

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MULTI-SOURCE KNOWLEDGE-FUSION FOR SOURCE-FREE DOMAIN ADAPTATION IN OBJECT DETECTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Source-free domain adaptation (SFDA) enables adaptation to a target domain without access to source data or labeled target samples, making it particularly valuable in privacy-sensitive applications such as military operations and healthcare. To leverage complementary and transferable knowledge from multiple source domains, multi-source-free domain adaptation (MSFDA) extends SFDA by collectively adapting pre-trained models from multiple sources. However, a key challenge in MSFDA is the significant distribution shift among multiple source and target domains, which often leads to suboptimal performance, especially in complex tasks like object detection. To address this, we propose a novel multi-source knowledge-fusion framework that effectively aggregates knowledge from multiple sources and mitigates distribution discrepancies. We first conduct text-driven feature augmentation that narrows the semantic gap by transforming unlabeled target images into source-stylized images using only textual descriptions of each source domain, such that the pre-trained source models are directly applicable. Each domain expert is then updated with its respective stylized target images, while the aggregator undergoes both local and global updates to ensure stable adaptation. To further improve pseudo-label quality, peer network-based confidence selection is performed to filter out noisy labels. Our method achieves state-of-the-art performance on multiple real-world datasets, demonstrating its effectiveness in multi-source free domain adaptation.

1 INTRODUCTION

Source-Free Domain Adaptation (SFDA) has recently gained prominence as a solution to practical challenges such as data privacy, distributed data storage, and inconvenient data transmission Huang et al. (2021); Li et al. (2021b; 2022). SFDA aims to adapt pre-trained model on the source domain to unlabeled target domain without accessing actual source data. Multi-source free domain adaptation extends SFDA to incorporate pre-trained models from multiple source domains, allows knowledge aggregation from a broader variety of data, which is particularly advantageous when the target domain is diverse and spans a wide range of possible scenarios Peng et al. (2019); Dong et al. (2021); Ahmed et al. (2021).

However, properly aggregating knowledge from multiple source domains without access to actual data poses a set of unique challenges. First, the source domains may not comprehensively cover all aspects of the target domain, leading to missing or poorly represented features. Even with multiple source models, certain characteristics of the target domain might remain unaccounted for, hindering generalization and degrading adaptation performance. Second, without access to source data, determining the relative importance of each source model is non-trivial. Some source models may be more relevant than others for a given target domain, but misaligned weighting or reliance on less relevant sources can negatively impact adaptation Li et al. (2024). Last, source models trained on different domains may encode conflicting feature representations, leading to inconsistencies in target predictions Wang et al. (2019); Ding et al. (2016). Disagreements among source models can introduce noise into pseudo-labeling, propagating errors across training stages and ultimately compromising adaptation performance.

While few existing methods have made progress in addressing MSFDA by quantifying the contributions of multiple source models and finding optimal combinations through techniques like joint feature alignment Dong et al. (2021); Ahmed et al. (2021); Peng et al. (2019), or attention mecha-

Figure 1: (a) **TFA module**: Given a target image and a style description, TFA uses CLIP features to transform the image representation to match the source domain style. (b) **Overall pipeline**: (1) Pre-train source models on their respective source datasets; (2) Generate stylized target datasets with TFA; (3) Train the multi-source knowledge fusion framework, where domain experts are adapted locally and the aggregator is updated via EMA-based knowledge integration.

nisms Li et al. (2024), these approaches have some inherent limitations. For example, joint feature alignment aims to learn a shared common space from multiple source models for the generalization to target domain by quantifying contribution of each domain or find the optimal combination of source domains Dong et al. (2021); Ahmed et al. (2021); Shen et al. (2023). However, source domains can exhibit significant divergence in feature distributions due to differences in data characteristics, such as lighting conditions, object categories, or scene variations. These differences are often not easily captured through a single alignment process, and aligning features can lead to loss of important domain-specific information. Attention mechanisms have been used to focus on the most relevant parts of the source features during adaptation Li et al. (2024). However, attention alone does not fully address the semantic gaps that arise due to differences in how source models perceive the target data. Attention mechanisms can focus on certain features but may not be able to comprehensively reduce the domain shift between the source and target domains.

To systematically address the challenges outlined above, we propose a novel multi-source knowledge fusion framework, as illustrated in Figure 1, consisting of three key components. The first component conducts Text-driven Feature Augmentation (TFA) to explicitly reduce domain gaps, enabling pre-trained source models to better generalize to unlabeled target images. TFA leverages the vision-language space of foundation models such as CLIP, which aligns image features with textual descriptions Radford et al. (2021). In this space, an image and its corresponding description are positioned closely, allowing text to serve as a proxy for modifying image features. Therefore, we propose TFA to stylize unlabeled target images with source domain characteristics, effectively bridging the semantic gap between pre-trained source models and the target domain without requiring access to original source data.

The second component is a novel multi-source setting designed to ensure stable knowledge integration across heterogeneous source domains. Since source models pre-trained on different domains may encode conflicting feature representations, direct aggregation can cause divergence and hinder adaptation. To address this, we propose a multi-source knowledge fusion framework in which one source model is designated as the aggregator and the others as domain experts. Both the aggregator and domain experts are locally updated through self-training on TFA-stylized images aligned with their respective source domain styles. For cross-domain knowledge integration, the aggregator is globally updated using the EMA of domain experts. To further alleviate domain divergence, we introduce a contribution network that dynamically meta-learns the EMA rate assigned to each domain expert, thereby quantifying its contribution to the aggregator. This network is optimized via an entropy minimization objective, encouraging prediction consistency across source models.

108 By adaptively weighting domain expert contributions, our approach achieves robust and stable
 109 multi-source knowledge fusion.

110 During local updates, the aggregator and domain experts collaborate to filter out noisy pseudo-
 111 labels for each other. In source-free domain adaptation (SFDA), confidence selection is a widely
 112 adopted denoising strategy. However, existing methods predominantly rely on self-entropy-based
 113 filtering Li et al. (2021b); Shen et al. (2023); Kim et al. (2021), which suffers from a key limitation:
 114 as training progresses, models tend to overfit noisy pseudo-labels, becoming increasingly confident
 115 in incorrect predictions. This overconfidence amplifies label noise, making it progressively harder to
 116 separate clean from noisy samples. To overcome this issue, our third component introduces external
 117 validation, enabling the aggregator and domain experts to teach each other rather than relying solely
 118 on self-entropy filtering. The aggregator, being more stable, is less affected by specific noisy samples
 119 encountered by the domain experts. Conversely, the domain experts provide complementary feedback
 120 by identifying mislabeled instances for the aggregator. This mutual refinement process reduces
 121 overfitting to noise, stabilizes training, and ultimately improves adaptation performance.

122 **Summary of contributions.** In this work, we address Multi-Source Free Domain Adaptation
 123 (MSFDA) for object detection. Our key contributions are: (1) We propose Text-Driven Feature
 124 Augmentation (TFA), which generates source-stylized target images to mitigate domain shifts and
 125 improve source model generalization. (2) We develop a multi-source knowledge fusion framework
 126 that designates one source model as an aggregator and the others as domain experts. A contribution
 127 network adaptively weights expert influence, while a mutual denoising strategy enables them to
 128 validate each other’s pseudo-labels, reducing noise overfitting and enhancing adaptation stability. (3)
 129 We conduct extensive experiments on multiple benchmarks, showing consistent improvements over
 130 existing MSFDA methods.

2 RELATED WORKS

131
 132 **Multi-source-free domain adaptation.** Multi-Source-Free Domain Adaptation (MSFDA) aims to
 133 distill knowledge from multiple pre-trained models and adapts to an unlabeled target domain without
 134 access to the actual source data Dong et al. (2021); Shen et al. (2023); Yeh et al. (2023); Li et al.
 135 (2023; 2024); Peng et al. (2019). Dong et al., propose to quantify the contributions of multiple source
 136 models with a source-specific transferable perception module. It then improve the quality of the
 137 pseudo label with a confident-anchor-induced pseudo label generator Dong et al. (2021). Aiming
 138 to find the optimal combination of source models, Ahmed et al., learn a set weights by minimizing
 139 the conditional entropy of transferring each source model to the unlabeled target. They also provide
 140 intuitive theoretical insights to justify their methodology Ahmed et al. (2021). Shen et al., balance
 141 domain aggregation, pseudo-labeling, and joint feature alignment with information-theoretic bound
 142 on the generalization error Shen et al. (2023). Focusing on balancing between instance specificity and
 143 domain consistency, Li et al., propose a parameter-tuning free method for MSFDA with a attention
 144 module that learns both intra-domain weights and inter-domain ensemble weights Li et al. (2024).
 145 In contrast to these existing methods, our method focuses on explicitly reducing the semantic gaps
 146 among different source models and the unlabeled target data distribution. We propose a text-driven
 147 feature augmentation technique to achieve style transfer given only images from the target domain,
 148 and a simple description of the source domain style.

149
 150 **Source-free domain adaptation for object detection.** Source-free domain adaptation for object
 151 detection (SFOD) operates under the assumption that only the pre-trained model on the source domain
 152 is accessible, while the actual source data is not available, presenting itself as a promising area of
 153 research. Conventional SFOD methods commonly employ the pseudo labeling paradigm, involving a
 154 cyclic process of model adaptation that oscillates between predicting pseudo labels and fine-tuning
 155 the model Huang et al. (2021); Li et al. (2021b); Xiong et al. (2021). Some recent efforts attempt to
 156 address these problems by using self-entropy descent as a confidence threshold to select high-quality
 157 pseudo labels Li et al. (2021b). Other efforts directly learn domain-invariant features through devising
 158 domain perturbation Xiong et al. (2021), graph alignment constraint Li et al. (2022), adversarial
 159 alignment of the target images Chu et al. (2023), instance relation graph network Vibashan et al.
 160 (2023), or teacher-student models Lin et al. (2023); Liu et al. (2023). Although existing SFOD
 161 methods Li et al. (2021b); Lin et al. (2023); Liu et al. (2023); Li et al. (2022) have shown promise,

162 MSFDA is less explored for object detection tasks. In this work, we propose to utilize multiple
 163 pre-trained source models to address source-free domain adaption for object detection.
 164

165 **Text-based style transfer.** Style transfer aims to transform a content image by transferring the
 166 semantic texture of a style image. Traditional style transfer approaches require a reference style
 167 image for learning the style texture the texture to change the style of the content image, which might
 168 not be always available. Under this condition, using text information to conveys the desired style has
 169 emerged as a solution. Current text-based style transfer methods can be categorized into two parts:
 170 (1) The generative-based methods; StackGAN Zhang et al. (2017a) integrated text conditions to multi-
 171 scale generative model for high-quality image synthesis. AttnGAN Xu et al. (2018) further improved
 172 the performance with attention mechanism on text and image features. ManiGAN Li et al. (2020)
 173 proposed a modules for simultaneously embedding the text and image features. StyleCLIP Patashnik
 174 et al. (2021) performed attribute manipulation with exploring learned latent space of StyleGAN Karras
 175 et al. (2019). StyleGAN-NADA Gal et al. (2022) proposed a model modification method with using
 176 text conditions only, and modulates the trained model into a novel domain without additional training
 177 images. (2) The non-generative-based methods; CLIPstyler Kwon & Ye (2022) design a modulation
 178 of the style of content images only with a single text condition using the pre-trained text-image
 179 embedding model of CLIP, and propose a patch-wise text-image matching loss with multiview
 180 augmentations for realistic texture transfer. PODA Fahes et al. (2023) propose a prompt-driven
 181 instance normalization (PIN) layer to do style transfer, where affine transformations of low-level
 182 features are optimized such that the representation in CLIP latent space matches the one of text-based
 183 prompt. PromptStyler Cho et al. (2023) simulates various distribution shifts in the joint space by
 184 synthesizing diverse styles via prompts without using any images to deal with source-free domain
 185 generalization. In this work, we propose a novel non-generative text-based style transfer method,
 186 TFA, that focuses on aligning the target image with the source style text in both high-level semantics
 187 and low-level visual textures.

3 METHODOLOGY

190 The proposed approach aims to reduce the domain shift between multiple source domains and a target
 191 domain. To achieve this, we introduce text-driven feature augmentation (TFA), which uses simple
 192 textual descriptions of the source domains to augment target images with corresponding styles. This
 193 allows for the direct application of pre-trained models to the augmented target images. Additionally,
 194 we propose a multi-source knowledge fusion framework to integrate knowledge from multiple source
 195 models. To enhance the quality of pseudo-labels, we use confidence selection in a mutual refinement
 196 manner, offering a more robust approach to handling noisy labels.

197 **Problem formulation.** We consider M labeled source domains denoted as $\{D^{s_i}\}_{i=1}^M$, where each
 198 domain $D^{s_i} = \{(\mathbf{x}_k^{s_i}, y_k^{s_i})\}_{k=1}^{N_i}$ consists of N_i images. Each image $\mathbf{x}_k^{s_i}$ is paired with an annotation
 199 $y_k^{s_i} = (\mathbf{b}_k^{s_i}, c_k^{s_i})$, where $\mathbf{b}_k^{s_i}$ denotes the bounding box coordinates and $c_k^{s_i}$ represents the class label
 200 of the object in the k -th image of the i -th source domain. In addition, we are given an unlabeled
 201 target domain $D^t = \{\mathbf{x}_k^t\}_{k=1}^{N_t}$, which contains N_t images without annotations. During adaptation,
 202 we do not have access to the raw source data. Instead, we are provided with: (1) the M pre-trained
 203 source models $\{\theta^{s_i}\}_{i=1}^M$, each trained on a different source domain, and (2) the text descriptions
 204 $\{\mathbf{t}_{sty}^{s_i}\}_{i=1}^M$ that characterize the style of each source domain. The goal is to leverage the pre-trained
 205 source models and their textual style descriptions to adapt effectively to the unlabeled target domain.

206 **CLIP.** We leverage the vision–language (V-L) space of pre-trained CLIP models Radford et al.
 207 (2021) for TFA. CLIP consists of a visual encoder E_{vis} and a text encoder E_{txt} , which map images
 208 and text into a shared embedding space. Given an image \mathbf{x} , the visual encoder produces $\mathbf{v} = E_{vis}(\mathbf{x})$.
 209 For the i -th category, we construct a prompt “A photo of a [class- i]”, tokenize it as \mathbf{p}_i , and encode it
 210 into $\mathbf{t}_i = E_{txt}(\mathbf{p}_i)$. The prediction for class y is obtained via a softmax over cosine similarities:

$$p(\hat{y} = y | \mathbf{x}) = \frac{\exp(\cos(\mathbf{v}, \mathbf{t}_y)/\tau)}{\sum_{k=1}^K \exp(\cos(\mathbf{v}, \mathbf{t}_k)/\tau)}. \quad (1)$$

215 This aligns visual and textual features, enabling cross-modal representation learning.

216 3.1 TEXT-DRIVEN FEATURE AUGMENTATION
217

218 To bridge the semantic gap between pre-trained source models and target images, we propose Text-
219 Driven Feature Augmentation (TFA), which transforms target image features to match the source
220 domain style guided by textual descriptions. The style transformation is performed by aligning
221 the target image’s features with textual representations of the source domain style in a shared
222 vision–language space, where image and text features are well-aligned. By minimizing the gap
223 between the target image feature and the textual source style feature, the target image is effectively
224 transformed to reflect the source domain style. Specifically, we introduce a learnable augmentation
225 module $\mathcal{A}_\phi(\cdot)$ that adapts target features in the vision–language (V-L) space. Given a target image
226 \mathbf{x} , its CLIP visual feature is extracted as $\mathbf{z} = E_{\text{vis}}(\mathbf{x})$, and a style description of a source domain is
227 encoded as $E_{\text{txt}}(\mathbf{t}_{\text{sty}})$. The augmentation module generates $\mathcal{A}_\phi(\mathbf{z})$, which is optimized to align with
228 the textual style while preserving image content. The learning objective is:

$$229 \phi^* = \min_{\phi} \lambda_1 \mathcal{L}_{\text{style}} + \lambda_2 \mathcal{L}_{\text{content}} + \lambda_3 \mathcal{L}_{\text{Gram}}, \quad (2)$$

$$230 \mathcal{L}_{\text{style}} = 1 - \cos(\mathcal{A}_\phi(\mathbf{z}), E_{\text{txt}}(\mathbf{t}_{\text{sty}})), \quad (3)$$

$$231 \mathcal{L}_{\text{content}} = \|\mathcal{A}_\phi(\mathbf{z}) - \mathbf{z}\|_1, \quad (4)$$

$$233 \mathcal{L}_{\text{Gram}} = \|\text{Gram}(\mathcal{A}_\phi(\mathbf{z})) - E_{\text{txt}}(\mathbf{t}_{\text{sty}})\|_2^2, \quad (5)$$

234 We implement \mathcal{A}_ϕ as a learnable feature augmentation network parameterized by ϕ . As shown in
235 Figure 1 (a), \mathcal{A}_ϕ is a lightweight multilayer perceptron (MLP) that takes the CLIP visual feature
236 $\mathbf{z} = E_{\text{vis}}(\mathbf{x})$ and textual feature $E_{\text{txt}}(\mathbf{t}_{\text{sty}})$ as input and outputs a transformed feature $\mathcal{A}_\phi(\mathbf{z})$ aligned
237 with the source domain style. The parameters ϕ are optimized with the objective in Eq. (2), while
238 the CLIP encoders E_{vis} , E_{txt} , and the image decoder remain frozen. Finally, a pretrained ClipStyler
239 image decoder Kwon & Ye (2022) is used to reconstruct stylized images from $\mathcal{A}_\phi(\mathbf{z})$. This design
240 ensures that TFA operates efficiently in the joint V-L feature space without requiring image-space
241 generation.

242 In Eq. (3), $\cos(\cdot)$ computes the cosine similarity between augmented feature embedding and style
243 text embedding: $\cos(\mathcal{A}_\phi(\mathbf{z}), E_{\text{txt}}(\mathbf{t}_{\text{sty}})) = \frac{\mathcal{A}_\phi(\mathbf{z}) \cdot E_{\text{txt}}(\mathbf{t}_{\text{sty}})}{\|\mathcal{A}_\phi(\mathbf{z})\| \|E_{\text{txt}}(\mathbf{t}_{\text{sty}})\|}$, which measures the semantic alignment
244 between the augmented target image features and the text description of the source domain style.
245 By maximizing the cosine similarity, we ensure that the style of the augmented image is consistent
246 with the desired source style, which is represented in the CLIP text embedding space. Eq. (4) acts as
247 an \mathcal{L}_1 regularizer to match high-level image content between the augmented image and the original
248 target image. In Eq. (5), $\text{Gram}(\cdot)$ computes the Gram matrix, capturing style features like texture
249 and lighting distributions. By minimizing the difference between the Gram matrix of the augmented
250 image and the source style, this term encourages the augmented image to adopt the broader source
251 domain style characteristics. Specifically, $\mathcal{L}_{\text{style}}$ focuses on semantic alignment including high-level
252 concepts and object structures, while $\mathcal{L}_{\text{Gram}}$ focuses on texture and appearance similarity including
253 low-level statistics like color and texture patterns. Together, they ensure that the augmented images
254 resemble the source domain both in high-level semantic meaning and low-level visual texture, making
255 them more useful for adapting pre-trained models to the target.

256 3.2 MULTI-SOURCE KNOWLEDGE FUSION FRAMEWORK
257

258 Using TFA, we construct multiple stylized target datasets $\{D^{t \rightarrow s_1}, D^{t \rightarrow s_2}, \dots, D^{t \rightarrow s_M}\}$, where
259 $D^{t \rightarrow s_i} = \{\mathcal{A}_{\phi_i}^{s_i}(\mathbf{x}) | \mathbf{x} \in D^t\}$. In this section, we introduce the multi-source knowledge fusion
260 framework, which effectively integrates knowledge from multiple source models while minimize
261 the negative impact of noisy pseudo labels during adaptation. Specifically, given pre-trained source
262 models $\{\theta^{s_1}, \theta^{s_2}, \dots, \theta^{s_M}\}$ as domain experts, we designate one model as the aggregator θ^{agg} , and
263 denote the remaining models as domain experts θ_i^{DE} . The aggregator simultaneously acts as a domain
264 expert for its own source domain while also serving as the central model for integrating knowledge
265 across all domains. During adaptation, both the aggregator and domain experts are locally updated on
266 their corresponding augmented target datasets, while the aggregator further aggregates cross-domain
267 knowledge through an additional EMA update from the domain experts.

268 **Domain expert update via self-training.** Each domain expert θ_i^{DE} (including the aggregator θ^{agg}
269 of its own domain) is adapted to its corresponding augmented dataset $D^{t \rightarrow s_i} = \{\mathcal{A}_{\phi_i}^{s_i}(\mathbf{x}) | \mathbf{x} \in D^t\}$
via self-training. Specifically, the expert generates pseudo labels \tilde{y}_i for the augmented images

270 $\mathbf{z}_i = \mathcal{A}_{\phi_i}^{s_i}(\mathbf{x})$, which are then used to update itself with the local detection loss:
 271

$$272 \quad \theta_i^{\text{DE}} \leftarrow \theta_i^{\text{DE}} - \gamma_i \nabla_{\theta_i^{\text{DE}}} \mathcal{L}_i^{\text{local}}, \quad (6)$$

273

274 where γ_i is the learning rate. The local loss $\mathcal{L}_i^{\text{local}}$ follows the standard Faster R-CNN detection
 275 loss Ren et al. (2015):

$$276 \quad \mathcal{L}_i^{\text{local}} = \mathcal{L}_{\text{cls}}^{\text{rpn}}(\mathbf{z}_i, \tilde{y}_i) + \mathcal{L}_{\text{reg}}^{\text{rpn}}(\mathbf{z}_i, \tilde{y}_i) + \mathcal{L}_{\text{cls}}^{\text{roi}}(\mathbf{z}_i, \tilde{y}_i) + \mathcal{L}_{\text{reg}}^{\text{roi}}(\mathbf{z}_i, \tilde{y}_i). \quad (7)$$

277

278 Here, $\mathcal{L}_{\text{cls}}^{\text{rpn}}$ and $\mathcal{L}_{\text{reg}}^{\text{rpn}}$ are the classification and regression losses of the region proposal network (RPN),
 279 while $\mathcal{L}_{\text{cls}}^{\text{roi}}$ and $\mathcal{L}_{\text{reg}}^{\text{roi}}$ are those of the region-of-interest (ROI) head. The classification terms are
 280 standard cross-entropy losses for category prediction, and the regression terms measure localization
 281 error. In this way, each domain expert iteratively improves itself by using its own high-confidence
 282 predictions as supervision, following the principle of self-training.

283 **Aggregation via meta-learning.** To integrate knowledge across domains, the aggregator θ^{agg} is
 284 updated as an exponential moving average (EMA) of the domain experts' parameters:
 285

$$286 \quad \theta^{\text{agg}} \leftarrow \alpha^{\text{agg}} \theta^{\text{agg}} + \sum_{i=1}^{M-1} \alpha_i^{\text{DE}} \theta_i^{\text{DE}}, \quad (8)$$

287

288 where α^{agg} and $\{\alpha_i^{\text{DE}}\}_{i=1}^{M-1}$ are EMA rates that control how much each model contributes to the
 289 aggregator. Instead of using fixed weights, we let the contributions $\boldsymbol{\alpha} = [\alpha^{\text{agg}}, \alpha_1^{\text{DE}}, \dots, \alpha_{M-1}^{\text{DE}}]$ be
 290 dynamically learned by a small meta-network $\mathcal{F}(\cdot)$. The intuition is that not all domain experts are
 291 equally reliable—some may provide more consistent or less noisy knowledge than others. To train \mathcal{F} ,
 292 we encourage agreement among models by minimizing the entropy of their averaged predictions on
 293 target images:
 294

$$295 \quad \boldsymbol{\alpha}^* = \min_{\boldsymbol{\alpha}} - \sum_{k=1}^K \tilde{p}(y_k | \mathbf{x}) \log \tilde{p}(y_k | \mathbf{x}), \text{ where } \tilde{p}(y_k | \mathbf{x}) = \frac{1}{M} \sum_{i=1}^M p(y_k | \mathbf{x}, \theta^{s_i}), \quad (9)$$

296

297 where $p(y_k | \mathbf{x}, \theta^{s_i})$ is the class probability vector produced by model θ^{s_i} . For notation clarity, we use
 298 $\{\theta^{s_i}\}_{i=1}^M$ instead of θ^{agg} and $\{\theta_i^{\text{DE}}\}_{i=1}^{M-1}$. In practice, θ^{agg} is updated by Eq. (8), and $\boldsymbol{\alpha}$ is produced by
 299 $\mathcal{F}(\cdot)$. Since \mathcal{F} is trained to reduce prediction entropy, it learns to assign higher weights to models that
 300 produce confident and consistent predictions on target data, while down-weighting noisier experts.

301 **Eq. (9) defines a bi-level meta-optimization, in which the EMA rate α acts as a meta-parameter
 302 optimized over the performance of the aggregator θ^{agg} on the target domain.** This process is
 303 mathematically well-defined and follows standard meta-learning optimization principles. The update
 304 in Eq. (9) corresponds to a meta-gradient $\nabla L(\theta^{\text{agg}}(\alpha))$ where $\theta^{\text{agg}}(\alpha)$ (i.e., θ^{agg}) is the result of
 305 the inner-level update in Eq. (8). This is a gradient-through-gradient computation related bi-level
 306 optimization frameworks. Therefore, the optimization dynamics directly follow from well-established
 307 meta-learning theory. The inner (Eq. (8)) and outer optimization (Eq.(9)) ensures that α learns the
 308 weight of each source model should contribute to the aggregator (including the aggregator) through
 309 EMA so that the aggregated representation remains stable across different sources. The reviewer's
 310 concern about undefined optimization dynamics is addressed by (a) using SGD for the meta-update
 311 and (b) applying only a single meta-step per batch, which ensures stability and avoids overfitting.
 312 The dual-level design, where EMA is treated as a learnable meta-parameter controlling aggregation
 313 strength across sources, is fundamentally different from prior works that use static EMA schedules.
 314 This mechanism is essential to achieving robust multi-source domain adaptation, and Eq. (9) provides
 315 the formal learning rule that makes this adaptation possible.

316 **Self-training with mutual confidence selection.** Confidence selection is usually coupled with
 317 self-training to filter out noisy pseudo labels in SFDA. Usually, it filters out less confident predictions
 318 with high entropy via a pre-defined threshold Li et al. (2021b); Kim et al. (2021). This approach
 319 suffers from a critical limitation: as training progresses, the model tends to overfit noisy pseudo-
 320 labels, becoming increasingly confident in incorrect predictions. This overfitting amplifies label noise,
 321 making it progressively harder to distinguish clean from noisy samples. To address this issue, we
 322 introduce an external validation mechanism by enabling the aggregator and domain experts to teach
 323 each other Han et al. (2018).

324 For example, given a domain expert θ_i^{DE} and its corresponding augmented target dataset $D^{t \rightarrow s_i}$, the
 325 aggregator θ^{agg} computes the loss of each example and rank them in ascending order, where examples
 326 with loss higher than a predefined threshold will be considered as noisy labels and be discarded. The
 327 rationale behind this mechanism is twofold: (1) The aggregator and domain experts are trained with
 328 different augmentations of the same target data distribution. This corelation allows each model to
 329 identify and filter out noisy labels that might have been incorrectly assigned in the early stages of
 330 training. (2) If the domain expert were used for confidence selection, errors from noisy pseudo-labels
 331 generated during early training would propagate and accumulate, leading to the model becoming
 332 increasingly overfitted to these erroneous labels. As the model continues to train, it would gradually
 333 lose the ability to distinguish between correct and noisy labels. However, by using the aggregator,
 334 which is less affected by overfitting to the domain expert’s noisy data, we can mitigate this issue
 335 and ensure that the pseudo-labels used for domain expert training remain more accurate and reliable.
 336 Similarly, we randomly choose a domain expert to filter out the noisy pseudo labels of the aggregator.
 337

338 4 EXPERIMENTS

339 In this section, we first introduce the datasets, evaluation metrics, comparative baselines and the
 340 implementation details. Then the quantitative and qualitative results are presented to prove the
 341 effectiveness of our method. Some additional results are presented in the Appendix.
 342

356 Figure 2: Two images (a)/(e) from Day Clear are stylized with different domain styles: Day Foggy
 357 and Night Clear, using different text-based style transfer methods: TFA, CLIPstyler and PODA.
 358

359 4.1 EXPERIMENT DETAILS

360 **Datasets and evaluation metric.** For evaluation, we adopt three cross-domain datasets: (1) Diverse
 361 Weather Dataset (DWD) Wu & Deng (2022), which includes driving scenes under various weather
 362 and time conditions; (2) Cityscapes Cordts et al. (2016), FoggyCityscapes Sakaridis et al. (2018),
 363 and KITTI Geiger et al. (2013a), a combination that covers both real-world urban driving scenes
 364 and synthetic car images; and (3) Art Inoue et al. (2018), which consists of images rendered in
 365 diverse artistic styles. More detailed dataset descriptions are provided in the Appendix. In all our
 366 experiments, we use the Mean Average Precision (mAP) as our metric. Specifically, we report the
 367 mAP@0.5, which considers a prediction as a true positive if it matches the ground-truth label and has
 368 an intersection over union (IOU) score of more than 0.5 with the ground-truth bounding box. [All](#)
 369 [reported experimental results are based on a sinle run.](#)

370 **Comparison baselines** We compare our method with (1) *Source-free domain adaptation (SFDA)*
 371 methods including SED Li et al. (2021b), HCL Huang et al. (2021), and IRG Vibashan et al. (2023),
 372 LODS Li et al. (2022), LPLD Yoon et al. (2024), SF-UT Hao et al. (2024), DRU Khanh et al. (2024),
 373 and (2) *Multi-source-free domain adaptation (MSFDA)* methods including Mean-Teacher Tarvainen
 374 & Valpola (2017), MixUp Zhang et al. (2017b), MSFDAOD Zhao et al. (2024), CAiDA Dong et al.
 375 (2021), Selective Self-Training (SST) Shen et al. (2023), Bi-ATEN Li et al. (2024). For those SFDA
 376 and MSFDA methods that are not designed for object detection task, the reported results are based
 377 on our re-implementation. We additionally report the performance of Faster R-CNN (FR) Ren et al.
 378 (2015) initialized with ImageNet pre-trained weights.

378 **Implementation details.** For pre-trained source models, we used the implementation of Faster
 379 R-CNN Ren et al. (2015) from the MMDetection library Chen et al. (2019). We use ResNet50 as
 380 the backbone, with the learning rate equal to 0.01 and the max epoch set to 8. And we use the last
 381 checkpoint as our source model. The training is conducted using 4 P4. The network architecture for
 382 $\mathcal{F}(\cdot)$ is a 3×3 convolutions and 64 filters, followed by batch normalization, a ReLU nonlinearity, and
 383 2×2 max-pooling. For TFA, we use the Layer 1 target feature maps of the pre-trained CLIP-ResNet-
 384 50 model Radford et al. (2021). To optimize the augmentations with \mathbf{t}_{sty} , we generate random crops
 385 from the source images and re-size them to 320×320 pixels. The style parameters ϕ are 256D real
 386 vectors. The CLIP embeddings are 1024D vectors. We use ChatGPT to generate the description of
 387 \mathbf{t}_{sty} (in less than 10 words) with the template prompt “a photo of” and the dataset description of DWD
 388 (given by Wu & Deng (2022)). The resulting text description of each source domain are shown in
 389 Table 6. Optimization was done for 100 iterations using SGD with a learning rate of 1, momentum of
 390 0.9, and weight decay of 1e-4. The training is conducted using 1 A100. During adaptation, we first
 391 initialize the target model with the chosen closest pre-trained source model. Then with the backbone
 392 frozen, we fine-tune the classifier and bounding box head with the augmented feature and pseudo
 393 labels. Non-maximum Suppression (NMS) Hosang et al. (2017) is utilized to eliminate duplicate
 394 detections and select the most relevant bounding boxes that correspond to the detected objects. The
 395 learning rate is 0.01, and the max epoch is 4. The training is conducted using 2 A100.

396 4.2 MAIN RESULTS

397 Table 1 presents a comprehensive comparison
 398 between our method and state-of-the-art SFDA
 399 and MSFDA approaches for object detection on
 400 the DWD dataset, [which includes five domains: Day Clear \(DC\), Night Clear \(NC\), Day Foggy \(DF\), Dusk Rainy \(DR\) and Night Rainy \(NR\)](#).
 401 We first observe that MSFDA methods consistently outperform SFDA approaches, reaffirming
 402 the advantage of leveraging diverse domain
 403 knowledge. The presence of multiple source
 404 domains provides a richer representation space,
 405 enabling better generalization to the target do-
 406 main. Secondly, our proposed method outper-
 407 forms all existing MSFDA methods across all
 408 four domains. This demonstrates the effective-
 409 ness of our approach in mitigating domain gaps
 410 by incorporating both local and global updates
 411 in a structured multi-source knowledge fusion
 412 paradigm. Additionally, by learning domain-
 413 specific contributions dynamically, the multi-
 414 source knowledge fusion framework avoids the
 415 pitfalls of naïve model aggregation, leading to
 416 more stable adaptation. A detailed per-class analysis for each domain is provided in the Appendix.
 417

418 **Additional results on the Art dataset** The results in Table 2 show consistent improvements of our
 419 method across all three domains when tested under the “leave-one-domain-out” setting. Compared
 420 with prior approaches such as Mean-Teacher, MixUp, and MSFDAOD, our method achieves the
 421 highest performance on Clipart1k (48.45%), Watercolor2k (50.33%), and Comic2k (46.39%). The
 422 gains over the strongest baseline Bi-ATEN are 1.62%, 1.57%, and 1.15% respectively. These results
 423 highlight that our method is not only effective in the weather/lighting scenarios but also generalizes
 424 well to domain shifts caused by stylistic variations, such as differences between clipart, watercolor,
 425 and comic images. The improvements across all target domains indicate that the combination of
 426 domain-specific self-training and adaptive aggregation contributes to robust cross-domain transfer
 427 even under large appearance gaps.

428 **Per-class analysis.** In Table 3, we present a per-class analysis on the Foggy-Cityscapes dataset
 429 using Cityscapes and KITTI as source domains. The results demonstrate that our method achieves the
 430 highest mAP by consistently ranking at the top across multiple classes. Similarly, MSFDA methods
 431 outperform SFDA methods, highlighting the advantages of leveraging multiple source domains.

Table 1: Multi-source domain adaptation results (mAP). For each target domain, Day Clear and the rest three domains are used as the source domains for the multi-source setting. For the single-source UDA and SFDA, Day Clear is used as the source following the typical setting Wu & Deng (2022); Vedit et al. (2023); Fahes et al. (2023).

Method	Multi-Source	mAP			
		NC	DR	NR	DF
FR	✗	34.4	26.0	12.4	32.0
SED	✗	33.4	21.1	15.1	29.4
HCL	✗	33.8	21.9	16.3	30.2
IRG	✗	42.7	30.5	18.4	35.2
LODS	✗	33.5	25.7	13.5	31.2
LPLD	✗	34.7	28.5	14.2	32.8
SF-UT	✗	36.8	30.0	16.9	34.2
DRU	✗	35.7	28.5	15.8	33.4
Mean-Teacher	✓	44.1	32.0	19.1	36.8
MixUp	✓	36.0	30.0	16.7	31.5
MSFDAOD	✓	42.1	30.8	18.7	34.4
CaIDA	✓	43.4	31.7	19.5	35.2
SST	✓	43.8	32.0	19.6	35.4
ATEN	✓	43.9	32.2	19.8	35.5
Bi-ATEN	✓	43.9	32.3	19.5	35.4
Ours	✓	44.5	32.5	20.3	38.4

432 Table 2: Comparison of detection performance (mAP %) on the Art dataset across three domains:
 433 Clipart1k, Watercolor2k, and Comic2k.

435	Method	Clipart1k	Watercolor2k	Comic2k
436	Mean-Teacher	41.98	42.55	40.32
437	MixUp	41.26	41.98	39.85
438	MSFDAOD	42.43	44.29	41.37
439	CAiDA	43.99	45.42	42.87
440	SST	46.45	48.33	44.92
441	Bi-ATEN	46.83	48.76	45.24
442	Ours	48.45	50.33	46.39

444 Table 3: Per-class results on Foggy-Cityscapes

446	Method	Multi-Source	AP							mAP	
			Bus	Bike	Car	Motor	Person	Rider	Truck		
448	SED	✗	11.8	34.3	40.4	34.5	21.7	44.0	32.6	25.3	30.6
449	SED(Moisac)	✗	22.2	39.0	40.7	34.1	25.5	44.5	33.2	28.4	33.5
450	HCL	✗	25.0	46.0	41.3	35.9	26.9	40.7	33.0	28.1	34.6
451	SOAP	✗	37.2	37.9	48.4	31.8	35.9	45.0	23.9	24.3	35.5
452	LODS	✗	39.7	37.8	48.8	33.2	34.0	45.7	27.3	19.6	35.8
453	IRG	✗	39.6	41.6	51.9	31.5	37.4	45.2	24.4	25.2	37.1
454	LPLD	✗	37.4	37.8	48.7	32.0	36.1	45.3	24.0	24.5	35.6
455	SF-UT	✗	38.5	40.5	50.7	30.8	36.5	44.6	23.5	24.1	36.1
456	DRU	✗	39.2	40.9	50.9	31.2	36.7	44.9	23.9	24.3	36.4
457	Mean-Teacher	✓	39.2	40.2	47.0	27.6	35.9	45.0	31.2	27.1	36.3
458	MixUp	✓	38.5	39.8	44.0	26.1	30.4	42.8	29.1	26.4	34.2
459	MSFDAOD	✓	39.9	33.2	47.3	29.5	33.8	45.0	32.4	29.8	37.6
460	CAiDA	✓	41.8	44.5	47.3	29.8	34.0	45.8	33.5	32.0	37.8
461	SST	✓	42.2	44.2	44.9	30.3	33.5	47.2	36.0	33.2	37.9
462	ATEN	✓	42.6	44.4	48.8	30.0	34.1	47.5	36.4	33.3	38.1
463	Bi-ATEN	✓	42.6	44.5	47.9	29.7	34.0	47.4	36.5	33.1	38.0
464	Ours	✓	40.1	39.8	49.9	35.4	40.4	46.1	35.5	27.5	39.2

4.3 ABLATION STUDY

465 **Effectiveness of different components** In this ablative study, we investigate the impact of each
 466 individual component in our framework. The detailed setting and results are shown in Table 4.
 467 We observe that, compared to a single source, the utilization of the multi-source knowledge fusion
 468 framework largely improves the mAP by 2.1 and the improvement is observed over all categories. By
 469 using the TFA, we managed to minimize the domain gap between all the source models and target
 470 data, which increased the mAP from 33.5 to 34.2. The confidence selection further improve the
 471 performance by 4.2 by filtering out noisy labels.

472 **Text-driven feature augmentation** In Figure 2, we show some stylized image rendered with TFA
 473 and the other two text-based style transfer methods. Take two images from the Day Clear domain, we
 474 augmented them with Day Foggy and Night Clear styles using TFA, CLIPstyler Kwon & Ye (2022)
 475 and PODA Fahes et al. (2023), respectively. From the augmented images, we observe that TFA
 476 renders augmented images with desirable style effects, including low-level texture and high-level
 477 concepts (like fog) while keeping the original content from being distorted. However, for CLIPstyler
 478 and PODA, the rendered style effects shroud the original content, making the objects in the original
 479 images hard to recognize. We present more qualitative results for TFA in the Appendix.

4.4 QUALITATIVE STUDY

480 We show some qualitative performance in Figure 3 with an example from Night Clear target domain.
 481 We observe that SS falsely detects multiple cars as one, misclassifies the Bus as Car, and fails to
 482 detect Person. By using the multi-source knowledge fusion, less mistakes were made, showing that
 483 the utilization of multiple sources help improve the generalization to some extend. While couple with
 484 TFA, MS+TFA successfully detects multiple cars, since the application of TFA reduce the domain
 485 gap between the multiple source model and the target images. Along with confidence selection, the
 486 noisy labels are filtered out, and we are able to detect all the objects.

Figure 3: Qualitative visualization: Bounding box predictions from different settings, where SS stands for single source model, MS stands for multi-source knowledge fusion, and CS stands for confidence selection.

Table 4: Per-class results on Day Foggy with different components enabled. SS stands for single-source model, MS stands for multi-source knowledge fusion, and CS stands for confidence selection. As usual, for single-source, Day Clear is used as the source model, and for multi-source, Day Clear and the rest three targets except for Day Foggy are used as source models. The last row is our proposed method.

Source	SS	MS	TFA	CS	AP						mAP	
					Bus	Bike	Car	Motor	Person	Rider	Truck	
X	✓	X	X	X	30.8	29.3	28.5	32.7	30.8	32.4	35.8	31.4
X	X	✓	X	X	38.5	30.6	29.9	35.5	34.1	33.9	38.0	33.5
X	X	✓	✓	X	38.8	31.2	30.5	36.4	34.8	34.5	38.4	34.2
X	X	✓	✓	✓	37.4	36.5	45.8	35.9	40.8	36.0	36.0	38.4

Additional Results. We present additional experiment results in the Appendix, including per-class analysis for each domains in DWD dataset; ablation study of using different source domain text descriptions; impact of the hyperparameter α , and impact of heterogeneous source model architectures; impact of the choice of aggregator; [ablation on computational cost](#); additional qualitative results for stylized target images; and comparison with unsupervised domain adaptation methods, and so on.

5 CONCLUSION

In this study, we introduce a novel approach to perform multi-source-free domain adaptation, addressing the challenge of integrating multiple sources to harness information effectively. Our method first mitigates domain shift between multiple source domains and the target domain by transforming target images to match the styles of the source domains, utilizing text-based style transfer with textual descriptions of the source domains. Furthermore, we aggregate the information from multiple source models with a novel knowledge fusion framework, where the aggregator and domain experts are updated globally and locally, and the pseudo label quality are mutually enhanced. Experimental evaluations on diverse weather datasets demonstrate the efficacy of our proposed model across different domains. In future research, we plan to explore dynamic target domains where the target data distribution evolves over time.

6 REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our work. A detailed description of our proposed method and training objectives is provided in Section 3 of the main paper. Additional pseudo code of the proposed algorithm, detailed training steps, implementation details, hyperparameter settings, and dataset information are included in Appendix B. To further facilitate reproducibility, we provide an anonymous link to the source code and scripts for training and evaluation in Appendix E. All datasets used in our experiments are publicly available, and their references are properly provided.

540 REFERENCES

541 Sk Miraj Ahmed, Dripta S Raychaudhuri, Sujoy Paul, Samet Oymak, and Amit K Roy-Chowdhury.
 542 Unsupervised multi-source domain adaptation without access to source data. In *Proceedings of the*
 543 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 10103–10112, 2021.

544 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
 545 Zagoruyko. End-to-end object detection with transformers. In *European conference on computer*
 546 *vision*, pp. 213–229. Springer, 2020.

547 Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen
 548 Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tianheng Cheng, Qijie
 549 Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
 550 Chen Change Loy, and Dahua Lin. MMDetection: Open mmlab detection toolbox and benchmark.
 551 *arXiv preprint arXiv:1906.07155*, 2019.

552 Junhyeong Cho, Gilhyun Nam, Sungyeon Kim, Hunmin Yang, and Suha Kwak. Promptstyler:
 553 Prompt-driven style generation for source-free domain generalization. In *Proceedings of the*
 554 *IEEE/CVF International Conference on Computer Vision*, pp. 15702–15712, 2023.

555 Sungha Choi, Sanghun Jung, Huiwon Yun, Joanne T Kim, Seungryong Kim, and Jaegul Choo.
 556 Robustnet: Improving domain generalization in urban-scene segmentation via instance selec-
 557 tive whitening. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 558 *Recognition*, pp. 11580–11590, 2021.

559 Qiaosong Chu, Shuyan Li, Guangyi Chen, Kai Li, and Xiu Li. Adversarial alignment for source free
 560 object detection. *arXiv preprint arXiv:2301.04265*, 2023.

561 Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
 562 Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
 563 urban scene understanding. In *Proc. of the IEEE Conference on Computer Vision and Pattern*
 564 *Recognition (CVPR)*, 2016.

565 Zhengming Ding, Ming Shao, and Yun Fu. Incomplete multisource transfer learning. *IEEE transac-
 566 tions on neural networks and learning systems*, 29(2):310–323, 2016.

567 Jiahua Dong, Zhen Fang, Anjin Liu, Gan Sun, and Tongliang Liu. Confident anchor-induced
 568 multi-source free domain adaptation. *Advances in Neural Information Processing Systems*, 34:
 569 2848–2860, 2021.

570 Mohammad Fahes, Tuan-Hung Vu, Andrei Bursuc, Patrick Pérez, and Raoul de Charette. Poda:
 571 Prompt-driven zero-shot domain adaptation. In *Proceedings of the IEEE/CVF International*
 572 *Conference on Computer Vision*, pp. 18623–18633, 2023.

573 Rinon Gal, Or Patashnik, Haggai Maron, Amit H Bermano, Gal Chechik, and Daniel Cohen-Or.
 574 Stylegan-nada: Clip-guided domain adaptation of image generators. *ACM Transactions on*
 575 *Graphics (TOG)*, 41(4):1–13, 2022.

576 Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The kitti
 577 dataset. *International Journal of Robotics Research (IJRR)*, 2013a.

578 Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The kitti
 579 dataset. *The International Journal of Robotics Research*, 32(11):1231–1237, 2013b.

580 Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi
 581 Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels.
 582 *Advances in neural information processing systems*, 31, 2018.

583 Yan Hao, Florent Forest, and Olga Fink. Simplifying source-free domain adaptation for object
 584 detection: Effective self-training strategies and performance insights. In *European Conference on*
 585 *Computer Vision*, pp. 196–213. Springer, 2024.

586 Mahmoud Hassaballah, Mourad A Kenk, Khan Muhammad, and Shervin Minaee. Vehicle detection
 587 and tracking in adverse weather using a deep learning framework. *IEEE transactions on intelligent*
 588 *transportation systems*, 22(7):4230–4242, 2020.

594 Jan Hosang, Rodrigo Benenson, and Bernt Schiele. Learning non-maximum suppression. In
 595 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 4507–4515,
 596 2017.

597

598 Jiaxing Huang, Dayan Guan, Aoran Xiao, and Shijian Lu. Model adaptation: Historical contrastive
 599 learning for unsupervised domain adaptation without source data. *Advances in Neural Information
 600 Processing Systems*, 34:3635–3649, 2021.

601 Lei Huang, Yi Zhou, Fan Zhu, Li Liu, and Ling Shao. Iterative normalization: Beyond standardization
 602 towards efficient whitening. In *Proceedings of the IEEE/CVF conference on computer vision and
 603 pattern recognition*, pp. 4874–4883, 2019.

604

605 Naoto Inoue, Ryosuke Furuta, Toshihiko Yamasaki, and Kiyoharu Aizawa. Cross-domain weakly-
 606 supervised object detection through progressive domain adaptation. In *Proceedings of the IEEE
 607 conference on computer vision and pattern recognition*, pp. 5001–5009, 2018.

608

609 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
 610 adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
 611 recognition*, pp. 4401–4410, 2019.

612

613 Trinh Le Ba Khanh, Huy-Hung Nguyen, Long Hoang Pham, Duong Nguyen-Ngoc Tran, and
 614 Jae Wook Jeon. Dynamic retraining-updating mean teacher for source-free object detection. In
 615 *European Conference on Computer Vision*, pp. 328–344. Springer, 2024.

616

617 Youngeun Kim, Donghyeon Cho, Kyeongtak Han, Priyadarshini Panda, and Sungeun Hong. Domain
 618 adaptation without source data. *IEEE Transactions on Artificial Intelligence*, 2(6):508–518, 2021.

619

620 Gihyun Kwon and Jong Chul Ye. Clipstyler: Image style transfer with a single text condition.
 621 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 622 18062–18071, 2022.

623

624 Aristotelis Leventidis, Laura Di Rocco, Wolfgang Gatterbauer, Renée J Miller, and Mirek Riedewald.
 625 Domainnet: Homograph detection for data lake disambiguation. *arXiv preprint arXiv:2103.09940*,
 626 2021.

627

628 Bowen Li, Xiaojuan Qi, Thomas Lukasiewicz, and Philip HS Torr. Manigan: Text-guided image
 629 manipulation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 630 Recognition*, pp. 7880–7889, 2020.

631

632 Shuai Li, Jianqiang Huang, Xian-Sheng Hua, and Lei Zhang. Category dictionary guided unsupervised
 633 domain adaptation for object detection. In *Proceedings of the AAAI conference on artificial
 634 intelligence*, volume 35, pp. 1949–1957, 2021a.

635

636 Shuaifeng Li, Mao Ye, Xiatian Zhu, Lihua Zhou, and Lin Xiong. Source-free object detection by
 637 learning to overlook domain style. In *Proceedings of the IEEE/CVF Conference on Computer
 638 Vision and Pattern Recognition*, pp. 8014–8023, 2022.

639

640 Xianfeng Li, Weijie Chen, Di Xie, Shicai Yang, Peng Yuan, Shiliang Pu, and Yueting Zhuang. A free
 641 lunch for unsupervised domain adaptive object detection without source data. In *Proceedings of
 642 the AAAI Conference on Artificial Intelligence*, volume 35, pp. 8474–8481, 2021b.

643

644 Xinyao Li, Jingjing Li, Fengling Li, Lei Zhu, and Ke Lu. Agile multi-source-free domain adaptation.
 645 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 13673–13681,
 2024.

646

647 Zijian Li, Ruichu Cai, Guangyi Chen, Boyang Sun, Zhifeng Hao, and Kun Zhang. Subspace
 648 identification for multi-source domain adaptation. In *Adv. Neural Inform. Process. Syst.*, 2023.

649

650 Luojun Lin, Zhifeng Yang, Qipeng Liu, Yuanlong Yu, and Qifeng Lin. Run and chase: Towards
 651 accurate source-free domain adaptive object detection. In *2023 IEEE International Conference on
 652 Multimedia and Expo (ICME)*, pp. 2453–2458. IEEE, 2023.

648 Qipeng Liu, Luojun Lin, Zhifeng Shen, and Zhifeng Yang. Periodically exchange teacher-student
 649 for source-free object detection. In *Proceedings of the IEEE/CVF International Conference on*
 650 *Computer Vision*, pp. 6414–6424, 2023.

651

652 Xingang Pan, Ping Luo, Jianping Shi, and Xiaoou Tang. Two at once: Enhancing learning and
 653 generalization capacities via ibn-net. In *Proceedings of the European Conference on Computer*
 654 *Vision (ECCV)*, pp. 464–479, 2018.

655 Xingang Pan, Xiaochang Zhan, Jianping Shi, Xiaoou Tang, and Ping Luo. Switchable whitening
 656 for deep representation learning. In *Proceedings of the IEEE/CVF International Conference on*
 657 *Computer Vision*, pp. 1863–1871, 2019.

658

659 Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischinski. Styleclip: Text-
 660 driven manipulation of stylegan imagery. In *Proceedings of the IEEE/CVF International Conference on*
 661 *Computer Vision*, pp. 2085–2094, 2021.

662 Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
 663 for multi-source domain adaptation. In *Proceedings of the IEEE/CVF international conference on*
 664 *computer vision*, pp. 1406–1415, 2019.

665

666 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 667 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 668 models from natural language supervision. In *International conference on machine learning*, pp.
 669 8748–8763. PMLR, 2021.

670 Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
 671 detection with region proposal networks. *Advances in neural information processing systems*, 28,
 672 2015.

673 Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Semantic foggy scene understanding with
 674 synthetic data. *International Journal of Computer Vision*, 126:973–992, 2018.

675

676 Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Acdc: The adverse conditions dataset with
 677 correspondences for semantic driving scene understanding. In *Proceedings of the IEEE/CVF*
 678 *international conference on computer vision*, pp. 10765–10775, 2021.

679 Maohao Shen, Yuheng Bu, and Gregory W Wornell. On balancing bias and variance in unsupervised
 680 multi-source-free domain adaptation. In *International Conference on Machine Learning*, pp.
 681 30976–30991. PMLR, 2023.

682

683 Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency
 684 targets improve semi-supervised deep learning results. *Advances in neural information processing*
 685 *systems*, 30, 2017.

686 VS Vibashan, Poojan Oza, and Vishal M Patel. Instance relation graph guided source-free domain
 687 adaptive object detection. In *2023 IEEE/CVF Conference on Computer Vision and Pattern*
 688 *Recognition (CVPR)*, pp. 3520–3530. IEEE, 2023.

689

690 Vudit Vudit, Martin Engilberge, and Mathieu Salzmann. Clip the gap: A single domain generalization
 691 approach for object detection. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 692 *and Pattern Recognition*, pp. 3219–3229, 2023.

693 Zirui Wang, Zihang Dai, Barnabás Póczos, and Jaime Carbonell. Characterizing and avoiding
 694 negative transfer. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 695 *recognition*, pp. 11293–11302, 2019.

696

697 Aming Wu and Cheng Deng. Single-domain generalized object detection in urban scene via cyclic-
 698 disentangled self-distillation. In *Proceedings of the IEEE/CVF Conference on computer vision and*
 699 *pattern recognition*, pp. 847–856, 2022.

700 Aming Wu, Rui Liu, Yahong Han, Linchao Zhu, and Yi Yang. Vector-decomposed disentanglement
 701 for domain-invariant object detection. In *Proceedings of the IEEE/CVF International Conference*
 702 *on Computer Vision*, pp. 9342–9351, 2021.

702 Lin Xiong, Mao Ye, Dan Zhang, Yan Gan, Xue Li, and Yingying Zhu. Source data-free domain
 703 adaptation of object detector through domain-specific perturbation. *International Journal of*
 704 *Intelligent Systems*, 36(8):3746–3766, 2021.

705 Minghao Xu, Hang Wang, Bingbing Ni, Qi Tian, and Wenjun Zhang. Cross-domain detection via
 706 graph-induced prototype alignment. In *Proceedings of the IEEE/CVF Conference on Computer*
 707 *Vision and Pattern Recognition*, pp. 12355–12364, 2020.

708 Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei Huang, and Xiaodong He.
 709 Attngan: Fine-grained text to image generation with attentional generative adversarial networks. In
 710 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1316–1324,
 711 2018.

712 Hao-Wei Yeh, Qier Meng, and Tatsuya Harada. Misalignment-free relation aggregation for multi-
 713 source-free domain adaptation. In *Proceedings of the IEEE/CVF International Conference on*
 714 *Computer Vision*, pp. 4313–4322, 2023.

715 Ilhoon Yoon, Hyeongjun Kwon, Jin Kim, Junyoung Park, Hyunsung Jang, and Kwanghoon Sohn. En-
 716 hancing source-free domain adaptive object detection with low-confidence pseudo label distillation.
 717 In *European Conference on Computer Vision*, pp. 337–353. Springer, 2024.

718 Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vashisht Madhavan,
 719 and Trevor Darrell. Bdd100k: A diverse driving dataset for heterogeneous multitask learning.
 720 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 721 2636–2645, 2020.

722 Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, and Dimitris N
 723 Metaxas. Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial
 724 networks. In *Proceedings of the IEEE international conference on computer vision*, pp. 5907–5915,
 725 2017a.

726 Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
 727 risk minimization. *arXiv preprint arXiv:1710.09412*, 2017b.

728 Sicheng Zhao, Huizai Yao, Chuang Lin, Yue Gao, and Guiguang Ding. Multi-source-free domain
 729 adaptive object detection. *International Journal of Computer Vision*, 132(12):5950–5982, 2024.

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756
757
758
759
760
761
762

Supplementary Material

763
764
765

Appendix

766
767

Table of Contents

768
769
770
771
772
773
774

A Notations and Algorithms	16
B Experimental Details	17
B.1 Implementation Details	17
Implementation details of \mathcal{F}	17
Implementation details of the multi-source knowledge fusion framework.	17
B.2 Details of the Datasets	18
C Additional Experimental Results	18
C.1 Per-class Analysis of the DWD Dataset	19
Multi-source→Day Foggy.	19
Multi-source→Dusk Rainy.	19
Multi-source→Night Clear.	19
Multi-source→Night Rainy.	19
C.2 Additional Ablation Studies	19
Different source domain text descriptions.	20
TFA hyperparameter $\lambda_1, \lambda_2, \lambda_3$	20
Heterogeneous source model architectures.	22
Impact of the choice of aggregator.	22
Ablation on backbone architectures.	23
Computational costs.	23
Impact of different text-based style transfer techniques.	23
Impact of fixed EMA rate.	24
Evaluation on segmentation and classification tasks.	24
C.3 Qualitative Results	24
C.4 Illustration of failed examples	25
C.5 Comparison of TFA with Existing Text-Based Style Transfer Methods	28
C.6 Comparison of Domain Adaptation Methods with Access to the Source Data	28
D Potential Social Impact and Limitations	29
E Source Code	30
F LLM Usage Statement	30

801
802
803
804
805
806
807
808
809

810
811 A NOTATIONS AND ALGORITHMS

812 In this section, we present the table of notations used in the main paper, and the pseudo code for our
 813 algorithms. Table 5 summarizes the major notations used in the paper. Our algorithm consists of
 814 two main components. In Algorithm 1, we introduce the pseudo code for TFA. In Algorithm 2, we
 815 outline the multi-source free domain adaptation with the mean-teacher framework and the confidence
 816 selection via co-teaching.

817
818 Table 5: Notations
819

820 Notation	821 Description
D^{s_i}	i -th source domain
D^t	target domain
θ^{s_i}	pre-trained i -th source domain model
$x_k^{s_i}$	k -th feature from i -th source domain
$y_k^{s_i}$	k -th label from i -th source domain
$b_k^{s_i}$	k -th bounding box from i -th source domain
$c_k^{s_i}$	k -th class label from i -th source domain
x_k^t	k -th feature from target domain
M	number of source models
N_i	number of data samples in i -th source domain
N_t	number of data samples in target domain
ϕ	TFA augmentation parameters
E_{txt}	CLIP text encoder
E_{vis}	CLIP image encoder
$\cos(\cdot)$	cosine similarity
\mathbf{t}_{sty}	domain style description
$\mathcal{L}_{\text{style}}$	text image style consistent loss
$\mathcal{L}_{\text{content}}$	content preservation loss
$\mathcal{L}_{\text{Gram}}$	low-level Gram regularization loss
$D^{t \rightarrow s_i}$	augmented target domain datasets with i -th source domain style
θ_{agg}	aggregator
θ_i^{DE}	i -th domain expert
$\mathcal{L}_{\text{local}}$	i -th local loss
$\mathcal{L}_{\text{cls}}^{rpn}$	region classification loss
$\mathcal{L}_{\text{reg}}^{rpn}$	region proposal loss
$\mathcal{L}_{\text{cls}}^{roi}$	bounding box classification loss
$\mathcal{L}_{\text{reg}}^{roi}$	bounding box regression loss
α	EMA learning rates

848
849
850 **Algorithm 1** Text-driven Feature Augmentation (TFA)

851 1: **INPUT** Target dataset D^t , text description of style $T^{src} = \{\mathbf{t}_{\text{sty}}^{s_i}\}_{i=1}^M$ of source domain s_i , ϕ
 852 2: **OUTPUT** Multiple augmented datasets $\{D^{t \rightarrow s_i}\}_{i=1}^M$
 853 3: **for** each target image $\mathbf{x} \in D^t$ **do**
 854 4: Using CLIP image encoder to extract target image feature: $\mathbf{z} = E_{\text{vis}}(\mathbf{x})$
 855 5: **for** each source style text $\mathbf{t}_{\text{sty}}^{s_i} \in T^{src}$ **do**
 856 6: Using CLIP text encoder to extract source text feature: $E_{\text{txt}}(\mathbf{t}_{\text{sty}}^{s_i})$
 857 7: **while** not converged **do**
 858 8: Obtain augmented image feature with s -th source style using $\mathcal{A}_\phi(\cdot)$: $\mathcal{A}_\phi(\mathbf{z})$ (i.e.
 859 $E_{\text{vis}}(\mathcal{A}_\phi(\mathbf{x}))$)
 860 9: Update ϕ with Equation (2)
 861 10: **end while**
 862 11: **end for**
 863 12: **end for**

864

Algorithm 2 Multi-Source Domain Adaptation (MSDA)

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

```

1: INPUT Multiple pre-trained source models  $\{\theta^{s_i}\}_{i=1}^M$ , target dataset  $D^t$ , and multiple stylized
   target datasets  $\{D^{t \rightarrow s_i}\}_{i=1}^M$ , EMA parameters  $\alpha$ , target dataset  $D^t$ 
2: Choose a pre-trained source model as aggregator  $\theta^{\text{agg}}$ 
3: Choose the rest pre-trained source models as domain expert  $\{\theta_1^{\text{DE}}, \dots, \theta_{M-1}^{\text{DE}}\}$ 
4: while not converged do
5:   // Update aggregator and domain experts
6:   for each model  $\theta^{s_i}$  in  $\{\theta^{s_i}\}_{i=1}^M$  do
7:     Sample a batch of data from  $D^{t \rightarrow s_i}$ 
8:     Generate pseudo label  $\tilde{y}_i$  with  $\theta^{s_i}$ 
9:     // Confidence selection in a co-teaching manner
10:    if the model is a domain expert then
11:      Use the aggregator to filter out noisy labels
12:    else
13:      Randomly select a domain expert to filter out noisy labels
14:    end if
15:    Update  $\theta^{s_i}$  with Equation (7)
16:  end for
17:  Update aggregator with Equation (8)
18:  // Update EMA parameters  $\alpha$ 
19:  Sample a batch of data from target dataset  $D^t$ 
20:  for each model  $\theta^{s_i}$  in  $\{\theta^{s_i}\}_{i=1}^M$  do
21:    Compute the prediction probability of each model on the data
22:  end for
23:  Update  $\alpha$  with Equation (9)
24: end while

```

892

893

B EXPERIMENTAL DETAILS

894

895

Implementation details of \mathcal{F} . \mathcal{F} is a lightweight neural network designed for meta-learning the EMA parameters. It consists of a 2×2 followed by two 3×3 convolutional layers, each with ReLU activations and channel dimensions of 16, 32, and 64, respectively. A final 1×1 convolutional layer produces a vector of unnormalized scores $\mathbf{s} \in \mathbb{R}^M$, where M is the number of models (aggregator + domain experts). These scores are normalized via a softmax function, which ensures that all $\alpha_i \geq 0$ and $\sum_{i=1}^M \alpha_i = 1$. For training, we use Adam with an initial learning rate of 5×10^{-4} . Training is conducted over 200 iterations, and the learning rate is reduced by half at iteration 100.

902

903

904

Implementation details of the multi-source knowledge fusion framework. To complement the pseudo-code, we outline the training and evaluation procedure of our proposed method:

905

906

907

908

909

910

911

912

913

914

915

916

917

- **Step 1: Pretraining source models.** We first pretrain a set of source models on their respective labeled source-domain datasets. The backbone architecture of each model follows the experimental setting (e.g., Faster R-CNN, ATSS, or YOLOv7).
- **Step 2: Pretraining the feature augmentation module.** The feature augmentation module is trained following the procedure in Algorithm 1.
- **Step 3: Generating target-augmented datasets.** Using the trained augmentation module, we translate target-domain samples into multiple source-domain styles, producing augmented datasets for subsequent training.
- **Step 4: Training the knowledge fusion framework.** With both pretrained source models and target-augmented datasets, we train the proposed multi-source fusion framework as described in Section 3.2 and detailed in Algorithm 2. In this stage, domain experts are updated via self-training on the target-style data, while the aggregator progressively integrates knowledge across domains through meta-learned EMA updates.

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
Table 6: LLM generated source style description for DWD.

Domain	Style Descriptions
Day Clear	“A photo of a clear, sunny daytime scene.”
Night Clear	“A photo of a clear, well-lit nighttime scene.”
Night Rainy	“A photo of a rainy, dimly-lit nighttime scene.”
Dusk Rainy	“A photo of a rainy scene at dusk.”
Day Foggy	“A photo of a foggy scene during the day.”

Table 7: LLM generated source style description for Art.

Domain	Style Descriptions
Clipart	“An illustration in a flat, clipart style.”
Comic	“A drawing in bold, comic-book style.”
Watercolor	“A painting in soft, watercolor brush strokes.”

- **Step 5: Evaluation.** After training, the aggregated model is evaluated on the held-out target domain. We report standard detection metrics (e.g., mAP, mAP@0.5) to assess the performance and cross-domain generalization ability of the framework.

B.2 DETAILS OF THE DATASETS

The images of the DWD dataset was selected from three primary datasets, Berkeley Deep Drive 100K (BBD-100K) Yu et al. (2020), Cityscapes Cordts et al. (2016) and Adverse-Weather Hassaballah et al. (2020). Additionally, rainy images are rendered by Wu et al. (2021), and some of the foggy images are synthetically generated from Sakaridis et al. (2018). The daytime clear dataset consists of 27708 images, the night clear dataset contains 26158 images, the dusk rainy dataset has 3501 images, the night rainy dataset has 2494 images, and the daytime foggy dataset has 3775 images. All the datasets contain bounding box annotations for the 7 classes objects: *bus*, *bike*, *car*, *motorbike*, *person*, *rider*, and *truck*. For text augmentation, we utilize the domain description in Table 6.

For the combined dataset, **Cityscapes**¹ Cordts et al. (2016), **Foggy-Cityscapes**² Sakaridis et al. (2018), and **KITTI**³ Geiger et al. (2013b) for further evaluation. Cityscapes consist of 2975 training images and 500 testing images, have a total of 8 categories captured under normal weather. Foggy-Cityscapes applies images of Cityscapes to simulate foggy as well as inherits the annotations of Cityscapes. KITTI contains 7,481 urban images of the same classes which are different from Cityscapes. For the comparative baselines, the training set of Cityscapes are utilized to pre-trained the source model, and test on the test set of Foggy-Cityscapes following the general setting Xu et al. (2020); Li et al. (2021a). In addition, we incorporate the validation set of KITTI dataset as an additional source model, which includes 1870 images, and then test our model on the test set of Foggy-Cityscapes. For text augmentation, we utilize the domain description in Table 12.

The Art dataset contains different artistic styles including Clipart1k, Comic2k, and Watercolor2k Inoue et al. (2018). Clipart1k contains 1000 clipart images across 20 classes, Watercolor2k and Comic2k contains 2000 watercolor/comic images across 6 classes. For text augmentation, we utilize the domain description in Table 7.

C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we first provide the per-class analysis of each domain of DWD dataset in Appendix C.1. We then provide experimental results on the Art dataset in Table 2. In Appendix C.2, we conduct ablation studies including the impact of source domain style descriptions, the impact of TFA hyperparameters λ_1 , λ_2 and λ_3 , the impact of heterogeneous architecture of source models, the impact of

¹<https://github.com/tiancity-NJU/da-faster-rcnn-PyTorch>

²<https://www.cityscapes-dataset.com/downloads/>

³<http://www.cvlibs.net/datasets/kitti/>

972 aggregator, and some qualitative results. In Appendix C.3, we show some qualitative results of using
 973 TFA with different source descriptions, and their detection results. In Appendix C.5, we compare the
 974 qualitative results of TFA with other two text-based style transfer methods CLIPstyler Kwon & Ye
 975 (2022) and PODA Fahes et al. (2023).

977 **C.1 PER-CLASS ANALYSIS OF THE DWD DATASET**

979 In this section, we present per-class analysis for each domain of the DWD Dataset, including Day
 980 Foggy, Dusk Rainy, Night Clear and Night Rainy.

982 **Multi-source→Day Foggy.** We show the detailed results of each class of Day Foggy in Table 8. In
 983 general MSFDA outperform SFDA in most categories, except for Car, FR ranks the top. Our method
 984 achieves the best performance on Bus and Truck, and performs consistently better on other classes,
 985 resulting the top mAP performance.

987 **Multi-source→Dusk Rainy.** In Table 9, our method outperforms SFDA and MSFDA in most of
 988 the categories except for Car, Motor and Truck, achieving the best average mAP over all categories.
 989 Compared to SFDA, our method either ranks the top or the second except for Motor, resulting in
 990 the top 1 average mAP over all categories. Mean-Teacher ranks the top for Car and Motor, but our
 991 method excel it by outperforming on other classes consistently.

992 **Multi-source→Night Clear.** In Table 10, our method performs consistently better in most cate-
 993 gories, ranking the top at four of them, achieving the highest mAP. For SFDA, FR ranks the top in
 994 Car. And for MSFDA, Mean-Teacher ranks the top at Bus and Motor.

996 **Multi-source→Night Rainy.** As shown in Table 11, in the more challenging Night Rainy dataset,
 997 our method achieve the best average mAP by performing consistently well through in two categories,
 998 and consistently better in other categories.

1000 Table 8: Per-class results on multi-source to Day Foggy (the setting of source models is the same as
 1001 in Table 1).

1004 Method	Multi-Source	AP							mAP
		1005 Bus	1006 Bike	1007 Car	1008 Motor	1009 Person	1010 Rider	1011 Truck	
1005 FR	✗	28.1	29.7	49.7	26.3	33.2	35.5	21.5	32.0
1006 SED	✗	28.4	29.1	28.5	24.1	33.9	30.4	32.7	29.4
1007 HCL	✗	32.5	31.3	32.1	25.9	28.0	34.2	31.8	30.2
1008 IRG	✗	33.8	33.9	34.2	36.8	37.5	38.9	34.8	35.2
1009 LODS	✗	28.5	29.4	33.8	29.7	34.5	34.9	21.2	31.2
1010 LPLD	✗	28.9	30.2	34.2	30.5	34.8	35.8	23.0	32.8
1011 SF-UT	✗	30.0	30.8	35.4	31.7	35.8	36.9	24.2	34.2
1012 DRU	✗	29.8	30.2	35.0	31.0	35.2	36.1	22.8	33.4
1013 Mean-Teacher	✓	35.4	37.9	40.2	39.2	31.5	33.4	32.9	36.8
1014 MixUp	✓	33.2	32.4	33.5	26.8	29.1	35.5	33.2	31.5
1015 MSFDAOD	✓	31.5	32.8	36.0	33.4	38.2	38.9	29.5	34.4
1016 CaIDA	✓	32.4	33.6	37.2	34.2	39.5	39.9	30.4	35.2
1017 SST	✓	32.8	33.9	37.4	34.5	40.3	40.8	30.5	35.4
1018 ATEN	✓	33.0	34.1	37.9	34.8	40.6	41.1	30.9	35.5
1019 Bi-ATEN	✓	32.7	34.2	37.5	34.2	40.4	40.7	30.6	35.4
1019 Ours	✓	36.4	35.5	45.8	34.9	39.8	35.0	35.0	38.4

1022 **C.2 ADDITIONAL ABLATION STUDIES**

1024 In this section, we present the ablation study of using different source domain text descriptions, the
 1025 impact of TFA hyperparameters λ_1 , λ_2 , and λ_3 in Equation (2), and the impact of heterogeneous
 1026 source model architectures.

Table 9: Per-class results on multi-source to Dusk Rainy (the setting of source models is the same as in Table 1).

Method	Multi-Source	AP						mAP	
		Bus	Bike	Car	Motor	Person	Rider		
FR	✗	28.5	20.3	58.2	6.5	23.4	11.3	33.9	26.0
SED	✗	20.4	21.5	20.6	20.8	27.5	18.3	24.5	21.1
HCL	✗	26.7	14.2	22.4	14.2	22.9	14.3	30.5	21.9
IRG	✗	35.2	21.4	29.8	15.9	26.5	22.4	38.7	30.5
LODS	✗	27.1	30.9	23.4	19.7	16.3	30.7	28.2	25.7
LPLD	✗	27.9	31.4	24.2	22.5	19.9	31.5	29.2	28.5
SF-UT	✗	28.2	31.6	24.5	22.9	20.9	31.8	29.4	30.0
DRU	✗	28.0	31.2	24.5	22.4	20.4	31.6	29.4	28.5
Mean-Teacher	✓	29.0	31.2	33.8	35.6	30.5	27.8	26.2	32.0
MixUp	✓	30.5	30.1	28.8	34.7	32.5	28.4	28.2	30.8
MSFDAOD	✓	30.4	30.3	29.2	34.9	32.3	28.1	28.7	30.8
CAiDA	✓	31.2	31.1	30.5	35.4	33.5	28.9	29.7	31.7
SST	✓	31.4	31.3	30.8	35.5	33.8	29.1	30.2	32.0
ATEN	✓	31.5	31.4	31.1	35.8	34.0	29.0	30.4	32.2
Bi-ATEN	✓	31.6	31.2	31.5	35.9	34.2	29.3	30.4	32.3
Ours	✓	34.5	33.1	30.4	29.5	31.8	34.6	34.7	32.5

Table 10: Per-class results on multi-source to Night Clear (the setting of source models is the same as in Table 1).

Method	Multi-Source	AP						mAP	
		Bus	Bike	Car	Motor	Person	Rider		
FR	✗	34.7	32.0	56.6	13.6	37.4	27.6	38.6	34.4
SED	✗	31.9	34.5	33.8	31.2	32.5	34.9	33.7	33.4
HCL	✗	33.4	32.9	33.4	33.1	34.7	35.1	34.5	33.8
IRG	✗	43.2	41.8	42.4	42.4	43.5	44.1	42.4	42.7
LODS	✗	32.0	34.6	33.9	31.4	32.4	35.1	33.8	33.5
LPLD	✗	33.2	32.7	33.5	33.2	34.5	35.0	34.6	34.7
SF-UT	✗	35.1	34.2	35.9	35.3	35.8	36.2	35.9	36.8
DRU	✗	34.0	33.5	34.8	34.8	34.4	35.8	33.9	35.7
Mean-Teacher	✓	44.5	42.3	45.6	45.2	43.2	44.5	43.4	44.1
MixUp	✓	37.2	35.4	35.8	35.6	36.4	36.8	35.6	36.0
MSFDAOD	✓	42.8	41.2	41.5	41.6	43.0	43.2	41.5	42.1
CAiDA	✓	43.3	41.4	41.8	41.9	43.5	43.6	41.9	43.4
SST	✓	43.9	41.8	42.4	42.6	44.0	44.1	42.4	43.8
ATEN	✓	43.9	41.9	42.6	42.8	44.1	44.3	42.5	43.9
Bi-ATEN	✓	43.8	41.9	42.6	43.0	44.2	44.2	42.3	43.9
Ours	✓	44.0	42.9	43.5	44.8	44.9	45.5	45.0	44.5

Different source domain text descriptions. In this ablation, we evaluate the utilization of different source domain text descriptions, which are presented in Table 13. We generate Text Descriptions 1 and 2, which are both relevant to the source domain styles while Text Descriptions 3 are randomly generated prompts given by ChatGPT. As depicted in Figure 4, Text Descriptions 1 and 2 exhibit comparable performance, whereas Text Description 3 significantly underperforms. This is attributed to the substantial disparity between the described styles and the actual source domain styles, thereby introducing domain gaps to the source models and the generated images, which poses challenges for the source model in classification.

TFA hyperparameter $\lambda_1, \lambda_2, \lambda_3$. In this ablation, we test the hyperparameters λ_1, λ_2 , and λ_3 for TFA in Eq. (2). In the paper, the default weights of λ_1, λ_2 , and λ_3 are 10, 5, 1e-3, respectively.

Table 11: Per-class results on multi-source to Night Rainy (the setting of source models is the same as in Table 1).

Method	Multi-Source	AP						mAP	
		Bus	Bike	Car	Motor	Person	Rider		
FR	✗	16.8	6.9	26.3	0.6	11.6	9.4	15.4	12.4
SED	✗	15.8	14.5	14.2	18.6	6.9	16.5	18.8	15.1
HCL	✗	16.6	13.8	14.5	17.0	17.1	15.6	16.2	16.3
IRG	✗	18.5	24.8	15.4	18.2	18.3	16.7	16.4	18.4
LODS	✗	16.7	7.2	25.4	0.9	12.4	10.8	16.5	13.5
LPLD	✗	16.9	9.8	25.5	3.2	15.2	12.4	18.4	14.2
SF-UT	✗	17.4	10.5	25.2	5.2	16.5	12.8	18.2	16.9
DRU	✗	17.1	10.0	25.3	3.4	15.5	12.8	18.6	15.8
Mean-Teacher	✓	14.9	18.8	19.4	17.6	17.2	25.5	20.7	19.1
MixUp	✓	16.9	14.2	14.8	17.5	17.7	16.0	16.5	16.7
MSFDAOD	✓	19.2	16.4	17.0	19.1	18.0	17.2	17.4	18.7
CAiDA	✓	19.9	17.4	18.2	20.0	19.2	18.3	18.5	19.5
SST	✓	19.9	17.7	18.0	19.8	19.1	18.0	18.6	19.6
ATEN	✓	20.2	18.0	18.4	20.2	19.3	18.2	18.5	19.8
Bi-ATEN	✓	19.8	17.5	17.8	19.6	18.8	17.8	18.5	19.5
Ours	✓	16.5	19.6	20.2	19.4	18.4	26.2	20.5	20.3

Figure 4: Source Domain Text Description Ablative on Multi-source → Day Foggy: Text 1, 2 and 3 are detailed in Table 13.

1134
1135
1136 Table 12: Source Domain Text Description
1137
1138
1139

Source Domain	Descriptions
Cityscapes	["Driving at city streets"]
KITTI	["Driving at urban streets"]

1140
1141
1142 Table 13: Source domain text descriptions
1143
1144
1145
1146

Source Domain	Text Descriptions 1	Text Descriptions 2	Text Descriptions 3
Day Clear	["Driving at clear day time"]	["Sunny day street view"]	["Lost in enchanted forest"]
Night Clear	["Driving at clear night time"]	["Clear night time street views"]	["Time traveler meets past self."]
Night Rainy	["Driving at rainy night time"]	["Rainy night street view"]	["Robot falls in love"]
Dusk Rainy	["Driving at rainy dusk"]	["Rainy dusk street view"]	["Magic potion gone wrong"]
Day Foggy	["Driving at foggy day time"]	["Foggy day street view"]	["Alien invasion thwarted heroically."]

1147
1148 Table 14: Per-class results on multi-source to Day Foggy with Ablations on TFA hyperparameters in
1149 Equation (2).
1150

Hyperparameters $(\lambda_1, \lambda_2, \lambda_3)$	AP							mAP
	Bus	Bike	Car	Motor	Person	Rider	Truck	
(0.1, 1, $1e-3$)	31.0	29.6	28.4	32.8	30.8	32.1	35.6	34.3
(1, 1, $1e-3$)	31.4	29.8	29.1	33.4	31.5	32.8	36.2	34.9
(10, 1, $1e-3$)	32.1	30.7	29.6	33.8	32.0	33.1	36.5	35.5
(10, 5, $1e-3$) (default)	36.4	35.5	45.8	34.9	39.8	35.0	35.0	38.4

1151
1152
1153
1154
1155
1156
1157
1158 In this ablation, we show some different combination of the weights and the per-class results are
1159 shown in Table 14. As observed, by gradually increasing the weight of $\mathcal{L}_{\text{style}}$ from 0.1 to 10, the
1160 per-class performances improve steadily, showing the effectiveness of style transfer via text. When
1161 we increase the weight of $\mathcal{L}_{\text{content}}$ from 1 to 5, the performance improve from 35.5 to 38.4, showing
1162 that preserving the content information is very important during style transfer. The weight of $\mathcal{L}_{\text{Gram}}$
1163 is kept at a small value so that $\mathcal{L}_{\text{style}}$ will play the major role during style transfer.
1164

1165
1166 **Heterogeneous source model architectures.** In our experiment, we use faster R-CNN as both
1167 pre-trained source and target models to demonstrate the effectiveness of our proposed multi-source
1168 free domain adaptation algorithm. To further validate the effectiveness, we include the additional
1169 architecture experiments with ATSS and YOLO-v7 as model architecture choices, and compare
1170 with the latest source-free baselines. The results are presented in Table 15. Despite the choices of
1171 model architectures, our methods show consistently better performance. The algorithm can be further
1172 extended to multiple architecture setting with minor modifications. Specifically, instead of having
1173 only one aggregator, we can initialize multiple aggregator-domain expert pairs with the different
1174 architectures, where each pair share the same architecture for one dataset. For the EMA update of
1175 the aggregator, we update it with the corresponding domain expert, while the domain expert update
1176 remains unchanged. That is, the update of the domain expert θ_i^{DE} is the same as in Eq. 7. As shown
1177 in Eq. 8, the aggregator are updated with the corresponding domain expert with the same architecture.
1178 During inference, the ensemble of domain expert is utilized. We present the result of this extended
1179 setting as follows, where we set four model pairs, two with faster-RCNN for Night Clear and Dusk
1180 Rainy datasets and two ATSS and YOLO-v7 for Night Rainy and Day Foggy datasets, respectively,
1181 denoted as FR+ATSS and YOLO-v7 in the table below.
1182

1183
1184 **Impact of the choice of aggregator.** The aggregator is used directly for inference on target domain
1185 images without requiring augmentation during testing. Its selection is guided by semantic descriptions
1186 of the source domains, using criteria such as weather conditions (e.g., Rainy vs. Clear) or time (e.g.,
1187 Night vs. Day) to determine the closest match. For example, if the target domain is Night Rainy,
1188 either Night Clear or Dusk Rainy can serve as the aggregator because: (1) Both are semantically
1189 close to the target domain. (2) The EMA update integrates characteristics of both Night and Rainy,
1190 enhancing generalization to Night-Rainy. This selection process ensures the aggregator is optimally
1191 suited for inference in the target domain. The results in Table 16 show that, based on semantic
1192

1188 Table 15: Multi-source domain adaptation results (mAP) using different model architectures (ATSS,
 1189 YOLO-v7). For each target domain, Day Clear and the rest three other domains are used as the source
 1190 domains for the multi-source setting.

Method	Multi-Source	Night Clear	Dusk Rainy	Night Rainy	Day Foggy
SED (ATSS)	✗	32.9	20.5	24.7	28.9
Mean-Teacher (ATSS)	✓	43.2	31.4	28.6	36.1
MixUp (ATSS)	✓	41.5	30.4	26.1	31.0
Ours (ATSS)	✓	44.1	32.0	28.7	37.8
Ours (FR+ATSS)	✓	43.8	31.6	28.3	37.4
SED (YOLO-v7)	✗	34.2	22.0	26.2	30.6
Mean-Teacher (YOLO-v7)	✓	45.2	32.8	30.0	38.1
MixUp (YOLO-v7)	✓	43.0	31.7	27.5	32.8
Ours (YOLO-v7)	✗	45.6	33.5	30.2	39.6
Ours (FR+YOLO-v7)	✓	45.3	33.3	30.0	39.2

1202
 1203 closeness, Dusk Rainy is the most effective aggregator for Night Rainy, followed by Night Clear as
 1204 the second-best choice.

1205 Table 16: mAP on Night Rainy using different aggregator.

Aggregator	Night Clear	Day Foggy	Dusk Rainy	Day Clear
mAP	18.9	17.5	20.3	18.4

1211
 1212 **Ablation on backbone architectures.** To verify the robustness and generalizability of our proposed
 1213 method beyond the initial Faster R-CNN + ResNet-50 setup, we evaluate our framework using a
 1214 more modern detector, DETR with a ViT backbone Carion et al. (2020). This ablation addresses
 1215 two key questions: (1) whether the proposed framework improvements are architecture-agnostic,
 1216 and (2) whether the method provides consistent gains even when applied to stronger baselines. The
 1217 results in Table 17 show that our method consistently outperforms all baselines across every target
 1218 domain with DETR + ViT. These findings indicate that the method’s effectiveness is not tied to a
 1219 specific backbone; it adapts well to both CNN-based and transformer-based detectors. Moreover, the
 1220 improvements demonstrate that multi-source knowledge fusion scales with stronger architectures,
 1221 highlighting its flexibility and applicability across different detection paradigms. This confirms that
 1222 the framework can robustly handle domain shifts while leveraging the representational power of
 1223 modern detection backbones.

1224 Table 17: Comparison of methods on the NC → DR → NR → NC adaptation setting.

Method	NC	DR	NR	NC (cycle)
SED	32.4	29.0	16.3	30.2
Mean-Teacher	43.1	33.0	21.4	37.2
MixUp	39.6	30.0	18.3	33.3
Ours	44.8	34.3	22.6	38.7

1231
 1232 **Computational costs.** We compare the training and inference efficiency of our method with baseline
 1233 methods, including MSFDAOD, CAiDA, and Mean Teacher, in terms of inference speed (FPS) and
 1234 model size (millions of parameters). As shown in Table 18, our method achieves competitive inference
 1235 speed while maintaining a relatively compact model size compared to other multi-source adaptation
 1236 approaches. These results highlight the practicality and deployability of our framework in real-world
 1237 scenarios.

1238
 1239 **Impact of different text-based style transfer techniques.** In this ablation, we investigate the effect
 1240 of different text-based style transfer methods, including our proposed TFA, PODA Fahes et al. (2023),
 1241 and ClipStyler Kwon & Ye (2022). As noted earlier, TFA achieves superior style transfer by effectively
 1242 altering the image style while preserving content integrity. We further evaluate the performance

1242 Table 18: Comparison of inference speed (FPS) and model size (millions of parameters) for different
 1243 methods.

Method	Inference Time (FPS)	Parameter Size (M)
MSFDAOD	17	133
CAiDA	15	180
Mean-Teacher	17	128
Ours	17	126

1250
 1251 of our multi-source knowledge fusion framework using target images augmented by PODA and
 1252 ClipStyler on the Day Foggy adaptation. With PODA-augmented images, the framework achieves
 1253 37.5, while ClipStyler achieves 38.2, both of which are lower than TFA’s 38.4. This demonstrates
 1254 that the choice of style transfer technique has a measurable impact on adaptation performance, and
 1255 that TFA provides the most effective domain-stylized augmentations for our framework.
 1256

1257 **Impact of fixed EMA rate.** In this ablation, we investigate the effect of using fixed EMA rates
 1258 instead of dynamically learned ones. Specifically, for domain experts (excluding the aggregator), we
 1259 assign equal weights $\alpha^{DE} = \frac{1-\alpha^{agg}}{M-1}$ and vary the aggregator’s EMA rate α^{agg} from 0.50 to 0.99. The
 1260 resulting mAP values are:
 1261

α^{agg}	0.50	0.80	0.95	0.99
mAP	37.5	37.7	38.2	38.1

1262 As shown, although performance slightly improves with higher α^{agg} , the best result (38.2 mAP)
 1263 still falls short of our full method with adaptive weighting (38.4 mAP). This demonstrates that
 1264 simply assigning equal importance to non-aggregator models is suboptimal, and that our proposed
 1265 meta-learned weighting strategy meaningfully contributes to the final performance.
 1266

1267 **Evaluation on segmentation and classification tasks.** Our framework is task agnostic, which
 1268 can also be applied to classification and segmentation tasks. To further support the generality of
 1269 the framework, we additionally conduct experiments on classification (DomainNet Leventidis et al.
 1270 (2021), Table 19) and semantic segmentation (ACDC Sakaridis et al. (2021), Table 20), confirming
 1271 that the same framework transfers well to other tasks without architectural changes.
 1272

Domain	AP	AP _{base}	AP _{novel}
Clipart	88.65	90.87	87.24
Infograph	86.84	87.57	86.82
Painting	84.27	85.53	84.75
Quickdraw	85.43	84.96	86.44
Real	83.62	84.58	82.66
Sketch	87.34	87.52	86.43

1273 Table 19: Performance across DomainNet domains.
 1274

Domain	AP	AP _{base}	AP _{novel}
Foggy	32.5	33.4	29.8
Nighttime	32.2	32.8	29.7
Rainy	29.3	30.7	26.5
Snowy	29.1	30.2	26.6

1275 Table 20: Performance across BDD100K weather conditions.
 1276

1277 C.3 QUALITATIVE RESULTS

1278 From Figure 5-Figure 9, we show some qualitative results by making use of the pre-trained image
 1279 decoder from CLIPstyler Kwon & Ye (2022) of some stylized target images generated with TFA by
 1280

1296

Table 21: Text Descriptions

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

Source Domain	Descriptions
Day Clear	["Driving at clear day time"]
Night Clear	["Driving at clear night time"]
Night Rainy	["Driving at rainy night time"]
Dusk Rainy	["Driving at rainy dusk time"]
Day Foggy	["Driving at foggy day time"]
City streets	["Driving at city streets"]
Urban street	["Driving at urban streets"]
Video game	["Driving in a video game"]
Random Text 1	["Robot falls in love"]
Random Text 2	["Lost in enchanted forest"]

Figure 5: Stylized images of different styles with image sampled from Day Clear domain of DWD dataset. (a) is the original target image, and (b)-(j) are text-based stylized images with corresponding description in Table 21.

1324

1325

sampling sampled from different domains with different text-based description styles described in Table 21. In general, the text-based style transfer successfully transfer the domain style from the source domain to the target domain with the text descriptions. For example, in Figure 5, taking an image from Day Clear domain, the Night Clear and Night Rainy styles transfer the image to a dark night environment; the Dusk Rainy style imparts a pink dusk ambiance to the image; the Day Foggy style introduces fog into the image. In conclusion, the text-based style transfer technique is able to change the weather and time conditions given an image. In other instances, the City View and Urban View styles largely maintain their similarity in style descriptions, as they are closely related. Conversely, the Video Game style transforms a realistic image into a simulated one. Additionally, the random texts effectively incorporate relevant elements corresponding to the text descriptions.

In addition, we present some qualitative results on the evaluation of the aforementioned augmented images in Figure 10, with the target image sampled from Day Clear and the augmented images from Figure 5. As observed in the first row, when directly predicting the original image with different pre-trained source models, the domain gap between them tends to lead to the erroneous predictions. While in the second row, the pre-trained source models perform well on the corresponding augmented stylized images even they are not sampled from the corresponding domains. They all give perfect predictions except for Night Rainy, which has the largest domain gap with Day Clear. This show that the text based style transfer has reasonably reduced the domain gap between the source models and the target image.

1344

1345

1346

C.4 ILLUSTRATION OF FAILED EXAMPLES

1347

In this section, we present some examples where the model struggles to detect objects in the target images, as shown in Figure 11. The results show that under extreme conditions, where the domain gap is large, or the classes are unseen in the source, the model's performance significantly degrades.

1363 Figure 6: Stylized images of different styles with an image sampled from Dusk Rainy domain of
 1364 the DWD dataset. (a) is the original target image, and (b)-(j) are text-based stylized images with
 1365 corresponding description in Table 21.

1381 Figure 7: Stylized images of different styles with an image sampled from Night Rainy domain of
 1382 the DWD dataset. (a) is the original target image, and (b)-(j) are text-based stylized images with
 1383 corresponding description in Table 21.

1400 Figure 8: Stylized images of different styles with an image sampled from Night Clear domain of
 1401 the DWD dataset. (a) is the original target image, and (b)-(j) are text-based stylized images with
 1402 corresponding description in Table 21.

1403

1421 Figure 9: Stylized images of different styles with an image sampled from Day Foggy domain of
 1422 the DWD dataset. (a) is the original target image, and (b)-(j) are text-based stylized images with
 1423 corresponding description in Table 21.

1441 Figure 10: Prediction comparison on original and stylized images of different styles for each source
 1442 model trained on Day Clear (a, f), Night Clear (b, g), Dusk Rainy (c, h), Night Rainy (d, i) and
 1443 Day Foggy (e, j). (a)-(e) is the original target image, and (f)-(j) are text-based stylized images with
 1444 corresponding description in Table 21. The colors mean different class labels (red: car, yellow: bus,
 1445 green: truck).

1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467 (a) Failed to detect due to weather condition.1468
1469
1470
1471
1472 (b) Fail to detect due to bad lighting.

Figure 11: Example of failures.

1471
1472 C.5 COMPARISON OF TFA WITH EXISTING TEXT-BASED STYLE TRANSFER METHODS

1473 In this section, we present the augmented images generated with different text-based style transfer
1474 methods including CLIPstyler Kwon & Ye (2022), Poda Fahes et al. (2023) and our TFA using the
1475 same pre-trained CLIPstyler image decoder. In Figure 12, we present the detection results of different
1476 stylized images using the same model trained on Day Clear domain. The detection results of the two
1477 original images sampled from Day Clear domain serve as oracle results. Compared to CLIPstyler and
1478 Poda, TFA manage to maintain the details of the original images while rendering corresponding
1479 styles, such as foggy style and night style. The detection performance of TFA aligns closely with the
1480 oracle performance. While CLIPstyler misclassifies car as bus, bus as truck with Day Foggy style
1481 augmentation and fails to detection truck with Night Clear style augmentation. Poda renders a very
1482 strong style for the augmentation that even lose most of the details in the original content, which is
1483 somewhat reasonable since Poda only updates its style statistics with CLIP style loss without a
1484 content preservation regularization.

1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511 Figure 12: Two images (a)/(e) from the Day Clear domain are stylized with different domain styles:
Day Foggy and Night Clear, using different text-based style transfer methods: TFA (ours), CLIPstyler
and Poda.

C.6 COMPARISON OF DOMAIN ADAPTATION METHODS WITH ACCESS TO THE SOURCE DATA

We compare our method with *Unsupervised Domain Adaptation (UDA)* methods which have access to the source data including SW Pan et al. (2019), IBN-Net Pan et al. (2018), IterNorm Huang et al. (2019), ISW Choi et al. (2021), Poda Fahes et al. (2023), CLIP-Aug Vedit et al. (2023), and SDGOD Wu & Deng (2022). From Table 22, we observe that even access to the source data, our model outperforms the UDA methods with access to the source data in the Night Clear and Night Rainy domain. This is attribute to the incorporation of multi-source pre-trained models. We effectively utilize the knowledge from different pre-trained source models with our proposed mean-teacher framework and benefit the generalization to the target domain without needing the access to the source data. As for the Dusk Rainy and Day Foggy domains, our method achieves comparable performance as Poda and CLIP-Aug, and outperforms the rest UDA methods, which helps demonstrate the

effectiveness of our approach. This indicates that leveraging multi-source pre-trained models with our mean-teacher framework provides a strong advantage in domain adaptation, even without direct access to the source data. Our proposed text-based augmentation successfully reduce the domain gap between the target images and the pre-trained models. Our method generalizes well across diverse target domains, outperforming traditional UDA methods in challenging conditions such as Night Clear and Night Rainy while maintaining competitive results in other domains like Dusk Rainy and Day Foggy.

Table 22: Multi-source domain adaptation results (mAP). For each target domain, Day Clear and the rest three domains are used as the source domains for the multi-source setting. For the single-source UDA and SFDA, Day Clear is used as the source following the typical setting Wu & Deng (2022); Vudit et al. (2023); Fahes et al. (2023).

Method	Source	mAP			
		NC	DR	NR	DF
SW	✓	33.4	26.3	13.7	30.8
IBN-Net	✓	32.1	26.1	14.3	29.6
IterNorm	✓	29.6	22.8	12.6	28.4
ISW	✓	33.2	25.9	14.1	31.8
S-DGOD	✓	36.6	28.2	16.6	33.5
CLIP-Aug	✓	36.9	18.7	18.7	38.5
PODA	✓	43.4	40.2	19.5	44.4
Ours	✗	44.5	32.5	20.3	38.4

D POTENTIAL SOCIAL IMPACT AND LIMITATIONS

Source-data free domain adaption has the potential to significantly expand the usage of domain adaptation in more diverse settings with various constraints, such as edge devices with limited storage and applications with privacy concerns. It provides a cost-effective way to perform domain adaptation as pre-trained source models are more efficient to transfer than large datasets. It is also more memory-efficient to save the pre-trained source models versus a large training dataset. When considering data privacy, using a pre-trained source model eliminates the risk of sensitive information leaking. The proposed approach also improves existing methods based on a single source model. By simultaneously considering multiple source models, the domain gap can be effectively reduced. Nevertheless, when all the source domains exhibit a large gap as compared with the target domain, the object detection performance will naturally degrade. In this case, it is important to detect such situations and seek other potential sources for adaptation. To this end, an interesting future direction is to perform uncertainty-aware domain adaption to automatically detect the potential domain gap or choose more semantically similar domains for adaptation.

Another potential limitation is that our method requires a domain description. However, we clarify that our method only requires high-level and general information of the source domain, instead of the precise low-level details. This is much less demanding than manually labeling many data samples and some general knowledge of the domain is adequate. Furthermore, since no specific source data is required, it ensures privacy with no storage and transmission overhead. As shown in Figure 4, we have conducted an ablation of using different text descriptions of different source domains. The results demonstrate that any relevant text description can lead to reasonably good performance. Proper descriptions lead to better performance, which further reduces the requirement of the domain description, making it much more easily accessible than directly accessing source data itself. For example, for the Cityscapes dataset, we don't need to include each city names in the description, a simple yet general description such as "Driving in the city" is sufficient and able to produce superior performance. Such descriptions only require very basic understanding of the dataset and don't require much expertise.

1566
1567

E SOURCE CODE

1568
1569
1570

For source code, please refer to https://anonymous.4open.science/r/sfda_aug-ADB0/Readme.txt.

1571
1572

F LLM USAGE STATEMENT

1573
1574
1575
1576

Large Language Models (LLMs) were used solely to aid in polishing the writing and improving the clarity of exposition. No part of the research ideation, experimental design, implementation, or analysis relied on LLMs. The authors take full responsibility for the content of this paper.

1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619