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Abstract

Many decision-making processes involve evaluating and selecting items, including
scientific peer review, job hiring, school admissions, and investment decisions.
These domains feature error-prone evaluations and uncertainty about outcomes,
which undermine deterministic selection rules. Consequently, randomized selection
mechanisms are gaining traction. However, current randomized approaches are ad
hoc and, as we prove, inappropriate for their purported objectives. We propose a
principled framework for randomized decision-making based on interval estimates
of item quality. We introduce MERIT (Maximin Efficient Randomized Interval
Top-k), which maximizes the worst-case expected number of top candidates se-
lected under uncertainty represented by overlapping intervals. MERIT provides
optimal resource allocation under an interpretable robustness notion. We develop a
polynomial-time, practically efficient algorithm and prove our approach satisfies
desirable axiomatic properties not guaranteed by existing methods. Experiments
on synthetic peer review data from grant funding and conferences demonstrate
that MERIT matches existing algorithms’ expected utility under fully probabilistic
models while outperforming them under our worst-case formulation.

1 Introduction

In many applications like scientific funding, job hiring, school admissions, and startup investment,
decision makers evaluate and select items based on imperfect assessments. Recently, there has been
growing interest in introducing randomization into selection processes to address uncertainty in
evaluations, reduce reviewer burden, encourage high-risk proposals, and combat reviewer partiality.
In fact, many funding agencies have already adopted partial lotteries to allocate grant money, starting
with the New Zealand Health Research Council in 2013 [31], followed by the Swiss NSF in 2019 [1],
and recently expanding to numerous agencies worldwide [14, 50, 58]. Proposals for randomization
have also emerged in college admissions [1, 25], job screening [40, 8] and startup investment [35].

In current deployments, decision makers collect peer-review assessments and run a lottery where
selection probabilities derive from review scores. However, current procedures are ad hoc. We initiate
a principled approach to randomizing decisions from evaluations, focusing on the question: Given
imperfect evaluations of candidate quality, what is a suitable probability distribution over applicants
for random selection?

We take the perspective of a funder selecting the highest quality grant proposals. A key motivation
for randomization is uncertainty about relative quality. Many existing deployments describe peer
review lotteries as random “tie-breaking” between proposals of equal quality [36, 53]. Similar to

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



previous work [21], we assume the funder estimates numeric quality intervals for each proposal.
These intervals may capture uncertainty due to evaluation errors, miscalibration, subjectivity, or
aleatoric uncertainty about future success. Crucially, we capture settings with “Knightian uncertainty,”
where a funder cannot assign a probability measure over possible outcomes [26]—a model widely
applied in policy-making [52, 45, 7], financial investment [13, 33, 37], and R&D investment [3].

This assumption is particularly apt for peer review, where probabilistic models of reviewer errors
have performed poorly in real deployments [27, 51, Section ‘Miscalibration’], decision makers lack
ground truth data to evaluate model appropriateness, and future success is inherently difficult to
predict [49, 12, 60, 29]. Without a reliable probabilistic model, we assume decision makers describe
uncertainty through quality intervals rather than point estimates. The funder draws conclusions
only about relative ordering: overlapping intervals indicate insufficient evidence to conclude one
proposal is better, while non-overlapping intervals indicate dominance. We develop theory and a
practical algorithm for making funding decisions from interval quality estimates, with the following
key contributions:

1. Modeling uncertainty as Knightian uncertainty intervals: Prior work assumes known probabilistic
relationships between quality and scores [21]. We show that in such fully Bayesian settings,
deterministic selection always maximizes expected utility, making randomization unnecessary.
Our model captures the motivation for randomizing using “Knightian” uncertainty intervals.

2. A principled approach to randomization: We formalize two key principles: ex ante optimal-
ity—maximizing worst-case utility over all rankings consistent with intervals—and ex post valid-
ity—respecting strict dominance relationships. Prior heuristic rules fail to satisfy both principles.

3. Efficient algorithm: We develop a polynomial time algorithm solving the maximin optimization
problem, despite related graph problems being NP-hard [15, 42, 61, 2]. Our Maximin Efficient
Randomized Interval Top-k (MERIT) algorithm runs in under 5 minutes on 10,000+ candidates
on a standard laptop. Implementation available at github.com/akgoldberg/lottery.

4. Axiomatic comparison: We initiate an axiomatic approach to comparing randomized mechanisms,
identifying desirable properties of “monotonicity in budget”, “stability”, and “reversal symmetry.”
We prove MERIT prevents “maximal instability” and respects “reversal symmetry” while existing
mechanisms do not.

5. Empirical comparison: We evaluate MERIT against existing methods using synthetic data based
on real peer review data from conferences (NeurIPS 2024, ICLR 2025) and grant agencies (Swiss
NSF 2020). MERIT performs comparably to existing methods in expected utility under a linear
reviewer error model used by the Swiss NSF [21] and many other prior works [16, 5, 43, 44].
However, under our worst-case objective, our algorithm significantly outperforms deterministic
selection and the Swiss NSF’s randomized approach.

For clarity of presentation, all formal proofs are deferred to Appendix A.

2 Background and Approach

We begin by describing current deployments of randomized decisions in scientific funding and then
motivate our approach.

2.1 Existing Deployments

In recent years, there have been many deployments of “peer review lotteries” in scientific funding
decisions. Most deployments use an approach of “randomize-above-threshold.” Under this approach,
the funder chooses a minimum acceptable quality threshold and samples uniformly at random among
all proposals that are above this threshold. This approach has been adopted by numerous funding
agencies [14, 55, 58, 50, 31] Council, the British Academy [55] and as a means of allocating oral
presentations at the USENIX Security Conference [57]. However, as we describe in Section 3,
randomize-above-threshold may violate a desired principle of “ex post validity”, which says that
if one proposal clearly dominates another, the stronger proposal should be funded if the weaker
proposal is funded.

Taking a different approach, the Swiss National Science Foundation (NSF) [21, 56] pioneered a
method that explicitly accounts for uncertainty about the quality of each proposal. They assume that
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each proposal has a latent true quality and review scores are generated based on these quality scores
and reviewer-specific noise parameters. They assume priors on the model parameters and develop
methods to obtain point estimates and confidence intervals for the true quality of each proposal. As
described in Algorithm 8, the Swiss NSF then samples k proposals by setting a “provisional funding
line” as the k-th highest point estimate. All proposals with intervals strictly above the funding line
are selected and all proposals strictly below the funding line are rejected. The remaining budget is
allocated uniformly at random among proposals with intervals that overlap the funding line. We
provide pseudocode for the Swiss NSF method and randomize-above-threshold in Appendix E.

The intuition provided by the Swiss NSF for their approach is that confidence intervals capture the
funder’s uncertainty in estimating the proposal quality and randomizing decisions accounts for this
uncertainty, thereby leading to better decisions. In contrast, as we prove in Theorem A.1, when the
funder assumes that review data is generated from a fully specified Bayesian model, there exists
a deterministic selection of proposals that maximizes the funder’s expected utility for any utility
function. Informally, if the funder knows the model that generates their data, then they do not need to
randomize in order to maximize their expected utility. We present the formal proposition and proof in
Appendix A.1. This result suggests one drawback of the Swiss NSF’s method—in their model setting
there may be a utility cost to randomization compared to choosing deterministically in an optimal
manner. A second drawback is that the Swiss NSF’s algorithm for selecting proposals from intervals
violates natural axioms for a selection rule, like monotonicity in the budget k and stability, as we
show in Section 5.

2.2 Our Approach

In our work, we propose a model that captures the motivation for randomizing due to uncertainty
about the relative quality of the proposals. We show that if the funder cares about their worst case
utility they must randomize decisions in order to robustly optimize their utility.

Specifically, we consider a funder who estimates intervals for each proposal based on data. These
intervals need not come from any one particular model, but they should capture the funder’s inherent
uncertainty about the relative quality of proposals.

Our interpretation of the quality intervals stems from the intuitive argument that if the intervals for two
proposals overlap then the funder does not have enough evidence to distinguish between them. On
the other hand, if the interval of proposal A dominates the interval of proposal B, then the funder has
sufficient evidence to believe that A is better than B. Hence, the intervals define a partial ordering of
proposals that represents a set of conclusions by the funder regarding the relative quality of different
proposals. This ordering is the canonical “interval order” for a set of intervals. It captures the spirit
of how the Swiss NSF interprets confidence intervals in their setup citeheyard2022rethinking.

In practice, such intervals can arise from a variety of sources, including missing-data imputation,
model ensembling, expert input, multi-criteria aggregation, or robustness to model misspecification
for confidence intervals. We provide detailed explanations of such intervals in Appendix F.

3 Problem Formulation

Our method applies to settings like admissions, scientific peer review, job screening, and financial
investment, where decision makers estimate quality intervals and select top candidates based on these
intervals. For concreteness, throughout our exposition, we will describe a funder choosing proposals.

Consider a funder who receives n proposals. From these, the funder wishes to select the k highest
quality proposals. Note that n could be as large as thousands of proposals and k a fixed fraction of the
total and can also be in the hundreds or thousands. For each proposal i ∈ [n]1, the funder estimates
an interval [ℓi, ui] ⊆ R representing a range of quality scores that the proposal could possibly take. A
higher score indicates higher quality. The funder wishes to design a randomized selection mechanism
to choose k proposals given the intervals. In order to design such a mechanism, we adopt two primary
principles which we term as ex ante optimality and ex post validity, described below.

1We use the standard notation [κ] to denote set {1, . . . , κ} for any positive integer κ.
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Ex ante optimality The funder’s utility is the expected number of the true top-k proposals that
they select, ranked by their quality. Formally, let σ : [n] → [n] denote a ranking of the proposals
where for each proposal i ∈ [n], the rank of the proposal is denoted by σ(i) ∈ [n]. If the funder
samples proposals with marginal probabilities p ∈ [0, 1]n and the true ranking of proposals is σ, their
expected utility is

∑n
i=1 pi1{σ(i) ≤ k}. Clearly, if the funder knew the true ranking σ, then they

would optimize utility by choosing deterministically, i.e., by setting pi = 1 for i with σ(i) ≤ k, and
0 otherwise.

However, recall that the funder is uncertain about relative qualities of the proposals, as captured by
overlaps in intervals. Any ordering that is consistent with overlapping intervals could be the true
ranking. Hence, the intervals define a set of feasible rankings:

Σn = {σ permutation of [n] | ∀i, j ∈ [n], ℓi > uj =⇒ σ(i) < σ(j)}

In other words, if proposal i has quality strictly above proposal j, then i is ranked higher than j in all
σ ∈ Σn. As an example of an extreme case, if all n intervals overlap each other, then Σn consists of
all possible permutations of the proposals.

For ex ante optimality, the funder optimizes their worst case utility over feasible rankings Σn:

min
σ∈Σn

n∑
i=1

pi1{σ(i) ≤ k} (1)

The funder maximizes their worst-case expected utility by choosing the optimal marginal probabilities
p solving the maximin optimization problem:

max
p∈[0,1]n:
∥p∥1=k

min
σ∈Σn

n∑
i=1

pi1{σ(i) ≤ k}. (2)

Finally, the funder randomly chooses n proposals with marginal probabilities corresponding to p.

The ex ante optimization problem has a game theoretic interpretation that motivates the need for
randomization. Our model corresponds to a zero-sum Stackelberg game where the funder is the
“leader” who selects k proposals. The funder faces an adversarial “follower” who chooses a ranking
of proposals. The leader’s utility is the number of top k proposals selected based on the adversary’s
ranking, while the adversary’s utility is the negation of the leader’s. The Strong Stackelberg Equilib-
rium (SSE) is exactly the solution to Objective 2. It is well known that in an SSE, the leader may
need to commit to a randomized (or mixed) strategy.

Ex post validity The ex post validity criterion requires that for any pair of proposals a and b, if b’s
quality interval lies strictly below a’s interval and if b is selected, then a must also be selected.

Formally, a selection rule that takes as input a set of quality intervals I and outputs a set of selected
proposals S satisfies ex post validity, if for all pairs of intervals a, b ∈ I with ℓa > ub, and all outputs
S selected with non-zero probability, b ∈ S =⇒ a ∈ S.

The ex post validity criteria ensures that the actual selected set of proposals is legitimate to stakehold-
ers. In particular, if the funder rejects a proposal that dominates an accepted proposal, that would be
unacceptable to the funder and to applicants.

While the ex post condition seems natural, the simple randomize-above-threshold mechanism can
violate it: Suppose proposals a and b both lie above the threshold, but a dominates b. Because a and
b are entered into a uniform lottery, a may be rejected at random, while b is accepted at random.
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4 Efficient Algorithm

The ex ante optimization problem in (2) is equivalent to solving the following linear program (LP):

max
p∈Rn,v∈R

v (3)

subject to v ≤
n∑

i=1

pi1{σ(i) ≤ k}, ∀σ ∈ Σn,

n∑
i=1

pi = k and 0 ≤ pi ≤ 1,∀i ∈ [n]

This LP has exponentially many constraints (
(
n
k

)
). The minimum weight k-ideal problem on arbitrary

partial orders is NP-hard [15], and several related interval order problems are also NP-hard [2, 42, 61].
Despite this, we show the problem is solvable in polynomial time using the ellipsoid method with a
separation oracle (Section 4.1). We develop a practical cutting plane algorithm (Section 4.2) and show
how to ensure ex post validity efficiently (Section 4.3). We call this end-to-end algorithm Maximin
Efficient Randomized Interval Top-k (MERIT).

4.1 Polynomial Time Algorithm

We now develop a polynomial-time algorithm to solve linear program (3). Our approach solves the
problem using a polynomial time “separation oracle” [18] with the ellipsoid algorithm. A separation
oracle checks whether a proposed solution satisfies all the constraints. If the solution is feasible,
the oracle confirms it. If not, it identifies (at least one) specific constraint that the solution violates.
The separation oracle may be used to solve the LP without enumerating all (exponentially many)
constraints by starting with a limited set of constraints and iteratively shrinking the possible feasible
region of the LP through calls to the separation oracle. Our main result proves that this method yields
a polynomial time algorithm:
Theorem 4.1 (Polynomial time solution). The linear program (3) can be solved within accuracy ϵ of
the optimal solution in polynomial time with respect to n and log(1/ϵ) using the ellipsoid algorithm
with Algorithm 1 as a separation oracle.

Algorithm 1 Polynomial-time Separation Oracle

Input: Candidate solution: (p, v) ∈ [0, 1]n × R with ∥p∥1 = k, number selected k, set of
intervals {ℓi, ui}i∈[n] sorted in decreasing order of lower bound ℓi
Output: A set of violated constraints (∅ if (p, v) is feasible)

1: Z ← ∅
2: for i = 1 to k + 1 do
3: Si ← {j ∈ (i, n] : intervals j and i overlap}
4: if |Si| ≥ (k − (i− 1)) then
5: Obtain S̃i by sorting Si by p and keeping only the k − (i− 1) smallest values
6: if v >

∑i−1
j=1 pj +

∑
j∈S̃i

pj
†

7: Z ← Z ∪
{

“ v ≤
∑i−1

j=1 pj +
∑

j∈S̃i
pj”

}
then

8: return Z
†By convention, we take the empty sum from j = 1 to 0 to be 0.

The primary technical difficulty is the design of an efficient separation oracle. We present our
separation oracle in Algorithm 1. Given a candidate solution (p, v), the separation oracle checks
whether p achieves a worst-case objective value of at least v. If the worst-case objective value under
p is greater than v, then the solution is feasible, if not the oracle returns a set of violated constraints.
At a high level, the oracle works by constructing worst-case possible sets of top-k proposals. For
each of the k + 1 intervals with the largest lower bounds, the algorithm constructs the worst-case set
of top-k proposals that includes intervals 1 to (i− 1) and excludes interval i in the top-k. Excluding
an interval with a large lower bound constrains the set of intervals that must be in the top-k, since
all intervals strictly below the interval with the large lower bound must be excluded from the top-k.
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In considering all such sets of intervals, the algorithm enumerates possible worst-case permutations
with respect to p in time O(nk). If the separation oracle finds a permutation that gives objective
values smaller than v, it returns this permutation, which corresponds to a violated constraint in the
LP. If it does not find any such permutation, then (p, v) is feasible. This separation oracle is used
as a sub-routine in the ellipsoid algorithm to compute the optimal solution in polynomial time in
Theorem 4.1.
Lemma 4.2 (Polynomial-time separation oracle). For any candidate solution (p, v) to the linear
program (3), Algorithm 1 returns ∅ only if the candidate solution is feasible and returns a non-empty
set of violated constraints otherwise. Moreover, Algorithm 1 runs in time O(nmax{k, log n}).

4.2 Practical Algorithm

The cutting plane algorithm is described in full in Algorithm 2. The algorithm starts by solving a
relaxation of the LP without any of the worst-case value constraints to find an initial (potentially
infeasible) candidate solution (p, v). Then, the algorithm repeatedly calls the separation oracle to
check the feasibility of the current candidate solution. If the candidate solution is feasible, it is an
optimal solution to the LP, since it is optimal for a relaxation of the full LP. If the candidate solution
is infeasible, the algorithm adds the constraints returned by the separation oracle and re-solves the LP.

The cutting plane algorithm converges to a feasible optimal solution quickly in practice because it is
initialized with a useful set of constraints on the feasible region of the problem. These constraints
prune the problem and impose monotonicity and symmetry constraints on the marginal probabilities
p, based on the number of intervals above and below each proposal, which we define below.
Definition 4.3 (Number above (A) and below (B)). For each proposal i: A(i) = |{r : ℓr > ui}| and
B(i) = |{r : ℓi > ur}|.
Definition 4.4 (Monotonically ordered subset). Subset M ⊆ [n] is monotonically ordered if ∀i ∈
[|M | − 1], A(M [i]) ≤ A(M [i+ 1]) and B(M [i]) ≥ B(M [i+ 1]).

Full analysis is in Appendix B.

Algorithm 2 Cutting Plane Algorithm

Input: Number of proposals k, intervals I = {ℓi, ui}i∈[n], max iterations T
Output: Ex ante optimal vector p
# Prune Intervals

1: For intervals strictly below ≥ k others, set pi = 0 and remove.
2: For intervals strictly above ≥ n− k others, set pi = 1 and remove.
3: Let a = # accepted intervals. Update k ← k − a.

# Initialize Linear Program
4: Compute A(i) = # proposals strictly above i, B(i) = # proposals strictly below i.
5: Using A,B, partition intervals into w monotone subsets M1, . . . ,Mw (Alg. 5).
6: Solve LP to obtain initial p, v:

min
v,p

v s.t.
∑n

i=1 pi = k, pi ∈ [0, 1] ∀i, v ≤
∑k

j=1 pj ,

pM [i] ≥ pM [i+1] ∀i ∈ [|M | − 1],M ∈ {M1, . . . ,Mw}

# Add Cuts
7: for T iterations do
8: C ← SeparationOracle((p, v), k, I)
9: if C = ∅ then return p ▷ Feasible

10: else Add constraints from C to LP and resolve for new (p, v) ▷ Infeasible
11: return Failure

4.3 Enforcing Ex Post Validity

A solution to the ex ante optimality LP (3) returned by the Cutting Plane Algorithm (Algorithm 2)
or the Ellipsoid Algorithm, is not guaranteed to output a vector of marginal probabilities, such that
sampling proposals with these marginals always guarantees ex post validity. However, we prove that
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we can post-process any solution to the ex ante optimization problem, and then sample with marginal
probabilities p to guarantee ex ante optimality and ex post validity simultaneously. This stands in
contrast to the commonly used “randomize-above-threshold” approach to randomization, which does
not guarantee ex post validity as described in Section 3.
Theorem 4.5 (Post-processing for ex post validity). Given any ex ante optimal p, Algorithm 3
enables the funder to sample k proposals while satisfying both ex ante and ex post conditions and is
computable in time O(n2).

Theorem 4.5 applies the post-processing algorithm given in Algorithm 3 to a solution from the Cutting
Plane Algorithm. For any a, b ∈ [n] with ℓa > ub, Algorithm 3 terminates with pa = 1 or pb = 0.
Moreover, Algorithm 3 never decreases the objective value of p. Hence, applying post-processing to
an ex ante optimal solution is without loss of optimality and ensures that any sampling method that
selects proposals with marginal probabilities p satisfies ex post validity.

We then implement the sampling step using systematic sampling [32] which has runtime O(n)
(described in Appendix C).

Algorithm 3 Post-Processing of p for Ex Post Validity

Input: Vector of marginal probabilities p, sequence of intervals {[ℓi, ui]}i∈[n]

Output: Vector of marginal probabilities p
1: Order the intervals by increasing u.
2: for b ∈ [n] do
3: if pb = 0 then
4: continue
5: for a from n to (b+ 1) do
6: if ℓa > ub and pa < 1 then
7: d← min{pb, 1− pa}
8: pb ← pb − d
9: pa ← pa + d

4.4 Full Algorithm

The complete MERIT algorithm solves the ex ante optimization with post-processing for ex post
validity (Algorithm 3) followed by sampling. The algorithm is provably polynomial time using the
ellipsoid method (Theorem 4.1). In practice, we use the cutting plane algorithm (Algorithm 2), which
is efficient albeit with non-polynomial theoretical convergence.

Algorithm 4 MERIT Algorithm

Input: Number of proposals to select k, set of intervals I = {ℓi, ui}i∈[n]

Output: Selection of k proposals
1: Compute an ex ante optimal vector of marginal probabilities p using Algorithm 2.
2: Apply ex post validity post-processing to p (Algorithm 3).
3: Sample k proposals from [n] with marginal probabilities of inclusion given by p (Algorithm 6).

5 Axiomatic Comparison

In applications like scientific funding or college admissions, there is no agreed upon ground-truth
measurement of selection quality. Hence, it is unclear how to empirically measure whether one
algorithm performs better than another. Therefore, inspired by social choice theory [10], we initiate
an axiomatic comparison of MERIT with alternative methods from Section 2.1—deterministic top-k
selection, randomize above threshold, and the Swiss NSF method. We analyze the behavior of
MERIT and alternatives with respect to natural axioms.

5.1 Defining Axioms

We propose three natural desiderata for algorithms selecting proposals from quality assessments. We
begin by defining a generic “randomized selection rule.”
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Definition 5.1 (Selection rule). A selection rule receives as input n quality estimates I =
{(ℓi, ei, ui)}i∈[n] where ℓi, ui are lower and upper limits on item i’s quality and ei ∈ [ℓi, ui] is a
point estimate. Given budget k ∈ {1, . . . , n}, it outputs a subset of [n] of size k. Let p(I, k) ∈ [0, 1]n

denote the marginal selection probabilities.

This captures methods that do not use intervals (deterministic selection), use only intervals (MERIT),
and use both intervals and point estimates (Swiss NSF). Next, we define three axioms.

First, “monotonicity in budget” requires that increasing k should not decrease any proposal’s
selection probability:
Definition 5.2 (Monotonicity in budget). A selection rule respects monotonicity in budget if for any
input I and all budgets k ∈ [n− 1], p(I, k + 1)i ≥ p(I, k)i ∀i ∈ [n].

Second, a selection rule should be “stable”—changing one interval should not drastically change
algorithm behavior. We define an undesirable form of instability. An algorithm exhibits “maximal
instability” if changing a single interval by an arbitrarily small amount can switch behavior between
deterministic selection (minimum entropy) and uniform random sampling (maximum entropy):
Definition 5.3 (Maximum instability). A selection rule is maximally unstable if there exist inputs
I and J differing by arbitrarily small ϵ > 0 in one proposal’s quality estimate and budget k ∈
{2, . . . , n− 2} such that p(I, k) = k

n1n (uniform random sampling on I) whereas p(J, k) ∈ {0, 1}n
(deterministic on J).

A selection algorithm should avoid maximum instability. We restrict budget to {2, . . . , k − 2}
since stability with respect to changing a single proposal is not meaningful when choosing only one
proposal to accept or reject.

Finally, inspired by “reversal symmetry” from social choice theory [46], when selecting 1 of 2
proposals, if the quality scale is reversed (all intervals flipped), the selection rule should flip the
selection probabilities:
Definition 5.4 (Reversal symmetry). For input I = {(ℓi, ei, ui)}i∈[n] where ℓi, ei, ui ∈ [0, 1]∀i, let
I(R) = {(1 − ui, 1 − ei, 1 − ℓi)}i∈[n] be the reversed input. A selection rule selecting k = 1 of
n = 2 proposals respects reversal symmetry if for any flipped inputs I and I(R), p(I, 1) = (p1, p2)
and p(I(R), 1) = (p2, p1).

5.2 Theoretical Analysis

Deterministic top-k selection meets these criteria but does not account for uncertainty (violating our
ex ante requirement). We characterize randomized mechanisms in Theorem 5.5:
Theorem 5.5 (Axiomatic analysis). Existing randomized algorithms have the following properties:

(a) Swiss NSF and randomize-above-threshold both exhibit maximum instability, while MERIT is
never maximally unstable.

(b) Swiss NSF, randomize-above-threshold and MERIT all violate monotonicity in budget.

(c) It is not possible to simultaneously satisfy ex ante optimality and monotonicity in budget.

(d) Swiss NSF and randomize-above threshold violate reversal symmetry, while MERIT satisfies
reversal symmetry.

We formally prove Theorem 5.5 in Appendix 5.5. While all randomized selection rules considered
vioalte monotonicity, a funder could enforce monotonicity in budget for MERIT by solving a sequence
of optimization problems from 1 to k, but this may come at loss of ex ante optimality, as we describe
in Appendix D.

6 Experimental Comparison of Methods

We evaluate MERIT using real peer review data from the Swiss NSF grant reviews [21], NeurIPS
2024 conference papers, and ICLR 2025 submissions. We compare performance under both (1)
expected utility in a probabilistic model of reviewer behavior and (2) our worst-case utility objective.
We provide additional ablations and qualitative insights into different lottery outcomes in Appendix G.
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Figure 1: Proportion of top-k proposals selected by different methods with quality data generated
under the Swiss NSF model of linear miscalibration and under our model of worst-case over feasible
rankings. MERIT matches performance of algorithms designed for the Swiss NSF’s linear model,
with expected utility averaged over 50 samples of synthetic data and error bars showing 95% CI for
the sample mean. The gap between MERIT and other methods in the worst-case over intervals defined
by our model can be substantial, as shown by the gaps in NeurIPS Gaussian, NeurIPS Subjectivity,
and ICLR Subjectivity.

Expected Utility under Linear Miscalibration We evaluate expected utility under the Swiss
NSF’s widely-adopted linear miscalibration model [21, 16, 5], where reviewer scores are linear
combinations of true quality, reviewer bias, and Gaussian noise. We simulate two settings: (1) Swiss
NSF grants (350 proposals, 10 reviewers, 80 proposals/reviewer) and (2) CS conference review (1000
papers, 1000 reviewers, 5 papers/reviewer), selecting the top one-third in both cases. We generate 50
synthetic datasets with parameters σθ = 2, σb = 1, σϵ = 0.5 matching prior work [54], and estimate
50% confidence intervals following Swiss NSF methodology.

Worst-Case Utility Our worst-case objective (1) maximizes the minimum expected fraction of true
top-k proposals over all rankings consistent with score intervals. We evaluate on three real datasets:
Swiss NSF 2020 grants (n = 353), NeurIPS 2024 accepted papers (n = 4035), and ICLR 2025
submissions (n = 11520). For Swiss NSF, we use their linear model intervals. For NeurIPS and
ICLR, we generate intervals using three methods: (1) leave-one-out (LOO) ranges, (2) Bayesian
credibility intervals under a Gaussian model, and (3) subjectivity-adjusted intervals based on reviewer
emphasis on different criteria [28, 38]. Full details are in Appendix F.

Results Figure 1 shows our main results. Under the Swiss NSF’s Bayesian model, MERIT
performs comparably to Swiss NSF’s randomized method and deterministic model-based selection
in expectation, while deterministic mean-based selection performs poorly. In the worst-case setting,
MERIT substantially outperforms all baselines across all datasets, achieving up to 0.19 higher utility
than Swiss NSF. The optimality gap is particularly large when intervals are wide (e.g., NeurIPS
LOO, NeurIPS Gaussian), where deterministic selection and even Swiss NSF’s randomized approach
perform poorly. These results suggest MERIT maintains expected utility under probabilistic models
while providing superior worst-case robustness. We provide additional ablations and experiments in
Appendix G with similar results.

Computational Efficiency All experiments run on a standard 2019 MacBook Pro. Using
Gurobi 12.0.1 [20] to solve LPs, MERIT completes in under five minutes even for 11,000+ proposals.
Detailed runtime analysis is in Appendix H.
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7 Related Work

Designing Better Evaluation Processes Many works diagnose flaws in peer review—such as
miscalibration and arbitrariness in opinions of reviewers—and propose improvements [51]. Many
models assume linear miscalibration [16, 5, 43, 44, 48, 12], including those used in the Swiss
NSF [21], but these often perform poorly in practice [27], likely due to the complexity of real-
world miscalibration [11]. A recent approach [59] addresses arbitrary miscalibration and shows that
randomized estimators can improve ranking accuracy. Related work in hiring proposes algorithmic
solutions to prejudice and to uncertainty about unknown options [24, 30]. Both approaches make
stronger assumptions on a known model of errors in hiring process than our work.

Selection Under Uncertainty and Robust Optimization Our method falls under the umbrella of
distributionally robust optimization (DRO) [41]. Our main contribution is a formulation specific to
scenarios where decision makers want to select k high quality items under ambiguity sets defined by
intervals. Though similar in spirit to robust portfolio optimization [62], our assumptions differ as
investors typically have probabilistic models and seek risk-averse diversification. Recent work on
conformal prediction for selection [22] focuses on bounding false positives above a fixed threshold,
whereas we select the top-k items without assuming a fixed quality threshold or reliable probabilities.

Randomized Social Choice Our work connects to the literature on randomized social choice, which
examines how incorporating randomness into voting rules can enhance desired properties [10, 9].
Unlike our setting, most social choice models assume no underlying ground-truth quality. A related
line of work in social choice theory on “distortion” interprets voters’ rankings as noisy reflections
of latent utilities and seeks aggregation rules that perform well under this uncertainty [4]. Our
approach is conceptually similar: we consider rankings consistent with intervals of quality and design
a randomized mechanism that maximizes the worst-case expected utility of the selected top-k items.

8 Discussion

We introduce MERIT, a computationally efficient lottery for top-k selection under uncertainty. By
relying solely on intervals rather than fully specified generative models, MERIT respects real-world
funder constraints while providing a principled robust optimization solution. Our case studies
demonstrate scalability to tens of thousands of candidates. An additional benefit of MERIT is that
it can handle additional constraints on the form of the lottery. For example, in some cases, funders
may prefer to implement a uniform lottery, where all candidates subject to randomization are selected
with equal probabilities. The optimization problem used in MERIT can be modified to constrain the
lottery to uniform sampling, thereby implementing the ex ante optimal uniform lottery that respects
ex post validity constraint (discussed in Appendix I).

Limitations. MERIT exploits only interval ordering, appropriate when credible probabilistic
models are unavailable but potentially sub-optimal with well-calibrated predictive models. We assume
fixed proposal costs; variable budgets require accounting for both quality and budget allocation.
Additional pairwise quality information (e.g., from common reviewers) is not currently exploited but
could improve performance. Finally, MERIT may be less interpretable than threshold-based methods
like Swiss NSF.

Future work. Several extensions merit investigation. First, variable-cost candidates: allowing
partial funding or incorporating cost-quality trade-offs in budget-constrained settings, with attention
to incentive compatibility. Second, additional ordering information: developing efficient heuristics
for general partial orders beyond interval orders, perhaps via additional monotonicity constraints.
Third, richer utility functions: extending beyond 0-1 utility to positional scoring rules (e.g., Borda
count) while maintaining tractability. Fourth, cost–quality trade-offs: analyzing efficient trade-offs
between reviewer resources and decision quality to guide when and how to randomize. Finally,
equilibrium effects: understanding how randomization alters applicant and reviewer incentives and
strategic behavior. Progress on these questions can inform both theoretical understanding and practical
implementation of randomized selection mechanisms.

Progress on these questions can inform both theoretical understanding and practical implementation
of randomized selection mechanisms.
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A Proofs

A.1 Optimality of deterministic selection in a fully Bayesian setting (Section 2.1)

Here we provide the formal statement and proof of our informal claim that a funder can maximize
their utility via a deterministic selection if they assume a fully Bayesian model of their data.

We prove a general statement for a funder who estimates a total ranking of proposals and receives a
pre-specified utility for any possible estimate of the ranking of proposals and true qualities of the
proposals. The top-k selection problem is a case of this estimation problem where the funder’s utility
specifies the utility of choosing k proposals based on the estimated ranking of proposals.

Proposition A.1 (Optimality of deterministic selection in the fully Bayesian setting). Consider a
funder who estimates a ranking of proposals from review data in the following fully Bayesian setting.
The funder observes review data y ∈ Y for a set of proposals of true quality θ ∈ X . The review
data and true quality are generated jointly from a known model. Letting Π denote the set of all
permutations of proposals, the funder estimates a ranking π̂ of proposals and gains utility u(π̂, θ)
where u : Π×X → R. The funder aims to choose a (potentially randomized) estimator of the true
ranking f : Y → ∆(Π) that maximizes their expected utility Ey,θ,π̂[u(π̂, θ)] where π̂ ∼ f(y) . In
this setting, there always exists a deterministic f that maximizes the funder’s expected utility.

Proof. Expand the expected utility by conditioning on the observed data y as Ey,θ,π̂[u(π̂, θ)] =
Ey[Eπ̂,θ|y[u(π̂, θ)]]. For a given y, the funder maximizes the inner expectation by choosing any π̂ ∈
argmaxπ′∈Π Eθ|y[u(π

′, θ)|y], where the maximum over Π always exists since the set of permutations
Π is finite. Hence, the deterministic estimator that takes f(y) ∈ argmaxπ′∈Π Eθ|y[u(π

′, θ)|y] for all
y ∈ Y maximizes the funder’s expected utility.
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A.2 Polynomial time algorithm for ex ante optimization (Theorem 4.1)

In order to prove the main theorem, we first prove Lemma 4.2, which establishes that the separation
oracle (Algorithm 1) is correct and efficient.

Proof of Lemma 4.2. Let v′ be the smallest vi found by the separation oracle. We begin by showing
that:

v′ = min
σ∈Σn

n∑
i=1

pi1{σ(i) ≤ k}.

For i ∈ [n], let
K = {T ⊂ [n], |T | = k : ∃σ ∈ Σn s.t. σ(j) ≤ k ∀j ∈ S}

be the set of all feasible selections of top-k intervals given Σn. Note that we can rewrite the objective
as

min
σ∈Σn

n∑
i=1

pi1{σ(i) ≤ k} = min
T∈K

∑
j∈T

pj .

Now, we divide K into subsets, for i ∈ [k + 1], define

K(i) = {T ⊆ K : i ̸∈ T and [i− 1] ⊂ T}

so that K(i) contains all sets in K that include intervals 1 to (i − 1) and exclude interval i and
K = ∪k+1

i=1K
(i). Let the intervals be sorted in decreasing order of lower bound ℓ. Then, for any

i ∈ [n], i is not strictly above any of the intervals from 1 to (i− 1). Additionally, letting

Si = {j ∈ (i, n] : intervals j and i overlap}

any interval in (i, n] \ Si must be strictly below interval i. Hence, any set of top-k intervals T ∈ K(i)

contains intervals 1 to (i− 1) and the remaining k − (i− 1) intervals come from Si. Additionally,
for all j ∈ Si, uj ≥ ℓi, while ℓj ≤ ℓi so all intervals in Si overlap each other and any selection of
these Si in the top k is feasible. Hence:

K(i) = {[i− 1] ∪A : A ⊆ Si, |A| = (k − (i− 1)}.

Finally, for fixed p, the minimum objective value over K(i) is to select the (k − (i− 1) proposals
with the smallest values of p. Algorithm 1 exactly enumerates these worst-case constraints for each
K(i) and hence returns the minimum over T ∈ K.

Now, the separation oracle adds constraints to Z when v >
∑i−1

j=1 pj +
∑

j∈Si
pj . Hence the

separation oracle returns ∅ only if v ≤
∑i−1

j=1 pj +
∑

j∈Si
pj for every i, which is precisely the

condition for feasibility. Further, as argued above, the separation oracle considers feasible top-k, so
any constraints added by the separation oracle represent valid constraints for the LP.

The algorithm runs in time O(nmax{k, log n}), because finding Si requires at most a linear scan
over O(n) proposals for each of (k) proposals and initial sorting takes time O(n log n). We can sort
intervals by p once, to ensure that each linear scan for Si returns the intervals with smallest p with no
additional sorting per iteration.

Now, we prove the main theorem by showing that the ellipsoid algorithm converges in polynomial
time using this separation oracle as a sub-routine:

Proof of Theorem 4.1. We may relax the equality constraint of LP (3)
∑n

i=1 pi = k to an inequality∑n
i=1 pi ≤ k without loss of optimality, since increasing any pi (up to 1) cannot decrease the

worst-case value of v. This relaxation ensures that the feasible region lies within a full-dimensional
affine subspace of Rn+1, and contains a nontrivial interior. In particular, the point pi = k

n , v = 0 lies
strictly inside the box constraints and satisfies all inequalities strictly, implying the feasible region is
full-dimensional.

Then, because our separation oracle runs in time polynomial in n, the classical ellipsoid algorithm [23]
using the separation oracle to make cuts, solves the optimization problem to within accuracy ϵ in
time poly(n, log(1/ϵ), log(R/r)) where R is the radius of a Euclidean ball that contains the feasible
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region and r is the radius of a Euclidean ball entirely contained in the feasible region. Clearly, R is
upper bounded by poly(n), since each pi is bounded in [0, 1] and v is bounded in [0, k]. To establish
a lower bound on r, we invoke Theorem 6.2.2 in Grötschel, Lovász, and Schrijver [19], which states
that if a polyhedron P = x ∈ Rn : Ax ≤ b is full-dimensional, and the matrix A and vector b consist
of integers of maximum bit length U , then P contains a ball of radius at least 2−poly(n,U). Noting
that all constraints in our model have integral coefficients of bit length at most log(k) < n, we have
that r ≥ 2−poly(n). Hence, log(R/r) is poly(n) and so the runtime of the algorithm is polynomial in
n and log(1/ϵ).

A.3 Ex post validity (Theorem 4.5)

Proof of Theorem 4.5. We will prove that for any a, b ∈ [n] such that ℓa > ub and for any input
vector of marginal probabilities p, the post-processing Algorithm 3 terminates with pa = 1 or pb = 0
and never decreases the objective value of p. Then, if any ex ante optimal p is given as input to
the algorithm, after post-processing it is still ex ante optimal. Moreover, any sampling method that
respects the post-processed marginal probabilities will satisfy ex post validity, since if a dominates b,
either a is always sampled (pa = 1) or b is never sampled (pb = 0).

Let a, b be any intervals with ℓa > ub. Let D = {d ∈ [n] | ℓd > ua} be the set of all intervals strictly
above interval a. Note that (1) all d ∈ D are also strictly above b and that (2) b precedes a when
ordered by u and a precedes all d ∈ D. Hence, Algorithm 3 will process b, then a, then d ∈ D.
After processing b = b, either pb = 0 or pd = 1 for all d ∈ D. Because pb cannot increase in any
subsequent iterations, if pb = 0, it will remain 0 until the algorithm terminates. If pd = 1 for all
d ∈ D, then because a ∈ D, pa = 1. Furthermore, since pd = 1 for all d ∈ D, pa will not decrease
in any subsequent iterations. Hence, the algorithm ends with pb = 0 or pa = 1.

Further, for any σ ∈ Σn, if σ(b) ≤ k, then σ(a) < σ(b) ≤ k. Hence, moving probability mass from
pb to pa cannot decrease minσ∈Σn

∑n
i=1 pi1{σ(i) ≤ k}.

A.4 Axiomatic comparison (Theorem 5.5)

Figure 2: Example that violates maximum instability for Swiss NSF and randomize-above-threshold,
with k = 3. Slightly decreasing the upper bound and point estimate of proposal 3, changes the
algorithm’s behavior from selecting the top 3 deterministically (left) to sampling among all 10
proposals uniformly at random (right).

(a) Maximum instability We will show that both Swiss NSF and randomize above threshold (with
data-dependent threshold) are maximally unstable using an example. Let intervals 1 to k be [0, 2]
with point estimates of 1 and let intervals k+1 to n be [0, 1− ϵ] for some ϵ ∈ (0, 1). Then, the Swiss
NSF algorithm selects the first k proposals deterministically. Now, shift interval k to be [0, 2− 2ϵ]
with point estimate of 1− ϵ. Since all the intervals contain the k-the point estimate the Swiss NSF
algorithm selects uniformly at random. Note that ϵ can be taken to be arbitrarily small, so the Swiss
NSF is maximally unstable for any ϵ > 0. If the randomize above threshold method chooses the
threshold in a data-dependent manner, then the same example leads to maximal instability if the
threshold is taken to be the k-th highest point estimate.

Now, to show that MERIT is not maximally unstable, we first observe that MERIT selects among all
proposals uniformly at random only if all intervals intersect each other. Let 1 < k < n− 1. Assume
for the sake of contradiction that MERIT samples uniformly at random from all intervals and that
there are two intervals i and j with i strictly above j. Since the algorithm is ex post valid, if pj > 0,
then pi = 1, but then pi = pj = 1, which is possible only if n = k, yielding a contradiction.
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Now, to show that MERIT is not maximally unstable, we establish that for any set of intervals where
all intervals except for one overlap, the algorithm never chooses deterministically. Since all intervals
but one overlap, the non-overlapping interval can either have the largest lower bound or the smallest
upper bound.

First, consider the case where interval j has the largest lower bound. Then, we can partition the
intervals into 3 sets {j}, X , the set of intervals that intersect j, and B the set of intervals strictly
below j. By symmetry and monotonic chain constraints (detailed in Appendix B), the algorithm will
output marginal probabilities with at most 3 different values pj , px, pb such that pj ≥ px ≥ pb. Since
|X|+ |B| > k, the only input for which the algorithm could output k 1’s is when |X| = k − 1 and
|B| = n− k > 1. In this case, j is always in the top k, so pj = 1 and j is pruned from the problem.
Then, our algorithm chooses k − 1 out of n− 1 intervals that all intersect, so the optimal solution is
sampling k − 1 uniformly at random from the remaining X ∪B intervals. Hence, our algorithm will
not choose deterministically.

Now, consider the case where interval j has the smallest upper bound. Then, we can partition the
intervals into 3 sets {j}, X , the set of intervals that intersect j, and A, the set of intervals strictly above
j. By symmetry and monotonic chain constraints, our algorithm will output marginal probabilities
with at most 3 different values pj , px, pa such that pa ≥ px ≥ pj . Since |A|+ |X| ≥ k + 1, the only
possible input for which the algorithm could output k 1’ s is if |A| = k and |X| = n− k − 1 > 0.
In this case, j is never in the top k, so the feasible top k could be any subset of size k from A ∪X .
Therefore, selecting k proposals uniformly at random from A ∪X is optimal, so MERIT will not
choose deterministically.

(b) + (c) Monotonicity in budget We show that Swiss NSF, randomize above threshold, and
MERIT are not monotonic in budget k, via the example shown in Figure 3.

Figure 3: Example that violates monotonicity with respect to k for Swiss NSF and our MERIT
algorithm. When k = 1, p2 = 1/2 for both algorithms. However, when k = 2, p2 = 1/3 for both
algorithms.

In this example, taking k = 1, both the Swiss NSF method and MERIT randomize between proposals
1 and 2, so proposal 2 is selected with probability 1/2. However, if the number of proposals selected
is increased to k = 2, then proposal 1 is always selected and both algorithms sample uniformly at
random from intervals 2 to 4, meaning that proposal 2 has a selection probability of only 1/3. Hence,
even though more proposals are being selected, proposal 2 is worse-off. The same example shows
that randomize-above-threshold violates monotonicity, taking the threshold to be the point estimate
or the lower bound of the k-th highest proposal.

This example also proves that it is not possible to simultaneously satisfy ex ante optimality and
monotonicity in budget. For k = 1, the unique ex ante optimal p is (1/2, 1/2, 0, 0) since feasible top
1 are {1} and {2}. For k = 2, the unique ex ante optimal p is (1, 1/3, 1/3, 1/3) since the feasible
top 2 are {1, 2} {1, 3}, {1, 4}. Since these are unique ex ante optimal solutions, there is no sequence
of solutions for k equal to 1 and 2 that satisfy monotonicity in budget k and ex ante optimality
simultaneously.

(d) Reversal symmetry To prove that Swiss NSF and (data-dependent) randomize-above-threshold
violate reversal symmetry, consider intervals (0, 1) and (0.1, 0.2) with point estimates 0.5 and 0.15.
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Then, the Swiss NSF selection rule or randomize-above-threshold with threshold set as the highest
point estimate, will accept interval 1 and reject interval 2. However, if intervals are flipped so interval
1 stays the same, but proposal 2 has interval (0.8, 0.9) with point estimate of 0.85, then Swiss NSF
samples uniformly at random between the two proposals. Now, when n = 2 and k = 1, MERIT only
samples between the two proposals if their intervals overlap. If the intervals are horizontally flipped,
then they still overlap and MERIT samples uniformly at random respecting reversal symmetry. If
interval 1 lies strictly above interval 2, then after flipping interval 2 lies strictly above interval 1, so
the marginal probabilities of selection are (1, 0) and (0, 1) respectively, respecting reversal symmetry.

B Full Cutting Plane Algorithm

As described in Section 4.2, we find that the cutting plane algorithm converges to a feasible optimal
solution much faster when it is initialized with additional useful constraints. These constraints prune
decision variables and impose monotonicity and symmetry constraints on marginal probabilities p,
based on the number of intervals above and below each proposal.

The cutting plane algorithm is described in full in Algorithm 2. The algorithm prunes intervals and
initializing the LP with monotonicity constraints. The remainder of this section proves that these
additions are without loss of optimality and ensure faster convergence.

We can think of A,B as defining a partial order: i ⪰ j ⇐⇒ A(i) ≤ A(j) and B(i) ≥ B(j). Then,
a monotonically ordered subset of intervals is a totally ordered subset or a “chain” and the minimum
number of monotonically ordered subsets of intervals that covers a set of intervals is the “width”
of the partially ordered set of intervals. Note that this partial order defined by A and B is not the
canonical interval order that we use to define the set of feasible permutations Σn. The (A,B) partial
order never was width larger than the interval order and often has much smaller width. At the extreme,
if all intervals overlap, then the width of the interval partial order is n, while the width of the (A,B)
partial order is 1, since all proposals have equal A and B.

As we now prove, the cutting plane algorithm converges in O(kw+1) iterations, where w denotes
the number of monotonically ordered subsets partitioning the intervals (or the width of the (A, B)
partial order. In theory, w can grow linearly with k, so this algorithm does not have the theoretical
polynomial-time guarantee of the ellipsoid algorithm. In practice, w is often small for many sets of
intervals.
Proposition B.1 (Cutting plane algorithm convergence). Letting w denote the number of monotoni-
cally ordered subsets (chains) partitioning the intervals per Definition 4.4, Algorithm 2 converges to
an optimal solution in O(kw+1) iterations. The algorithm solves an LP with at most O(n+ kw+1)
constraints.

Proof. We first prove three lemmas that show that we can impose initial pruning, symmetry, and
monotonicity constraints on p without loss of optimality.

Lemma B.2 (Pruning of optimal p). There exists an optimal p in which pi = 1,∀i ∈ [n] with
B(i) ≥ n− k and pj = 0,∀j ∈ [n] with A(j) ≥ k.

Proof. If B(i) ≥ n − k, then i is always included in the top k in any permutation of intervals. If
pi < 1, then there must be some other interval with pj > 0, but setting pi = 1, pj = 0 will not
decrease the objective value, since i is always in the top k. Similarly, if A(i) ≥ k, then i is never
included in the top k, so taking pi = 0 by shifting probability mass from i to any other proposal
cannot hurt the objective value.

Lemma B.3 (Symmetry of optimal p). There exists an optimal p in which pi = pj for all i, j ∈ [n]
such that A(i) = A(j) and B(i) = B(j).

Proof. If A(i) = A(j) and B(i) = B(j), then i and j have the same sets of intervals that are strictly
above and strictly below each interval. Hence, for any permutation σ ∈ Σn the permutation σ′ with i
and j exchanged is also in Σn, so the objective value is maximized at pi = pj .

Lemma B.4 (Ordering of optimal p by A and B). Let M1, · · · ,Mw be a partitioning of [n] such
that each Mi is monotonically ordered. Then, there exists an optimal p for Objective (2) such that
within each M , pM [j] ≥ pM [j+1] for all j ∈ [|M | − 1].
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Proof. Let i, j ∈ [n] be any pair of proposals with A(i) ≤ A(j) and B(i) ≥ B(j). Let p be a feasible
solution to the optimization problem with pj > pi. We will show that exchanging the values of pj
and pi can never decrease the objective value. Define q as equivalent to p with i and j exchanged:

qr =


pj r = i

pi r = j

pr otherwise.

Let v(p, σ) =
∑n

i=1 pi1{σ(i) ≤ k}. We want to show that minσ∈Σn v(p, σ) ≤ minσ∈Σn v(q, σ).
Consider any σ ∈ Σn. If σ(i) < σ(j), then v(p, σ) ≤ v(q, σ). If σ(i) > σ(j), define permutation τ
to be equivalent to σ but with i and j exchanged:

τ(r) =


σ(j) r = i

σ(i) r = j

σ(r) otherwise.

Note that v(p, σ) ≥ v(q, σ), but v(q, τ) = v(p, σ) ≥ v(p, τ). We now proposition that τ ∈ Σn.
Let r ∈ [n] be any proposal such that σ(r) ∈ [σ(j), σ(i)]. Then, r cannot be strictly above
j, but since A(j) ≥ A(i), r cannot be strictly above i. Similarly, r cannot be strictly below
i, but since B(i) ≥ B(j), r cannot be strictly below j. Hence, r must overlap both i and j.
Therefore, exchanging i and j does not violate any constraints, so τ ∈ Σn. Hence, we conclude that
minσ∈Σn v(p, σ) ≤ minσ∈Σn v(q, σ). Now, applying this exchange to every sequence of intervals
within each Mi yields the desired result.

Further, using symmetry and pruning together reduces the number of decision variables to O(k) from
O(n).

Lemma B.5 (Pruning and symmetry give O(k) decision variables). After pruning per Proposition B.2
and grouping symmetric intervals per Proposition B.3, the optimization problem has < 2k decision
variables.

Proof. After pruning all proposals with A(i) ≥ k or B(i) ≥ n− k, there are at most k− 1 proposals
with B(i) > 0. The remaining intervals all have B(i) = 0 and can have k − 1 possible values of
A(i), so they can be grouped into at most k − 1 groups with equivalent pi. Hence, the intervals can
be grouped into at most 2k − 2 decision variables.

Now, to complete the proof of correctness, observe that by Lemmas B.2 and B.4 the initial pruning
and monotonicity constraints are without loss of optimality. We can additionally impose equality
constraints on p using symmetry (Lemma B.3) to reduce the dimension of p to O(k), although this is
not shown in Algorithm 2 for simpler presentation. Because the linear program solved by the cutting
plane algorithm is a relaxation of the linear program (3), a solution to the problem upper bounds the
objective value of (3). By the correctness of the separation oracle (Theorem 4.2), if the cutting plane
algorithm converges to a feasible (p, v), this therefore is an optimal solution to the full LP.

To prove that the algorithm is guaranteed to converge within kw+1 iterations observe that there
are at most O(kw) possible total orders of marginal probabilities (after applying symmetry and
pruning) consistent with the partial order given by monotonicity constraints pM [i] ≥ pM [i+1] ∀i ∈
[|M |−1],∀M ∈ {M1, · · · ,Mw. Note that for any total order of the proposals, there are k+1 possible
constraints that the separation oracle can return, because the possible constraints are determined by
the order of the pi. Hence, there are at most O(kw+1) cuts that could be added to the linear program
and so the cutting plane algorithm must converge in O(Sw+1) iterations. The initial LP only contains
O(n) constraints, so the LP never has more than O(n+ kw+1) constraints.

B.1 Finding Minimal Set of Chains for (A,B) Partial Order

In order to partition intervals using A and B as per Proposition B.4, we need to compute such a
partition, known as a chain covering of the set. We would like the partition into as few sets as possible
in order to add as many constraints as possible to the problem and reduce runtime of our optimization
algorithm. There are practical general methods to solve this chain cover problem for any partial
order in time O(n2.5) by computing the maximum matching of an appropriately constructed bipartite
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graph. In our case, where the partial order has specific structure, we can solve the minimal chain
cover problem even more efficiently in time O(n log n). The algorithm described below is equivalent
to an algorithm given in [17][Chapter 7, Algorithm 7.1] for minimal coloring of a permutation graph.
For completeness, we reproduce the algorithm and proof of optimality in our problem setting below.

Algorithm 5 Greedy minimal chain cover for the product order on R2

Require: A set of points {(ai, bi)}ni=1 with partial order i ⪰ j ⇐⇒ ai ≥ aj and bi ≥ bj .
Ensure: A set C = {C1, . . . , Cv} of non-increasing chains that covers [n].

1: Sort the indices in decreasing order of a so that ai1 ≥ ai2 ≥ · · · ≥ ain , breaking ties by
decreasing b

2: C ← ∅
3: for t← 1 to n do
4: Let C be the chain with the smallest btail(C) such that btail(C) ≥ bit
5: if C exists then
6: Append it to end of C
7: else
8: Create a new chain Cnew ← {it} and append it to C
9: return C

Proposition B.6 (Correctness of minimal chain cover algorithm). Algorithm 5 returns a minimal
size chain cover C = {C1, . . . , Cv} of the partially ordered set ([n],⪰) defined by i ⪰ j ⇐⇒ ai ≥
aj and bi ≥ bj . It runs in time O(n log n).

Proof. First, we proposition that each Cr is a chain. Indices are processed in non-increasing a-order,
so within any chain the a-coordinates never increase. A point p is appended to Cr only if the current
tail q of Cr satisfies bq ≥ bp; hence (aq, bq) ⪰ (ap, bp).

Now, to show that this set of chains is minimal we will invoke Dilworth’s Theorem, which states that
the minimal number of chains that cover a poset (its width) is equivalent to the length of the longest
antichain (sequence of incomparable elements.) We argue that the set of final tails of each chain
forms an antichain. Let T = {t1, . . . , tv} be the final tails ordered so that bt1 < bt2 < · · · < btk . For
any chains i, j with i < j we have ati ≥ atj , otherwise tj would have been added to chain i. But,
bti < btj , so ti and tj are incomporable. Thus the elements of T are pairwise incomparable and T is
an antichain of size v. Now, let A ⊆ [n] be any antichain. Map each x ∈ A to the chain that contains
it. Two distinct elements of A cannot lie in the same chain, hence |A| ≤ v. Therefore, the length of
the longest antichain is v, so the width of the partially ordered set is v and the algorithm has returned
a minimal number of chains.

The algorithm can be implemented in time O(n log n), because the set of chains is always sorted in
increasing order of the b value of their tails so we use binary search to find the chain in which to
insert each i (step 4.)

C Systematic Sampling

The method known as “Systematic Sampling”, works by first computing cumulative probabilities
Si =

∑i
j=1 pj . Then, it selects a random starting point u uniformly from the interval [0,1) and picks

exactly one item from each of the k intervals obtained by adding integers m = 0, 1, . . . , k − 1 to
the starting point u. Each item is selected if at least one of these evenly spaced points falls within
its corresponding cumulative interval [Si−1, Si). Thus, the algorithm guarantees selecting exactly
k distinct items without replacement, each with the correct marginal probability pi. Additionally,
we can initially shuffle the items uniformly at random, so that the algorithm replicates the expected
behavior of uniform random sampling for items with equal values of p. The algorithm requires two
passes over all the proposals and hence runs in time O(n).
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Algorithm 6 Systematic Sampling [32]

Require: Integer k, probability vector p ∈ [0, 1]n with
∑

pi = k
Ensure: A subset of k items sampled without replacement from [n] where item i ∈ [n] is included

with marginal probability pi.
1: Compute cumulative sums: S0 ← 0, Si ←

∑i
j=1 pj for i = 1 to n

2: Sample u ∼ Uniform(0, 1)
3: for each m from 0 to k − 1 do
4: Include item i in the sample where (u+m) ∈ [Si−1, Si)

D Enforcing Monotonicity in Budget

In this section, we show that it is possible to solve MERIT sequentially and simultaneously satisfy ex
post validity and monotonicity in budget k. This may come at the cost of ex ante optimality.

Algorithm 7 Solving Sequence of Optimization Problems for Monotonicity

Require: Sequence of intervals {[ℓi, ui]}i∈[n], number selected k.
1: Let p(0) = (0, · · · , 0)
2: for i ∈ [k] do
3: Compute ex ante optimal p for selecting top-i proposals with the additional constraint

p
(i)
j ≥ p

(i−1)
j ∀j ∈ [n] to obtain optimal p(i).

4: Post-process p(i) with Algorithm 3.
5: return p(k)

Proposition D.1 (Monotonicity in budget k). Algorithm 7 guarantees that p(i) ≥ p(i−1) for all
i ∈ [k].

Proof. Let p(i−1) be the output at step i−1 and p′(i) be the output for iteration i before post-processing
and p(i) be the final output after post-processing. If an interval b is strictly below a set of intervals
A, either p(i−1)

b = 0 or p(i−1)
b > 0 and p

(i−1)
a > 0 ∀a ∈ A. If p(i−1)

b = 0, clearly p
(i)
b >= p

(i−1)
b .

If p(i−1)
b > 0 and p

(i−1)
a > 0 ∀a ∈ A, then p

′(i)
a = 1 for all a ∈ A and p

′(i)
b ≥ p

(i−1)
b , so the

post-processing will not decrease p
′(i)
b at all and monotony will be satisfied.

E Existing Randomized Selection Algorithms

In this section, we provide precise pseudocode for existing algorithms against which we compare
our MERIT approach in Section 5. Note that for Randomize Above Threshold, T may be chosen
independently of the data (e.g., as an absolute quality cutoff) or based on the data (e.g., as the k-th
largest lower bound).

Algorithm 8 Swiss NSF Selection Algorithm [21]

Require: Set of proposals with point estimates and intervals; number accepted k.

1: Rank proposals by decreasing point estimate and let e(k) be the point estimate of the k-th ranked
proposal.

2: LetA be the set of proposals with lower bound strictly above e(k),R be the set of proposals with
upper bound strictly below e(k), and P the set of proposals with intervals that contain e(k).

3: Accept A, rejectR, and accept (k − |A|) proposals chosen uniformly at random from P .
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Algorithm 9 Randomize Above Threshold

Require: Set of proposals with point estimates and intervals; number accepted k.

1: Choose a threshold T (potentially based on the data.)
2: Reject all intervals strictly below T and select uniformly at random among the remaining.

F Details of Interval Generation

In this section, we provide additional details on how intervals may be generated.

F.1 Interval Generation Methods

Below, we describe five potential methods of producing “Knightian” uncertainty intervals, where a
funder does not draw probabilistic conclusions about the intervals.

1. Imputation-based intervals: in many grant funding panels most proposals have been reviewed by
a large fraction of the reviewers. For example, in the Swiss NSF process [21], over 91% pairs of
reviewer-proposal pairs received scores. If every reviewer scored every proposal, then the funder
need not worry about reviewer miscalibration—the tendency for different reviewers to interpret
the review scale differently[59]. Hence, the funder may first impute values for missing scores and
then aggregate across reviewers. The funder can make minimal assumptions by adopting Manski
bounds [34, 47]. Manski bounds generate intervals by imputing missing scores with a range of
possible values from the minimum to maximum score. The aggregate scores are then given as an
interval over the range of possible imputed values. Hence, the intervals represent the plausible set
of values for each proposal’s aggregate review score, without a probabilistic interpretation.

2. Intervals from model ensembling: in many cases, a funder may have a number of plausible models
of their data, each of which produces point estimates. Hence, the funder can estimate all plausible
models of the data and ensemble into intervals by taking quantiles of the point estimates. This
type of ensembling has been applied to time-series forecasting problems where it is known as
Quantile Prediction Averaging [39].

3. Intervals based on expert input: a frequently cited motivation for randomization is concerns about
prejudice, for example, against highly original ideas or junior researchers. The funder may not be
able to reliably estimate such sources of error from their observational, potentially sparse data, but
can rely on prior controlled experiments that establish the rough magnitude of prejudices in the
review process.

4. Multi-criteria aggregation: Reviewers are often given a number of criteria on which proposals are
rated, for example “intellectual merit” and “broader impact.” The funder can consider multiple
valid ways to aggregate criteria and generate intervals over the set of possible aggregations.

5. Robustness to mis-specification of model used to generate intervals: the funder may use a
probabilistic model to estimate intervals and then draw conclusions about the ordering of the
intervals, but may not trust other information about the distribution. This is a common assumption
in the literature on distributionally robust optimization (see [41] for a survey), where the funder is
said to be optimizing over a “support-only” ambiguity set.

F.2 Implementation of Interval Generation in Experiments

Our worst-case objective (1), assumes that any ordering consistent with quality intervals could be
the true ranking of proposals. The utility is then defined as the worst-case expected fraction of top-k
proposals chosen over all possible orderings consistent with the intervals. We simulate generating
such quality intervals in three scientific peer review scenarios and measure the performance of
different selection methods with respect to our worst-case objective. First, we replicate the scientific
grant funding process of the Swiss NSF. We use publicly released review data from their 2020 grant
review process consisting of n = 353 proposals [21]. We generate intervals using their linear model
of reviewer miscalibration. Additionally, we generate imputation-based intervals for the Swiss NSF
data using Manski bounds to impute missing reviewer-proposal scores and aggregating scores across
reviewers using the median. Second, we use paper review data from the NeurIPS 2024 conference,
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available on OpenReview, which includes n = 4035 accepted papers. We simulate a process of
allocating long talks (orals and spotlights) among accepted papers, inspired by the USENIX Security
2025 [57]. Third, we use paper review data from the ICLR 2025 conference, available on OpenReview,
which includes all n = 11520 papers submitted to the conference. We simulate allocating paper
acceptances at this conference. For NeurIPS and ICLR, there is no standard method to generate
intervals. We therefore implement three different methods for generating intervals on NeurIPS and
ICLR data:

(1) Leave-one-out intervals (LOO): taking inspiration from “jacknife” or leave-one-out intervals [6],
we compute the range of possible mean review scores, leaving out one reviewer at a time for each
paper.

(2) Gaussian error model credibility intervals: similar to the Swiss NSF’s intervals, we assume
a Gaussian model generates review scores based on underlying true quality scores and infer
credibility intervals for the true quality. Specifically, for paper i, we assume paper has true quality
θi ∼ N (0, 2), precision τi ∼ Gamma(1, 1), and review scores on the paper are drawn i.i.d. from
N (θi, 1/

√
τi). The parameters of the priors are chosen to closely match those of the Swiss NSF

model. We infer 50% credibility intervals for θi given the observed review scores using MCMC.
(3) Subjectivity intervals: NeurIPS 2024 and ICLR 2025 both asked reviewers to provide numerical

scores of papers’ soundness, presentation, and contribution in addition to overall scores. Previous
works have observed that different reviewers may have different subjective views of which criteria
matter to a paper’s quality introducing arbitrariness into overall review scores [28]. One proposed
approach to mitigate this subjectivity is to learn a mapping from sub-criteria to an overall score
based on peer review data [38] and then use this mapping to adjust the review score. We generate
intervals by applying this method to adjust scores and taking the interval to be all values in
between original scores and subjectivity adjusted scores.

We note that there are no confidence intervals for estimates generated in the worst-case setting as
these are generated for a single dataset with a single set of intervals, where there is no randomness in
the data generation process.

G Additional Experiments

In this section, we provide additional experimental results comparing the performance of randomized
selection rules.

G.1 Ablations

We additionally conduct ablations on parameters of both models that provide insight into the relative
performance of different methods under varying model settings. First, in Figure 4, we show utility of
different methods in the Swiss NSF’s linear miscalibration model varying the degree of miscalibration.
As the magnitude of miscalibration increases, deterministic selection using mean score degrades
greatly in performance it does not account for error due to miscalibration at all. Meanwhile, the
other methods perform similarly and maintain fairly high expected utility, even with a large degree of
miscalibration. We observe similar results in additional ablations of the miscalibration model and
when selecting the top one-tenth of proposals instead of top one-third, as shown in Appendix G.

In Figure 5, we test Manski bounds on the Swiss NSF dataset of grant reviews, where we impute
missing values with the full range of scores. We artificially drop reviews to increase the sparsity of
review scores, leading to worse utility. With 40% sparsity, deterministic achieves near zero utility
as almost all intervals overlap. At all sparsity levels, MERIT outperforms both Swiss NSF and
Deterministic selection. In fact, at sparsity of 0.15 to 0.25, the optimality gap between Swiss NSF
and MERIT is the same as that of deterministic selection and MERIT.

G.2 Qualitative Comparison of Outcomes

In order to give insight into how differing approaches may lead to different types of lotteries in actual
peer review settings, we present qualitative differences between MERIT and the Swiss NSF approach.

In Table 1, we provide a high-level comparison of the marginal probabilities of the sampling proposals
given under MERIT and the Swiss NSF algorithm. One simple comparison point is on the number of
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(a) Swiss NSF simulated data.

(b) Conference simulated data.

Figure 4: Ablation study comparing methods
under the Swiss NSF’s model of linear miscal-
ibration with varying levels of miscalibration.
Error bars show bootstrapped 95% CIs for the
sample mean over 50 samples of randomly gen-
erated data from the model.

Figure 5: Worst-case utility over Manski bound
intervals as a function of the fraction of reviewer-
proposal pairs missing, with random dropping of
review scores to increase sparsity for the Swiss
NSF panel review dataset. Error bars show boot-
strapped 95% CIs for the sample mean over 50
trials of randomly dropping review scores.

proposals that entered into a lottery (% Random) under each algorithm. We find that MERIT tends to
randomize over an equal or greater number of candidates than the Swiss NSF algorithm—on Swiss
NSF data, NeurIPS LOO, NuerIPS Gaussian, and ICLR Subjectivity the two algorithms randomize
over a similar number of candidates, while on NeurIPS Subjectivity, ICLR LOO, and ICLR Gaussian,
MERIT randomizes over more candidates than Swiss NSF. The biggest difference between the two
approaches with respect to the outcome, is that the Swiss NSF rule assigns the same probability
to every proposal that enters its lottery tier, whereas MERIT allows a range of probabilities: the
broadest span is on NeurIPS Gaussian where marginal probabilities range from 0.16 to 0.83. This
reflects the additional flexibility of MERITś lottery. Finally, the relative weight MERIT puts in the
“certain accept” group compared to Swiss NSF (p = 1) is not uniform—it is higher than Swiss NSF
for NeurIPS Subjectivity, essentially tied on the original Swiss NSF set, and lower for the two ICLR
variants, so the split between guaranteed and lottery funding depends on the structure of the intervals
in each study rather than following a single trend.

MERIT Swiss NSF Algorithm
Dataset % Accept % Random Range of p % Accept % Random Value of p

Swiss NSF 28.3 3.4 (0.5, 0.5) 28.0 3.7 0.54
Swiss NSF (Manski Bounds) 5.4 26.9 (0.75, 0.94) 5.4 26.9 0.92

NeurIPS LOO 3.4 16.5 (0.36, 0.94) 3.4 17.9 0.34
NeurIPS Gaussian 2.2 25.7 (0.16, 0.83) 4.0 27.5 0.20
NeurIPS Subjectivity 4.5 18.7 (0.14, 0.45) 1.6 10.4 0.78

ICLR LOO 11.1 32.4 (0.51, 0.88) 22.0 22.8 0.44
ICLR Gaussian 9.5 34.4 (0.45, 0.87) 21.2 27.7 0.4
ICLR Subjectivity 17.6 24.3 (0.50, 0.88) 16.2 25.2 0.63

Table 1: Comparison of marginal probabilities of acceptance by MERIT and Swiss NSF on each
dataset. “Accept” = guaranteed to be selected (p = 1), while “Random” = entered into lottery
(0 < p < 1).
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H Additional Analysis of Computational Runtime Case Studies

In Figure 6, we show the runtime in seconds of the MERIT algorithm (including all pre-processing
and post-processing steps) on each dataset as a function of the acceptance rate. For all methods, the
algorithm runs in under five minutes. Runtime increases with acceptance rate, which is expected
because the number of constraints grows with the number of selections k. We find that the cutting
plane algorithm converges in under 30 iterations for all datasets, meaning that it solves under 30 linear
programs. Furthermore, the largest linear program solved has 25,000 constraints when choosing
k = 5760 of the n = 11520 ICLR papers, suggesting that the cutting plane algorithm scales well in
n and k.

Figure 6: Runtime of MERIT on a standard personal laptop (in seconds) as a function of acceptance
rate using review data from the Swiss NSF (n = 353), NeurIPS 2024 accepted papers (n = 4035)
and ICLR 2025 papers (n = 11520).

In Figure 7, we present the number of cuts and the number of iterations it takes for the cutting plane
algorithm to converge. We note that the size of the LP solved and convergence rate could potentially
be optimized further by strategically pruning cuts from the linear program at each iteration, but even
without additional optimizations the algorithm yields practical performance.

Figure 7: Convergence of cutting plane algorithm as a function of acceptance rate using review data
from the Swiss NSF (n = 353), NeurIPS 2024 accepted papers (n = 4035) and ICLR 2025 papers
(n = 11520). The number of cuts corresponds to the size of the largest linear program solved in a
single iteration of the cutting plane algorithm and the number of iterations corresponds to the total
number of LPs solved before convergence.

I Ex-Ante Optimal Uniform Random Lottery

An additional benefit of MERIT is that it can be easily adapted to handle constraints on the form
of the lottery. In some contexts, funders or decision-makers may prefer to implement a uniform
lottery, where all candidates subject to randomization are selected with equal probability. This form
of randomization may be viewed as simpler, more transparent, and more acceptable to participants
than one in which probabilities differ across candidates.
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To accommodate such requirements, the optimization problem underlying MERIT can be modified
to constrain all randomized candidates to share a common probability of selection. This yields the
ex ante optimal uniform lottery that still satisfies the ex post validity constraints. The resulting
optimization problem is given below:

max
p∈Rn,v∈R,c∈R

v

subject to v ≤
n∑

i=1

pi1{σ(i) ≤ k}, ∀σ ∈ Σn, (4)

n∑
i=1

pi = k and 0 ≤ pi ≤ 1,∀i ∈ [n]

pi ∈ {0, 1, c}, ∀i ∈ [k] (5)
pi = 1 or pj = 0 ∀i, j ∈ [n] : ℓi > uj (6)

The optimization problem is equivalent to the original optimization problem 2, with the addition
of constraint (5), which forces the lottery to be uniform, and constraint (6), which ensures ex post
validity. These additional constraints turn the linear program into a mixed integer program (MIP).
Notably, this MIP has polynomial in n constraints, excepting the worst-case ordering constraints (4)
present in the original optimization problem. Hence, this can be solved using Algorithm 2 (the
MERIT cutting plane algorithm) initialized with the additional integer constraints.

Empirical Performance. Figure 8 compares the uniform variant of MERIT (MERIT Uniform)
against the base MERIT and the Swiss NSF mechanism across datasets. The results show that the
uniform constraint has minimal effect on expected utility, while preserving or improving worst-case
robustness under our model.
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(b) Worst-case over interval ordering model (our model).

Figure 8: Proportion of top-k proposals selected by different methods with quality data generated
under the Swiss NSF model of linear miscalibration and under our model of worst-case over feasible
rankings. MERIT Uniform matches performance of algorithms designed for the Swiss NSF’s linear
model and recovers much of the gap between MERIT and other methods in the worst-case over
intervals defined by our model

Table 2 compares the qualitative outcomes under different algorithms. Notably, MERIT Uniform
achieves nearly identical marginal acceptance probabilities and competitive runtime performance,
suggesting that funders can adopt this more interpretable form of randomization without substantial
efficiency loss.
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MERIT Swiss NSF MERIT Uniform
Dataset % Acc % Rand p % Acc % Rand p % Acc % Rand p

Swiss NSF 28.3 3.4 0.5–0.5 28.0 3.7 0.54 28.3 3.4 0.5

NeurIPS LOO 3.4 16.5 0.36–0.94 3.4 17.9 0.34 3.8 16.1 0.36
NeurIPS Gaussian 2.2 25.7 0.16–0.83 4.0 27.5 0.20 4.9 19.3 0.24
NeurIPS Subjectivity 4.5 18.7 0.14–0.45 1.6 10.4 0.78 3.6 16.1 0.37

ICLR LOO 11.1 32.4 0.51–0.88 22.0 22.8 0.44 11.1 25.2 0.83
ICLR Gaussian 9.5 34.4 0.45–0.87 21.2 27.7 0.40 17.9 25.6 0.56
ICLR Subjectivity 17.6 24.3 0.49–0.88 16.2 25.2 0.63 23.0 18.4 0.49

Table 2: Comparison of marginal probabilities of acceptance by MERIT, Swiss NSF, and MERIT
Uniform on each dataset. “Acc” = guaranteed to be selected (p = 1), while “Rand” = entered into
lottery (0 < p < 1). MERIT shows the range of probabilities, while Swiss NSF and MERIT Uniform
assign single uniform probabilities.

Finally, Table 3 compares the runtime of the original and uniform version of MERITṪhe runtime of
MERIT Uniform can be significantly slower than MERIT due to solving an integer program, but still
runs in reasonable time, running in 40 mins instead of 4 mins in the slowest case of ICLR Gaussian,
which has over 10,000 candidates from which to choose. Additionally, we performed no additional
optimizations of solver parameters in our evaluations of MERIT Uniform, so there may be further
speed ups that are possible.

Table 3: Runtime Comparison for MERIT and MERIT Uniform
Dataset Runtime (seconds)

MERIT MERIT Uniform

Swiss NSF 0.046 0.043
Swiss NSF (Manski Bounds) 0.029 0.036

NeurIPS LOO 0.941 1.301
NeurIPS Gaussian 5.618 43.278
NeurIPS Subjectivity 1.883 11.319

ICLR LOO 43.561 194.366
ICLR Gaussian 242.222 2,346.693
ICLR Subjectivity 21.060 22.225
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We detail our contributions in the abstract and introduction, which describe
each main section of our paper (novel problem definition, efficient algorithm, axiomatic
comparison, and demonstration of practical applicability via case studies.)
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Provided in the Discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

28



Answer: [Yes]
Justification: We include all propositions and proofs are in the supplemental material, with
proof intuition in the main text.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We explain our setup in Section 6 and provide additional details on implemen-
tation and experiments in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We include a zip file of all our code in the technical appendix. The data is
all based on existing publicly available data, and we provide code to replicate our interval
generation methods from this data.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The settings of parameters for our algorithm are provided in the supplementary
material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer:[Yes]
Justification: The only experiment with variability in outcomes is the computational re-
sources experiment, for which we run our method 10 times and report 99% CIs, which are
extremely narrow because the runtime is quite consistent.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Provided in Section 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the Code of Ethics and ocnfirm our paper conforms to the
Code.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the motivations for using randomized algorithms in socially
impactful settings throughout the paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We credit OpenReview and the Swiss NSF for the data they have openly
released that we use in this paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets released.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are not used as component of the core methods in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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