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ABSTRACT

Source-free domain adaptation (SFDA) enables adaptation to a target domain
without access to source data or labeled target samples, making it particularly
valuable in privacy-sensitive applications such as military operations and health-
care. To leverage complementary and transferable knowledge from multiple source
domains, multi-source-free domain adaptation (MSFDA) extends SFDA by collec-
tively adapting pre-trained models from multiple sources. However, a key challenge
in MSFDA is the significant distribution shift among multiple source and target
domains, which often leads to suboptimal performance, especially in complex tasks
like object detection. To address this, we propose a novel multi-source knowledge-
fusion framework that effectively aggregates knowledge from multiple sources and
mitigates distribution discrepancies. We first conduct text-driven feature augmenta-
tion that narrows the semantic gap by transforming unlabeled target images into
source-stylized images using only textual descriptions of each source domain, such
that the pre-trained source models are directly applicable. Each domain expert is
then updated with its respective stylized target images, while the aggregator under-
goes both local and global updates to ensure stable adaptation. To further improve
pseudo-label quality, peer network-based confidence selection is performed to filter
out noisy labels. Our method achieves state-of-the-art performance on multiple
real-world datasets, demonstrating its effectiveness in multi-source free domain
adaptation.

1 INTRODUCTION

Source-Free Domain Adaptation (SFDA) has recently gained prominence as a solution to practical
challenges such as data privacy, distributed data storage, and inconvenient data transmission Huang
et al. (2021); Li et al. (2021b; 2022). SFDA aims to adapt pre-trained model on the source domain to
unlabeled target domain without accessing actual source data. Multi-source free domain adaptation
extends SFDA to incorporate pre-trained models from multiple source domains, allows knowledge
aggregation from a broader variety of data, which is particularly advantageous when the target domain
is diverse and spans a wide range of possible scenarios Peng et al. (2019); Dong et al. (2021); Ahmed
et al. (2021).

However, properly aggregating knowledge from multiple source domains without access to actual
data poses a set of unique challenges. First, the source domains may not comprehensively cover
all aspects of the target domain, leading to missing or poorly represented features. Even with
multiple source models, certain characteristics of the target domain might remain unaccounted for,
hindering generalization and degrading adaptation performance. Second, without access to source
data, determining the relative importance of each source model is non-trivial. Some source models
may be more relevant than others for a given target domain, but misaligned weighting or reliance on
less relevant sources can negatively impact adaptation Li et al. (2024). Last, source models trained on
different domains may encode conflicting feature representations, leading to inconsistencies in target
predictions Wang et al. (2019); Ding et al. (2016). Disagreements among source models can introduce
noise into pseudo-labeling, propagating errors across training stages and ultimately compromising
adaptation performance.

While few existing methods have made progress in addressing MSFDA by quantifying the contri-
butions of multiple source models and finding optimal combinations through techniques like joint
feature alignment Dong et al. (2021); Ahmed et al. (2021); Peng et al. (2019), or attention mecha-
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Figure 1: (a) TFA module: Given a target image and a style description, TFA uses CLIP features
to transform the image representation to match the source domain style. (b) Overall pipeline: (1)
Pre-train source models on their respective source datasets; (2) Generate stylized target datasets with
TFA; (3) Train the multi-source knowledge fusion framework, where domain experts are adapted
locally and the aggregator is updated via EMA-based knowledge integration.

nisms Li et al. (2024), these approaches have some inherent limitations. For example, joint feature
alignment aims to learn a shared common space from multiple source models for the generalization to
target domain by quantifying contribution of each domain or find the optimal combination of source
domains Dong et al. (2021); Ahmed et al. (2021); Shen et al. (2023). However, source domains
can exhibit significant divergence in feature distributions due to differences in data characteristics,
such as lighting conditions, object categories, or scene variations. These differences are often not
easily captured through a single alignment process, and aligning features can lead to loss of important
domain-specific information. Attention mechanisms have been used to focus on the most relevant
parts of the source features during adaptation Li et al. (2024). However, attention alone does not fully
address the semantic gaps that arise due to differences in how source models perceive the target data.
Attention mechanisms can focus on certain features but may not be able to comprehensively reduce
the domain shift between the source and target domains.

To systematically address the challenges outlined above, we propose a novel multi-source knowl-
edge fusion framework, as illustrated in Figure 1, consisting of three key components. The first
component conducts Text-driven Feature Augmentation (TFA) to explicitly reduce domain gaps,
enabling pre-trained source models to better generalize to unlabeled target images. TFA leverages
the vision-language space of foundation models such as CLIP, which aligns image features with
textual descriptions Radford et al. (2021). In this space, an image and its corresponding description
are positioned closely, allowing text to serve as a proxy for modifying image features. Therefore,
we propose TFA to stylize unlabeled target images with source domain characteristics, effectively
bridging the semantic gap between pre-trained source models and the target domain without requiring
access to original source data.

The second component is a novel multi-source setting designed to ensure stable knowledge integration
across heterogeneous source domains. Since source models pre-trained on different domains may
encode conflicting feature representations, direct aggregation can cause divergence and hinder
adaptation. To address this, we propose a multi-source knowledge fusion framework in which one
source model is designated as the aggregator and the others as domain experts. Both the aggregator
and domain experts are locally updated through self-training on TFA-stylized images aligned with
their respective source domain styles. For cross-domain knowledge integration, the aggregator
is globally updated using the EMA of domain experts. To further alleviate domain divergence,
we introduce a contribution network that dynamically meta-learns the EMA rate assigned to each
domain expert, thereby quantifying its contribution to the aggregator. This network is optimized
via an entropy minimization objective, encouraging prediction consistency across source models.
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By adaptively weighting domain expert contributions, our approach achieves robust and stable
multi-source knowledge fusion.

During local updates, the aggregator and domain experts collaborate to filter out noisy pseudo-
labels for each other. In source-free domain adaptation (SFDA), confidence selection is a widely
adopted denoising strategy. However, existing methods predominantly rely on self-entropy–based
filtering Li et al. (2021b); Shen et al. (2023); Kim et al. (2021), which suffers from a key limitation:
as training progresses, models tend to overfit noisy pseudo-labels, becoming increasingly confident
in incorrect predictions. This overconfidence amplifies label noise, making it progressively harder to
separate clean from noisy samples. To overcome this issue, our third component introduces external
validation, enabling the aggregator and domain experts to teach each other rather than relying solely
on self-entropy filtering. The aggregator, being more stable, is less affected by specific noisy samples
encountered by the domain experts. Conversely, the domain experts provide complementary feedback
by identifying mislabeled instances for the aggregator. This mutual refinement process reduces
overfitting to noise, stabilizes training, and ultimately improves adaptation performance.

Summary of contributions. In this work, we address Multi-Source Free Domain Adaptation
(MSFDA) for object detection. Our key contributions are: (1) We propose Text-Driven Feature
Augmentation (TFA), which generates source-stylized target images to mitigate domain shifts and
improve source model generalization. (2) We develop a multi-source knowledge fusion framework
that designates one source model as an aggregator and the others as domain experts. A contribution
network adaptively weights expert influence, while a mutual denoising strategy enables them to
validate each other’s pseudo-labels, reducing noise overfitting and enhancing adaptation stability. (3)
We conduct extensive experiments on multiple benchmarks, showing consistent improvements over
existing MSFDA methods.

2 RELATED WORKS

Multi-source-free domain adaptation. Multi-Source-Free Domain Adaptation (MSFDA) aims to
distill knowledge from multiple pre-trained models and adapts to an unlabeled target domain without
access to the actual source data Dong et al. (2021); Shen et al. (2023); Yeh et al. (2023); Li et al.
(2023; 2024); Peng et al. (2019). Dong et al., propose to quantify the contributions of multiple source
models with a source-specific transferable perception module. It then improve the quality of the
pseudo label with a confident-anchor-induced pseudo label generator Dong et al. (2021). Aiming
to find the optimal combination of source models, Ahmed et al., learn a set weights by minimizing
the conditional entropy of transferring each source model to the unlabeled target. They also provide
intuitive theoretical insights to justify their methodology Ahmed et al. (2021). Shen et al., balance
domain aggregation, pseudo-labeling, and joint feature alignment with information-theoretic bound
on the generalization error Shen et al. (2023). Focusing on balancing between instance specificity and
domain consistency, Li et al., propose a parameter-tuning free method for MSFDA with a attention
module that learns both intra-domain weights and inter-domain ensemble weights Li et al. (2024).
In contrast to these existing methods, our method focuses on explicitly reducing the semantic gaps
among different source models and the unlabeled target data distribution. We propose a text-driven
feature augmentation technique to achieve style transfer given only images from the target domain,
and a simple description of the source domain style.

Source-free domain adaptation for object detection. Source-free domain adaptation for object
detection (SFOD) operates under the assumption that only the pre-trained model on the source domain
is accessible, while the actual source data is not available, presenting itself as a promising area of
research. Conventional SFOD methods commonly employ the pseudo labeling paradigm, involving a
cyclic process of model adaptation that oscillates between predicting pseudo labels and fine-tuning
the model Huang et al. (2021); Li et al. (2021b); Xiong et al. (2021). Some recent efforts attempt to
address these problems by using self-entropy descent as a confidence threshold to select high-quality
pseudo labels Li et al. (2021b). Other efforts directly learn domain-invariant features through devising
domain perturbation Xiong et al. (2021), graph alignment constraint Li et al. (2022), adversarial
alignment of the target images Chu et al. (2023), instance relation graph network Vibashan et al.
(2023), or teacher-student models Lin et al. (2023); Liu et al. (2023). Although existing SFOD
methods Li et al. (2021b); Lin et al. (2023); Liu et al. (2023); Li et al. (2022) have shown promise,
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MSFDA is less explored for object detection tasks. In this work, we propose to utilize multiple
pre-trained source models to address source-free domain adaption for object detection.

Text-based style transfer. Style transfer aims to transform a content image by transferring the
semantic texture of a style image. Traditional style transfer approaches require a reference style
image for learning the style texture the texture to change the style of the content image, which might
not be always available. Under this condition, using text information to conveys the desired style has
emerged as a solution. Current text-based style transfer methods can be categorized into two parts:
(1) The generative-based methods; StackGAN Zhang et al. (2017a) integrated text conditions to multi-
scale generative model for high-quality image synthesis. AttnGAN Xu et al. (2018) further improved
the performance with attention mechanism on text and image features. ManiGAN Li et al. (2020)
proposed a modules for simultaneously embedding the text and image features. StyleCLIP Patashnik
et al. (2021) performed attribute manipulation with exploring learned latent space of StyleGAN Karras
et al. (2019). StyleGAN-NADA Gal et al. (2022) proposed a model modification method with using
text conditions only, and modulates the trained model into a novel domain without additional training
images. (2) The non-generative-based methods; CLIPstyler Kwon & Ye (2022) design a modulation
of the style of content images only with a single text condition using the pre-trained text-image
embedding model of CLIP, and propose a patch-wise text-image matching loss with multiview
augmentations for realistic texture transfer. PODA Fahes et al. (2023) propose a prompt-driven
instance normalization (PIN) layer to do style transfer, where affine transformations of low-level
features are optimized such that the representation in CLIP latent space matches the one of text-based
prompt. PromptStyler Cho et al. (2023) simulates various distribution shifts in the joint space by
synthesizing diverse styles via prompts without using any images to deal with source-free domain
generalization. In this work, we propose a novel non-generative text-based style transfer method,
TFA, that focuses on aligning the target image with the source style text in both high-level semantics
and low-level visual textures.

3 METHODOLOGY

The proposed approach aims to reduce the domain shift between multiple source domains and a target
domain. To achieve this, we introduce text-driven feature augmentation (TFA), which uses simple
textual descriptions of the source domains to augment target images with corresponding styles. This
allows for the direct application of pre-trained models to the augmented target images. Additionally,
we propose a multi-source knowledge fusion framework to integrate knowledge from multiple source
models. To enhance the quality of pseudo-labels, we use confidence selection in a mutual refinement
manner, offering a more robust approach to handling noisy labels.

Problem formulation. We consider M labeled source domains denoted as {Dsi}Mi=1, where each
domain Dsi = {(xsi

k , ysik )}Ni

k=1 consists of Ni images. Each image xsi
k is paired with an annotation

ysik = (bsi
k , csik ), where bsi

k denotes the bounding box coordinates and csik represents the class label
of the object in the k-th image of the i-th source domain. In addition, we are given an unlabeled
target domain Dt = {xt

k}
Nt

k=1, which contains Nt images without annotations. During adaptation,
we do not have access to the raw source data. Instead, we are provided with: (1) the M pre-trained
source models {θsi}Mi=1, each trained on a different source domain, and (2) the text descriptions
{tsisty}Mi=1 that characterize the style of each source domain. The goal is to leverage the pre-trained
source models and their textual style descriptions to adapt effectively to the unlabeled target domain.

CLIP. We leverage the vision–language (V-L) space of pre-trained CLIP models Radford et al.
(2021) for TFA. CLIP consists of a visual encoder Evis and a text encoder Etxt, which map images
and text into a shared embedding space. Given an image x, the visual encoder produces v = Evis(x).
For the i-th category, we construct a prompt “A photo of a [class-i]”, tokenize it as pi, and encode it
into ti = Etxt(pi). The prediction for class y is obtained via a softmax over cosine similarities:

p(ŷ = y|x) = exp(cos(v, ty)/τ)∑K
k=1 exp(cos(v, tk)/τ)

. (1)

This aligns visual and textual features, enabling cross-modal representation learning.
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3.1 TEXT-DRIVEN FEATURE AUGMENTATION

To bridge the semantic gap between pre-trained source models and target images, we propose Text-
Driven Feature Augmentation (TFA), which transforms target image features to match the source
domain style guided by textual descriptions. The style transformation is performed by aligning
the target image’s features with textual representations of the source domain style in a shared
vision–language space, where image and text features are well-aligned. By minimizing the gap
between the target image feature and the textual source style feature, the target image is effectively
transformed to reflect the source domain style. Specifically, we introduce a learnable augmentation
module Aϕ(·) that adapts target features in the vision–language (V-L) space. Given a target image
x, its CLIP visual feature is extracted as z = Evis(x), and a style description of a source domain is
encoded as Etxt(tsty). The augmentation module generates Aϕ(z), which is optimized to align with
the textual style while preserving image content. The learning objective is:

ϕ∗ = min
ϕ

λ1Lstyle + λ2Lcontent + λ3LGram, (2)

Lstyle = 1− cos(Aϕ(z), Etxt(tsty)), (3)
Lcontent = ∥Aϕ(z)− z∥1, (4)

LGram = ∥Gram(Aϕ(z))− Etxt(tsty)∥22, (5)

We implement Aϕ as a learnable feature augmentation network parameterized by ϕ. As shown in
Figure 1 (a), Aϕ is a lightweight multilayer perceptron (MLP) that takes the CLIP visual feature
z = Evis(x) and textual feature Etxt(tsty) as input and outputs a transformed feature Aϕ(z) aligned
with the source domain style. The parameters ϕ are optimized with the objective in Eq. (2), while
the CLIP encoders Evis, Etxt, and the image decoder remain frozen. Finally, a pretrained ClipStyler
image decoder Kwon & Ye (2022) is used to reconstruct stylized images from Aϕ(z). This design
ensures that TFA operates efficiently in the joint V-L feature space without requiring image-space
generation.

In Eq. (3), cos(·) computes the cosine similarity between augmented feature embedding and style
text embedding: cos(Aϕ(z), Etxt(tsty)) =

Aϕ(z)·Etxt(tsty)
∥Aϕ(z)∥∥Etxt(tsty)∥ , which measures the semantic alignment

between the augmented target image features and the text description of the source domain style.
By maximizing the cosine similarity, we ensure that the style of the augmented image is consistent
with the desired source style, which is represented in the CLIP text embedding space. Eq. (4) acts as
an L1 regularizer to match high-level image content between the augmented image and the original
target image. In Eq. (5), Gram(·) computes the Gram matrix, capturing style features like texture
and lighting distributions. By minimizing the difference between the Gram matrix of the augmented
image and the source style, this term encourages the augmented image to adopt the broader source
domain style characteristics. Specifically, Lstyle focuses on semantic alignment including high-level
concepts and object structures, while LGram focuses on texture and appearance similarity including
low-level statistics like color and texture patterns. Together, they ensure that the augmented images
resemble the source domain both in high-level semantic meaning and low-level visual texture, making
them more useful for adapting pre-trained models to the target.

3.2 MULTI-SOURCE KNOWLEDGE FUSION FRAMEWORK

Using TFA, we construct multiple stylized target datasets {Dt→s1 , Dt→s2 , ..., Dt→sM }, where
Dt→si = {Asi

ϕi
(x)|x ∈ Dt}. In this section, we introduce the multi-source knowledge fusion

framework, which effectively integrates knowledge from multiple source models while minimize
the negative impact of noisy pseudo labels during adaptation. Specifically, given pre-trained source
models {θs1 , θs2 , . . . , θsM } as domain experts, we designate one model as the aggregator θagg, and
denote the remaining models as domain experts θDE

i . The aggregator simultaneously acts as a domain
expert for its own source domain while also serving as the central model for integrating knowledge
across all domains. During adaptation, both the aggregator and domain experts are locally updated on
their corresponding augmented target datasets, while the aggregator further aggregates cross-domain
knowledge through an additional EMA update from the domain experts.
Domain expert update via self-training. Each domain expert θDE

i (including the aggregator θagg

of its own domain) is adapted to its corresponding augmented dataset Dt→si = {Asi
ϕi
(x) | x ∈ Dt}

via self-training. Specifically, the expert generates pseudo labels ỹi for the augmented images
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zi = Asi
ϕi
(x), which are then used to update itself with the local detection loss:

θDE
i ← θDE

i − γi∇θDE
i
Llocal
i , (6)

where γi is the learning rate. The local loss Llocal
i follows the standard Faster R-CNN detection

loss Ren et al. (2015):

Llocal
i = Lrpn

cls (zi, ỹi) + Lrpn
reg (zi, ỹi) + Lroi

cls (zi, ỹi) + Lroi
reg(zi, ỹi). (7)

Here, Lrpn
cls andLrpn

reg are the classification and regression losses of the region proposal network (RPN),
while Lroi

cls and Lroi
reg are those of the region-of-interest (ROI) head. The classification terms are

standard cross-entropy losses for category prediction, and the regression terms measure localization
error. In this way, each domain expert iteratively improves itself by using its own high-confidence
predictions as supervision, following the principle of self-training.

Aggregation via meta-learning. To integrate knowledge across domains, the aggregator θagg is
updated as an exponential moving average (EMA) of the domain experts’ parameters:

θagg ← αaggθagg +
M−1∑
i=1

αDE
i θDE

i , (8)

where αagg and {αDE
i }

M−1
i=1 are EMA rates that control how much each model contributes to the

aggregator. Instead of using fixed weights, we let the contributions α = [αagg, αDE
1 , ..., αDE

M−1] be
dynamically learned by a small meta-network F(·). The intuition is that not all domain experts are
equally reliable—some may provide more consistent or less noisy knowledge than others. To train F ,
we encourage agreement among models by minimizing the entropy of their averaged predictions on
target images:

α∗ = min
α
−

K∑
k=1

p̃(yk|x) log p̃(yk|x), where p̃(yk|x) =
1

M

M∑
i=1

p(yk|x, θsi), (9)

where p(yk|x, θsi) is the class probability vector produced by model θsi . For notation clarity, we use
{θsi}Mi=1 instead of θagg and {θDE

i }
M−1
i=1 . In practice, θagg is updated by Eq. (8), and α is produced by

F(·). Since F is trained to reduce prediction entropy, it learns to assign higher weights to models that
produce confident and consistent predictions on target data, while down-weighting noisier experts.

Eq. (9) defines a bi-level meta-optimization, in which the EMA rate α acts as a meta-parameter
optimized over the performance of the aggregator θagg on the target domain. This process is
mathematically well-defined and follows standard meta-learning optimization principles. The update
in Eq. (9) corresponds to a meta-gradient ∇L(θagg(α)) where θagg(α) (i.e., θagg) is the result of
the inner-level update in Eq. (8). This is a gradient-through-gradient computation related bi-level
optimization frameworks. Therefore, the optimization dynamics directly follow from well-established
meta-learning theory. The inner (Eq. (8)) and outer optimization (Eq.(9)) ensures that α learns the
weight of each source model should contribute to the aggregator (including the aggregator) through
EMA so that the aggregated representation remains stable across different sources. The reviewer’s
concern about undefined optimization dynamics is addressed by (a) using SGD for the meta-update
and (b) applying only a single meta-step per batch, which ensures stability and avoids overfitting.
The dual-level design, where EMA is treated as a learnable meta-parameter controlling aggregation
strength across sources, is fundamentally different from prior works that use static EMA schedules.
This mechanism is essential to achieving robust multi-source domain adaptation, and Eq. (9) provides
the formal learning rule that makes this adaptation possible.
Self-training with mutual confidence selection. Confidence selection is usually coupled with
self-training to filter out noisy pseudo labels in SFDA. Usually, it filters out less confident predictions
with high entropy via a pre-defined threshold Li et al. (2021b); Kim et al. (2021). This approach
suffers from a critical limitation: as training progresses, the model tends to overfit noisy pseudo-
labels, becoming increasingly confident in incorrect predictions. This overfitting amplifies label noise,
making it progressively harder to distinguish clean from noisy samples. To address this issue, we
introduce an external validation mechanism by enabling the aggregator and domain experts to teach
each other Han et al. (2018).
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For example, given a domain expert θDE
i and its corresponding augmented target dataset Dt→si , the

aggregator θagg computes the loss of each example and rank them in ascending order, where examples
with loss higher than a predefined threshold will be considered as noisy labels and be discarded. The
rationale behind this mechanism is twofold: (1) The aggregator and domain experts are trained with
different augmentations of the same target data distribution. This corelation allows each model to
identify and filter out noisy labels that might have been incorrectly assigned in the early stages of
training. (2) If the domain expert were used for confidence selection, errors from noisy pseudo-labels
generated during early training would propagate and accumulate, leading to the model becoming
increasingly overfitted to these erroneous labels. As the model continues to train, it would gradually
lose the ability to distinguish between correct and noisy labels. However, by using the aggregator,
which is less affected by overfitting to the domain expert’s noisy data, we can mitigate this issue
and ensure that the pseudo-labels used for domain expert training remain more accurate and reliable.
Similarly, we randomly choose a domain expert to filter out the noisy pseudo labels of the aggregator.

4 EXPERIMENTS

In this section, we first introduce the datasets, evaluation metrics, comparative baselines and the
implementation details. Then the quantitative and qualitative results are presented to prove the
effectiveness of our method. Some additional results are presented in the Appendix.

(a) Test image 1 (b) TFA-day foggy (c) CLIPstyler-day foggy (d) PODA-day foggy

(e) Test image 2 (f) TFA-night clear (g) CLIPstyler-night clear (h) PODA-night clear

Figure 2: Two images (a)/(e) from Day Clear are stylized with different domain styles: Day Foggy
and Night Clear, using different text-based style transfer methods: TFA, CLIPstyler and PODA.

4.1 EXPERIMENT DETAILS

Datasets and evaluation metric. For evaluation, we adopt three cross-domain datasets: (1) Diverse
Weather Dataset (DWD) Wu & Deng (2022), which includes driving scenes under various weather
and time conditions; (2) Cityscapes Cordts et al. (2016), FoggyCityscapes Sakaridis et al. (2018),
and KITTI Geiger et al. (2013a), a combination that covers both real-world urban driving scenes
and synthetic car images; and (3) Art Inoue et al. (2018), which consists of images rendered in
diverse artistic styles. More detailed dataset descriptions are provided in the Appendix. In all our
experiments, we use the Mean Average Precision (mAP) as our metric. Specifically, we report the
mAP@0.5, which considers a prediction as a true positive if it matches the ground-truth label and has
an intersection over union (IOU) score of more than 0.5 with the ground-truth bounding box. All
reported experimental results are based on a sinle run.

Comparison baselines We compare our method with (1) Source-free domain adaptation (SFDA)
methods including SED Li et al. (2021b), HCL Huang et al. (2021), and IRG Vibashan et al. (2023),
LODS Li et al. (2022), LPLD Yoon et al. (2024), SF-UT Hao et al. (2024), DRU Khanh et al. (2024),
and (2) Multi-source-free domain adaptation (MSFDA) methods including Mean-Teacher Tarvainen
& Valpola (2017), MixUp Zhang et al. (2017b), MSFDAOD Zhao et al. (2024), CAiDA Dong et al.
(2021), Selective Self-Training (SST) Shen et al. (2023), Bi-ATEN Li et al. (2024). For those SFDA
and MSFDA methods that are not designed for object detection task, the reported results are based
on our re-implementation. We additionally report the performance of Faster R-CNN (FR) Ren et al.
(2015) initialized with ImageNet pre-trained weights.
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Implementation details. For pre-trained source models, we used the implementation of Faster
R-CNN Ren et al. (2015) from the MMDetection library Chen et al. (2019). We use ResNet50 as
the backbone, with the learning rate equal to 0.01 and the max epoch set to 8. And we use the last
checkpoint as our source model. The training is conducted using 4 P4. The network architecture for
F(·) is a 3×3 convolutions and 64 filters, followed by batch normalization, a ReLU nonlinearity, and
2×2 max-pooling. For TFA, we use the Layer 1 target feature maps of the pre-trained CLIP-ResNet-
50 model Radford et al. (2021). To optimize the augmentations with tsty, we generate random crops
from the source images and re-size them to 320 × 320 pixels. The style parameters ϕ are 256D real
vectors. The CLIP embeddings are 1024D vectors. We use ChatGPT to generate the description of
tsty (in less than 10 words) with the template prompt “a photo of" and the dataset description of DWD
(given by Wu & Deng (2022)). The resulting text description of each source domain are shown in
Table 6. Optimization was done for 100 iterations using SGD with a learning rate of 1, momentum of
0.9, and weight decay of 1e-4. The training is conducted using 1 A100. During adaptation, we first
initialize the target model with the chosen closest pre-trained source model. Then with the backbone
frozen, we fine-tune the classifier and bounding box head with the augmented feature and pseudo
labels. Non-maximum Suppression (NMS) Hosang et al. (2017) is utilized to eliminate duplicate
detections and select the most relevant bounding boxes that correspond to the detected objects. The
learning rate is 0.01, and the max epoch is 4. The training is conducted using 2 A100.

4.2 MAIN RESULTS

Table 1: Multi-source domain adaptation results
(mAP). For each target domain, Day Clear and the
rest three domains are used as the source domains
for the multi-source setting. For the single-source
UDA and SFDA, Day Clear is used as the source
following the typical setting Wu & Deng (2022);
Vidit et al. (2023); Fahes et al. (2023).

mAP

Method Multi-Source NC DR NR DF

FR ✗ 34.4 26.0 12.4 32.0
SED ✗ 33.4 21.1 15.1 29.4
HCL ✗ 33.8 21.9 16.3 30.2
IRG ✗ 42.7 30.5 18.4 35.2
LODS ✗ 33.5 25.7 13.5 31.2
LPLD ✗ 34.7 28.5 14.2 32.8
SF-UT ✗ 36.8 30.0 16.9 34.2
DRU ✗ 35.7 28.5 15.8 33.4

Mean-Teacher ✓ 44.1 32.0 19.1 36.8
MixUp ✓ 36.0 30.0 16.7 31.5
MSFDAOD ✓ 42.1 30.8 18.7 34.4
CAiDA ✓ 43.4 31.7 19.5 35.2
SST ✓ 43.8 32.0 19.6 35.4
ATEN ✓ 43.9 32.2 19.8 35.5
Bi-ATEN ✓ 43.9 32.3 19.5 35.4
Ours ✓ 44.5 32.5 20.3 38.4

Table 1 presents a comprehensive comparison
between our method and state-of-the-art SFDA
and MSFDA approaches for object detection on
the DWD dataset, which includes five domains:
Day Clear (DC), Night Clear (NC), Day Foggy
(DF), Dusk Rainy (DR) and Night Rainy (NR).
We first observe that MSFDA methods consis-
tently outperform SFDA approaches, reaffirm-
ing the advantage of leveraging diverse domain
knowledge. The presence of multiple source
domains provides a richer representation space,
enabling better generalization to the target do-
main. Secondly, our proposed method outper-
forms all existing MSFDA methods across all
four domains. This demonstrates the effective-
ness of our approach in mitigating domain gaps
by incorporating both local and global updates
in a structured multi-source knowledge fusion
paradigm. Additionally, by learning domain-
specific contributions dynamically, the multi-
source knowledge fusion framework avoids the
pitfalls of naïve model aggregation, leading to
more stable adaptation. A detailed per-class analysis for each domain is provided in the Appendix.

Additional results on the Art dataset The results in Table 2 show consistent improvements of our
method across all three domains when tested under the “leave-one-domain-out” setting. Compared
with prior approaches such as Mean-Teacher, MixUp, and MSFDAOD, our method achieves the
highest performance on Clipart1k (48.45%), Watercolor2k (50.33%), and Comic2k (46.39%). The
gains over the strongest baseline Bi-ATEN are 1.62%, 1.57%, and 1.15% respectively. These results
highlight that our method is not only effective in the weather/lighting scenarios but also generalizes
well to domain shifts caused by stylistic variations, such as differences between clipart, watercolor,
and comic images. The improvements across all target domains indicate that the combination of
domain-specific self-training and adaptive aggregation contributes to robust cross-domain transfer
even under large appearance gaps.
Per-class analysis. In Table 3, we present a per-class analysis on the Foggy-Cityscapes dataset
using Cityscapes and KITTI as source domains. The results demonstrate that our method achieves the
highest mAP by consistently ranking at the top across multiple classes. Similarly, MSFDA methods
outperform SFDA methods, highlighting the advantages of leveraging multiple source domains.
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Table 2: Comparison of detection performance (mAP %) on the Art dataset across three domains:
Clipart1k, Watercolor2k, and Comic2k.

Method Clipart1k Watercolor2k Comic2k

Mean-Teacher 41.98 42.55 40.32
MixUp 41.26 41.98 39.85
MSFDAOD 42.43 44.29 41.37
CAiDA 43.99 45.42 42.87
SST 46.45 48.33 44.92
Bi-ATEN 46.83 48.76 45.24
Ours 48.45 50.33 46.39

Table 3: Per-class results on Foggy-Cityscapes

AP mAP

Method Multi-Source Bus Bike Car Motor Person Rider Truck Train All

SED ✗ 11.8 34.3 40.4 34.5 21.7 44.0 32.6 25.3 30.6
SED(Moisac) ✗ 22.2 39.0 40.7 34.1 25.5 44.5 33.2 28.4 33.5
HCL ✗ 25.0 46.0 41.3 35.9 26.9 40.7 33.0 28.1 34.6
SOAP ✗ 37.2 37.9 48.4 31.8 35.9 45.0 23.9 24.3 35.5
LODS ✗ 39.7 37.8 48.8 33.2 34.0 45.7 27.3 19.6 35.8
IRG ✗ 39.6 41.6 51.9 31.5 37.4 45.2 24.4 25.2 37.1
LPLD ✗ 37.4 37.8 48.7 32.0 36.1 45.3 24.0 24.5 35.6
SF-UT ✗ 38.5 40.5 50.7 30.8 36.5 44.6 23.5 24.1 36.1
DRU ✗ 39.2 40.9 50.9 31.2 36.7 44.9 23.9 24.3 36.4

Mean-Teacher ✓ 39.2 40.2 47.0 27.6 35.9 45.0 31.2 27.1 36.3
MixUp ✓ 38.5 39.8 44.0 26.1 30.4 42.8 29.1 26.4 34.2
MSFDAOD ✓ 39.9 33.2 47.3 29.5 33.8 45.0 32.4 29.8 37.6
CAiDA ✓ 41.8 44.5 47.3 29.8 34.0 45.8 33.5 32.0 37.8
SST ✓ 42.2 44.2 44.9 30.3 33.5 47.2 36.0 33.2 37.9
ATEN ✓ 42.6 44.4 48.8 30.0 34.1 47.5 36.4 33.3 38.1
Bi-ATEN ✓ 42.6 44.5 47.9 29.7 34.0 47.4 36.5 33.1 38.0
Ours ✓ 40.1 39.8 49.9 35.4 40.4 46.1 35.5 27.5 39.2

4.3 ABLATION STUDY

Effectiveness of different components In this ablative study, we investigate the impact of each
individual component in our framework. The detailed setting and results are shown in Table 4.
We observe that, compared to a single source, the utilization of the multi-source knowledge fusion
framework largely improves the mAP by 2.1 and the improvement is observed over all categories. By
using the TFA, we managed to minimize the domain gap between all the source models and target
data, which increased the mAP from 33.5 to 34.2. The confidence selection further improve the
performance by 4.2 by filtering out noisy labels.

Text-driven feature augmentation In Figure 2, we show some stylized image rendered with TFA
and the other two text-based style transfer methods. Take two images from the Day Clear domain, we
augmented them with Day Foggy and Night Clear styles using TFA, CLIPstyler Kwon & Ye (2022)
and PODA Fahes et al. (2023), respectively. From the augmented images, we observe that TFA
renders augmented images with desirable style effects, including low-level texture and high-level
concepts (like fog) while keeping the original content from being distorted. However, for CLIPstyler
and PODA, the rendered style effects shroud the original content, making the objects in the original
images hard to recognize. We present more qualitative results for TFA in the Appendix.

4.4 QUALITATIVE STUDY

We show some qualitative performance in Figure 3 with an example from Night Clear target domain.
We observe that SS falsely detects multiple cars as one, misclassifies the Bus as Car, and fails to
detect Person. By using the multi-source knowledge fusion, less mistakes were made, showing that
the utilization of multiple sources help improve the generalization to some extend. While couple with
TFA, MS+TFA successfully detects multiple cars, since the application of TFA reduce the domain
gap between the multiple source model and the target images. Along with confidence selection, the
noisy labels are filtered out, and we are able to detect all the objects.

9
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(a) SS (b) MS (c) MS+TFA (d) MS+TFA+CS

Figure 3: Qualitative visualization: Bounding box predictions from different settings, where SS
stands for single source model, MS stands for multi-source knowledge fusion, and CS stands for
confidence selection.

Table 4: Per-class results on Day Foggy with different components enabled. SS stands for single-
source model, MS stands for multi-source knowledge fusion, and CS stands for confidence selection.
As usual, for single-source, Day Clear is used as the source model, and for multi-source, Day Clear
and the rest three targets except for Day Foggy are used as source models. The last row is our
proposed method.

AP mAP

Source SS MS TFA CS Bus Bike Car Motor Person Rider Truck All

✗ ✓ ✗ ✗ ✗ 30.8 29.3 28.5 32.7 30.8 32.4 35.8 31.4
✗ ✗ ✓ ✗ ✗ 38.5 30.6 29.9 35.5 34.1 33.9 38.0 33.5
✗ ✗ ✓ ✓ ✗ 38.8 31.2 30.5 36.4 34.8 34.5 38.4 34.2
✗ ✗ ✓ ✓ ✓ 37.4 36.5 45.8 35.9 40.8 36.0 36.0 38.4

Additional Results. We present additional experiment results in the Appendix, including per-
class analysis for each domains in DWD dataset; ablation study of using different source domain
text descriptions; impact of the hyperparameter α, and impact of heterogeneous source model
architectures; impact of the choice of aggregator; ablation on computational cost; additional qualitative
results for stylized target images; and comparison with unsupervised domain adaptation methods,
and so on.

5 CONCLUSION

In this study, we introduce a novel approach to perform multi-source-free domain adaptation, ad-
dressing the challenge of integrating multiple sources to harness information effectively. Our method
first mitigates domain shift between multiple source domains and the target domain by transforming
target images to match the styles of the source domains, utilizing text-based style transfer with textual
descriptions of the source domains. Furthermore, we aggregate the information from multiple source
models with a novel knowledge fusion framework, where the aggregator and domain experts are
updated globally and locally, and the pseudo label quality are mutually enhanced. Experimental
evaluations on diverse weather datasets demonstrate the efficacy of our proposed model across
different domains. In future research, we plan to explore dynamic target domains where the target
data distribution evolves over time.

6 REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our work. A detailed description of our
proposed method and training objectives is provided in Section 3 of the main paper. Additional pseudo
code of the proposed algorithm, detailed training steps, implementation details, hyperparameter
settings, and dataset information are included in Appendix B. To further facilitate reproducibility, we
provide an anonymous link to the source code and scripts for training and evaluation in Appendix E.
All datasets used in our experiments are publicly available, and their references are properly provided.
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A NOTATIONS AND ALGORITHMS

In this section, we present the table of notations used in the main paper, and the pseudo code for our
algorithms. Table 5 summarizes the major notations used in the paper. Our algorithm consists of
two main components. In Algorithm 1, we introduce the pseudo code for TFA. In Algorithm 2, we
outline the multi-source free domain adaptation with the mean-teacher framework and the confidence
selection via co-teaching.

Table 5: Notations

Notation Description
Dsi i-th source domain
Dt target domain
θsi pre-trained i-th source domain model
xsi
k k-th feature from i-th source domain

ysik k-th label from i-th source domain
bsik k-th bounding box from i-th source domain
csik k-th class label from i-th source domain
xt
k k-th feature from target domain

M number of source models
Ni number of data samples in i-th source domain
Nt number of data samples in target domain
ϕ TFA augmentation parameters
Etxt CLIP text encoder
Evis CLIP image encoder
cos(·) cosine similarity
tsty domain style description
Lstyle text image style consistent loss
Lcontent content preservation loss
LGram low-level Gram regularization loss
Dt→si augmented target domain datasets with i-th source domain style
θagg aggregator
θDE
i i-th domain expert
Llocal
i i-th local loss
Lrpn
cls region classification loss
Lrpn
reg region proposal loss
Lroi
cls bounding box classification loss
Lroi
reg bounding box regression loss
α EMA learning rates

Algorithm 1 Text-driven Feature Augmentation (TFA)

1: INPUT Target dataset Dt, text description of style T src = {tsisty}Mi=1 of source domain si, ϕ
2: OUTPUT Multiple augmented datasets {Dt→si}Mi=1
3: for each target image x ∈ Dt do
4: Using CLIP image encoder to extract target image feature: z = Evis(x)
5: for each source style text tsisty ∈ T src do
6: Using CLIP text encoder to extract source text feature: Etxt(t

si
sty)

7: while not converged do
8: Obtain augmented image feature with s-th source style using Aϕ(·): Aϕ(z) (i.e.

Evis(Aϕ(x)))
9: Update ϕ with Equation (2)

10: end while
11: end for
12: end for
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Algorithm 2 Multi-Source Domain Adaptation (MSDA)

1: INPUT Multiple pre-trained source models {θsi}Mi=1, target dataset Dt, and multiple stylized
target datasets {Dt→si}Mi=1, EMA parameters α, target dataset Dt

2: Choose a pre-trained source model as aggregator θagg

3: Choose the rest pre-trained source models as domain expert {θDE
1 , ..., θstu

M−1}
4: while not converged do
5: // Update aggregator and domain experts
6: for each model θsi in {θsi}Mi=1 do
7: Sample a batch of data from Dt→si

8: Generate pseudo label ỹi with θsi

9: // Confidence selection in a co-teaching manner
10: if the model is a domain expert then
11: Use the aggregator to filter out noisy labels
12: else
13: Randomly select a domain expert to filter out noisy labels
14: end if
15: Update θsi with Equation (7)
16: end for
17: Update aggregator with Equation (8)
18: // Update EMA parameters α
19: Sample a batch of data from target dataset Dt

20: for each model θsi in {θsi}Mi=1 do
21: Compute the prediction probability of each model on the data
22: end for
23: Update α with Equation (9)
24: end while

B EXPERIMENTAL DETAILS

B.1 IMPLEMENTATION DETAILS

Implementation details of F . F is a lightweight neural network designed for meta-learning the
EMA parameters. It consists of a 2×2 followed by two 3×3 convolutional layers, each with ReLU
activations and channel dimensions of 16, 32, and 64, respectively. A final 1×1 convolutional layer
produces a vector of unnormalized scores s ∈ RM , where M is the number of models (aggregator +
domain experts). These scores are normalized via a softmax function, which ensuring that all αi ≥ 0

and
∑M

i=1 αi = 1. For training , we use Adam with an initial learning rate of 5×10−4. Training is
conducted over 200 iterations, and the learning rate is reduced by half at iteration 100.

Implementation details of the multi-source knowledge fusion framework. To complement the
pseudo-code, we outline the training and evaluation procedure of our proposed method:

• Step 1: Pretraining source models. We first pretrain a set of source models on their
respective labeled source-domain datasets. The backbone architecture of each model follows
the experimental setting (e.g., Faster R-CNN, ATSS, or YOLOv7).

• Step 2: Pretraining the feature augmentation module. The feature augmentation module
is trained following the procedure in Algorithm 1.

• Step 3: Generating target-augmented datasets. Using the trained augmentation mod-
ule, we translate target-domain samples into multiple source-domain styles, producing
augmented datasets for subsequent training.

• Step 4: Training the knowledge fusion framework. With both pretrained source models
and target-augmented datasets, we train the proposed multi-source fusion framework as
described in Section 3.2 and detailed in Algorithm 2. In this stage, domain experts are up-
dated via self-training on the target-style data, while the aggregator progressively integrates
knowledge across domains through meta-learned EMA updates.
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Table 6: LLM generated source style description for DWD.

Domain Style Descriptions

Day Clear “A photo of a clear, sunny daytime scene."
Night Clear “A photo of a clear, well-lit nighttime scene."
Night Rainy “A photo of a rainy, dimly-lit nighttime scene."
Dusk Rainy “A photo of a rainy scene at dusk."
Day Foggy “A photo of a foggy scene during the day."

Table 7: LLM generated source style description for Art.

Domain Style Descriptions

Clipart “An illustration in a flat, clipart style."
Comic “A drawing in bold, comic-book style."
Watercolor “A painting in soft, watercolor brush strokes."

• Step 5: Evaluation. After training, the aggregated model is evaluated on the held-out
target domain. We report standard detection metrics (e.g., mAP, mAP@0.5) to assess the
performance and cross-domain generalization ability of the framework.

B.2 DETAILS OF THE DATASETS

The images of the DWD dataset was selected from three primary datasets, Berkeley Deep Drive 100K
(BBD-100K) Yu et al. (2020), Cityscapes Cordts et al. (2016) and Adverse-Weather Hassaballah et al.
(2020). Additionally, rainy images are rendered by Wu et al. (2021), and some of the foggy images
are synthetically generated from Sakaridis et al. (2018). The daytime clear dataset consists of 27708
images, the night clear dataset contains 26158 images, the dusk rainy dataset has 3501 images, the
night rainy dataset has 2494 images, and the daytime foggy dataset has 3775 images. All the datasets
contain bounding box annotations for the 7 classes objects: bus, bike, car, motorbike, person, rider,
and truck. For text augmentation, we utilize the domain description in Table 6.

For the combined dataset, Cityscapes1 Cordts et al. (2016), Foggy-Cityscapes2 Sakaridis et al. (2018),
and KITTI3 Geiger et al. (2013b) for further evaluation. Cityscapes consist of 2975 training images
and 500 testing images, have a total of 8 categories captured under normal weather. Foggy-Cityscapes
applys images of Cityscapes to simulate foggy as well as inherits the annotations of Cityscapes.
KITTI contains 7,481 urban images of the same classes which are different from Cityscapes. For
the comparative baselines, the training set of Cityscapes are utlized to pre-trained the source model,
and test on the test set of Foggy-Cityscapes following the general setting Xu et al. (2020); Li et al.
(2021a). In addition, we incorporate the validation set of KITTI dataset as an additional source model,
which includes 1870 images, and then test our model on the test set of Foggy-Cityscapes. For text
augmentation, we utilize the domain description in Table 12.

The Art dataset contains different artistic styles including Clipart1k, Comic2k, and Watercolor2k In-
oue et al. (2018). Clipart1k contains 1000 clipart images across 20 classes, Watercolor2k and
Comic2k contains 2000 watercolor/comic images across 6 classes. For text augmentation, we utilize
the domain description in Table 7.

C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we first provide the per-class analysis of each domain of DWD dataset in Appendix C.1.
We than provide experimental results on the Art dataset in Table 2. In Appendix C.2, we conduct
ablation studies including the impact of source domain style descriptions, the impact of TFA hyperpa-
rameters λ1, λ2 and λ3, the impact of heterogeneous architecture of source models, the impact of

1https://github.com/tiancity-NJU/da-faster-rcnn-PyTorch
2https://www.cityscapes-dataset.com/downloads/
3http://www.cvlibs.net/datasets/kitti/
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aggregator, and some qualitative results. In Appendix C.3, we show some qualitative results of using
TFA with different source descriptions, and their detection results. In Appendix C.5, we compare the
qualitative results of TFA with other two text-based style transfer methods CLIPstyler Kwon & Ye
(2022) and PODA Fahes et al. (2023).

C.1 PER-CLASS ANALYSIS OF THE DWD DATASET

In this section, we present per-class analysis for each domain of the DWD Dataset, including Day
Foggy, Dusk Rainy, Night Clear and Night Rainy.

Multi-source→Day Foggy. We show the detailed results of each class of Day Foggy in Table 8. In
general MSFDA outperform SFDA in most categories, except for Car, FR ranks the top. Our method
achieves the best performance on Bus and Truck, and performs consistently better on other classes,
resulting the top mAP performance.

Multi-source→Dusk Rainy. In Table 9, our method outperforms SFDA and MSFDA in most of
the categories except for Car, Motor and Truck, achieving the best average mAP over all categories.
Compared to SFDA, our method either ranks the top or the second except for Motor, resulting in
the top 1 average mAP over all categories. Mean-Teacher ranks the top for Car and Motor, but our
method excel it by outperforming on other classes consistently.

Multi-source→Night Clear. In Table 10, our method performs consistently better in most cate-
gories, ranking the top at four of them, achieving the highest mAP. For SFDA, FR ranks the top in
Car. And for MSFDA, Mean-Teacher ranks the top at Bus and Motor.

Multi-source→Night Rainy. As shown in Table 11, in the more challenging Night Rainy dataset,
our method achieve the best average mAP by performing consistently well through in two categories,
and consistently better in other categories.

Table 8: Per-class results on multi-source to Day Foggy (the setting of source models is the same as
in Table 1).

AP mAP

Method Multi-Source Bus Bike Car Motor Person Rider Truck All

FR ✗ 28.1 29.7 49.7 26.3 33.2 35.5 21.5 32.0
SED ✗ 28.4 29.1 28.5 24.1 33.9 30.4 32.7 29.4
HCL ✗ 32.5 31.3 32.1 25.9 28.0 34.2 31.8 30.2
IRG ✗ 33.8 33.9 34.2 36.8 37.5 38.9 34.8 35.2
LODS ✗ 28.5 29.4 33.8 29.7 34.5 34.9 21.2 31.2
LPLD ✗ 28.9 30.2 34.2 30.5 34.8 35.8 23.0 32.8
SF-UT ✗ 30.0 30.8 35.4 31.7 35.8 36.9 24.2 34.2
DRU ✗ 29.8 30.2 35.0 31.0 35.2 36.1 22.8 33.4

Mean-Teacher ✓ 35.4 37.9 40.2 39.2 31.5 33.4 32.9 36.8
MixUp ✓ 33.2 32.4 33.5 26.8 29.1 35.5 33.2 31.5
MSFDAOD ✓ 31.5 32.8 36.0 33.4 38.2 38.9 29.5 34.4
CAiDA ✓ 32.4 33.6 37.2 34.2 39.5 39.9 30.4 35.2
SST ✓ 32.8 33.9 37.4 34.5 40.3 40.8 30.5 35.4
ATEN ✓ 33.0 34.1 37.9 34.8 40.6 41.1 30.9 35.5
Bi-ATEN ✓ 32.7 34.2 37.5 34.2 40.4 40.7 30.6 35.4
Ours ✓ 36.4 35.5 45.8 34.9 39.8 35.0 35.0 38.4

C.2 ADDITIONAL ABLATION STUDIES

In this section, we present the ablation study of using different source domain text descriptions, the
impact of TFA hyperparameters λ1, λ2, and λ3 in Equation (2), and the impact of heterogeneous
source model architectures.
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Table 9: Per-class results on multi-source to Dusk Rainy (the setting of source models is the same as
in Table 1).

AP mAP

Method Multi-Source Bus Bike Car Motor Person Rider Truck All

FR ✗ 28.5 20.3 58.2 6.5 23.4 11.3 33.9 26.0
SED ✗ 20.4 21.5 20.6 20.8 27.5 18.3 24.5 21.1
HCL ✗ 26.7 14.2 22.4 14.2 22.9 14.3 30.5 21.9
IRG ✗ 35.2 21.4 29.8 15.9 26.5 22.4 38.7 30.5
LODS ✗ 27.1 30.9 23.4 19.7 16.3 30.7 28.2 25.7
LPLD ✗ 27.9 31.4 24.2 22.5 19.9 31.5 29.2 28.5
SF-UT ✗ 28.2 31.6 24.5 22.9 20.9 31.8 29.4 30.0
DRU ✗ 28.0 31.2 24.5 22.4 20.4 31.6 29.4 28.5

Mean-Teacher ✓ 29.0 31.2 33.8 35.6 30.5 27.8 26.2 32.0
MixUp ✓ 30.5 30.1 28.8 34.7 32.5 28.4 28.2 30.8
MSFDAOD ✓ 30.4 30.3 29.2 34.9 32.3 28.1 28.7 30.8
CAiDA ✓ 31.2 31.1 30.5 35.4 33.5 28.9 29.7 31.7
SST ✓ 31.4 31.3 30.8 35.5 33.8 29.1 30.2 32.0
ATEN ✓ 31.5 31.4 31.1 35.8 34.0 29.0 30.4 32.2
Bi-ATEN ✓ 31.6 31.2 31.5 35.9 34.2 29.3 30.4 32.3
Ours ✓ 34.5 33.1 30.4 29.5 31.8 34.6 34.7 32.5

Table 10: Per-class results on multi-source to Night Clear (the setting of source models is the same as
in Table 1).

AP mAP

Method Multi-Source Bus Bike Car Motor Person Rider Truck All

FR ✗ 34.7 32.0 56.6 13.6 37.4 27.6 38.6 34.4
SED ✗ 31.9 34.5 33.8 31.2 32.5 34.9 33.7 33.4
HCL ✗ 33.4 32.9 33.4 33.1 34.7 35.1 34.5 33.8
IRG ✗ 43.2 41.8 42.4 42.4 43.5 44.1 42.4 42.7
LODS ✗ 32.0 34.6 33.9 31.4 32.4 35.1 33.8 33.5
LPLD ✗ 33.2 32.7 33.5 33.2 34.5 35.0 34.6 34.7
SF-UT ✗ 35.1 34.2 35.9 35.3 35.8 36.2 35.9 36.8
DRU ✗ 34.0 33.5 34.8 34.8 34.4 35.8 33.9 35.7

Mean-Teacher ✓ 44.5 42.3 45.6 45.2 43.2 44.5 43.4 44.1
MixUp ✓ 37.2 35.4 35.8 35.6 36.4 36.8 35.6 36.0
MSFDAOD ✓ 42.8 41.2 41.5 41.6 43.0 43.2 41.5 42.1
CAiDA ✓ 43.3 41.4 41.8 41.9 43.5 43.6 41.9 43.4
SST ✓ 43.9 41.8 42.4 42.6 44.0 44.1 42.4 43.8
ATEN ✓ 43.9 41.9 42.6 42.8 44.1 44.3 42.5 43.9
Bi-ATEN ✓ 43.8 41.9 42.6 43.0 44.2 44.2 42.3 43.9
Ours ✓ 44.0 42.9 43.5 44.8 44.9 45.5 45.0 44.5

Different source domain text descriptions. In this ablation, we evaluate the utilization of different
source domain text descriptions, which are presented in Table 13. We generate Text Descriptions 1
and 2, which are both relevant to the source domain styles while Text Descriptions 3 are randomly
generated prompts given by ChatGPT. As depicted in Figure 4, Text Descriptions 1 and 2 exhibit
comparable performance, whereas Text Description 3 significantly underperforms. This is attributed
to the substantial disparity between the described styles and the actual source domain styles, thereby
introducing domain gaps to the source models and the generated images, which poses challenges for
the source model in classification.

TFA hyperparameter λ1, λ2, λ3. In this ablation, we test the hyperparameters λ1, λ2, and λ3

for TFA in Eq. (2). In the paper, the default weights of λ1, λ2, and λ3 are 10, 5, 1e-3, respectively.
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Table 11: Per-class results on multi-source to Night Rainy (the setting of source models is the same
as in Table 1).

AP mAP

Method Multi-Source Bus Bike Car Motor Person Rider Truck All

FR ✗ 16.8 6.9 26.3 0.6 11.6 9.4 15.4 12.4
SED ✗ 15.8 14.5 14.2 18.6 6.9 16.5 18.8 15.1
HCL ✗ 16.6 13.8 14.5 17.0 17.1 15.6 16.2 16.3
IRG ✗ 18.5 24.8 15.4 18.2 18.3 16.7 16.4 18.4
LODS ✗ 16.7 7.2 25.4 0.9 12.4 10.8 16.5 13.5
LPLD ✗ 16.9 9.8 25.5 3.2 15.2 12.4 18.4 14.2
SF-UT ✗ 17.4 10.5 25.2 5.2 16.5 12.8 18.2 16.9
DRU ✗ 17.1 10.0 25.3 3.4 15.5 12.8 18.6 15.8

Mean-Teacher ✓ 14.9 18.8 19.4 17.6 17.2 25.5 20.7 19.1
MixUp ✓ 16.9 14.2 14.8 17.5 17.7 16.0 16.5 16.7
MSFDAOD ✓ 19.2 16.4 17.0 19.1 18.0 17.2 17.4 18.7
CAiDA ✓ 19.9 17.4 18.2 20.0 19.2 18.3 18.5 19.5
SST ✓ 19.9 17.7 18.0 19.8 19.1 18.0 18.6 19.6
ATEN ✓ 20.2 18.0 18.4 20.2 19.3 18.2 18.5 19.8
Bi-ATEN ✓ 19.8 17.5 17.8 19.6 18.8 17.8 18.5 19.5
Ours ✓ 16.5 19.6 20.2 19.4 18.4 26.2 20.5 20.3

Figure 4: Source Domain Text Description Ablative on Multi-source→ Day Foggy: Text 1, 2 and 3
are detailed in Table 13.
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Table 12: Source Domain Text Description

Source Domain Descriptions

Cityscapes ["Driving at city streets"]
KITTI ["Driving at urban streets"]

Table 13: Source domain text descriptions

Source Domain Text Descriptions 1 Text Descriptions 2 Text Descriptions 3
Day Clear ["Driving at clear day time"] ["Sunny day street view"] ["Lost in enchanted forest"]
Night Clear ["Driving at clear night time"] ["Clear night time street views"] ["Time traveler meets past self."]
Night Rainy ["Driving at rainy night time"] ["Rainy night street view"] ["Robot falls in love"]
Dusk Rainy ["Driving at rainy dusk"] ["Rainy dusk street view"] ["Magic potion gone wrong"]
Day Foggy ["Driving at foggy day time"] ["Foggy day street view"] ["Alien invasion thwarted heroically."]

Table 14: Per-class results on multi-source to Day Foggy with Ablations on TFA hyperparameters in
Equation (2).

Hyperparameters AP mAP

(λ1, λ2, λ3) Bus Bike Car Motor Person Rider Truck All
(0.1, 1, 1e− 3) 31.0 29.6 28.4 32.8 30.8 32.1 35.6 34.3
(1, 1, 1e− 3) 31.4 29.8 29.1 33.4 31.5 32.8 36.2 34.9
(10, 1, 1e− 3) 32.1 30.7 29.6 33.8 32.0 33.1 36.5 35.5

(10, 5, 1e− 3) (default) 36.4 35.5 45.8 34.9 39.8 35.0 35.0 38.4

In this ablation, we show some different combination of the weights and the per-class results are
shown in Table 14. As observed, by gradually increasing the weight of Lstyle from 0.1 to 10, the
per-class performances improve steadily, showing the effectiveness of style transfer via text. When
we increase the weight of Lcontent from 1 to 5, the performance improve from 35.5 to 38.4, showing
that preserving the content information is very important during style transfer. The weight of LGram
is kept at a small value so that Lstyle will play the major role during style transfer.

Heterogeneous source model architectures. In our experiment, we use faster R-CNN as both
pre-trained source and target models to demonstrate the effectiveness of our proposed multi-source
free domain adaptation algorithm. To further validate the effectiveness, we include the additional
architecture experiments with ATSS and YOLO-v7 as model architecture choices, and compare
with the latest source-free baselines. The results are presented in Table 15. Despite the choices of
model architectures, our methods show consistently better performance. The algorithm can be further
extended to multiple architecture setting with minor modifications. Specifically, instead of having
only one aggregator, we can initialize multiple aggregator-domain expert pairs with the different
architectures, where each pair share the same architecture for one dataset. For the EMA update of
the aggregator, we update it with the corresponding domain expert, while the domain expert update
remains unchanged. That is, the update of the domain expert θDE

i is the same as in Eq. 7. As shown
in Eq. 8, the aggregator are updated with the corresponding domain expert with the same architecture.
During inference, the ensemble of domain expert is utilized. We present the result of this extended
setting as follows, where we set four model pairs, two with faster-RCNN for Night Clear and Dusk
Rainy datasets and two ATSS and YOLO-v7 for Night Rainy and Day Foggy datasets, respectively,
denoted as FR+ATSS and YOLO-v7 in the table below.

Impact of the choice of aggregator. The aggregator is used directly for inference on target domain
images without requiring augmentation during testing. Its selection is guided by semantic descriptions
of the source domains, using criteria such as weather conditions (e.g., Rainy vs. Clear) or time (e.g.,
Night vs. Day) to determine the closest match. For example, if the target domain is Night Rainy,
either Night Clear or Dusk Rainy can serve as the aggregator because: (1) Both are semantically
close to the target domain. (2) The EMA update integrates characteristics of both Night and Rainy,
enhancing generalization to Night-Rainy. This selection process ensures the aggregator is optimally
suited for inference in the target domain. The results in Table 16 show that, based on semantic
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Table 15: Multi-source domain adaptation results (mAP) using different model architectures (ATSS,
YOLO-v7). For each target domain, Day Clear and the rest three other domains are used as the source
domains for the multi-source setting.

Method Multi-Source Night Clear Dusk Rainy Night Rainy Day Foggy

SED (ATSS) ✗ 32.9 20.5 24.7 28.9
Mean-Teacher (ATSS) ✓ 43.2 31.4 28.6 36.1
MixUp (ATSS) ✓ 41.5 30.4 26.1 31.0
Ours (ATSS) ✓ 44.1 32.0 28.7 37.8
Ours (FR+ATSS) ✓ 43.8 31.6 28.3 37.4

SED (YOLO-v7) ✗ 34.2 22.0 26.2 30.6
Mean-Teacher (YOLO-v7) ✓ 45.2 32.8 30.0 38.1
MixUp (YOLO-v7) ✓ 43.0 31.7 27.5 32.8
Ours (YOLO-v7) ✗ 45.6 33.5 30.2 39.6
Ours (FR+YOLO-v7) ✓ 45.3 33.3 30.0 39.2

closeness, Dusk Rainy is the most effective aggregator for Night Rainy, followed by Night Clear as
the second-best choice.

Table 16: mAP on Night Rainy using different aggregator.

Aggregator Night Clear Day Foggy Dusk Rainy Day Clear
mAP 18.9 17.5 20.3 18.4

Ablation on backbone architectures. To verify the robustness and generalizability of our proposed
method beyond the initial Faster R-CNN + ResNet-50 setup, we evaluate our framework using a
more modern detector, DETR with a ViT backbone Carion et al. (2020). This ablation addresses
two key questions: (1) whether the proposed framework improvements are architecture-agnostic,
and (2) whether the method provides consistent gains even when applied to stronger baselines. The
results in Table 17 show that our method consistently outperforms all baselines across every target
domain with DETR + ViT. These findings indicate that the method’s effectiveness is not tied to a
specific backbone; it adapts well to both CNN-based and transformer-based detectors. Moreover, the
improvements demonstrate that multi-source knowledge fusion scales with stronger architectures,
highlighting its flexibility and applicability across different detection paradigms. This confirms that
the framework can robustly handle domain shifts while leveraging the representational power of
modern detection backbones.

Table 17: Comparison of methods on the NC→ DR→ NR→ NC adaptation setting.

Method NC DR NR NC (cycle)

SED 32.4 29.0 16.3 30.2
Mean-Teacher 43.1 33.0 21.4 37.2
MixUp 39.6 30.0 18.3 33.3
Ours 44.8 34.3 22.6 38.7

Computational costs. We compare the training and inference efficiency of our method with baseline
methods, including MSFDAOD, CAiDA, and Mean Teacher, in terms of inference speed (FPS) and
model size (millions of parameters). As shown in Table 18, our method achieves competitive inference
speed while maintaining a relatively compact model size compared to other multi-source adaptation
approaches. These results highlight the practicality and deployability of our framework in real-world
scenarios.

Impact of different text-based style transfer techniques. In this ablation, we investigate the effect
of different text-based style transfer methods, including our proposed TFA, PODA Fahes et al. (2023),
and ClipStyler Kwon & Ye (2022). As noted earlier, TFA achieves superior style transfer by effectively
altering the image style while preserving content integrity. We further evaluate the performance
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Table 18: Comparison of inference speed (FPS) and model size (millions of parameters) for different
methods.

Method Inference Time (FPS) Parameter Size (M)

MSFDAOD 17 133
CAiDA 15 180
Mean-Teacher 17 128
Ours 17 126

of our multi-source knowledge fusion framework using target images augmented by PODA and
ClipStyler on the Day Foggy adaptation. With PODA-augmented images, the framework achieves
37.5, while ClipStyler achieves 38.2, both of which are lower than TFA’s 38.4. This demonstrates
that the choice of style transfer technique has a measurable impact on adaptation performance, and
that TFA provides the most effective domain-stylized augmentations for our framework.

Impact of fixed EMA rate. In this ablation, we investigate the effect of using fixed EMA rates
instead of dynamically learned ones. Specifically, for domain experts (excluding the aggregator), we
assign equal weights αDE = 1−αagg

M−1 and vary the aggregator’s EMA rate αagg from 0.50 to 0.99. The
resulting mAP values are:

αagg 0.50 0.80 0.95 0.99
mAP 37.5 37.7 38.2 38.1

As shown, although performance slightly improves with higher αagg, the best result (38.2 mAP)
still falls short of our full method with adaptive weighting (38.4 mAP). This demonstrates that
simply assigning equal importance to non-aggregator models is suboptimal, and that our proposed
meta-learned weighting strategy meaningfully contributes to the final performance.

Evaluation on segmentation and classification tasks. Our framework is task agnostic, which
can also be applied to classification and segmentation tasks. To further support the generality of
the framework, we additionally conduct experiments on classification (DomainNet Leventidis et al.
(2021), Table 19) and semantic segmentation (ACDC Sakaridis et al. (2021), Table 20), confirming
that the same framework transfers well to other tasks without architectural changes.

Domain AP APbase APnovel
Clipart 88.65 90.87 87.24
Infograph 86.84 87.57 86.82
Painting 84.27 85.53 84.75
Quickdraw 85.43 84.96 86.44
Real 83.62 84.58 82.66
Sketch 87.34 87.52 86.43

Table 19: Performance across DomainNet domains.

Domain AP APbase APnovel
Foggy 32.5 33.4 29.8
Nighttime 32.2 32.8 29.7
Rainy 29.3 30.7 26.5
Snowy 29.1 30.2 26.6

Table 20: Performance across BDD100K weather conditions.

C.3 QUALITATIVE RESULTS

From Figure 5-Figure 9, we show some qualitative results by making use of the pre-trained image
decoder from CLIPstyler Kwon & Ye (2022) of some stylized target images generated with TFA by
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Table 21: Text Descriptions

Source Domain Descriptions
Day Clear ["Driving at clear day time"]
Night Clear ["Driving at clear night time"]
Night Rainy ["Driving at rainy night time"]
Dusk Rainy ["Driving at rainy dusk time"]
Day Foggy ["Driving at foggy day time"]
City streets ["Driving at city streets"]
Urban street ["Driving at urban streets"]
Video game ["Driving in a video game"]
Random Text 1 ["Robot falls in love"]
Random Text 2 ["Lost in enchanted forest"]

(a) Day Clear (b) Night Clear (c) Dusk Rainy (d) Night Rainy (e) Day Foggy

(f) City Streets (g) Urban street (h) Video game (i) Random text 1 (j) Random text 2

Figure 5: Stylized images of different styles with image sampled from Day Clear domain of DWD
dataset. (a) is the original target image, and (b)-(j) are text-based stylized images with corresponding
description in Table 21.

sampling sampled from different domains with different text-based description styles described in
Table 21. In general, the text-based style transfer successfully transfer the domain style from the
source domain to the target domain with the text descriptions. For example, in Figure 5, taking an
image from Day Clear domain, the Night Clear and Night Rainy styles transfer the image to a dark
night environment; the Dusk Rainy style imparts a pink dusk ambiance to the image; the Day Foggy
style introduces fog into the image. In conclusion, the text-based style transfer technique is able
to change the weather and time conditions given an image. In other instances, the City View and
Urban View styles largely maintain their similarity in style descriptions, as they are closely related.
Conversely, the Video Game style transforms a realistic image into a simulated one. Additionally, the
random texts effectively incorporate relevant elements corresponding to the text descriptions.

In addition, we present some qualitative results on the evaluation of the aforementioned augmented
images in Figure 10, with the target image sampled from Day Clear and the augmented images from
Figure 5. As observed in the first row, when directly predicting the original image with different
pre-trained source models, the domain gap between them tends to lead to the erroneous predictions.
While in the second row, the pre-trained source models perform well on the corresponding augmented
stylized images even they are not sampled from the corresponding domains. They all give perfect
predictions except for Night Rainy, which has the largest domain gap with Day Clear. This show that
the text based style transfer has reasonably reduced the domain gap between the source models and
the target image.

C.4 ILLUSTRATION OF FAILED EXAMPLES

In this section, we present some examples where the model struggles to detect objects in the target
images, as shown in Figure 11. The results show that under extreme conditions, where the domain
gap is large, or the classes are unseen in the source, the model’s performance significantly degrades.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

(a) Dusk Rainy (b) Day Clear (c) Night Clear (d) Day Foggy (e) Night Rainy

(f) City Streets (g) Urban street (h) Video game (i) Random text 1 (j) Random text 2

Figure 6: Stylized images of different styles with an image sampled from Dusk Rainy domain of
the DWD dataset. (a) is the original target image, and (b)-(j) are text-based stylized images with
corresponding description in Table 21.

(a) Night Rainy (b) Day Clear (c) Night Clear (d) Dusk Rainy (e) Day Foggy

(f) City Streets (g) Urban street (h) Video game (i) Random text 1 (j) Random text 2

Figure 7: Stylized images of different styles with an image sampled from Night Rainy domain of
the DWD dataset. (a) is the original target image, and (b)-(j) are text-based stylized images with
corresponding description in Table 21.

(a) Night Clear (b) Day Clear (c) Day Foggy (d) Dusk Rainy (e) Night Rainy

(f) City Streets (g) Urban street (h) Video game (i) Random text 1 (j) Random text 2

Figure 8: Stylized images of different styles with an image sampled from Night Clear domain of
the DWD dataset. (a) is the original target image, and (b)-(j) are text-based stylized images with
corresponding description in Table 21.
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(a) Day Foggy (b) Day Clear (c) Night Clear (d) Dusk Rainy (e) Night Rainy

(f) City Streets (g) Urban street (h) Video game (i) Random text 1 (j) Random text 2

Figure 9: Stylized images of different styles with an image sampled from Day Foggy domain of
the DWD dataset. (a) is the original target image, and (b)-(j) are text-based stylized images with
corresponding description in Table 21.

(a) Day Clear (b) Night Clear (c) Dusk Rainy (d) Night Rainy (e) Day Foggy

(f) Day Clear (g) Night Clear (h) Dusk Rainy (i) Night Rainy (j) Day Foggy

Figure 10: Prediction comparison on original and stylized images of different styles for each source
model trained on Day Clear (a, f), Night Clear (b, g), Dusk Rainy (c, h), Night Rainy (d, i) and
Day Foggy (e, j). (a)-(e) is the original target image, and (f)-(j) are text-based stylized images with
corresponding description in Table 21. The colors mean different class labels (red: car, yellow: bus,
green: truck).
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(a) Failed to detect due to weather condition. (b) Fail to detect due to bad lighting.

Figure 11: Example of failures.

C.5 COMPARISON OF TFA WITH EXISTING TEXT-BASED STYLE TRANSFER METHODS

In this section, we present the augmented images generated with different text-based style transfer
methods including CLIPstyler Kwon & Ye (2022), PODA Fahes et al. (2023) and our TFA using the
same pre-trained CLIPstyler image decoder. In Figure 12, we present the detection results of different
stylized images using the same model trained on Day Clear domain. The detection results of the two
original images sampled from Day Clear domain serve as oracle results. Compared to CLIPstyler and
PODA, TFA manage to maintain the details of the original images while rendering corresponding
styles, such as foggy style and night style. The detection performance of TFA aligns closely with the
oracle performance. While CLIPstyler misclassifies car as bus, bus as truck with Day Foggy style
augmentation and fails to detection truck with Night Clear style augmentation. PODA renders a very
strong style for the augmentation that even lose most of the details in the original content, which is
somewhat reasonable since PODA only updates its style statistics with CLIP style loss without a
content preservation regularization.

(a) Test image 1 (b) TFA - day foggy (c) CLIPstyler - day foggy (d) PODA - day foggy

(e) Test image 2 (f) TFA - night clear (g) CLIPstyler - night clear (h) PODA - night clear

Figure 12: Two images (a)/(e) from the Day Clear domain are stylized with different domain styles:
Day Foggy and Night Clear, using different text-based style transfer methods: TFA (ours), CLIPstyler
and PODA.

C.6 COMPARISON OF DOMAIN ADAPTATION METHODS WITH ACCESS TO THE SOURCE DATA

We compare our method with Unsupervised Domain Adaptation (UDA) methods which have access
to the source data including SW Pan et al. (2019), IBN-Net Pan et al. (2018), IterNorm Huang et al.
(2019), ISW Choi et al. (2021), PODA Fahes et al. (2023), CLIP-Aug Vidit et al. (2023), and S-
DGOD Wu & Deng (2022). From Table 22, we observe that even access to the source data, our model
outperformes the UDA methods with access to the source data in the Night Clear and Night Rainy
domain. This is attribute to the incorporation of multi-source pre-trained models. We effectively
utilize the knowledge from different pre-trained source models with our proposed mean-teacher
framework and benefit the generalization to the target domain without needing the access to the source
data. As for the Dusk Rainy and Day Foggy domains, our method achieves comparable performance
as PODA and CLIP-Aug, and outperforms the rest UDA methods, which helps demonstrate the
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effectiveness of our approach. This indicates that leveraging multi-source pre-trained models with
our mean-teacher framework provides a strong advantage in domain adaptation, even without direct
access to the source data. Our proposed text-based augmentation successfully reduce the domain gap
between the target images and the pre-trained models. Our method generalizes well across diverse
target domains, outperforming traditional UDA methods in challenging conditions such as Night
Clear and Night Rainy while maintaining competitive results in other domains like Dusk Rainy and
Day Foggy.

Table 22: Multi-source domain adaptation results (mAP). For each target domain, Day Clear and the
rest three domains are used as the source domains for the multi-source setting. For the single-source
UDA and SFDA, Day Clear is used as the source following the typical setting Wu & Deng (2022);
Vidit et al. (2023); Fahes et al. (2023).

mAP

Method Source NC DR NR DF

SW ✓ 33.4 26.3 13.7 30.8
IBN-Net ✓ 32.1 26.1 14.3 29.6
IterNorm ✓ 29.6 22.8 12.6 28.4
ISW ✓ 33.2 25.9 14.1 31.8
S-DGOD ✓ 36.6 28.2 16.6 33.5
CLIP-Aug ✓ 36.9 18.7 18.7 38.5
PODA ✓ 43.4 40.2 19.5 44.4
Ours ✗ 44.5 32.5 20.3 38.4

D POTENTIAL SOCIAL IMPACT AND LIMITATIONS

Source-data free domain adaption has the potential to significantly expand the usage of domain
adaptation in more diverse settings with various constraints, such as edge devices with limited
storage and applications with privacy concerns. It provides a cost-effective way to perform domain
adaptation as pre-trained source models are more efficient to transfer than large datasets. It is also
more memory-efficient to save the pre-trained source models versus a large training dataset. When
considering data privacy, using a pre-trained source model eliminates the risk of sensitive information
leaking. The proposed approach also improves existing methods based on a single source model.
By simultaneously considering multiple source models, the domain gap can be effectively reduced.
Nevertheless, when all the source domains exhibit a large gap as compared with the target domain,
the object detection performance will naturally degrade. In this case, it is important to detect such
situations and seek other potential sources for adaptation. To this end, an interesting future direction
is to perform uncertainty-aware domain adaption to automatically detect the potential domain gap or
choose more semantically similar domains for adaptation.

Another potential limitation is that our method requires a domain description. However, we clarify
that our method only requires high-level and general information of the source domain, instead
of the precise low-level details. This is much less demanding than manually labeling many data
samples and some general knowledge of the domain is adequate. Furthermore, since no specific
source data is required, it ensures privacy with no storage and transmission overhead. As shown
in Figure 4, we have conducted an ablation of using different text descriptions of different source
domains. The results demonstrate that any relevant text description can lead to reasonably good
performance. Proper descriptions lead to better performance, which further reduces the requirement
of the domain description, making it much more easily accessible than directly accessing source
data itself. For example, for the Cityscapes dataset, we don’t need to include each city names in the
description, a simple yet general description such as “Driving in the city” is sufficient and able to
produce superior performance. Such descriptions only require very basic understanding of the dataset
and don’t require much expertise.
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E SOURCE CODE

For source code, please refer to https://anonymous.4open.science/r/sfda_
aug-ADB0/Readme.txt.

F LLM USAGE STATEMENT

Large Language Models (LLMs) were used solely to aid in polishing the writing and improving
the clarity of exposition. No part of the research ideation, experimental design, implementation, or
analysis relied on LLMs. The authors take full responsibility for the content of this paper.
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