify the domain of the design object (d.set_domain), which
otherwise, by default, would be taken as the same the Gaussian model (gp).

Finally, note that the acquisition function (acq), as discussed previously, is instantiated with a nugget value
of 10−2 and the experiment object (experiment) is instantiated with m = 282 basis functions. This is in
contrast to the code for the PDE example (Figure 1), which used the default value of m = 302 basis functions.

26

Under review as submission to TMLR

F.3 Gradient-Based Bayesian Optimisation

Approximating the Loss: Recall from Section 3.3 that our quantity of interest is q(f) = maxx∈X log L(x).
Thus, our loss function takes the form

L(g, g′) =
∣∣∣∣max

x∈X
(g(x)) − max

x∈X
(g′(x))

∣∣∣∣2 .
In order to optimise the samples, we used a grid-based optimiser using a uniform 40 × 40 grid over the
domain of interest [0.45, 0.9] × [0.09, 0.5].

Gaussian Model: For this experiment, we used a mean-zero stationary Gaussian model f with Matérn
covariance, with smoothness parameter ν = 3. Since our GP satisfies the boundary conditions in (15), which
are unrelated to the task at hand, we took the domain of the GP to be [0.4, 0.95] × [0.04, 0.55], which is
wider than the domain on which the task is defined.

Quantity of Interest: Synthetic data y = (pi, qi)51
i=1 were generated at times t = 0, 0.5, 1, . . . , 50 by

perturbing the solution of the Lotka–Volterra model, with parameter values (α, β, γ, δ) = (0.5, 0.1, 0.3, 0.1),
with mean-zero Gaussian errors with variance σ2 = 0.052. The data used for the log-likelihood and the
corresponding true solution with (α, β, γ, δ) = (0.5, 0.1, 0.3, 0.1) are displayed in Figure S2.

0 10 20 30 40 50

0

2

4

6

8

10

12

14

16
p(t)
q(t)

Figure S2: Solution of the Lotka–Volterra model with parameter values θ = (0.5, 0.1, 0.3, 0.1), with the
synthetic data y = (pi, qi)51

i=1 overlaid.

Optimisation: For both the optimisation of the acquisition function and performing maximum likelihood
estimation, we used the Adam stochastic optimisation methodology (Kingma & Ba, 2015).

Using the methodology as discussed in Appendix E.3, at each iteration of SED, we sampled 100 points times
uniformly from the design set and computed the corresponding values of acquisition function, using the
default values of N = 81 and M = 9 in the stochastic gradient estimator of Section 2.4. We then proceeded
by initialising the stochastic optimiser at the sample point which minimised the acquisition function. The
learning rate used was the default value of 10−1 and the optimiser was run for 1000 iterations, at each step
of SED. The SED began with an initial design consisting of the evaluation of the log-likelihood L and its
gradient at the midpoint of the domain (α, β) = (0.675, 0.295). Finally, in order to increase the numerical
stability of linear algebra operations, we used a nugget term of value 10−5.

For this experiment, we began optimising the amplitude λ and lengthscale ℓ at step n0 = 10. The initial
kernel parameter values were taken as the values of λ = 1 and ℓ = 0.1. The learning rate used was the
default value of 10−3 and the optimiser was run for 1000 iterations, at each step of SED.

Code: The GaussED code used to run this experiment is presented in Figure S3. The structure of the
program is very similar in nature to the PDE experiment of Section 3.1. The first difference is that, at each

27

Under review as submission to TMLR

step of SED, we evaluate multiple functionals δ from the design D. This is directly reflected in Figure S3,
where the design object (d) is constructed by the statistical model f and its first derivatives ([gp, gp_d1,
gp_d2]).

The second difference is that, at each step SED, we perform a maximisation, rather than an integral, of
sample paths when estimating the acquisition function. In the code for the PDE experiment (Figure 1)
the integral of posterior samples is hidden within the loss object (L2(qoi)), which, by default, performs a
Riemann sum over a uniform mesh if the quantity of interest qoi is function valued. Therefore, in Figure S3
we specify a numerical method that acts on samples from f . In this instance, we perform a grid search
(maximise_method) over a uniform 40 × 40 mesh (mesh) over the domain of optimisation.

Another difference is that the Gaussian model specified in the PDE experimental code (Figure 1), agrees
with the boundary conditions of the PDE and therefore the domain of the GP is taken as the default value
[−1, 1]2. In Figure S3, we must specify the domain (gp.set_domain) as [0.4, 0.95] × [0.04, 0.55]. Since we
took the domain of the Gaussian process to be larger than the domain over which we wish to maximise, we
must also specify the domain of the design object (d.set_domain), which otherwise, by default, would be
taken as the same the Gaussian model (gp).

The final difference is that, in order to increase the numeric stability of linear algebra operations in the SED,
we specify a nugget term (nugget) of value 10−5 in the acquisition function acq.

k = MaternKernel(3, 2, initial_parameters)
gp = SpectralGP(k)
gp.set_domain(torch.Tensor([[0.4,0.95],[0.04,0.55]]))

gp_d1 = Differentiate(gp,[0],[1])()
gp_d2 = Differentiate(gp,[1],[1])()

x, y = torch.meshgrid(torch.linspace(0.45,0.9,40),torch.linspace(0.09,0.5,40))
mesh = torch.stack([x,y]).T.reshape(40**2,2)
maximise_method = GridSearch(mesh)

qoi = Maximise(gp, maximise_method)()

d = EvaluationDesign([gp, gp_d1, gp_d2], init_design)
d.set_domain(torch.Tensor([[0.45,.9],[0.09,0.5]]))

loss = L2(qoi)
acq = BayesRisk(qoi, loss, d, nugget=1e-5)

experiment = Experiment(gp, lotka_volterra, d, acq, m=35)
experiment.start_hyp_optimising_step = 10
experiment.run(30)

Figure S3: The GaussED code used to run the gradient-based Bayesian optimisation experiment of Section 3.3.

F.4 Emulation of a Cardiac Model

Approximating the Loss: Recall from Section 3.4 that our quantity of interest is q(f) = f. Thus, our
loss function takes the form

L(g, g′) = ∥g − g′∥2 =
∫

X
|g(x) − g′(x)|2 dx,

We follow the same approach as Appendix F.1 and Appendix F.2 and approximate this integral through a
Riemann sum, now over a uniform 5 × 5 × 5 × 5 grid over the domain X = [0.1, 5]4. It was pointed out by

28

Under review as submission to TMLR

anova_kernel = AnovaKernel(MaternKernel(2.5, 4))
m_list = [25,25,25,25,7,7,7,7,7,7,2,2,2,2,2]

l_scales = torch.Tensor([[0.5],[0.5],[0.5],[0.5]]).requires_grad_(True)

gp = SpectralGP(anova_kernel)
gp.set_domain([[0,5.1] for i in range(4)])

def update_gp_params():
gp.kernel.parameters[1::2] = [l_scales[i].norm() for i in interacting_dims]

update_gp_params()

noise_variance = torch.Tensor([1]).requires_grad_(True)
all_params = [l_scales] + gp.kernel.parameters[0::2] + [noise_variance]

qoi = Maximise(gp, maximise_method)()

x = torch.linspace(0.1,5,5)
X1,X2,X3,X4 = torch.meshgrid(x,x,x,x)
mesh = torch.stack([X1,X2,X3,X4]).T.reshape(5**4,4)
loss = L2(gp, mesh)

d = EvaluationDesign(gp, init_design)
acq = BayesRisk(q, loss, d, nugget=noise_variance)

def hyper_reg(alpha, beta):
l_scales_reg = alpha

* (1 / torch.cat([l_scale[i].pow(2) for i in interacting_dims])).max()
amplitude_reg = beta * torch.cat(gp.kernel.parameters[0::2]).exp().norm()
return l_scales_reg + amplitude_reg

def parameter_objective(a, b, alpha=0.0001, beta=5):
return - gp.log_likelihood(a, b, nugget=noise_variance, m=m_list)

+ hyper_reg(alpha,beta)

hyper_optim = DefaultOptimiser(parameter_objective, torch.optim.Adam, all_params)
hyper_optim.set_optional_func(update_gp_params)

experiment = Experiment(gp, black_box, d, acq, m=m_list, hyper_optim=hyper_optim)
experiment.acq_optim.N = 200
experiment.acq_optim_steps = 600
experiment.hyper_optim_steps = 100
experiment.run(100, optimise_hyper=False)
experiment.run(900)

Figure S4: The GaussED code used to run the emulation of a Cardiac model experiment of Section 3.4.

one reviewer that a relatively coarse set of cubature nodes on which the Riemann sum is calculated could
lead to the accumulation of experimental design points around the cubature nodes; this can in principle be
avoided by using a more accurate cubature rule, but for the present paper this was not pursued.

29

Under review as submission to TMLR

Gaussian model: For this experiment we utilise an ANOVA kernel as described in Appendix E.4. Each
sub-kernel kI for I ∈ D were parameterised with an amplitude parameter λI and lengthscale parameter ℓI

that was further parameterised as a function of four characteristic lengthscales ℓ1, ℓ2, ℓ3 and ℓ4, one for each
dimension. We defined ℓI as follows:

ℓI :=
√∑

i∈I

(ℓi)2.

Each of the sub-kernels kI were taken as the Matérn covariance function with smoothness parameter ν = 2.5
and the domain of the GP was taken as [0, 5.1]4.

Optimisation: For both the optimisation of the acquisition function and performing (regularised) max-
imum likelihood estimation, we used the Adam stochastic optimisation methodology (Kingma & Ba, 2015).

Using the methodology as discussed in Appendix E.3, at each iteration of SED, we sampled 200 points times
uniformly from the design set and computed the corresponding values of acquisition function, using the
default values of N = 81 and M = 9 in the stochastic gradient estimator of Section 2.4. We then proceeded
by initialising the stochastic optimiser at the sample point which minimised the acquisition function. The
learning rate used was the default value of 10−1 and the optimiser was run for 600 iterations, at each step of
SED. The SED began with an initial design consisting of the evaluation of the cardiac model at the midpoint
of the domain x = (2.55, 2.55, 2.55, 2.55). Due to the noisy observations, we also introduced a nugget term
σ2, with initial value σ2 = 1. The nugget term was incorporated as a hyperparameter and optimised using
(regularised) maximum likelihood estimation, described next:

To prevent overfitting for small data, we introduced a regulariser term in the maximum likelihood estimation
of the hyperparamters, taking the form

rα,β(λ, ℓ) = αmax
i

|1/ℓi| + β∥λ∥,

where λ = (λI)I∈D and ℓ = (ℓ1, . . . , ℓ4) are collection of amplitude and characteristic lengthscale parameters
respectively. Such a regulariser, when minimised, prevents the lengthscales growing too small and amplitudes
growing too large. For this experiment we took α = 10−4 and β = 5 and begun hyperparameter optimisation
of all hyperparmaters at step n0 = 100. The initial parameter values were taken as the values of λI = 1
for I ∈ D and ℓ1 = ℓ2 = ℓ3 = ℓ4 = exp(0.3). The learning rate used was the default value of 10−3 and the
optimiser was run for 100 iterations, at each step of SED.

Code: The GaussED code used to run this experiment is presented in Figure S4. The structure of the
program is similar in nature to the previous examples. The key differences in this case are the following:

Firstly, due to lengthscales of each of the sub-kernels kI being further parameterised by characteristic length-
scales ℓ, we introduce the function update_gp_params which updates the lengthscales of each of the kernel
kI . Here interacting_dims is a list corresponding to the set D interacting dimensions I. For legibility, the
value of the variable is not presented. This function is called at each gradient update of the characteristic
lengthscales ℓ in order to update the corresponding lengthscales of the sub-kernels kI and thus is set as an
optional_func in hyper_optim.

Secondly, since the hyperparameters are optimised using a regularised maximum-likelihood, we must define
the hyperparameter optimiser (hyper_optim), which in the other experiments by default performs maximum-
likelihood estimation. The regulariser term corresponds to the function hyper_reg.

Finally, further experiment options are used, where the number of steps taken at each iteration of SED
when optimising the acquisition function is taken as 600 (acq_optim_steps) and the number of steps
taken at each iteration of SED when optimising the (regularised) log-likelihood function is taken as 100
(hyper_optim_steps).

30

Under review as submission to TMLR

G Evaluating Computational Aspects of GaussED

In this section we empirically investigate computational aspects of GaussED. In Appendix G.1, we explore
the role of the optimisation methodology and how this affects the experimental design as well as the quality
of output. In Appendix G.2, we investigate how the number of basis functions used, for a given problem,
affects the quality of posterior inference. In Appendix G.3, we compare the acquisition functions expected
improvement and Bayes risk in the context of Bayesian optimisation.

G.1 Investigating the Efficacy of Stochastic Optimisation

In this section, we investigate the effect of the random seed on the quality of the experimental design and,
further, investigate the effect of changing the stochastic optimisation approach itself. To explore these aspects
of GaussED, we repeat the Bayesian optimisation with gradient data experiment presented in Section 3.3.
Recall that, in all the demonstrations in Section 3, we utilised the Adam stochastic optimisation method
(Kingma & Ba, 2015).

Results on the effect of the random seed can be seen in Figure S5 and Figure S6. The obtained designs imply
that our approach of SED is sensitive to the initial conditions. Although the specific design is sensitive, the
overall performance and qualitative nature of the designs are approximately independent of random seed.

0 5 10 15 20 25 30

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(a)
0.5 0.6 0.7 0.8 0.9

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

(b)

Figure S5: Convergence analysis of Bayesian optimisation with 4 different random seeds. The left panel
(a) displays the maximal value obtained for each of the random seeds, with each colour corresponding to a
different random seed. The right panel (b) displays the coordinate positions of the obtained maximum value,
where the colored symbols ✖ indicate the coordinate position of the obtained maximum value at termination.
Again, the maximum of the posterior mean is reported.

Results on the effect of stochastic optimisation methodology can be seen in Figure S7 and Figure S8. In
each of these experiments, the random seed was fixed, and so we are only comparing the effect of different
optimisation methodologies. In each experiment, the learning rate was set at 10−1 and the other parameter
values were taken as their default values, as specified in PyTorch (Paszke et al., 2019).

G.2 Investigating the Effect of the Number of Basis Functions

Picking an appropriate number of basis functions for a given problem is an important means to reduce
computational cost in GaussED. In this section, we investigate how the number of basis functions may affect
the quality of posterior inference. To this end, it is sufficient to consider the behaviour of posterior sampling
in dimension d = 1, since the behaviour will naturally extend to higher-dimensions due to the exponential
scaling of the number of basis function due to (16).

31

Under review as submission to TMLR

Figure S6: Designs obtained by SED for the 4 different random seeds along with the corresponding obtained
posterior means. The colours correspond to the same random seed as displayed in Figure S5.

0 5 10 15 20 25 30

0.0

0.1

0.2

0.3

0.4

Optimum
Adam
Adagrad
RMSprop
ASGD
SGD

(a)
0.5 0.6 0.7 0.8 0.9

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50 Adam
Adagrad
RMSprop
ASGD
SGD

(b)

Figure S7: Convergence analysis of Bayesian optimisation with different optimisation methods. The left
panel (a) displays the maximal value obtained for each of the optimisation methods, with each colour
corresponding to a different method. The right panel (b) displays the coordinate positions of the obtained
maximum value, where the colored symbols ✖ indicate the coordinate position of the obtained maximum
value at termination. Again, the maximum of the posterior mean is reported.

In the event where the number of basis functions is smaller than the number of linearly independent data,
the resulting posterior will not be well-defined in general. The introduction of a nugget term on the diagonal
of the covariance matrix, implicitly assuming noisy Gaussian observations, is a pragmatic solution that is

32

Under review as submission to TMLR

Adam
Adagrad
RMSprop
ASGD
SGD

Figure S8: Designs obtained by SED for the 5 different optimisation methods along with the corresponding
obtained posterior means. The colours correspond to the same optimisation methods as displayed in Fig-
ure S7.

widely-used. However, the success of this strategy depends crucially on using an appropriate amount of
regularisation.

Results on the effect on the number of basis functions and the nugget term are presented in Figure S9.
Through visual inspection, by m = 20 basis functions, it appears that the posterior process has converged
sufficiently well to the true posterior process. Note that, when m = 7, the posterior sample paths overlap.
This is due to there being only one value of c1, . . . , c7 such that the truncated basis model agrees with the
7 evaluations.

m = 5, 2 = 10 3 m = 7 m = 8 m = 10 m = 20 m = 50

Figure S9: Samples and posterior mean based on a mean-zero Gaussian process f with Matérn covariance
with smoothness parameter ν = 1.5, amplitude λ = 0.1 and lengthscale ℓ = 0.1, conditioned to interpolate
the 7 (blue) data points. The corresponding number m of basis functions used in each experiment is displayed
in the titles of the subplots. In the event where m is smaller than the number of data points conditioned
upon, the corresponding nugget term σ2 is also displayed.

G.3 Comparison with Expected Improvement

In this section we compare we compare Bayesian optimisation using the Expected Improvement (EI) acquisi-
tion function (Jones et al., 1998) against Bayes risk (see Section 2.3) with the non-linear quantity of interest
maxx∈X (f(x)). The standard setting of Bayesian optimisation is setting f ∼ GP(m, k) and conditioning on
evaluation functionals δf = f(x) to obtain the maximum value of a latent function f. Given n− 1 evaluation

33

Under review as submission to TMLR

functionals δn−1(f) = (f(x1), . . . , f(xn)), the expected improvement acquisition function, EI, is defined as

EI(x;Pf , δn−1(f)) = E
[
max(f(x) − max

i
f(xi), 0) | δn−1(f)

]
.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1

0

1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

2

1

0

1

Expected Improvement
Bayes Risk

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0

1

2

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.5

1.0

0.5

0.0

0.5

1.0

Expected Improvement
Bayes Risk

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1

0

1

2 Expected Improvement
Bayes Risk

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.2

0.0

0.2

0.4

0.6

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

6

4

2

0

Expected Improvement
Bayes Risk

Figure S10: Comparing EI against Bayes risk: Left: Plot of the latent function (black) against the posterior
mean (red) with pointwise credible intervals indicated in shaded red. Right: Plot of the corresponding
normalised expected improvement (red) and normalised Bayes risk (blue). The first two rows were obtained
using evaluations from f1 (21) and the subsequent rows were obtained using evaluations from f2 (22).

In order to investigate the practical differences between EI and Bayes risk, we plot the acquisition functions
evaluated over the design space x ∈ X in a few scenarios of two different one-dimensional functions. We took

f1(x) = 5x exp(−(5x)2), (21)
f2(x) = 0.3

(
exp

{
−(20(x+ 0.5))2}+ exp

(
−(20x)2}+ 2 exp

(
−(20(x− 0.5))2}) . (22)

We used a mean-zero Gaussian process with Matérn covariance with smoothness parameter ν = 2.5. The
Gaussian process was defined over the domain [−1.05, 1.05] and we specified its amplitude as λ = 1 and
lengthscale as ℓ = 0.4. Since the Bayes risk lacks a closed form, we evaluated it with parameters N = 900
and M = 30 in the following Monte-Carlo approximation

A(δ;Pf , δn−1(f)) ≈ −1
2

1
NM

N∑
i=1

M∑
j=1

L(gi, η(ωij ,Pf , δn−1(f), δz(gi))),

34

Under review as submission to TMLR

where the gi and η are defined as in (7). The loss function was approximated by maximising the GP samples
using grid-based optimiser over a uniform length 200 mesh over the domain [−0.99, 0.99]. Results are reported
in Figure S10. Note that, unlike the Bayes risk, expected improvement tends to be flat over subregions of
the domain, indicating expected improvement is less suitable for gradient based optimisation methods. Due
to this, in the subsequent experiment, we first evaluate expected improvement over a randomly generated
set of N = 100 points, before proceeding to gradient based optimisation.

We further investigate performing optimisation on the two acquisition functions to compare their practical
performance in a SED scenario. We considered the optimisation of a two-dimensional mixture of Gaussians,
each centered over a 3 × 3 uniform grid over the domain [−0.75, 0.75] × [−0.75, 0.75]. We used a mean-zero
Gaussian process with Matérn covariance with smoothness parameter ν = 2.5. The Gaussian process was
defined over the domain [−1.05, 1.05] × [−1.05, 1.05] and we specified its amplitude as λ = 1 and lengthscale
as ℓ = 0.2. We ran each experiment for 25 iterations of SED, using the standard settings as described in
Appendix F. Results are shown in Figure S11. It should be noted that expected improvement tends to
behave more exploitatively, whereas Bayes risk tends to favour exploration.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ba
ye

s R
isk

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ex
pe

cte
d

Im
pr

ov
em

en
t

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure S11: Comparing EI against Bayes risk: Left hand displays a contour plot of the latent function
f with the design points, either determined through Bayes risk or EI, overlaid. Right hand displays the
corresponding posterior mean plots.

35

	Introduction
	Our Contribution
	Related Work

	Methodology
	Notation and Set-Up
	Sequential Experimental Design
	A Decision-Theoretic Approach
	Stochastic Optimisation
	Spectral Approximation of GPs
	Hyperparameter Estimation

	Demonstration
	Probabilistic Solution of PDEs
	Tomographic Reconstruction
	Gradient-Based Bayesian Optimisation
	Emulation of a Cardiac Model

	Discussion
	Mathematical Preliminaries
	Conditioning as Disintegration
	Fréchet Derivatives

	Regularity Conditions for the Decision Theoretic Formulation
	From Optimisation to Expectation
	Verifying the Assumptions

	Properties of Gaussian Processes
	Spectral Approximation
	Properties of the Fourier Transform
	Spectral Gaussian Processes

	Computational Details of GaussED
	Conditioning
	Sampling
	Optimising the Acquisition Function
	Scalable Kernels

	Experimental Details
	Probabilistic Solution of PDEs
	Tomographic Reconstruction
	Gradient-Based Bayesian Optimisation
	Emulation of a Cardiac Model

	Evaluating Computational Aspects of GaussED
	Investigating the Efficacy of Stochastic Optimisation
	Investigating the Effect of the Number of Basis Functions
	Comparison with Expected Improvement

