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Abstract

We present CausalLink, an innovative eval-001
uation framework that interactively assesses002
causal reasoning skills in conversational lan-003
guage models. Each CausalLink test case cre-004
ates a hypothetical environment in which the005
language models are instructed to apply inter-006
ventions to entities whose interactions follow007
predefined causal relations generated from con-008
trollable causal graphs. Our evaluation frame-009
work isolates causal capabilities from the con-010
founding effects of world knowledge and se-011
mantic cues. We evaluate a series of LLMs in012
a scenario featuring movements of geometric013
shapes and discover that models start to exhibit014
reliable reasoning on two or three variables at015
the 14-billion-parameter scale. However, the016
performance of state-of-the-art models such as017
GPT4o degrades below random chance as the018
number of variables increases. We identify and019
analyze several key failure modes.020

1 Introduction021

Evaluating the causal reasoning abilities of gen-022

erative AI has become a popular research area,023

especially given the advancements of modern024

LLMs(Zhang et al., 2023; Kıcıman et al., 2023;025

Cai et al., 2023; Liu et al., 2024). However, there026

are at least two major challenges with regards to027

the effectiveness of causal reasoning benchmarks:028

1) clearly defining the targeted abilities and 2) dis-029

entangling reasoning processes from confounding030

factors such as data contamination and shortcuts.031

In this study, we tackle these two challenges and032

propose a dynamic evaluation framework in which033

the models are instructed to discover causal rules034

by interacting with hypothetical entities.035

Although human causal reasoning has been sys-036

tematically studied in various domains including037

computer science, psychology, and cognitive sci-038

ence(Goldvarg and Johnson-Laird, 2001; Gopnik039

et al., 2004; Pearl, 2009; Goddu and Gopnik, 2024),040

we still observe blurred lines among different facets 041

of causal reasoning in the current AI literature, 042

where the term “causal capabilities" may refer to 043

a range of abilities from retrieving commonsense 044

knowledge (Du et al., 2022; Frohberg and Binder, 045

2022; Srivastava et al., 2022) to multi-step struc- 046

tural inference (Jin et al., 2023). 047

We bifurcate causal reasoning skills into two gen- 048

eral categories based on whether or not the reason- 049

ing process depends on existing world knowledge 050

of causal facts (e.g., given a known causal rela- 051

tionship between X and Y such that X causally 052

impacts Y ). Fact-dependent abilities include effect 053

retrieval, cause retrieval, and mechanism explana- 054

tion. While all types of fact-dependent abilities 055

fit under the general framework of causal reason- 056

ing, none of them requires a genuine understanding 057

of causality. In other words, applying knowledge- 058

based causal abilities requires no higher level of 059

sophistication than superficial knowledge retrieval. 060

In contrast, fact-independent reasoning abilities 061

represent the foundational mechanisms of causal 062

reasoning, which do not rely on exhaustive knowl- 063

edge of causal facts. These abilities enable humans 064

to derive new causal insights, design experiments, 065

and build the body of common knowledge. Hu- 066

mans develop foundational causal reasoning skills, 067

such as reasoning about immediate context and ac- 068

tions, in the early stages of cognitive development 069

prior to language acquisition (Goddu and Gopnik, 070

2024). As a results, LLMs may lack causal rea- 071

soning skills parallel to early-stage human causal 072

reasoning through interactions, which serves as 073

a foundation for more advanced reasoning pro- 074

cesses(Goddu and Gopnik, 2024). In this paper, 075

we define a causal capability named action iden- 076

tification, which entails identifying the correct in- 077

tervention, observing the effects of its action, and 078

reasoning about whether a causal relationship ex- 079

ists. 080

The key contributions of our work are threefold: 081
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• We introduce a novel multi-round interactive082

evaluation framework for causal reasoning,083

designed to isolate the effects of grounded084

knowledge and semantic cues. This method085

is broadly applicable beyond the specific use086

case demonstrated in this paper. The frame-087

work and code is available at [REDACTED].088

• We systematically evaluate and compare a089

series of LLMs, establishing our evaluation090

framework as a reliable benchmarking tool.091

• We analyze failure modes in state-of-the-art092

models, identifying recurring "cognitive bi-093

ases" that affect their causal reasoning.094

2 Related Work095

Current causal benchmarks usually evaluate mod-096

els with cases developed from real-world causal097

scenarios (Du et al., 2022; Frohberg and Binder,098

2022; Srivastava et al., 2022; Kıcıman et al., 2023;099

Jin et al., 2023; Wang, 2024). While real-world100

causal cases are undoubtedly effective in testing101

fact-dependent causal skills (Kıcıman et al., 2023),102

researchers must carefully mitigate the potential103

bias that causal claims can be made with knowl-104

edge recall rather than actual reasoning (Cai et al.,105

2023) ). Previous mitigation included reversing106

the direction of causality to make causal relations107

counterfactual (Jin et al., 2023), using nonsen-108

sical descriptors to eliminate semantic cues (Jin109

et al., 2023), and questioning the model from mul-110

tiple perspectives differentiating the directions of111

causality and the presence of interventions (Wang,112

2024). Our solution is to construct a hypothetical113

world from scratch with underlying causal rules,114

which offers several distinctive advantages com-115

pared to previous work. First, the causal relations116

in the benchmark are systematically generated from117

causal graphs, allowing precise control over the dif-118

ficulty of the task. Second, the causal entities are119

customizable and can be designed to be entirely120

free of linguistic or contextual clues that could121

otherwise create semantic shortcuts in reasoning.122

Finally, the interactive nature of the benchmark123

allows for the analysis of model strategies.124

2.1 Causal Reasoning in LLMs125

Chan et al. (2023) evaluated temporal, causal, and126

discourse relation tasks and found that ChatGPT127

achieved the best performance relative to fine-128

tuned SotA models in causal relation tasks specifi-129

cally. This work again confirmed the models’ abil-130

ity to match commonsense knowledge patterns in 131

causality-related tasks. By contrast, Jin et al. (2023) 132

showed that even the most advanced GPT-4 model 133

(OpenAI, 2023) struggles with the formal causal 134

reasoning task, CLADDER. They proposed a tai- 135

lored Chain-of-Thought prompt (Wei et al., 2022b) 136

that marginally increases the overall accuracy from 137

64.28% to 66.64% (Jin et al., 2023). Liu et al. 138

(2023) investigated causal reasoning abilities in 139

code-based LLMs and reported that models lever- 140

aging code prompts — which explicitly encode 141

conditional structures — exhibit superior perfor- 142

mance in identifying causal relations. Jin et al. 143

(2024) introduced the Corr2Cause benchmark to 144

assess the ability of LLMs to infer causation from 145

correlational data, showing that these models often 146

perform near chance levels when faced with out- 147

of-distribution examples. Finally, Chi et al. (2024) 148

proposed the G2-Reasoner framework, which aug- 149

ments LLMs with external general knowledge and 150

goal-driven prompts to elevate their reasoning from 151

simple, fact-dependent associations (level-1) to- 152

ward more robust, inference-driven capabilities 153

(level-2). While LLMs show notable strengths in 154

leveraging vast amounts of training data to rec- 155

ognize common causal patterns, significant gaps 156

remain in achieving genuine, context-independent 157

causal reasoning. 158

2.2 Interactive Evaluation 159

Advancements in conversational language mod- 160

els have paved the way for interactive evaluations, 161

moving beyond the limitations of traditional static 162

datasets. Prior to the era of LLMs, Kiela et al. 163

(2021) identified the need for dynamic benchmark- 164

ing to address the rapid saturation of model perfor- 165

mance on static datasets. This need has become 166

even more pronounced as models are increasingly 167

exposed to vast amounts of training data. Platforms 168

like Chatbot Arena (Chiang et al., 2024) have intro- 169

duced effective evaluation methods by leveraging 170

human preferences, where rankings emerge natu- 171

rally through pairwise battles rather than relying on 172

predefined ground-truth labels. Similarly, Hu et al. 173

(2024) proposed GameArena, a framework that 174

evaluates reasoning abilities through human-AI in- 175

teractions constrained by gaming rules designed to 176

test deductive and inductive reasoning. 177

Building on these approaches, we argue that dy- 178

namic benchmarks are inherently more effective 179

and flexible; however, we aim to reduce reliance on 180

human involvement. While some may view close- 181
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form labels as a weakness (Chiang et al., 2024),182

we argue that they offer a clear and objective stan-183

dard. Our framework introduces carefully designed184

programs as stand-ins for human evaluators, en-185

abling robust interaction-driven assessments while186

maintaining scalability and consistency.187

3 Framework Description188

CausalLink evaluates causal reasoning in language189

models through interactive simulations grounded in190

formal causal graphs. The system comprises three191

integrated components: (1) a configurable causal192

graph generator that encodes ground-truth relation-193

ships, (2) a dynamic simulation environment where194

variables map to interactive entities, and (3) a lan-195

guage model interface that tests causal understand-196

ing through multi-step interventions. Each compo-197

nent is formalized as follows.198

3.1 Causal Graph Construction199

The foundational causal structure is implemented200

as a directed acyclic graph (DAG). We support201

three core structural paradigms: direct causation202

(A → B), mediation (A → B → C), and con-203

founder (A← B → C). Optional secondary edges204

(A→ C) are allowed in confounder structures, al-205

lowing exploration of both canonical and perturbed206

causal configurations. The perturbed confounder207

structure inherently contains the collider structure208

(A → B ← C). We also allow randomly gener-209

ated DAGs with any number of variables for test210

cases with varying difficulty. For random causal211

graphs, structural integrity is maintained through212

constrained edge generation. Causal connectiv-213

ity between variables is algorithmically validated,214

which serves as ground truths in our evaluation. We215

implement graphical computation using the Net-216

workX (Hagberg et al., 2008) library.217

3.2 Interactive Simulation Environment218

In our experiments, we define a simulated environ-219

ment called ShapeWorld where the abstract causal220

variables are represented as geometric shapes with221

dynamic states, moving or static. Given a causal222

graph G = (E, V ), for any edge e ∈ E from223

v1 ∈ V to v2 ∈ V , v1 and v2 represent two shapes224

s1 and s2 such that the movement of s1 causes s2225

to move. Models can manipulate shapes by either226

moving them, thereby activating their causal de-227

scendants, or holding them in place, which prevents228

movement if no other causal factors remain. Causal229

effects propagate throughout the system according230

to the underlying graph structure, and deactivating 231

an influence follows a backward-tracing process 232

to verify dependencies and remove effects accord- 233

ingly. Our implementation follows Markovian state 234

transitions such that each intervention’s effects de- 235

pend solely on the current set of active elements 236

and the causal graph structure. 237

While we use ShapeWorld as an example, our 238

general framework can be extended to other sim- 239

ulated environments with different themes. We 240

choose geometric shapes as causal entities because 241

they have minimal semantic meaning, minimizing 242

the risk of models relying on pretraining biases or 243

external knowledge. This design choice allows us 244

to isolate causal reasoning from knowledge ground- 245

ing, ensuring that model performance reflects an 246

understanding of causal relationships rather than 247

memorized associations. To construct a new sim- 248

ulated environment within our framework, several 249

key principles must be followed. First, each vari- 250

able in the causal graph should correspond to a 251

pair of an entity and its change. Despite our setup 252

having only one type of change (movement), the 253

system can incorporate multiple types of changes as 254

long as the mapping between causal relationships 255

and observed transformations is clear. Second, the 256

environment must include a static or neutral state 257

for entities, preserving the visibility of the under- 258

lying causal graph. In other words, it is necessary 259

to maintain the possibility of removing the effects 260

of a variable from the system. Finally, the system 261

must define well-structured interventions that can 262

reliably activate changes in an entity, ensuring that 263

causal dependencies can be systematically tested. 264

3.3 Language Model Interaction Protocol 265

We evaluate LLMs through templated dialogues, 266

requiring models to select shapes to intervene, inter- 267

pret the feedback from the environment after each 268

action, and conclude whether a specified causal 269

relationship exists. The interaction process is illus- 270

trated in Figure 1. We present the general idea of 271

the prompting process for the four phases shown in 272

Figure 1 in this section and provide complete sets 273

of prompts in the appendix. 274

Initialization: We present the settings of the 275

hypothetical world of shapes and specify the rules 276

of the task. We give the models the initial states 277

of each shape in the system and propose a ques- 278

tion that asks whether the movement of one shape 279

causes the movement of another. 280
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Figure 1: Illustration of the interaction process between our CausalLink system and a language model. This figure
demonstrates an example test case where the model hypothetically correctly solves the task.

Model Acc. (F) Acc. (T) Acc. Avg. Steps Err.
Llama 3.2 3B(AI@Meta, 2024b) 0.766 0.622 0.702 1.88 5
Llama 3.1 8B (AI@Meta, 2024b) 0.979 0.189 0.631 3.35 0
Mistral 7B(*) (Jiang et al., 2023) 0.957 0.216 0.631 1.02 3
Qwen2.5 3B (Yang et al., 2024) 0.894 0.297 0.631 1.00 0
GPT-4o-mini (OpenAI, 2024a) 1.000 0.243 0.666 1.54 0
Qwen2.5 14B (Yang et al., 2024) 0.936 0.622 0.797 2.23 1
DS-Distill Qwen 14B(DeepSeek-AI, 2025) 0.826 0.789 0.809 2.02 4
Qwen2.5 32B (*) (Yang et al., 2024) 0.979 0.784 0.893 1.68 1
DS-Distill Qwen 32B (*) (DeepSeek-AI, 2025) 0.979 0.865 0.929 1.63 0
Llama 3.1 Nemotron 70B(*) (Wang et al., 2024) 1.000 0.892 0.952 2.40 0
Gemini 2.0 Flash (Mallick and Kilparick, 2025) 0.787 0.919 0.845 1.40 0
GPT-4o(*) (Hurst et al., 2024) 0.915 0.892 0.904 1.57 0

Table 1: Model Performances on the core set. Acc. (F) and Acc. (T) refer to accuracy scores on test cases with
False and True ground truth labels respectively. Err. refers to the number of errors due to invalid formats, invalid
answers, or invalid actions. Models with (*) perform better with rate-limiting instruction and models without (*)
perform better without rate-limiting instruction. DS-Distill is a shorthand form of "DeepSeek Distilled".

You are in a world of shapes. The movements
of shapes follow internal causal rules. You are
required to interact with the shapes until you can
answer a question about the causal rules. All
changes in the world are deterministic and con-
sistent. There is no hidden confounder. You can
either 1) move a static shape or 2) hold a moving
shape. A shape only stops moving when there
are no other causes of its movement.
Following are your current observations: (initial
states of shapes)
Please interact with the shapes to answer: Does
triangle moving cause square to move?

281

Intervention Phase: We ask the model to pro-282

pose JSON-formatted {shape, action} pairs, which283

we use to apply interventions to our system.284

Please propose your interaction. Please provide
your response by filling the JSON:
{"shape":"", "action":""}

285

State Reflection: We feed the model with post-286

intervention state updates and request the model to287

either continue interaction or answer the question.288

Following your last action, the current states of
shapes are: (current states of shapes)
Based on the results you observed so far, please
decide to continue the interaction or answer the
question.

289

Conclusion: We conclude a test case when the 290

model is ready to answer the question. The model 291

delivers a final yes/no judgment. 292

You are ready to answer the question:
(question) 293

3.4 Experiment Setup 294

Our experiments are divided into two primary com- 295

ponents. The first, referred to as the core set, 296

comprises only direct (two-variable), mediation 297

(three-variable), and confounder (three-variable) 298

causal structures. The second, the advanced set, 299

features randomly generated causal graphs that in- 300

clude more than three variables. We use the core 301

set as a comprehensive test of basic causal struc- 302

tures. For each causal structure in the core set, we 303

systematically generate all possible initial config- 304

urations of active nodes and formulate pairwise 305

4



causal queries (i.e., A→ B and B → A) for every306

pair of shapes. To create a comprehensive set of307

initial setups, we enumerate all combinations of308

nodes, simulate the cascade of causal effects based309

on the underlying graph, and eliminate redundant310

configurations. This results in 84 test cases for the311

core set.312

The advanced set is designed to simulate increas-313

ingly complex problems. We rely on randomized314

experiments to increase the likelihood of capturing315

the most challenging cases. Given the rapid growth316

of combinatorial possibilities, it is infeasible to ex-317

haustively test all configurations of experimental318

setups and cause-effect pairs. Therefore, for the319

advanced set, we restrict our analysis to the "all-320

active" setup, where all shapes are in motion, and321

we randomly sample six pairs of variables for each322

generated graph. This method balances computa-323

tional feasibility with sufficient complexity to eval-324

uate model performance on more difficult causal325

inference tasks. We generate 50 random graphs326

with 50% connectivity for 4 to 7 variables, result-327

ing in 1200 test cases for the advanced set.328

For a test case with n variables, the model is329

allowed up to 2n intervention steps, after which it330

is considered to have failed due to timeouts. We331

assess model performance using three key met-332

rics: accuracy, defined as the proportion of correct333

causal judgments relative to the ground-truth graph;334

efficiency, measured as the mean number of steps335

required to reach a final judgment; and robustness,336

evaluated based on the frequency of invalid actions,337

format errors, and timeouts. We run the experi-338

ments twice with two prompting strategies: the339

basic prompt and one that specifically instructs the340

models to reach the conclusion in the fewest steps341

possible. We limit prompt engineering to avoid342

conflating the evaluation of reasoning ability with343

instruction-following.344

In our experiments, we capture 3 error modes:345

invalid action (where the model attempts to choose346

action-shape pairs outside of valid settings), in-347

valid format (where the model fails to follow the348

instructed format), and invalid answer (where the349

model answers neither yes nor no).350

4 Experiment Results351

4.1 Core Set Performance352

We run experiments on both locally deployed open-353

source models using the HuggingFace Transformer354

(Wolf et al., 2020) library and OpenAI GPT models355

and Gemini 2.0 Flash through API calls. We report 356

the better performance out of the two prompting 357

strategies in Table 1 and present the complete sets 358

of results in Appendix E. 359

The results indicate that causal reasoning on our 360

core set of test cases aligns with the pattern of emer- 361

gent abilities (Wei et al., 2022a), with reasoning 362

skills generally appearing at scales of 14 billion pa- 363

rameters and above. Smaller models except Llama 364

3.2 3B exhibit a strong bias toward concluding that 365

no causal relationship exists, achieving a maximum 366

of only 29.7% (GPT-4o-mini) accuracy rate of pos- 367

itive cases. Llama 3.2 3B generates relatively bal- 368

anced outputs but still underperforms with 70.2% 369

accuracy. Llama 3.1 Nemotron 70B outperforms 370

other models, including GPT-4o, achieving 95.2% 371

accuracy. Additionally, providing an instruction to 372

reach the conclusion as quickly as possible gener- 373

ally benefits larger models but negatively impacts 374

smaller ones. We observe that this instruction limits 375

the generation of error-prone and sometimes contra- 376

dicting rationales in larger models, allowing them 377

to reason more accurately with fewer interactions. 378

This phenomenon is particularly pronounced in the 379

DeepSeek-distilled Qwen 2.5 32B model, which 380

shows a remarkable 30.2% performance improve- 381

ment when the instruction is applied. One special 382

case is the best-performing Llama 3.1 Nemotron 383

model whose accuracy and the average number of 384

steps both increase with the step-limiting instruc- 385

tion. Figure 2 shows side-by-side comparisons of 386

model performances across the three causal struc- 387

tures. Models achieving more than 80% overall 388

accuracy can perfectly solve all of the two-variable 389

cases, with which the smaller models struggle. As 390

shown by the error bars in Figure 2, we also observe 391

greater variability in performance across different 392

initial setups in the mediation structure compared 393

to the confounder structure. 394

Although large models achieve seemingly strong 395

performance, we argue that the core set is inten- 396

tionally designed to be fundamental and straight- 397

forward. Any failure on these tasks suggests gaps 398

in the action identification skill we aim to evalu- 399

ate. We will explore failure cases further in the 400

following sections. 401

4.2 Advanced Set Performance 402

Due to practical constraints on computational re- 403

sources, we select GPT4o and Gemini 2.0 Flash 404

as the test models for the advanced set study be- 405

cause of their representative performance on the 406
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Figure 2: Comparison of model performances by causal structures. Similar to Table 1, this graph only showcases
the better performance out of the two prompting strategies for each model. We recognize perfectly solving cases
with direct causal structures as the indicator of basic causal capability. Error bars indicate the standard error of
accuracy with respect to initial setups.

core set and their widespread popularity. Figure 3407

shows the performance of the two models across408

the core and the advanced sets grouped by the num-409

ber of variables. We observe a clear pattern that410

the model’s performance degrades as the number411

of variables increases.412

Although the number of variables increases, the413

fundamental reasoning processes required to solve414

the task remain unchanged. For humans, the in-415

creased difficulty may stem primarily from the416

cognitive demand of managing more information417

(Sweller, 2011) rather than requiring more sophis-418

ticated reasoning skills. The observed decline in419

models’ performance as the number of variables420

increases may suggest a lack of genuine causal421

reasoning. This deficiency is less apparent in the422

simpler core set but becomes more evident when423

the complexity of the problem increases.424

Figure 3: Performance of GPT4o and Gemini 2.0 Flash
on ShapeWorld with increasing number of variables.
We compare the average accuracy score among the "all-
active" initial setups for fairness.

5 Discussion 425

5.1 Observed Abilities in Simple Settings 426

In our study, models at the 14B scale and above 427

exhibit a basic understanding of causal interven- 428

tion. When prompted with a question, the mod- 429

els reliably select the cause variable to intervene 430

and observe the corresponding effect. They also 431

demonstrate the capability of identifying potential 432

confounding variables in simple settings; for exam- 433

ple, when the effect variable is already moving in 434

the initial setup, the models may attempt to halt its 435

movement by holding a shape that is neither the 436

cause nor the effect variable. Additionally, these 437

models are generally efficient at solving the prob- 438

lem, rarely engaging in unnecessary or repeated 439

interaction steps. 440

5.2 Observed Weaknesses in Complex 441

Settings 442

Despite demonstrating basic causal reasoning abil- 443

ities in simpler scenarios, state-of-the-art models 444

do not scale well to more complex setups. Perfor- 445

mance declines sharply as the number of variables 446

increases, dropping below random chance when 447

the variable count exceeds six, highlighting a clear 448

gap in causal reasoning capabilities. While mod- 449

els are generally efficient, they sometimes fail by 450

prematurely jumping to conclusions without suffi- 451

cient evidence (see section 5.3 for examples). Addi- 452

tionally, even when all necessary observations are 453

available, models can misinterpret causal relation- 454

ships and arrive at incorrect conclusions. Notably, 455

our experimental setup is already a highly distilled 456
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simulation of real-world causal reasoning, reduc-457

ing complex interactions to the movements of ab-458

stract shapes. Furthermore, we design interactions459

such that the underlying causal structure is fully ob-460

servable through interventions, whereas real-world461

scenarios often present much greater ambiguity.462

The fact that models struggle even under these con-463

trolled conditions underscores the limitations of464

their causal reasoning abilities.465

5.3 "Cognitive" Bias in Failure Cases466

We now present case studies on model failure467

modes. To ensure the validity of our analysis, we468

focus only on recurring error patterns in models469

that perform well on the core set. Table 2 shows470

the prevalence of each type of failure mode and471

how we identify each patter.472

Our findings suggest that these "cognitive bi-473

ases" stem not from a lack of causality-related474

knowledge (e.g., confounding variables) but rather475

from its misapplication. While models often gener-476

ate rationales that include correct principles—such477

as "to conclude causality, I need to isolate the478

effects"—their actual behaviour does not always479

align with their stated reasoning.480

In the following examples, (m) indicates a shape481

is moving and (s) indicates a shape is static.482

Root Cause Bias As discussed in Section 4.1,483

even the best-performing models may struggle with484

the simple mediator structure. Given the causal485

structure A → B → C, where B mediates the486

effect of A on C, it is important to recognize both487

A and B as the cause of C. This concept is crucial488

in front-door adjustment, a key technique in causal489

inference (Pearl, 2009). However, we observe a490

prevalent pattern that models incorrectly disregard491

the mediate as a potential cause as soon as they492

figure out the root cause. Models tend to attribute493

movements of the shapes to be systematically de-494

pendent on the root cause and do not attempt to495

further investigate other internal interactions. De-496

spite explicit instructions in the prompt allowing497

for multiple causes, models remain biased toward498

the false assumption that only a single cause is499

responsible for an effect.500

Does the square moving cause the circle to
move?
Setup: triangle (m); square (m); circle (m)
[hold square]
triangle (m); square (m); circle (m)
[hold triangle]
triangle (s); square (s); circle (s)
Model (Nemotron) Answer: no

501

Correlation Bias Language models may strug- 502

gle to differentiate correlation from causation. 503

When two variables exhibit the same behaviour 504

across multiple actions, models tend to infer a 505

causal relationship as soon as their states change 506

together. In such cases, models may disregard the 507

direction of causality entirely or the existence of a 508

confounder. 509

Does the octagon moving cause the triangle to
move?
Setup: triangle (m); octagon (m);
rectangle (m); circle (m)
[hold octagon]
triangle (m); octagon (m);
rectangle (m); circle (m)
[hold rectangle]
triangle (m); octagon (m);
rectangle (m); circle (m)
[hold circle]
triangle (m); octagon (m);
rectangle (m); circle (m)
[hold triangle]
triangle (s); octagon (s);
rectangle (s); circle (s)
Model (GPT4o) Answer: yes

510

Another form of correlation bias occurs when 511

the effect shape is already moving in the initial 512

state. In such cases, the model moves the supposed 513

cause shape and infers causality when it observes 514

both shapes in motion. 515

Does the circle moving cause the triangle to
move?
Setup: triangle (m); square (s); circle (s)
[move circle]
triangle (m); square (s); circle (m)
Model (GPT4o) Answer: yes

516

Interestingly, this type of correlation bias does 517

not appear in the direct causal structure. One possi- 518

ble explanation is that the presence of a static third 519

shape (e.g., the square) leads the model to assume 520

that confounding factors are controlled. This as- 521

sumption may then reinforce its incorrect inference 522

of causality. 523

Illusive Confounder Bias The illusive con- 524

founder bias complements the correlation bias such 525

that the model refuses to identify a positive causal 526

relationship due to the potential existence of con- 527

founders even if there is evidence against it. In the 528

following example, holding the triangle effectively 529

eliminates the movement of the square as a poten- 530

tial confounder. However, the model mistakenly 531

concludes that the square may be an intermediary 532

factor, confusing mediators with confounders, and 533

denies the causal relationship. 534
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Failure Mode Percentage Result Characteristic Pattern
Root Cause Bias 42.6% False negative all shapes become static
Correlation Bias 14.8% False positive two shapes in question act the same
Illusive Confounder Bias 11.1% False negative all necessary evidence present
Reverse Collider Bias 11.1% False negative two shapes in question not in sync

Table 2: Prevalence of failure modes by percentage of occurrences among 55 failed cases on the core set (using both
prompting strategies) from the three best-performing models (Nemotron, DS-distill Qwen 32B, and GPT4o). Note
that 20% of the failure cases are not categorized due to variations in failure patterns.

Does the triangle moving cause the circle to
move?
Setup: triangle (m); square (m); circle (m)
[hold triangle]
triangle (s); square (s); circle (s)
Model (DeepSeek Distilled Qwen 2.5 32B) An-
swer: no

535

Reverse Collider Bias In causal inference, the536

collider structure is characterized by two cause537

variables (A and B) influencing the same effect538

variable (C) (Pearl, 2009). A collider bias refers539

to the false positive claim of causality where the540

cause and effect variables (A and B) in question541

both influence a third common variable (C) that is542

controlled due to problematic experimental design543

(Pearl, 2009; Holmberg and Andersen, 2022). We544

observe a related but different pattern in language545

models where the model controls A and concludes546

A does not cause C because there is another vari-547

able (unidentified B) that also causes C.548

Does the square moving cause the hexagon to
move?
Setup: square (m); ellipse (m); hexagon (m);
circle (m)
[hold square]
Setup: square (s); ellipse (m); hexagon (m); circle
(m)
Model (GPT4o) Answer: no

549

6 Conclusion550

In this paper, we introduced CausalLink, a novel551

interactive evaluation framework that rigorously552

assesses a fact-independent causal reasoning skill553

that we term "action identification" in LLMs. By554

constructing a controlled, simulated environment555

with predefined causal relationships, we effectively556

isolate genuine reasoning from the confounding557

influences of world knowledge and semantic cues.558

This approach not only enables precise measure-559

ment of causal reasoning abilities but also offers560

a generalizable methodology for a wide range of561

experimental designs.562

Our empirical evaluations reveal that, although563

larger models demonstrate foundational causal rea- 564

soning skills, their performance becomes increas- 565

ingly fragile as the complexity of causal interac- 566

tions grows. Importantly, we identify recurring 567

cognitive biases—including single cause bias, cor- 568

relation bias, and illusive confounder bias. These 569

underscore a critical gap: models misapply their 570

causal knowledge rather than lack it outright. These 571

discrepancies between the models’ articulated rea- 572

soning and their actual behaviour highlight the lim- 573

itations of current approaches in achieving robust, 574

context-independent causal reasoning. 575

By establishing a new benchmark for causal in- 576

ference, our study underscores the need for im- 577

proved methodologies that enhance both the reli- 578

ability and generalizability of causal reasoning in 579

AI systems. Future directions include mitigating 580

model biases and extending the framework to eval- 581

uate more aspects of causal reasoning. 582

7 Limitations 583

7.1 Knowledge-agnostic causal reasoning 584

Disentangling grounded knowledge from the rea- 585

soning process remains a challenging and impor- 586

tant task that helps assess whether models can gen- 587

eralize causal reasoning to novel scenarios without 588

being biased by encoded knowledge. While we 589

strive to achieve this, we acknowledge several limi- 590

tations in our current approach. 591

First, our synthetic environment does not fully 592

capture the complexity of real-world causal struc- 593

tures. The experimental setup employs symbolic 594

representations for entities which, while effective 595

in controlling for semantic cues, lacks inherent 596

real-world meaning. While this design choice min- 597

imizes confounding factors related to knowledge 598

recall, it may also alter model behaviour in unin- 599

tended ways. Future research should further ex- 600

plore whether models rely on semantic informa- 601

tion for causal reasoning and how best to introduce 602

fine-grained controls to separate genuine reasoning 603
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from implicit knowledge recall.604

Second, our system enables fully automated in-605

teractions, requiring human effort only in the initial606

design of a hypothetical world, the naming of en-607

tities, and the identification of associated changes.608

While this allows for the efficient generation of609

large-scale test cases, the structured nature of these610

cases may lead to overly rigid evaluations. We be-611

lieve that interactive benchmarks should become612

the standard for evaluating language models’ causal613

reasoning abilities. However, further studies are614

needed to determine the optimal balance between615

efficiency and flexibility in such benchmarking sys-616

tems.617

7.2 Causal structures and test difficulty618

Our experimental setup relies on randomly gener-619

ated causal graphs, which entails statistical sound-620

ness but limits our ability to precisely control the621

causal structures that models encounter. Carefully622

designed complex causal graphs may yield new623

insights into model performance.624

Additionally, test case difficulty does not always625

scale with the number of variables. For example,626

if the initial setup consists of entirely static shapes,627

the correct solution remains the same (acting on628

the cause shape and observing the effect shape) re-629

gardless of the total number of shapes present. To630

address this, we adopt an "all-active" setup, where631

all entities are subject to potential changes. While632

this effectively increases task difficulty as a func-633

tion of the number of variables, it also reduces our634

ability to precisely manipulate test complexity.635

Furthermore, our current design, which distin-636

guishes only between movement and static states,637

represents a simplified model of causality. Intro-638

ducing additional actions, changes, and interactions639

could enhance the challenge for models even in640

cases with a limited number of entities.641

7.3 Model Performance642

To ensure that our evaluation focuses on reasoning643

rather than instruction-following capabilities, we644

intentionally limit the level of prompt engineering645

in our experiments. This design choice allows us to646

assess models’ ability to perform causal reasoning647

without relying on explicitly structured guidance.648

However, we acknowledge that models may per-649

form better than reported if provided with detailed,650

step-by-step instructions on how to approach each651

test case. Future work could explore the extent to652

which prompt engineering influences causal rea- 653

soning performance. 654

Additionally, our observations and conclusions 655

are restricted to the models tested in this study. 656

Due to constraints on computational resources and 657

access to proprietary models, we do not present 658

exhaustive results across all available large lan- 659

guage models. While our findings provide valuable 660

insights, broader generalization to other models 661

remains an open question. Future research should 662

aim to expand coverage across a wider range of 663

models and architectures to obtain a more compre- 664

hensive understanding of causal reasoning capabil- 665

ities. 666
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A Prompts841

We follow a step-by-step prompting structure (see842

A.1) where the prompts (see A.2) are categorized843

as system, initial, choice, interaction, and answer.844

At each step, prompts are combined and format-845

ted with generated strings describing questions or846

current states of shapes.847

We only apply the system role where applicable,848

otherwise all instructions are given through the user849

role.850

A.1 Step-by-Step Prompting Structure851

1. Initial Setup: System prompt + Initial852

prompt853

2. Choice: Updates on shape status +Choice854

prompt855

3. Interaction: Interaction prompt856

4. Answer: Answer prompt857

The program starts the conversation by present-858

ing the initial setups and then loops between choice859

and interaction until the model chooses to answer860

the question.861

A.2 Prompts in Experiments 862

System 863

You are in a world of shapes. The movements 864

of shapes follow internal causal rules. You are re- 865

quired to interact with the shapes until you can an- 866

swer a question about the causal rules. All changes 867

in the world are deterministic and consistent. There 868

is no hidden confounder. Please reach the conclu- 869

sion in the least number of steps possible(only for 870

the step-limiting prompting strategy). 871

You can either 1) move a static shape or 2) hold 872

a moving shape. A shape only stops moving when 873

there is no other causes of its movement. 874

Initial 875

Following are your current observations: {} 876

Please interact with the shapes to answer: {} 877

Please propose your first interaction. Please pro- 878

vide your response by filling the JSON below: 879

- The value to "shape" field must be one of the 880

listed shapes: {} 881

- The value to "action" field must be one of the 882

listed actions: {} 883

{"shape":"","action":""} 884

Choice 885

Based on the results you observe so far, please 886

decide to continue interaction or answer the ques- 887

tion: {}. 888

Please provide your response by filling JSON 889

below: 890

- The value to "next" field must be either "con- 891

tinue interaction" or "answer the question" 892

{"next":""} 893

Interaction 894

Please propose your next interaction. Please 895

provide your response by filling the JSON below: 896

- The value to "shape" field must be one of the 897

listed shapes: {} 898

- The value to "action" field must be one of the 899

listed actions: {} 900

{"shape":"","action":""} 901

Answer You are ready to answer the question: {} 902

Please answer the question by filling the JSON 903

below. 904

- The value to "answer" field must be "yes" or 905

"no" 906

{"answer":""} 907

B Experiment Details 908

For all of the models in our experiments, we use the 909

original configuration of hyperparameters released 910
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with the models. We stick to any recommended set-911

ting (for example, temperature = 0.6 for DeepSeek912

Distilled models) provided by the models’ authors.913

Details of each model are linked in Table 3. The914

models are instructed by the prompts to answer in915

JSON formats, but we also allow an output length916

of up to 2048 characters to accommodate any rea-917

soning processes models may generate.918

We run experiments once using the setups de-919

scribed in Section 3.4. We implement the chat-style920

interface with HuggingFace’s text-generation921

pipeline1, OpenAI’s chat completions APIs2,922

and Google GenAI’s chat APIs 3. Runtimes of923

the experiment vary depending on the sizes of the924

model, ranging from approximately 1 hour to 4925

hours. GPUs used in the experiments are specified926

in Table 3.927

C The Use and Release of Scientific928

Artifacts929

C.1 Models, Licenses, and Hardware930

Model cards, licenses, and GPU hardware931

used to run each model are listed in ta-932

ble 3. The OpenAI models we use in933

the experiments are gpt-4o-2024-08-06 and934

gpt-4o-mini-2024-07-18. Our use of the models935

is consistent with their intended uses as specified936

in the licenses and terms of use.937

C.2 Release of Artifact938

Code for CausalLink is released under the MIT939

License. Due to the interactive nature of our evalu-940

ation framework, we do not produce any datasets941

as an artifact.942

D Use of AI Assistants943

Generative AI assistants are used to polish original944

content and identify relevant literature. The authors945

check, review, and edit any generated content or946

suggested references to ensure accuracy. We do not947

use generative AI for new ideas.948

For coding, we use AI assistants to help with non-949

novel components (including regular expressions,950

statistics computation, and plotting).951

1HuggingFace Text Generation Pipeline
2OpenAI Text Generation
3Google genai text generation

E Proximal Experiment Results 952

Experiment results using basic and step-limiting 953

prompting strategies are listed in Table 4 and Table 954

5. 955
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Model Card (linked) License GPU used
Llama 3.2 3B (AI@Meta, 2024a) 1 A40
Llama 3.1 8B (AI@Meta, 2024a) 1 A40
Mistral 7B (Apache, 2004) 1 A40
Qwen 2.5 3B (Cloud@Alibaba, 2024) 1 A40
Qwen 2.5 14B (Cloud@Alibaba, 2024) 1 A40
Qwen 2.5 32B (Cloud@Alibaba, 2024) 1 A40
DS-Distill Qwen 14 B (DeepSeek, 2023) 1 A40
DS-Distill Qwen 32B (DeepSeek, 2023) 2 A40
Llama 3.1 Nemotron 70B (NVIDIA, 2024) 4 A40
GPT4o (OpenAI, 2024b) -
GPT4o mini (OpenAI, 2024b) -
Gemini 2.0 Flash (Google, 2021) -

Table 3: Models and GPU hardware.

Model Acc. (F) Acc. (T) Overall Acc. Avg. Steps Err. Count
Llama 3.2 3B 0.766 0.622 0.702 1.88 5
Llama 3.1 8B 0.979 0.189 0.631 3.35 0
Mistral 7B 0.915 0.189 0.595 1.27 7
Qwen2.5 3B 0.894 0.297 0.631 1.00 0
Qwen2.5 14B 0.936 0.622 0.797 2.23 1
DeepSeek Distill Qwen 14B 0.826 0.789 0.809 2.02 4
Qwen2.5 32B 0.957 0.703 0.845 2.75 3
DeepSeek Distill Qwen 32B 0.809 0.432 0.642 1.69 26
GPT-4o-mini 1.000 0.243 0.666 1.54 0
GPT-4o 0.915 0.838 0.881 1.59 0
Llama 3.1 Nemotron 70B 1.000 0.784 0.905 2.29 0
Gemini 2.0 Flash 0.787 0.919 0.845 1.40 0

Table 4: Model Performance (basic template)

Model Acc. (F) Acc. (T) Overall Acc. Avg. Steps Err. Count
Llama 3.2 3B 0.766 0.622 0.702 1.88 5
Llama 3.1 8B 0.936 0.135 0.583 3.29 1
Mistral 7B 0.957 0.216 0.631 1.02 3
Qwen2.5 3B 0.894 0.297 0.631 1.00 0
Qwen2.5 14B 1.000 0.541 0.798 1.99 0
DeepSeek Distill Qwen 14B 0.851 0.703 0.786 2.01 7
Qwen2.5 32B 0.979 0.784 0.893 1.68 1
DeepSeek Distill Qwen 32B 0.979 0.865 0.929 1.63 0
GPT-4o-mini 0.979 0.189 0.631 1.58 0
GPT-4o 0.915 0.892 0.905 1.57 0
Llama 3.1 Nemotron 70B 1.000 0.892 0.952 2.40 0
Gemini 2.0 Flash 0.723 0.892 0.798 1.42 0

Table 5: Model Performance (Step-limiting template)

13

https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
https://huggingface.co/Qwen/Qwen2.5-3B-Instruct
https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
https://huggingface.co/Qwen/Qwen2.5-32B-Instruct
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF
https://openai.com/index/gpt-4o-system-card/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://deepmind.google/technologies/gemini/flash/
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