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Abstract: Reinforcement Learning (RL) algorithms can solve challenging control
problems directly from image observations, but they often require millions of
environment interactions to do so. Recently, model-based RL algorithms have
greatly improved sample-efficiency by concurrently learning an internal model of
the world, and supplementing real environment interactions with imagined rollouts
for policy improvement. However, learning an effective model of the world from
scratch is challenging, and in stark contrast to humans that rely heavily on world
understanding and visual cues for learning new skills. In this work, we investigate
whether internal models learned by modern model-based RL algorithms can be
leveraged to solve new, distinctly different tasks faster. We propose Model-Based
Cross-Task Transfer (XTRA), a framework for sample-efficient online RL with
scalable pretraining and finetuning of learned world models. By proper pretraining
and concurrent cross-task online fine-tuning, we achieve substantial improvements
over a baseline trained from scratch; we improve mean performance of model-based
algorithm EfficientZero by 23%, and by as much as 71% in some instances.
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1 Introduction

Reinforcement Learning (RL) has achieved great feats across a wide range of areas, most notably
game-playing [1, 2, 3, 4]. However, traditional RL algorithms often suffer from poor sample-efficiency
and require millions (or even billions) of environment interactions to solve tasks – especially when
learning from high-dimensional observations such as images. This is in stark contrast to humans
that have a remarkable ability to quickly learn new skills despite very limited exposure [5]. In an
effort to reliably benchmark and improve the sample-efficiency of image-based RL across a variety
of problems, the Arcade Learning Environment (ALE; [6]) has become a long-standing challenge
for RL. This task suite has given rise to numerous successful and increasingly sample-efficient
algorithms [1, 7, 8, 9, 10, 11, 12], notably most of which are model-based, i.e., they learn a model of
the environment.

Most recently, EfficientZero Ye et al. [12] – a model-based RL algorithm – has demonstrated
impressive sample-efficiency, surpassing human-level performance with as little as 2 hours of real-
time game play in select Atari 2600 games from the ALE. This achievement is attributed – in part – to
the algorithm concurrently learning an internal model of the environment from interaction, and using
the learned model to imagine (simulate) further interactions for planning and policy improvement,
thus reducing reliance on real environment interactions for skill acquisition. However, current RL
algorithms – including EfficientZero – are still predominantly assumed to learn both perception,
model, and skills tabula rasa (from scratch) for each new task. On the contrary, humans rely heavily
on prior knowledge and visual cues when learning new skills. For example, a study found that
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human players easily pick up on visual cues about game mechanics and objectives when exposed to a
video game for the very first time, and that human performance is severely degraded if such cues are
removed or conflict with prior experiences [5].

In this work, we explore whether such positive transfer can be induced with current model-based RL
algorithms in an online RL setting, and across markedly distinct tasks. Based on our findings, we
propose Model-Based Cross-Task Transfer (XTRA), a framework for sample-efficient online RL
with scalable pretraining and finetuning of learned world models using extra, auxiliary data from
other tasks. Concretely, our framework consists of two stages: (i) offline multi-task pretraining of a
world model on an offline dataset from m diverse tasks, a (ii) finetuning stage where the world model
is jointly finetuned on a target task in addition to the m offline tasks. By leveraging offline data
both in pretraining and finetuning, XTRA overcomes the challenges of catastrophical forgetting. To
prevent harmful interference from certain offline tasks, we adaptively re-weight gradient contributions
in an unsupervised manner based on similarity to the target task.

2 Model-Based Cross-Task Transfer

2.1 Offline Multi-Task Pretraining

In this stage, we aim to learn a single world model with general perceptive and dynamics priors
across a diverse set of offline tasks. We emphasize, however, that the goal of pretraining is not to
obtain a truly generalist agent, but rather to learn a good initialization for finetuning to unseen tasks.
Learning a single RL agent for a diverse set of tasks is however a difficult in practice, which is only
exacerbated by extrapolation errors due to the offline RL setting [13]. To address the challenge of
multi-task learning, we propose to pretrain the model following a student-teacher training setup,
where teacher models are trained separately by offline RL for each task, and then distilled into a
single multi-task model using a novel instantiation of the MuZero Reanalyze [14] algorithm.

For each pretraining task we assume access to a fixed dataset {D̂i |1 ≤ i ≤ m} that consists of
trajectories from an unknown (and potentially sub-optimal) behavior policy. Importantly, we do
not make any assumptions about the quality or the source of trajectories in the dataset, i.e., we do
not assume datasets to consist of expert trajectories. We first train individual EfficientZero teacher
models on each dataset for a fixed number of iterations in a single-task (offline) RL setting, resulting
in m teacher models {π̂iψ |1 ≤ i ≤ m}. After training, each teacher model π̂iψ has learned to produce
task-specific quantities (π̂, û, ẑ) for a given game M̂i. Next, we learn a multi-task student model
π̂θ by distilling the task-specific teachers into a single model. Specifically, we optimize the student
policy by sampling data uniformly from all pretraining tasks, and generate value/policy targets using
the respective teacher models rather than bootstrapping from student predictions as commonly done
in the (single-task) MuZero Reanalyze algorithm. This step can be seen as learning multiple tasks
simultaneously with direct supervision by distilling predictions from multiple teachers’ into a single
model. Empirically, we find this to be a key component in scaling up the number of pretraining tasks.
Although teacher models may not be optimal depending on the provided offline datasets, we find that
they provide stable (due to fixed parameters during distillation) targets of sufficiently good quality.
The simpler alternative – training a multi-task model on all m pretraining tasks simultaneously using
RL is found to not scale beyond a couple of tasks in practice. After distilling teacher models into
the multi-task student model, we now have a single set of pretrained parameters that can be used for
finetuning to a variety of tasks via online interaction, which we introduce in the following section.

2.2 Online Finetuning on a Target Task

In this stage, we iteratively interact with a target task (environment) to collect interaction data, and
finetune the pretrained model on data from the target task. However, we empirically observe that
directly finetuning the pretrained model often leads to catastrophical forgetting, and consequently
poor performance on the target task. To overcome this challenge, we retain offline data from the
pretraining stage, and concurrently finetune the model on both data from the target task, as well as
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data from the pretraining tasks. While this procedure addresses catastrophical forgetting, interference
between the target task and certain pretraining tasks can be harmful for the sample-efficiency during
online RL. As a solution, gradient contributions from offline tasks are periodically re-weighted in an
unsupervised manner based on their similarity to the target task.

At each training step t, we jointly optimize the target online task M and m offline (auxiliary) tasks
{M̂i |M̂i ̸= M, 1 ≤ i ≤ m} that were used during the offline multi-task pretraining stage. Our
online finetuning objective is defined as Ladapt

t (θ) = Lez
t (M) +

∑i
ηiLez

t (M̂i) where Lez is the
ordinary (single-task) EfficientZero objective, and ηi are dynamically (and independently) updated
task weights for each of the m pretraining tasks. The target task loss term maintains a constant task
weight of 1.

In order to dynamically re-weight task weights ηi throughout the training process, we break down the
total number of environment steps (i.e., 100k in our experiments) into even T -step cycles (intervals).
Within each cycle, we spend first N -steps to compute an updated ηi corresponding to each offline
task M̂i. The new ηi will then be fixed during the remaining T −N steps in the current cycle and the
first N steps in the next cycle. We dynamically assign the task weights by measuring the “relevance”
between each offline task M̂i and the (online) target task M by gradient cosine similarity. While
re-weighting task weights at every gradient update would result in the least amount of conflicting
gradients, it is prohibitively costly to do so in practice. However, we empirically find the cosine
similarity of task gradients to be strongly correlated in time, i.e., the cosine similarity does not change
much between consecutive gradient steps. By instead updating task weights every N steps, our
proposed technique mitigates gradient conflicts at a negligible computational cost in contrast to the
compute-intensive gradient modification method proposed in [15].

3 Experiments

Experimental setup. We base our architecture and backbone learning algorithm on EfficientZero
[12] and focus our efforts on the pretraining and finetuning aspects of our problem setting. We
consider EfficientZero with two different network sizes to better position our results: (i) the same
network architecture as in the original EfficientZero implementation which we simply refer to
as EfficientZero, and (ii) a larger variant with 4 times more parameters in the representation
network (denoted EfficientZero-L). We use the EfficientZero-L variant as the default network for our
framework through our experiments, unless stated otherwise. However, we find that our EfficientZero
baseline generally does not benefit from a larger architecture, and we thus include both variants
for a fair comparison. We experiment with cross-task transfer on three subsets of tasks: tasks that
share similar game mechanics (for which we consider two Shooter and Maze categories), and tasks
that have no discernible properties in common (referred to as Diverse). We measure performance
on individual Atari games by absolute scores, and also provide aggregate results as measured by
mean and median scores across games, normalized by either human performance or EfficientZero
performance at 100k environment steps. All of our results are averaged across 5 random seeds to
ensure reliability.

Baselines. We compare our method against 7 prior methods for online RL that represent the state-
of-the-art on the Atari100k benchmark (including EfficientZero), as well as a multi-task behavior
cloning policy trained on the full pretraining dataset, and a set of ablations that include EfficientZero
with several different model sizes and pretraining/finetuning schemes. The former baselines serve to
position our results with respect to the state-of-the-art, and the latter baselines and ablations serve to
shed light on the key ingredients for successful multi-task pretraining and finetuning.

3.1 Results & Discussion

Tasks that share similar game mechanics. We first investigate the feasibility of finetuning models
that are pretrained on games with similar mechanics. We select 5 shooter games and 5 maze games for
this experiment. Results for our method, baselines, and a set of ablations on the Atari100k benchmark
are shown in Table 1. We find that pretraining improves sample-efficiency substantially across most
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Table 1: Scores on the Atari 100k benchmark (similar pretraining tasks). Methods are evaluated after
100k environment steps. For each game, XTRA is first pretrained on all other 4 games from the same category.
We include three main ablation results by removing cross-task optimization in finetuning (only online RL),
the pretraining stage (random initialization), or task weights assignment (constant weights). We also include
zero-shot performance of our method for target tasks in comparison to a behavioral cloning baseline. All numbers
are means of 5 seeds with 32 evaluation episodes.

Category Game
Ablations (XTRA) Zero-Shot

Efficient Efficient XTRA w.o. w.o. w.o. task BC XTRA
Zero Zero-L (Ours) cross-task pretraining weights (Ours)

Shooter Assault 1027.1 1041.6 1294.6 1246.4 1257.5 1164.2 0.0 92.8
Carnival 3022.1 2784.3 3860.9 3544.4 2370.0 3071.6 93.75 719.3
Centipede 3322.7 2750.7 5681.4 3833.2 6322.7 5484.1 162.2 1206.8
Demon Attack 11523.0 4691.0 14140.9 6381.5 9486.8 51045.9 73.8 113.6
Phoenix 10954.9 3071.0 14579.8 10797.3 9010.6 22873.9 0.0 8073.4

Mean Improvement 1.00 0.69 1.36 1.02 1.11 2.06 0.02 0.29
Median Improvement 1.00 0.83 1.28 1.15 0.82 1.65 0.01 0.24

Maze Alien 695.0 641.5 954.8 722.8 703.6 633.6 108.1 294.1
Amidar 109.7 84.2 90.2 121.8 70.8 69.7 0.0 5.2
Bank Heist 246.1 244.5 304.9 280.1 225.1 261.4 0.0 7.3
Ms Pacman 1281.4 1172.8 1459.7 1011.1 1122.6 809.2 147.6 448.9
Wizard Of Wor 1033.1 928.8 985.0 1246.1 654.4 263.5 100.0 9.4

Mean Improvement 1.00 0.90 1.11 1.06 0.82 0.70 0.07 0.17
Median Improvement 1.00 0.92 1.14 1.11 0.88 0.64 0.10 0.05

Overall Mean Improvement 1.00 0.79 1.23 1.04 0.96 1.38 0.05 0.23
Median Improvement 1.00 0.91 1.25 1.12 0.85 1.04 0.02 0.16

Table 2: Scores on the Atari 100k benchmark (diverse tasks) The reported 5 XTRA results are from
finetuning the same set of pretrained model parameters with the same 8 pretrained offline tasks. All numbers are
computed for 5 seeds each with 32 evaluation episodes. All other results are adopted from EfficientZero[12].

Game XTRA (Ours) EfficientZero Random Human SimPLe OTRainbow CURL DrQ SPR MuZero

Assault 1742.2 1263.1 222.4 742.0 527.2 351.9 600.6 452.4 571.0 500.1
BattleZone 14631.25 13871.2 2360.0 37187.5 5184.4 4060.6 14870.0 12954.0 16651.0 7687.5
Hero 10631.8 9315.9 1027.0 30826.4 2656.6 6458.8 6279.3 3736.3 7019.2 3095.0
Krull 7735.8 5663.3 1598.0 2665.5 4539.9 3277.9 4229.6 4018.1 3688.9 4890.8
Seaquest 749.5 1100.2 68.4 42054.7 683.3 286.9 384.5 301.2 583.1 208.0

Normed Mean 1.87 1.29 0.0 1.0 0.70 0.41 0.75 0.62 0.65 0.77
Normed Median 0.35 0.33 0.0 1.0 0.08 0.18 0.36 0.30 0.41 0.15

tasks, improving mean and median performance of EfficientZero by 23% and 25%, respectively,
overall. Interestingly, XTRA also had a notable zero-shot ability compared to a multi-game behavior
cloning baseline that is trained on the same offline dataset. We also consider three ablations: (1)
XTRA without cross-task: a variant of our method that naively finetunes the pretrained model
without any additional offline data from pretraining tasks during finetuning, (2) XTRA without
pretraining: a variant that uses our concurrent cross-task learning (i.e., leverages offline data during
finetuning) but is initialized with random parameters (no pretraining), and finally (3) XTRA without
task weights: a variant that uses constant weights of 1 for all task loss terms during finetuning.
We find that XTRA achieves extremely high performance on 2 games (DemonAttack and Phoenix)
without dynamic task weights, improving over EfficientZero by as much as 343% on DemonAttack.
However, its median performance is overall low compared to our default variant that uses dynamic
weights. We conjecture that this is because some (combinations of) games are more susceptible to
gradient conflicts than others.

Tasks with diverse game mechanics. We now consider a more diverse set of pretraining and target
games that have no discernible properties in common. Specifically, we use the following tasks for
pretraining: Carnival, Centipede, Phoenix, Pooyan, Riverraid, VideoPinball, WizardOfWor, and
YarsRevenge, and evaluate our method on 5 tasks from Atari100k. Results are shown in Table 2. We
find that XTRA advances the state-of-the-art in a majority of tasks on the Atari100k benchmark, and
achieve a mean human-normalized score of 187% vs. 129% for the previous SOTA, EfficientZero.
This suggests that, while task similarity may play a role in the success of XTRA, the algorithmic
advances of our proposed frames are a bigger factor in the strong empirical performance.
4 Conclusion
In this paper, we propose Model-Based Cross-Task Transfer (XTRA), a framework for sample-
efficient online RL with scalable pretraining and finetuning of learned world models using extra,
auxiliary data from other tasks.
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