
Published as a workshop paper at ICLR 2025

SCALING TEST-TIME COMPUTE WITHOUT
VERIFICATION OR RL IS SUBOPTIMAL

Amrith Setlur⋆, Nived Rajaraman†, Sergey Levine†, Aviral Kumar⋆
⋆Carnegie Mellon University, †UC Berkeley

ABSTRACT

Despite substantial improvements in LLM capabilities by scaling test-time com-
pute, an ongoing debate in the community is how it should be scaled up so as to
enable continued and efficient improvements with scaling. There are largely two
approaches for this: first, distilling successful search procedures; and second, using
verification (e.g., 0/1 correctness rewards or trained reward models, verifiers) to
guide reinforcement learning (RL) and search algorithms. In this paper, we prove
that finetuning LLMs with verifier-based (VB) methods based on RL or search is
far superior to verifier-free (VF) approaches based on distilling or cloning search
traces, given an equal amount of data budget. Concretely, we show that suboptimal-
ity of VF methods scales poorly with test-time compute budget (measured as the
output token length or horizon) compared to VB when the base pre-trained LLM
presents a heterogeneous distribution over correct solution traces (e.g., different
lengths, styles, etc) and admits a non-sharp distribution over rewards on traces
sampled from it. We formalize this condition using anti-concentration Erdös (1945).
This implies a stronger result that VB methods scale better asymptotically, with
the performance gap between VB and VF methods widening as test-time compute
budget grows. We corroborate our theoretical results empirically on both didactic
and math reasoning problems with 3B/8B-sized pre-trained LLMs, where we find
verification is crucial for scaling test-time compute.

1 INTRODUCTION

Pre-training and post-training of large language models (LLMs) rely heavily on access to high-quality
“expert”. It is projected that we will run out of high-quality Internet text data by 2028 (Villalobos
et al., 2022; Liu et al., 2024), and improving model performance on several domains (e.g., reasoning,
safety) often requires orders of magnitude more data Li et al. (2024). As a result, scaling test-time
compute is emerging as a paradigm for improving reasoning performance. This paradigm directly
makes an LLM capable of executing a search or refinement procedure to find the best response for a
test query, producing responses that are often longer than a direct answer. A common approach for
scaling test-time compute is to use verification (e.g., a 0/1 outcome reward or a trained reward model
/ verifier) either for test-time search (Cobbe et al., 2021b) or as rewards in reinforcement learning
(RL) (DeepSeek-AI et al., 2025). A different class of approaches circumvents verification altogether
and runs supervised fine-tuning on “expert” search traces (Gandhi et al., 2024; Qu et al., 2024). We
refer to these as “verifier-free”, due to the absence of rewards.

Despite the prevalence of both classes of methods, i.e., verifier-based (VB) and verifier-free (VF),
it is not clear which class results in better use of test-time compute, nor which type of method will
come out ahead as the amount of available test-time compute increases. In this paper, we theoretically
and empirically show that VB methods are expected to perform better on both of these fronts under
realistic conditions. Concretely, we show that if a pre-trained LLM admits a sufficiently heterogenous
distribution over plausible responses (i.e., it admits coverage over many sequences of intermediate
steps for a given query that all attain the same correct final answer), then scaling test-time compute by
running any VF approach is suboptimal. The performance gap between the approach of running RL
on verifiers (either implicit 0/1 “regex” matching rewards or explicitly trained numerical or generative
verifiers) and any VF method increases with more available test-time compute.

For our theoretical results, we operate in a setting where we are given a base pre-trained LLM πb and
a set of problems. We represent the available test-time compute in terms of the total number of tokens

1

Published as a workshop paper at ICLR 2025

Prompts

 (problems)

Expert

𝜋𝑒

Reward

Annotator

Base LLM 𝜋𝑏

Problem 𝒙
Expert trace 𝝉

Problem 𝒙
Base rollout 𝝉
Reward r 𝒙, 𝝉

Verifier-Free: E.g., SFT on search traces

Verifier-Based: E.g., RL with ground-truth

rewards, test-time search

scaling test-time compute 𝐻,

#training data 𝑛 = Ω(𝐻)

R
e

w
a

rd

Verifier

Based

Verifier

Free

Gap grows

as √𝐻

(a) (b)Figure 1: Scaling test-time compute: Given a set of problems, verifier-free (VF) methods query expert traces,
whereas verifier-based (VB) methods collect reward annotations for rollouts from the base LLM. Crucially, one
aims to mimic “good” traces and the other seeks to improve via access to verification. We prove a

√
H gap

between a simple VB method and any VF method as we scale data n and compute H , and verify this in practice.

that can be used to produce a solution. Our goal is to finetune πb to make efficient use of test-time
compute (i.e., attain best performance within given compute budget). VF methods are allowed to
obtain at most n correct solution traces for these problems by querying an expert (e.g., humans,
linearized search (Gandhi et al., 2024), etc.). VB methods are allowed to query a reward annotator
that measures correctness of a response, on n samples generated from πb and never observes expert
traces. We derive guarantees on the performance gap between both methods as a function of the
available total test time compute (which we refer to as the “horizon”) and the base LLM.

To compare performance, building on Foster et al. (2024a), we first prove an information-theoretic
lower bound showing that the suboptimality of any VF algorithm scales as the heterogeneity or
diversity of the base LLM being finetuned. We quantify this heterogeneity in terms of the variance
of rewards attained by different solution traces to the same problem. That said, we then show that
the suboptimality for a simple VB method that runs RL with a trained verifier or actual 0/1 outcome
rewards attains a suboptimality gap that scales at a smaller rate in the horizon compared to the lower
bound for VF approaches. In fact, we show that the heterogeneity of the base policy is often helpful
for VB approaches. As a corollary, the performance difference between VB and VF methods scales
with the horizon. This indicates the presence of a separation between VF and VB methods when
scaling test-time compute, and implies the need for training verifiers, running RL, or at the very least,
using rewards when finetuning LLMs for test-time scaling.

We corroborate our theoretical results on math reasoning with 3B/8B Llama models. Our results show
that common pre-trained LLMs satisfy the the theoretical abstractions we propose. We explicitly
control for heterogeneity of the base LLM and show that VF methods perform poorly with more
heterogeneous base LLMs, and that the gap between VB and VF performance scales with more
test-time compute. To the best our knowledge, this is the first theoretical result and systematic study
showing a separation between VF and VB methods, under realistic assumptions on the base model.

2 NOTATION AND PRELIMINARIES

Notation. We use the usual O/Ω notation, where a = Õ(b) when a = O(b ·max(1,polylog(b))),
and a <∼ b for a = O(b). The set of integers {1, . . . , n} is denoted as [n]. For a set S, the set of all
measures over S is given by ∆(S).
Preliminaries. Following prior work Kazemnejad et al. (2024) we model language generation as
a token-level Markov decision process (MDP):M(S,A, r,H), with state space S, token space A,
binary reward r : S × A 7→ {0, 1} in class R, and horizon (token budget) H . Let Sh denote the
set of states at time h (so, S =: ∪Hh=1Sh). The set of initial states S1 is the set of input problems
X ∋ x, sampled from a distribution ρ. At time h, state sh is given exactly by the concatenation of
the problem x and the sequence of tokens sampled till step h− 1, i.e., sh = (x, a1, . . . , ah−1); upon
producing token ah the environment deterministically transitions to state sh+1 = (sh, ah) obtained
by concatenation and collects reward rh =: r(sh, ah). A policy π ∈ Π is a function πh : S 7→ ∆(A)
which produces a distribution over tokens at each state. We use dπh to denote the distribution over Sh
induced by π. A solution trace is a rollout τ = (x, a1, . . . aH) in the MDP, and r(τ) =

∑
h r(sh, ah).

We let the notation Eρ,π[·] denote the expectation Ex∼ρ[Eτ∼π(·|x)[·]].

2

Published as a workshop paper at ICLR 2025

3 EFFECTIVELY SCALING TEST-TIME COMPUTE

Our goal is to compare methods that finetune LLMs to most efficiently scale test-time compute.
We say that an algorithm is effective at making consistent use of test compute if it attains the best
performance possible within a fixed compute budget. In practice, this means that an approach must
strike a balance between directly “guessing” an answer, which uses the least number of tokens but is
unlikely to succeed, and re-attempting sequentially (i.e., run linearized search), which is less token
efficient and wastes compute, but is more likely to succeed at least once. This entails a procedure
where models are deployed with an ever-growing upper bound on test-time token budgets in hopes to
find more successes for a given prompt, underscoring the necessity of efficient asymptotic scaling as
we formalize in this section.

Denoting a base LLM as an autoregressive policy πb(a|s) and a given budget on test-time compute
represented in terms of a maximum H output token length, we evaluate a finetuning algorithm by
measuring the performance of the policy produced by finetuning πb under a specific reward function
r(s, a). This reward function should capture both the accuracy and the efficiency of attaining the
solution. One such family of reward functions is a bi-level reward.

Bi-level reward. As discussed in Property 3.1, we say that a reward function is a bi-
level reward when on any given trajectory, the reward remains 0 until it reaches a state cor-
responding to the correct solution, at which point it receives a reward of 1 (for the first
time), and then continues to collect 1s in the future no matter what it samples (Figure 2).

1 2 3 4 5 6 7 8
Time step

0.0

1.0

R
ew

ar
d

Figure 2: Example of bi-level re-
wards: After the first step where re-
ward is 1, irrespective of future ac-
tions reward remains 1.

That is, once the LLM generates a correct solution, it continues to
attain high rewards. For a solution trace τ = (x, a1, . . . aH) we
define the reward r(τ) =:

∑H
h=1 r(sh, ah), and the performance

(expected reward) of π is Jr(π) =: Eρ,τ [r(τ)]. A correct trace
τ is one that gets the answer correct at some point within the
budget of H tokens, i.e., r(τ) > 0. To maximize efficiency,
we want r(τ) to be as high as possible in the distribution of
the test problem, denoted ρ (Equation (1)). Qπ(sh, ah) denotes
the expected cumulative reward attained by a given LLM π, in
expectation over test problems.

max
π

Jr(π) := Eρ,π

[
H∑
t=0

r(st, at)

]
, Qπ(sh, ah) =: Eρ,π

[
H∑
t=h

r(st, at) | sh, ah
]
.. (1)

Property 3.1 (Bi-level rewards). For any trajectory τ , rewards are binary and non-decreasing, i.e.
∀h ∈ [H], rh+1(sh+1, ah+1) ≥ rh(sh, ah), (example in Figure 2).

Asymptotic test-time compute efficiency. Having defined how we can measure the efficacy of
a finetuning algorithm in scaling test-time compute within a budget of H tokens, we now turn to
providing a formal definition that allows us to compare different fine-tuning algorithms. Concretely,
Definition 3.2 defines what it means for an algorithm to “asymptotically” scale test-time compute
by Hα, compared to another algorithm. Under our bi-level reward formulation, a higher value of α
implies that algorithm A1 is able to arrive at the correct answers spending ≈ Hα less compute on
average compared to A2, as we scale H . In the next section, we show that verifier-based algorithms
scales test compute by Ω̃(H) compared to veriifer-free algorithms.

Definition 3.2 (Scaling test-time compute by Hα). Fix any bi-level reward r, base policy πb,
horizon H and data budget n = Ω(H), we say that algorithm A1 producing policy A1(H),
asymptotically scales test-time compute by Hα compared to A2 producing A2(H) if:

Jr(A1(H))− Jr(A2(H)) = Ω̃(Hα).

4 THEORY: WHEN DOES VERIFICATION ENABLE ASYMPTOTIC SCALING OF
TEST-TIME COMPUTE?

In this section, we theoretically compare verifier-free and verifier-based algorithms when scaling
test-time compute. We show that for any bi-level reward, there are base policies (pre-trained LLMs)

3

Published as a workshop paper at ICLR 2025

that enable verification based algorithms to asymptotically scale test-time compute H , by a factor of
Ω(
√
H) relative to any verifier-free approach.

A verifier-free (VF) algorithm finetunes the base LLM πb to mimic data from an expert policy
πe without using any rewards or verification. The expert πe can produce a solution trace that
directly results in the final correct answer Zelikman et al. (2022) or perform a number of search and
backtracking operations to eventually end in the final correct answer Gandhi et al. (2024). The expert
policy samples correct traces τ , i.e. r(τ) > 0, however these traces are not guaranteed to be the most
compute-efficient (i.e., r(τ) ̸= H) as each one may get to the answer spending varying number of
tokens for search, backtracking, and CoT.

The performance of any VF algorithm is dependent on the choice of the expert. So, how do we
choose “good” experts that are compute-efficient? Such experts must satisfy two conditions: (a)
they should attain high rewards, and (b) the expert’s distribution should be at least somewhat “close”
to the base policy πb to prevent issues such as memorization and optimization pathologies from
finetuning (Kang et al., 2024; Tajwar et al., 2024). For e.g., one way of constructing expert data is to
first sample multiple traces from πb and then retain all correct traces (Zelikman et al., 2022; Gulcehre
et al., 2023). While existing theoretical abstractions do not prescribe an ideal condition to quantify
(b), we formalize this practical constraint by constraining the expert to be a policy in Πκ: the set of
all policies with χ2 divergence ≤ κ w.r.t. the base πb. We choose χ2 over other f-divergences like
KL as χ2-regularized finetuning is more effective in practice (Huang et al., 2024).

Dχ2 (πe∥πb) =: Eρ,πb

[(
πe(τ | x)
πb(τ | x)

− 1

)2
]
≤ κ. (2)

We refer to the κ-χ2 ball of experts as Πκ, and the optimal expert, i.e., argmaxπ∈Πκ
Jr(π), as π̄ϵ.

A verifier-based (VB) algorithm is one that finetunes the base policy without accessing an expert
policy, but instead queries an annotator to provide reward labels to solution traces sampled from the
base policy πb. For e.g., RL with outcome rewards (DeepSeek-AI et al., 2025) or using generative
verifiers (Zhang et al., 2024) count as verifier-based methods. Note that this definition does not
necessarily require a learned verifier. In all, these classes of methods differ in the oracle being
accessed: access to an expert policy vs. access to a reward annotator that provides bi-level reward.

In total, we compare VF and VB methods, given access to sampling n rollouts from expert policy
for VF methods and n base policy rollouts with reward annotations for VB. We are interested in
evaluting whether VB methods scale test-time compute better than VF as per Definition 3.2. Our
main theoretical result, Theorem 4.1, states that for any bi-level reward function, there exist base
policies πb, representative of practical pre-trained LLM initializations, where a simple VB method
scales test-time compute over all VF methods by at least Ω(

√
H). In the rest of the section, we

formalize the class of base policies that induce this separation.
Theorem 4.1 (Main result; informal). For any bi-level reward r and sufficiently large data budget
n, there exists a base policy πb, verifier-based algorithm A, such that finetuning πb with A scales
test-time compute (Definition 3.2) by Ω̃(

√
H) relative to any verifier-free algorithm.

Key insight. To prove the result above, we establish an instance-dependent information-theoretic
lower bound on the suboptimality gap of any VF method, which is H/

√
n when πb is sufficiently

heterogeneous, i.e., with high probability solution traces for a given prompt vary in their token
efficiency. Then, we show that a simple verifier-based method attains a suboptimality gap upper
bound of only H/n, even when πb is heterogeneous. For this, πb need only cover some high-reward
traces with a sufficient (constant) probability. Put formally, when the distribution over rewards
attained by traces sampled from πb is heterogeneous and not too “sharply” concentrated around its
mean and n = Ω(H) (typically the case for best performance), VB methods scale test-time efficiency
by
√
H over VF methods. A pictorial illustration of these conditions is shown in Figure 3, which

we also show holds empirically (Section 5). Then, we use techniques from second-order adaptive
bounds to develop a novel analysis for proving the separation result.

4.1 LOWER BOUNDS FOR VERIFIER-FREE EXPERT CLONING

We first derive an information-theoretic lower bound for VF methods comparing them to the expert
policy πe. To understand the implications of our theoretical result, we state our lower bound using a
notion of “base policy heterogeneity”, which measures the variability in the token sequences that all
attain the same final answer under πb.

4

Published as a workshop paper at ICLR 2025

Heterogeneity
Property 5.2

Anti-concentration
Property 5.6

RewardsLi
ke

lih
oo

d

Figure 3: Illustration of properties of πb that enable VB methods to outperform VF methods: heterogeneity
(Property 4.2) and anti-concentration (Property 4.6).

Property 4.2 (Policy heterogeneity). For any π ∈ Π, we define problem x-conditioned hetero-
geneity as: σ2

π,x =:
∑H

h=1 Esh∼dπ
h

[
Vara∼π(·|sh) [Q

πe(sh, ah)] | x
]
, the total heterogeneity as

σ2
π =: Ex∼ρ

[
σ2
π,x

]
, and the median heterogeneity as σ̃b := Median({σπ,x : x ∈ X}).

For the expert, heterogeneity is non-zero when different traces spend different token counts to attain
the correct final answer from any state-action tuple attained in a trajectory. We expect most practical
LLM finetuning datasets obtained by rejection sampling or concatenating search trajectories to induce
a quite heterogeneous expert, since a high diversity of solution traces is often a desideratum employed
by practitioners when generating training data in supervised finetuning (Chen et al., 2024a). In order
to obtain heterogeneous expert traces, we would also need the base policy πb to be heterogeneous. In
fact, we show a useful intermediate result relating heterogeneity of πe to that of πb, which allows us
to present our lower bound directly in terms of σb of the base policy (instead of σe).

Lemma 4.3 (Lower bound on expert heterogeneity). Let the heterogeneity of base policy πb be σ2
b .

For any expert πe ∈ Πκ, its heterogeneity σ2
e satisfies |σ2

e − σ2
b | ≤ Hσb

√
κ/2.

Theorem 4.4 (Information-theoretic lower bound on verifier-free algorithms). Given any ρ, r, πb,
expert policy πe and k ≤ |X |/4, there exists a family of alternate expert policies Π′ of size 2k and
reward classR′ ⊆ R, s.t., for any π̂vf

n returned by any verifier-free algorithm:

max
π′∈Π′

max
r′∈R′

Jr(π
′)− Jr′(π̂

vf
n) = Ω

(
σ̃b

√
log |Π′|

n

)
,

∀π′ ∈ Π′, σ2
π′ = O(σ2

e) under r′ ∈ R′, and Π′ ⊆ ΠΘ(κ).

We extend the lower bound result from Foster et al. (2024a), which applies to only one prompt,
to an instance-dependent lower bound that applies to a setting with more than one prompt and
bi-level rewards. See Appendix D.3 for a formal statement and a proof. This result implies that it
is challenging to clone highly heterogeneous experts: when σ̃b scales as Ω(H), the bound grows as
Ω(H/

√
n). A linear dependence on horizon is unavoidable, even though the transition dynamics

in this problem are trivial (i.e., just concatenation) and the transitions are known. The one scenario
where this bound can be reasonable is when σ̃b is small, but this is rarely the case in practice because
pre-trained LLMs tend to be quite heterogeneous. At the very minimum, due to pathologies from
training on narrow data, practitioners prefer using more heterogeneous base models and experts.

4.2 A SIMPLE VERIFIER-BASED ALGORITHM

So far, we saw that heterogeneity can hurt the performance of any VF algorithm that uses expert data
without reward annotations. Next, we show that this limitation does not exist for VB methods, by
constructing a simple algorithm that trains a verifier using n reward annotations on data sampled
from the base policy πb (which need not be an expert). Concretely, our algorithm first trains a
verifier to predict sparse 0/1 correctness of a given solution trace using the provided data, to the
best possible accuracy. Then, it finetunes the LLM to not only maximize the verifier scores on the
prompt distribution. We present this approach formally in Algorithm 1. In particular, Step 2 produces
a class of verifiers R̂γ that are γ-optimal as measured by squared loss. Step 3 produces a policy that
performs optimally on the worst reward in R̂γ . This technique of optimizing a pessimistic reward is
common in both theory and practice of offline RL (Wang et al., 2024), and has also been useful for
preventing reward overoptimization (Coste et al., 2024). Next, we show that this VB algorithm attains
a lower suboptimality gap than the lower bound for VF. To do so, we first prove an intermediate
Lemma 4.5, which upper bounds the accuracy of the verifier trained on Dtr in Algorithm 1.

5

Published as a workshop paper at ICLR 2025

Algorithm 1 Simple Verifier-Based Algorithm

Require: Base policy πb, datasetDtr =: {(xi, τi)}ni=1 of problems xi ∼ ρ and traces τi ∼ πb(· | x).
1: For every τi annotate (xi, τi) with bi-level reward yi.
2: Learn set of classifiers R̂γ ⊂ R that are γ-optimal, i.e.,

R̂γ =:

{
r′ ∈ R

∣∣∣∣ 1n∑n

i=1
(r′(τi)− r(τi))

2 ≤ γ

}
3: Return any optimal pessimistic verifier-based policy: π̂vb

n ∈ argmaxπ∈Π minr∈R̂γ
Jr(π̂).

Proposition 4.5 (Verifier accuracy). For any bi-level reward r, base policy πb, and r̂ ∈ R̂γ in
Algorithm 1, w.p. 1− δ, Eρ,πb

[|r(τ)− r̂(τ)|] ≤ ÕH (H·log(|R|/δ)/n).

Equipped with this result, we can now bound the suboptimality of the learned policy π̂vb
n in Algo-

rithm 1. We show that a specific subset of heterogeneous πb, that are representative of real LLM
scenarios (as we also show in our experiments), this VB algorithm attains a stronger suboptimality
guarantee of H/n, when compared to the best policy π̄κ belonging to the χ2-ball, Πκ, around the
base policy. Intuitively, this condition pertains to how concentrated or “sharp” is the distribution of
rewards induced by sampling traces from πb on a given prompt. As long as this distribution puts a
constant probabilty mass on reward values that are ≈ σx

√
κ higher than the mean reward that πb gets

on prompt x, we say that the policy is anti-concentrated (Property 4.6; Figure 3).

Property 4.6 (Anti-concentrated πb). For a given problem x, horizon H , and base policy πb, define
cx(ε) as the probability mass that the reward r(τ) is larger than the mean reward Eτ∼πb(·|x) [r(τ)]

by a margin of σb,x
√
ε.

cx(ε) =: Prπb(·|x)
(
r(τ) ≥ Eπb(·|x) [r(τ)] + σb,x

√
ε
)
.

Then base LLM πb is said to be c-anticoncentrated if minx cx(εx) ≥ c, where εx =:
Dχ2 (π̄κ(·|x)∥πb(·|x)) and π̄ε denotes the policy in Πε with highest value.

The value of κ depends on how much the best expert deviates from πb on that problem. Even under
high πb heterogeneity σb, an anti-concentrated πb covers–with a constant mass–a policy that improves
over its own mean, implying that an algorithm using the reward signal to fine-tune πb should be able
to discover this policy centered on high-rewarding traces. VF algorithms that do not have access to
the reward signal fail at finding this high-rewarding policy.

While a non-heterogeneous base policy (e.g., one that always samples a single trace for a given
x) will not satisfy Property 4.6, hetergeoneous distributions can still be anti-concentrated since
heterogeneity is a property of a moment (i.e., variance) of the reward distribution whereas Property 4.6
fundamentally relates to the shape or the CDF of the reward distribution. We demonstrate in our
experiments that pre-trained LLMs often satisfy this property.

How can VB algorithms benefit from anti-concentration of πb? Property 4.6 ensures the existence of
a good policy that is covered by the base policy, with high probability. Intuitively, running RL should
be able to then sample traces that attain high rewards and learn to pick up on this reward with more
training. From a theoretical perspective, note that the suboptimality gap of any VB method depends
on the distribution shift between the data-generating policy (πb in our case) and the comparator policy
that we wish to provide the guarantee against (π̄κ). This notion is typically formalized as a bounded
coverage coefficient (Rashidinejad et al., 2021) of an unknown comparator policy, which is restrictive.
We strengthen the notion of this coverage coefficient in our analysis by leveraging anti-concentration,
which allows us to optimally construct a high-reward comparator policy that is covered by the base
policy. Formally, this results in Theorem 4.7 (full proof is provided in Appendix D.4). Note that our
simple VB method admits no direct dependency in σb (base policy’s heterogeneity), which scales as
Ω(H) in the worst case. This implies that as long as πb satisfies Property 4.6 for some h0 ≪ H , VB
methods only incur suboptimality that scales as O(1) when n = Ω(H) whereas for any VF method
this is Ω(

√
H). Mathematically, this is because once Property 4.6 is satisfied for some c0 at a given

horizon h0, then it continues to hold for c0 and ∀H > h0. This is a consequence of the structure of
the bi-level reward as we show in Lemma D.22 in Appendix D.4.

6

Published as a workshop paper at ICLR 2025

Theorem 4.7 (Suboptimality upper bound for VB against any expert). Consider a bi-level reward
r, base policy πb that is c0-anticoncentrated at some horizon h0 ≤ H . Then, w.p. 1− δ, for the
policy π̂vb

n returned by Algorithm 1, the suboptimality gap w.r.t. the best expert: π̄κ:

Jr(π̄κ)− Jr(π̂
vb
n) <∼

H log(|R|/δ)

nc0
,

Overall, Theorem 4.7 implies that if πb covers some correct solution traces for a given prompt, then
VB methods can find these traces and minimize suboptimality, whereas VF methods may not be able
to discover them and might spend unnecessary compute in trying to mimic multiple traces, which
also naturally increases the chances of failing at the problem. Combining the upper and lower bounds
(Theorem 4.7 and 4.4) allows us to bound the efficacy of test-time scaling with VB and VF methods.

Theorem 4.8 (Separation between VB and VF test-time scaling). For any heterogeneous πb with
σ̃b = Ω(H), and is c0-anticoncentrated for horizon h0 ≪ H , the policy π̂vb

n returned by the simple
verifier-based Algorithm 1 and π̂vf

n returned by any verifier-free method satisfy:
Jr(π̂

vb
n)− Jr(π̂

vf
n) = Ω̃ (H/

√
n) ,

which implies our test-time scaling result in Theorem 4.1.

Takeaways: Verification enables test-time scaling

• VF algorithms suffer when the base policy (and consequently any expert realized around the
base policy) is highly heterogeneous.

• VB algorithms outperform any VF algorithm given that the base policy is heterogeneous and
the induced reward distribution is anti-concentrated.

Remark 4.9 (Comparison with old results). Our results also imply a separation between RL-style
finetuning and SFT for LLMs, especially with accurate verification (0/1 rewards). This corroborates
empirical work (Tajwar et al., 2024) observing this separation. No work has formalized this separation
due to the lack of theoretical abstractions beyond worst case coverage. Prior work (Kumar et al.,
2022) outside of LLMs comparing offline RL (VB algorithm) and imitation learning (VF algorithm)
is the closest work with a similar result. While it discusses some conditions on the MDP (e.g., low
volume of “critical” states where the reward distribution is concentrated at low values) when RL
outperforms imitation, our work formalizes conditions of that sort in the context of LLM finetuning
and shows a much stronger result: VB methods dominate all VF methods.

5 RESULTS: LARGE-SCALE MATH REASONING

Our theoretical results in Section 4 show that when the base policy is heterogeneous, VF approaches
perform poorly. However, this can still be favorable for VB Algorithm 1, as long as the anti-
concentration condition (Property 4.6) holds. We now present empirical results on math reasoning
to validate our theoretical results and base LLM properties. We study a didactic setting where we
explicitly control base LLM heterogeneity in Appendix A.

We compare VF supervised finetuning on manually stitched search traces, and VB best-of-N search.
We utilize the MATH Hendrycks et al. (2021) reasoning benchmark, and use LLama-3.1/3.2 8B/3B
instruct models Dubey et al. (2024) supervised finetuned on MATH as the base LLMs. We vary the
test-time compute budget from 29 to 213 tokens, and also vary the training data budget n from 212 to
216. Additional details are in Appendix F.

VF: SFT on revision traces. Motivated by the approach of scaling test-time compute via iterative
revisions (Snell et al., 2024), in this setting, we SFT πb to spend the total test-time compute budget
H on running as many rounds of revision as possible within the budget. To construct SFT data, we
follow the approach of Snell et al. (2024) and construct an expert policy that is “close” to πb by
first sampling a bunch of correct/incorrect solution traces from πb, and then manually stitching a
uniformly random number of incorrect solutions followed by the correct one, into one search trace.

VB: Best-of-N search. For each training problem, we collect a given number of traces ∼ πb, and
label them with a 0/1 correctness score based on final answer match. We then train a verifier with
binary cross-entropy loss. On a test problem, we use the verifier to rank N solutions from πb(·|x), at
temperature 1.0 and choose the best one (N scales linearly in budget H). While we run online RL

7

Published as a workshop paper at ICLR 2025

9 10 11 12 13
log2(test compute)

0.30

0.34

0.38

0.42

0.46

0.50

0.54

A
cc

ur
ac

y

8×

8×

8B

3B

Scaling compute

Verifier-free (SFT)

Verifier-based (BoN)

(a)

12 13 14 15 16
log2 (data budget n)

0.28

0.32

0.36

0.40

0.44

0.48

0.52

A
cc

ur
ac

y

> 6×

> 6×

8B

3B

Scaling data

Verifier-free (SFT)

Verifier-based (BoN)

(b)

9 10 11 12 13
log2(test compute), n = H

0.28

0.31

0.34

0.37

0.40

A
cc

ur
ac

y

9%
17%

20%

Super linear increase in gap

Scaling compute and data (3B)

Verifier-free (SFT)

Verifier-based (BoN)

(c)
Figure 4: Scaling test compute H and training data n on MATH: We compare two common algorithms that
learn to spend test compute: (i) verifier-free SFT on stitched sequential revisions Qu et al. (2024) from an expert,
and (ii) BoN Cobbe et al. (2021a) search using a verifier trained on base LLM. In (a), we scale H , with data size
n=214, and find BoN scales test-compute by 8× over SFT. In (b), we fix H=212, scale n, and note the 6× gain
in sample efficiency for BoN. In (c), we compare RL and SFT following Definition 3.2 where we scale both n
and H , and corroborating Theorem 4.8 the gap between RL and SFT grows super linearly with compute.

for our analysis in the didactic setting (Appendix A), due to computational constraints at higher H ,
we only compare with BoN here, which runs 1-step of policy improvement.

VB BoN scales compute by 8×, data by 6× of VF SFT. At a fixed data budget of 214 samples, BoN
scales test-time compute by 8× over SFT, and at a fixed test compute of 212 tokens, VB scales data
efficiency by 6× (Figure 4(a)(b)). Revisiting Definition 3.2, we scale n with H and analyze the gap
between BoN and SFT. We find that the accuracy gap grows super linearly in logH , i.e., the reward
gap grows as Ω(

√
H) (Figure 4(c)), matching Theorem 4.1.

Low Medium High
Avg. heterogeneity σx

35

40

45

50

55

A
cc

ur
ac

y

-2.1

+2.6

+4.7

Verifier-free SFT

Verifier-based BoN

(a)

5 10 15
Heterogeneity σx

400

800

1200

F
re

qu
en

cy

mean

(b)

0 50 100
Reward

0

20

40

F
re

qu
en

cy

Hard (0.27-anticoncentrated)

E [r(τ)]

E [r(τ)]+σ
√
ε

0 100 200
Reward

20

95

Easy (0.26-anticoncentrated)

(c)

Figure 5: (a, b) Heterogeneity hurts SFT, but SFT outperforms BoN on homogeneous problems:
Across problems, we plot the distribution of σx. Then, we bucket problems by heterogeneity, and run
SFT, BoN on each bucket. (c) Anti-concentration coefficient: For easy and hard problem sets in
MATH, we compute the distribution of bi-level reward on the correct traces sampled from base LLM.

VF generalizes on less heterogeneous problems, but memorizes heterogeneous ones. We analyze
the performance of running SFT/BoN on different problem buckets, where each bucket consists of
problems of low, medium or high value of heterogeneity, at token budget 210 (Figure 5). When
σx is small, VF SFT clones the trace well and improves over VB BoN, which can suffer from
lack of coverage or inaccuracy of verifier (Appendix F). In contrast, when σx is larger, VB BoN
dominates since VF SFT fails to generalize under heterogeneity and mainly memorizes responses.
The distribution of σx is also skewed towards higher values, resulting in VB methods performing
better on average (Figure 4).

Base LLM is anti-concentrated in practice. In Figure 5 we plot the distribution over bi-level
rewards (Property 3.1) that measure test-compute efficiency, conditioned on correct answers. With
κ = 0.5, we mark in red the performance needed for trained LLM to improve over any expert in κ-χ2

ball around πb. On both easy (acc. >0.3) and hard problems (acc. <0.3), the region over the red
mark is ≈ 1/4, implying that πb has an anti-concentration coefficient of ≈ acc. × 0.25 (Property 4.6).
Thus, the VB BoN is able to cover correct answers, which only improves with more test compute.
Theorem 4.7 suggests that with H/η samples BoN can outperform a policy η close to the red mark.

Takeaways: Trends on MATH match our theory.

• Base LLMs (e.g., Llama 8B) exhibit heterogeneous and anticoncentrated reward distributions.
• When πb is heterogeneous, VB methods outperform although VF could be better with low

heterogeneity.

8

Published as a workshop paper at ICLR 2025

REFERENCES

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning
from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.1, knowledge storage and
extraction, 2024. URL https://arxiv.org/abs/2309.14316.

Edward Beeching, Lewis Tunstall, and Sasha Rush. Scaling test-time compute with
open models, 2024. URL https://huggingface.co/spaces/HuggingFaceH4/
blogpost-scaling-test-time-compute.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with
longtermism. arXiv preprint arXiv:2401.02954, 2024.

Hao Chen, Abdul Waheed, Xiang Li, Yidong Wang, Jindong Wang, Bhiksha Raj, and Marah I Abdin.
On the diversity of synthetic data and its impact on training large language models. arXiv preprint
arXiv:2410.15226, 2024a.

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and James
Zou. Are more llm calls all you need? towards scaling laws of compound inference systems. arXiv
preprint arXiv:2403.02419, 2024b.

Xi Chen, Yuchen Zhang, et al. On bayes risk lower bounds. Journal of Machine Learning Research,
17(218):1–58, 2016.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking of
o1-like llms. arXiv preprint arXiv:2412.21187, 2024c.

Yinlam Chow, Guy Tennenholtz, Izzeddin Gur, Vincent Zhuang, Bo Dai, Sridhar Thiagarajan, Craig
Boutilier, Rishabh Agarwal, Aviral Kumar, and Aleksandra Faust. Inference-aware fine-tuning for
best-of-n sampling in large language models. arXiv preprint arXiv:2412.15287, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021a.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021b.

Thomas Coste, Usman Anwar, Robert Kirk, and David Krueger. Reward model ensembles help
mitigate overoptimization. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=dcjtMYkpXx.

Amit Daniely, Sivan Sabato, Shai Ben-David, and Shai Shalev-Shwartz. Multiclass learnability and
the erm principle. In Proceedings of the 24th Annual Conference on Learning Theory, pp. 207–232.
JMLR Workshop and Conference Proceedings, 2011.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,

9

https://arxiv.org/abs/2309.14316
https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://openreview.net/forum?id=dcjtMYkpXx

Published as a workshop paper at ICLR 2025

Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Paul Erdös. On a lemma of littlewood and offord. American Mathematical Society, 1945.

Dylan J Foster, Adam Block, and Dipendra Misra. Is behavior cloning all you need? understanding
horizon in imitation learning. arXiv preprint arXiv:2407.15007, 2024a.

Dylan J Foster, Yanjun Han, Jian Qian, and Alexander Rakhlin. Online estimation via offline
estimation: An information-theoretic framework. arXiv preprint arXiv:2404.10122, 2024b.

Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma, and
Noah D Goodman. Stream of search (sos): Learning to search in language. arXiv preprint
arXiv:2404.03683, 2024.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, pp. 10835–10866. PMLR, 2023.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, Wolfgang Macherey, Arnaud
Doucet, Orhan Firat, and Nando de Freitas. Reinforced self-training (rest) for language modeling,
2023.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and Rishabh
Agarwal. V-star: Training verifiers for self-taught reasoners. arXiv preprint arXiv:2402.06457,
2024.

Audrey Huang, Wenhao Zhan, Tengyang Xie, Jason D Lee, Wen Sun, Akshay Krishnamurthy, and Dy-
lan J Foster. Correcting the mythos of kl-regularization: Direct alignment without overoptimization
via chi-squared preference optimization. arXiv preprint arXiv:2407.13399, 2024.

Andy L Jones. Scaling scaling laws with board games. arXiv preprint arXiv:2104.03113, 2021.

10

https://arxiv.org/abs/2501.12948

Published as a workshop paper at ICLR 2025

Katie Kang, Eric Wallace, Claire Tomlin, Aviral Kumar, and Sergey Levine. Unfamiliar finetuning
examples control how language models hallucinate, 2024.

Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron Courville, and Nicolas Le Roux. Vineppo: Unlocking rl potential for llm reasoning through
refined credit assignment. arXiv preprint arXiv:2410.01679, 2024.

Kimi-Team. Kimi k1.5: Scaling reinforcement learning with llms, 2025.

Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. When Should We Prefer Offline
Reinforcement Learning over Behavioral Cloning? ICLR, 2022.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Iqbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via
reinforcement learning. arXiv preprint arXiv:2409.12917, 2024.

Lucas Lehnert, Sainbayar Sukhbaatar, DiJia Su, Qinqing Zheng, Paul Mcvay, Michael Rabbat, and
Yuandong Tian. Beyond a*: Better planning with transformers via search dynamics bootstrapping.
arXiv preprint arXiv:2402.14083, 2024.

Chen Li, Weiqi Wang, Jingcheng Hu, Yixuan Wei, Nanning Zheng, Han Hu, Zheng Zhang, and
Houwen Peng. Common 7b language models already possess strong math capabilities. arXiv
preprint arXiv:2403.04706, 2024.

San Ling and Chaoping Xing. Coding Theory: A First Course. Cambridge University Press, 2004.

Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe Zhang, Jinmeng Rao, Steven Zheng, Daiyi
Peng, Diyi Yang, Denny Zhou, and Andrew M. Dai. Best practices and lessons learned on synthetic
data for language models, 2024.

Allen Nie, Yi Su, Bo Chang, Jonathan N Lee, Ed H Chi, Quoc V Le, and Minmin Chen. Evolve:
Evaluating and optimizing llms for exploration. arXiv preprint arXiv:2410.06238, 2024.

Yury Polyanskiy and Yihong Wu. Lecture notes on information theory. Lecture Notes for ECE563
(UIUC) and, 6(2012-2016):7, 2014.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching
language model agents how to self-improve. arXiv preprint arXiv:2407.18219, 2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. arXiv
preprint arXiv:2305.18290, 2023.

Nived Rajaraman, Yanjun Han, Jiantao Jiao, and Kannan Ramchandran. Statistical complexity and
optimal algorithms for nonlinear ridge bandits. The Annals of Statistics, 52(6):2557–2582, 2024.

Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline rein-
forcement learning and imitation learning: A tale of pessimism. arXiv preprint arXiv:2103.12021,
2021.

Nikhil Sardana, Jacob Portes, Sasha Doubov, and Jonathan Frankle. Beyond chinchilla-optimal:
Accounting for inference in language model scaling laws. arXiv preprint arXiv:2401.00448, 2023.

Bilgehan Sel, Ahmad Al-Tawaha, Vanshaj Khattar, Ruoxi Jia, and Ming Jin. Algorithm of thoughts:
Enhancing exploration of ideas in large language models. arXiv preprint arXiv:2308.10379, 2023.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. Rl on
incorrect synthetic data scales the efficiency of llm math reasoning by eight-fold. arXiv preprint
arXiv:2406.14532, 2024a.

11

Published as a workshop paper at ICLR 2025

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
process verifiers for llm reasoning. arXiv preprint arXiv:2410.08146, 2024b.

Amrith Setlur, Yuxiao Qu, Matthew Yang, Lunjun Zhang, Virginia Smith,
and Aviral Kumar. Optimizing llm test-time compute involves solv-
ing a meta-rl problem. https://blog.ml.cmu.edu/2025/01/08/
optimizing-llm-test-time-compute-involves-solving-a-meta-rl-problem/,
2025. CMU MLD Blog.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J
Liu, James Harrison, Jaehoon Lee, Kelvin Xu, et al. Beyond human data: Scaling self-training for
problem-solving with language models. arXiv preprint arXiv:2312.06585, 2023.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Fahim Tajwar, Anikait Singh, Archit Sharma, Rafael Rafailov, Jeff Schneider, Tengyang Xie, Stefano
Ermon, Chelsea Finn, and Aviral Kumar. Preference Fine-Tuning of LLMs Should Leverage
Suboptimal, On-Policy Data, 2024.

Alexandre B Tsybakov and Alexandre B Tsybakov. Nonparametric estimators. Introduction to
Nonparametric Estimation, pp. 1–76, 2009.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Pablo Villalobos and David Atkinson. Trading off compute in training and inference, 2023. URL
https://epochai. org/blog/trading-off-compute-in-training-and-inference. Accessed, pp. 9–26, 2023.

Pablo Villalobos, Jaime Sevilla, Lennart Heim, Tamay Besiroglu, Marius Hobbhahn, and Anson Ho.
Will we run out of data? an analysis of the limits of scaling datasets in machine learning. arXiv
preprint arXiv:2211.04325, 2022.

Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cam-
bridge University Press, 2019.

Zhiyong Wang, Dongruo Zhou, John Lui, and Wen Sun. Model-based rl as a minimalist approach to
horizon-free and second-order bounds. arXiv preprint arXiv:2408.08994, 2024.

Sean Welleck, Amanda Bertsch, Matthew Finlayson, Hailey Schoelkopf, Alex Xie, Graham Neubig,
Ilia Kulikov, and Zaid Harchaoui. From decoding to meta-generation: Inference-time algorithms
for large language models. arXiv preprint arXiv:2406.16838, 2024.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws: An
empirical analysis of compute-optimal inference for problem-solving with language models. arXiv
preprint arXiv:2408.00724, 2024.

Violet Xiang, Charlie Snell, Kanishk Gandhi, Alon Albalak, Anikait Singh, Chase Blagden, Duy
Phung, Rafael Rafailov, Nathan Lile, Dakota Mahan, et al. Towards system 2 reasoning in llms:
Learning how to think with meta chain-of-though. arXiv preprint arXiv:2501.04682, 2025.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi, and
Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning. arXiv
preprint arXiv:2405.00451, 2024.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan

12

https://blog.ml.cmu.edu/2025/01/08/optimizing-llm-test-time-compute-involves-solving-a-meta-rl-problem/
https://blog.ml.cmu.edu/2025/01/08/optimizing-llm-test-time-compute-involves-solving-a-meta-rl-problem/

Published as a workshop paper at ICLR 2025

Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024.

Mengjiao Sherry Yang, Dale Schuurmans, Pieter Abbeel, and Ofir Nachum. Chain of thought
imitation with procedure cloning. Advances in Neural Information Processing Systems, 35:36366–
36381, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023.

Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning Ding, Kaiyan Zhang, Bowen Zhou, Zhiyuan
Liu, and Hao Peng. Free process rewards without process labels. arXiv preprint arXiv:2412.01981,
2024.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative verifiers: Reward modeling as next-token prediction. arXiv preprint arXiv:2408.15240,
2024.

13

Published as a workshop paper at ICLR 2025

Appendices
A DIDACTIC SETTING: ILLUSTRATING THEORY IN PRACTICE

Our theoretical results in Section 4 show that when the base policy is heterogeneous, VF approaches
perform poorly. However, this can still be favorable for VB Algorithm 1, as long as the anti-
concentration condition (Property 4.6) holds. We use a didactic setting representative of typical LLM
reasoning problems to validate our theoretical results.

Didactic setup. We extend the planted subsequence problem from Setlur et al. (2024b) to a contextual
version. Concretely, for an input problem x = (x1,.., x5), we say that a response y with H tokens is
a correct trace if there exists a gold contiguous subsequence (g(x1),..,g(x5)) planted in y. Here, the
underlying mapping g : [10]7→[30] is fixed but unknown. For a state s =: (x, a1,.., ah), the bi-level
reward r(s) = 1 if and only if there exists some h′ ≤ h such that the last 5 tokens before h′ match
the gold subsequence. In order to use the same performance scale to compare methods trained for
different horizon H values (test-time compute budget), we Jr(π) and divide it by the maximum
reward of H − 4. Additional details regarding the setup are shown in Appendix E.

Base policy. We wish to construct base policies πb that: (i) differ in heterogeneity, and (ii) satisfy
the anti-concentration condition. To do so, we finetune GPT2-xl Radford et al. (2019) on samples
obtained from a mixture of hand-designed “procedural” policies. Inspired from Setlur et al. (2024b), a
procedural policy µγ(y

⋆
k+1|s)∝ γ, when the last k tokens in the state s, match the first k tokens in the

gold subsequence y⋆. Thus, the normalized return for µγ→1, as γ→∞. We vary the heterogeneity
of πb by finetuning GPT2-xl on data from a mixture of procedural policies with γ ∈ [1000].

Verifier-free SFT & verifier-based RL. Given n prompts, we collect trajectories from an expert
by running rejection sampling over πb, i.e., for each prompt, we sample responses from πb until a
correct trace is sampled. Next, we run SFT on this dataset in a verifier-free manner to obtain π̂vf

n ,
similar to Zelikman et al. (2022). For RL, we implement a practical version of Algorithm 1. We
train a reward model (GPT2-xl) as a multiclass classifier that predicts the bi-level reward over H+1
values: 0 to H . To collect training data, we draw a response τ ∼ πb(· | x) for each of the n prompts
and annotate it ground-truth r(τ). Using this, we train a reward model r̂, and learn policy π̂vb

n by
running REINFORCE (with a KL constraint) against r̂ (Ahmadian et al., 2024).

Results: scaling test-time compute. In Figure 6(a), we compare the test-time efficiency (normalized
Jr) of SFT and RL as we scale test-time token budget H , fixing n=210. The performance of
any procedural policy µγ improves with H , since there is a greater chance of sampling the gold
subsequence. A similar argument applies to base and expert policies that are mixtures over µγ . But
perhaps counterintuitively, the gap between SFT and expert policy worsens as H increases, matching
our result in Theorem 4.4 where the gap grows with H . This is because the heterogeneity of each
procedural policy (and hence σb) scales with H . On the filp side, RL nearly matches the expert
(Theorem 4.7 shows suboptimality gap that is independent of σb), until a much higher H , after which
it deviates slightly, likely because of decline in verifier accuracy at higher H (Appendix E), resulting
in reward hacking Gao et al. (2023) during RL.

Scaling data budget. In Figure 6(b), we fix the test-time compute to 26 tokens, and scale the data
budget n. Expectedly, we see the performance of both SFT and RL improve, but the slope for the RL
curve is much higher than that of SFT, which agrees with our theoretical result on VB being more
sample efficient (1/n) than VF (

√
1/n in Theorem 4.4).

Effect of policy heterogeneity. In Figure 6(c), we compare the performance of SFT and RL policies
as we reduce the heterogeneity of the base policy. Consistent with our discussion in Section 4.1, the
suboptimality gap for SFT reduces with the base policy’s heterogeneity. In this regime we also find
that VF methods outperform VB, primarily because of the decline in verifier accuracy (Appendix E),
and perhaps the anti-concentration property is also not satisfied.

B RELATED WORK

Scaling test-time compute. Recent works Sardana et al. (2023); Snell et al. (2024) have shown that
scaling test-time compute can improve performance at a rate faster than that afforded by traditional
approaches of scaling data Li et al. (2024) or model parameters Hoffmann et al. (2022), implying that
training compute can often be traded off optimally for test-compute Villalobos & Atkinson (2023);

14

Published as a workshop paper at ICLR 2025

23 24 25 26 27 28 29

Horizon H (compute at test-time)

0.00

0.15

0.30

0.45

0.60

0.75

0.90

T
es

t-
ti

m
e

effi
ci

en
cy

πb(Base)

πe (Expert)

π̂vf
n (SFT)

π̂vb
n (RL)

(a)

28 29 210 211 212 213

Data budget n

0.00

0.15

0.30

0.45

0.60

0.75

0.90

T
es

t-
ti

m
e

effi
ci

en
cy

πb(Base)

πe (Expert)

π̂vf
n (SFT)

π̂vb
n (RL)

(b)

103 102 101 100

Base policy heterogeneity σb

0.10

0.25

0.40

0.55

0.70

0.85

T
es

t-
ti

m
e

effi
ci

en
cy

πb(Base)

πe (Expert)

π̂vf
n (SFT)

π̂vb
n (RL)

(c)
Figure 6: Contextualized planted subsequence: We setup a heterogeneous base policy πb, and induce an expert
by rejection sampling correct traces from πb. (a) Fixing data size at 210 we scale test compute, training separate
SFT, RL policies for each compute budget. (b) For a fixed compute budget of 26 we scale data, and train a set of
SFT and RL policies for each n. In (a), (b) we find RL scales both data and test-time compute efficiency over
SFT. In (c) we vary the heterogeneity of πb and find that when it is low, SFT can outperform RL.

Jones (2021). There are two popular ways of spending test compute. First, is to autoregressively
sample from the LLM long “chains-of-thought” that resemble linearized search traces Yao et al.
(2023); Gandhi et al. (2024) or an iterative refinement of answers Qu et al. (2024); Kumar et al.
(2024). Second, is to explicitly implement search procedures Wu et al. (2024); Beeching et al. (2024)
with trained verifiers Cobbe et al. (2021a); Setlur et al. (2024b). In our work, we empirically show
that either of these approaches can scale well, and both theoretically and empirically examine a
different and critical axis of separating these approaches: access to verification during training or
inference. Additionally, recent works Chen et al. (2024c); Setlur et al. (2025) raise concerns about
the unncessary wastage of test-time compute by sampling overly long responses for even simple
questions Yang et al. (2024). In our work, we use a “bi-level” reward formulation to capture what
it means to efficiently use test-compute, and how to compare the asymptotic compute efficiency of
verifier-free and verfier-based algorithms.

Access to verification. We say that a finetuning algorithm has access to verification if it directly uses
ground truth rewards to finetune LLMs, e.g., the 0/1 correctness labels on math solutions Uesato et al.
(2022); Bi et al. (2024); or if it queries trained verifiers for collecting training data Hosseini et al.
(2024) and running search procedures at test-time Welleck et al. (2024); Chen et al. (2024b); Chow
et al. (2024). The former approach of training LLMs to generate long “chains of thought” with final
reward on-policy RL Kimi-Team (2025); DeepSeek-AI et al. (2025) has shown impressive gains on
reasoning benchmarks. For off-policy RL algorithms Rafailov et al. (2023); Zelikman et al. (2022);
Singh et al. (2023) that utilize verification, converting the same 0/1 rewards into value function based
process verification has been shown to be critical Setlur et al. (2024a). Apart from these verification
can also be generative Zhang et al. (2024) and implicit Yuan et al. (2024) where the same LLM is
trained to generate and self-verify responses iteratively. In this work, we bucket all the above as
verifier-based algorithms, and formally show that the asymptotic performance of this class scales
test-compute more efficiently than approaches that do not query any sort of rewards, highlighting the
critical role played by access to verification.

Verifier-free algorithms. Multiple works have proposed to scale test-time compute by finetuning
pre-trained LLMs on manually stitched search traces Gandhi et al. (2024); Nie et al. (2024) that all
lead to the correct solution. The goal here is to force the LLM to mimic known search procedures like
Monte-Carlo tree search Yang et al. (2022); Xie et al. (2024) or A⋆ Lehnert et al. (2024) on training
questions, with the hope that the LLM learns to search for solutions on test problems too Sel et al.
(2023). Crucially these algorithms do not annotate search trajectories in the training data with any
reward, and the LLM is forced to mimic multipe search traces that are “heterogeneous” in nature, i.e.,
different traces spending varying number of tokens (for search) to arrive at the same final solution.
In our work, we analyze how this heterogeneous nature makes it hard for any supervised finetuning
algorithm to generalize, resulting in a poor test-time scaling law for these, matching observations in
practice (Kumar et al., 2024; Xiang et al., 2025).

C DISCUSSION, LIMITATIONS AND FUTURE WORK

Discussion. Recent works Snell et al. (2024); Beeching et al. (2024) show impressive gains by scaling
test-time compute, which is also observed in other works Beeching et al. (2024); Welleck et al. (2024)
that improve test-time performance by simply sampling more tokens from the base LLM without

15

Published as a workshop paper at ICLR 2025

explicitly training for it. Thus, it is clear that the capabalities of pre-trained models are expected
to improve as we sample more tokens from them at test-time. But, this paradigm of improving
performance at test-time is only sustainable if there exist learning algorithms that can learn policies
which make efficient use of test-time compute at much higher compute budgets. To study this, we
first formalize the problem of optimizing test-time compute efficiency under our bi-level rewards
(Property 3.1). Then, we define what it means to scale test-time compute efficiency asymptotically,
mainly when comparing a pair of algorithms (Definition 3.2).

Based on these, we present a novel theoretical analysis that analyzes two classes of popular algorithms.
These algorithms train LLMs to use higher compute budgets at test-time, much higher than the length
of correct answers for typical problems. Crucially, we separate these classes along the axis of access
to verification, and find that without access to verification (which can be in the form of 0/1 rewards
during training, or trained verifiers at test-time), the performance of learning algorithms can scale
terribly at higher compute budgets, compared to a simple verifier-based approach. We prove this
separation, under assumptions on the distribution of the base policy. In particular, we show that when
the base policy is heterogeneous (conditioned on a problem, the distribution of bi-level rewards has a
high variance), no verifier-free learning algorithm can accurately learn any expert in a χ2 ball around
the base policy. We restrict the expert to this ball since it is widely observed in practice, that when
finetuning a pre-trained LLM on an expert that is far from the pre-trained LLM in KL-divergence, the
finetuned LLM fails to generalize, and suffers from pathological issues like over-optimization and
memorization Kang et al. (2024); Tajwar et al. (2024). Additionally, most post-training algorithms
learn a policy in a KL constrained ball around the pre-trained model, to “preserve” pre-training
knowledge Allen-Zhu & Li (2024). We formalize this model of an expert with a chi2 constraint
on the expert policy, and then prove our theoretical claims in this model. While every verifier-free
learner suffers from a heterogeneous base policy, we show that when the base policy satisfies a weak
anti-concentration condition: for all problems puts a constant mass on a region of rewards, slighltly
higher than mean performance on the problem, then a simple verifier-based algorithm we analyze is
already good enough to closely approximate any expert .

We verify that the above conditions of base policy heterogeneity and anti-concentration is quite
common in practice (e.g., on 3b/8B Llama models), which neatly ties our theoretical abstractions and
results to practical settings and empirical observations. We also compare our theoretical predictions
on the performance gap between verifier-free and verifier-based algorithms on MATH benchmark
and a didactic setting which allows us to control the heterogeneity explicitly.

Limitations and future work. In this work, we mainly focus on comparing algorithms that learn
to spend test-time compute along the axes of access to verification. Future work on comparing
verifier-based algorithms that query sparse vs. dense forms of verification (rewards) can be impactful.
Theoretically, it would be interesting to extend our analysis of verifier-based algorithms with bi-level
rewards to other classes of reward functions, including generative ones. Finally, since it is very
expensive to train LLMs to use long contexts at test-time (> 32k) an analysis of scaling laws for RL
with outcome, or dense rewards, and other verifier-based approaches can be critical.

D PROOFS FROM SECTION 4

D.1 USEFUL LEMMAS

For a pair of probability measures P and Q, we define the total variation distance as DTV (P,Q) =
1
2

∫
|dP − dQ|, and define the χ2-divergence by Dχ2 (P∥Q) =

∫ (dQ−dQ)2

dQ if P ≪ Q and

χ2 (P∥Q) = +∞ otherwise. We define the KL divergence by DKL (P∥Q) =
∫
dP log

(
dP
dQ

)
if P ≪ Q and DKL (P∥Q) = +∞ otherwise.

Lemma D.1 (Polyanskiy & Wu (2014)). The following inequalities hold:

• DTV (P,Q) ≤ DH2 (P,Q) ≤ 2DTV (P,Q).

• 1
6DH2 (P,Q) ≤ Dχ2

(
P∥ 12 (P +Q)

)
≤ DH2 (P,Q).

• DTV (P,Q) ≤
√

1
2DKL (P∥Q)

16

Published as a workshop paper at ICLR 2025

Lemma D.2 (Change of measure Polyanskiy & Wu (2014); Foster et al. (2024a)). Let P and Q be
probability distributions over a measurable space (Y,F). Then for all functions h : Y → R,

|EP [h(Y)]− EQ[h(Y)]| ≤
√

VarQ [h(Y)] ·Dχ2 (P∥Q) (χ2-CoM)

≤
√

1

2
(EP [h2(Y)] + EQ [h2(Y)]) ·D2

H(P,Q) (H-CoM)

Lemma D.3 (Total expert heterogeneity). For any policy π, recall the definition of heterogeneity
in Definition 4.2. For this definition of heterogeneity the following equivalance to the expected
conditional variance of rewards is true:

σ2
π = Ex∼ρVarτ∼π(·|x) [r(τ)] .

Proof. Let us begin by recalling the definition of σ2
π .

σ2
π =:

H∑
h=1

Esh∼dπ
h

[
Varπ(·|sh) [Qπ(sh, ah)]

]
.

Now let us expand Varπ(·|sh) [Qπ(sh, ah)] in the following way.

Varπ

[
H∑

h′=h

r(sh′ , ah′)

∣∣∣∣∣sh
]

= Varπ

[
r(sh, ah) +

H∑
h′=h+1

r(sh′ , ah′)

∣∣∣∣∣sh
]

= Eπ

(r(sh, ah)− Vπ(sh) +

H∑
h′=h+1

r(sh′ , ah′)

)2
∣∣∣∣∣∣sh


= Eπ

(r(sh, ah) + Vπ(sh+1)− Vπ(sh) +

H∑
h′=h+1

r(sh′ , ah′)− Vπ(sh+1)

)2
∣∣∣∣∣∣sh


= Eπ

(Qπ(sh, ah)− Vπ(sh) +

H∑
h′=h+1

r(sh′ , ah′)− Vπ(sh+1)

)2
∣∣∣∣∣∣sh


Breaking the above expectation into three terms by expanding the square, note that the third term is
zero because, Eπ [Qπ(sh, ah)− Vπ(sh+1) | sh] = 0, for any state sh and in our autoregressive MDP
with deterministic dynamics,

Qπ(sh, ah) = r(sh, ah) + Vπ(sh+1),

also for every state sh. Recall that, here the state sh+1 = (sh, ah). Additionally, we also take the
expecation over the state distribution of sh ∼ dπh, and since the equality is true individually for each
value of sh, it also holds under the expectation over sh. This gives us the following.

Esh∼dπ
h

Eπ

(r(sh, ah) + Vπ(sh+1)− Vπ(sh) +

H∑
h′=h+1

r(sh′ , ah′)− Vπ(sh+1)

)2
∣∣∣∣∣∣sh


= Esh∼dπ
h

Eπ

[
(r(sh, ah) + Vπ(sh+1)− Vπ(sh))

2
∣∣∣sh]+ Eπ

(H∑
h′=h+1

r(sh′ , ah′)− Vπ(sh+1)

)2
∣∣∣∣∣∣sh


+ 2 · Esh∼dπ
h

[
Eπ [r(sh, ah) + Vπ(sh+1)− Vπ(sh)|sh] · Eπ

[
H∑

h′=h+1

r(sh′ , ah′)− Vπ(sh+1)

∣∣∣∣∣sh
]]

17

Published as a workshop paper at ICLR 2025

As we noted above, the third term in the summation above is zero. Thus,

Esh∼dπ
h

[
Varπ

[
H∑

h′=h

r(sh′ , ah′)

∣∣∣∣∣sh
]]

= Esh+1∼dπ
h+1

[
Varπ

[
H∑

h′=h+1

r(sh′ , ah′)

]∣∣∣∣∣sh
]

+ Esh∼dπ
h
[Varπ [Qπ(sh, ah)]|sh]

The above induction is true for all values of h. Now, taking the sum over h, from h = 1 to h = H on
both left and right sides of the equation and using the definition of σ2

π , we get:

σ2
π = Es1∼dπ

1

[
Varπ

[
H∑

h=1

r(sh, ah)

∣∣∣∣∣s1
]]

.

Recall from Section 2 that the first state s1 is simply the input prompt x. Thus dπ1 is indpendent of π
and is simply the distribution over the input prompts x, which is defined as ρ. Plugging this into the
above equation we get:

σ2 = Ex∼ρ

[
Varπ

[
H∑

h=1

r(sh, ah)

∣∣∣∣∣x
]]

= Ex∼ρ

[
Varτ∼π(·|x) [r(τ)]

]
.

Lemma D.4. For an almost surely non-negative random variable A having mean µ and variance σ2,

E
[
θ(µ−A)

σ + θA

]
≤ 2θ2 (3)

Proof. Let f(θ) = E
[
θ(µ−A)
σ+θA

]
. Observe that,

f ′(θ) = E
[
µ−A

σ + θA

]
− E

[
θ(µ−A)A

(σ + θA)2

]
f ′′(θ) = −2E

[
(µ−A)A

(σ + θA)2

]
+ 2E

[
θ(µ−A)A2

(σ + θA)3

]
= 2E

[
θ(µ−A)A2 − (µ−A)A(σ + θA)

(σ + θA)3

]
= 2σE

[
(A− µ)A

(σ + θA)3

]
≤ 2σE [(A− µ)A]E

[
1

(σ + θA)3

]
= 2σ3E

[
1

(σ + θA)3

]
≤ 2

Since f(0) = 0 and f ′(0) = 0, we have that,

f(θ) ≤
∫ θ

α=0

f ′′(α)dα ≤ 2θ2.

D.2 LOWER BOUND ON σe: PROOF OF LEMMA 4.3

In this section, we show that for any base policy πb, and any expert policy πe such that DKL (πe∥πb) ≤
κ,

σ2
e ≥ σ2

b −Hσb

√
κ/2.

Since DKL (·∥·) ≤ χ2(·∥·) pointwise, this implies the lower bound on σe within the χ2 ball.

18

Published as a workshop paper at ICLR 2025

By definition, observe that,

σ2
π = Ex∼ρ[Varτ∼π(·|x) [r(τ)]]

=
1

2
Ex∼ρ

[
Eτ,τ ′∼π(·|x)[(r(τ)− r(τ ′))2]

]
Note that the squared Hellinger divergence D2

H satisfies D2
H(·, ·) ≤ DKL(·, ·) pointwise (cf. Lemma

2.4 in Tsybakov & Tsybakov (2009)). With the choice Y = (τ, τ ′) in the change-of-measure argument
in Equation (χ2-CoM) of Lemma D.2, h(Y) = (r(τ)− r(τ ′))2 and P denote the distribution over
trajectories πb(· | x) and Q denote the distribution over trajectories induced by πe(· | x),

|Varτ∼πb(·|x)[r(τ)]−Varτ∼πe(·|x)[r(τ)]| ≤
1

2

√
1

2
(EP [h2(Y)] + EQ [h2(Y)]) ·DKL ((τe, τ ′e)∥(τb, τ ′b))

≤ 1

2

√
(EP [h2(Y)] + EQ [h2(Y)]) ·DKL (τe∥τb) (4)

where in the last inequality, we use the fact that τe and τ ′e are i.i.d. ∼ πe(· | x), and likewise
τb and τ ′b are i.i.d. ∼ πb(· | x), and the chain rule of KL divergence. What remains is to bound
Eτ∼π(·|x)[(r(τ)− r(τ ′))4] for π = πe and π = πb. Since |r(τ)− r(τ ′)| ≤ H almost surely,

Eτ∼π(·|x)[(r(τ)− r(τ ′))4] ≤ 2H2Varτ∼π(·|x)[r(τ)]

Let’s denote A = Varτ∼πe(·|x)[r(τ)] and B = Varτ∼πb(·|x)[r(τ)]. Combining with Equation (4)
and squaring, and denoting DKL (τe∥τb) = κx,

(A−B)
2 ≤ H2

4
(A+B) · κx

=⇒ A2 −
(
2B +

κxH
2

4

)
A+

(
B2 − κxH

2

4
B

)
≤ 0 (5)

This is a quadratic equation in A. Solving, we get,

A ≥
(
B +

κxH
2

8

)
−
√(

B +
κxH2

8

)2

−
(
B2 − κxH2

4
B

)
=

(
B +

κxH
2

8

)
−
√

κxH2

2
B +

κ2
xH

4

64

≥ B −H
√
κxB/2

where the last inequality uses the subadditivity of the
√· function. This implies that,

Varτ∼πe(·|x)[r(τ)] ≥ Varτ∼πb(·|x)[r(τ)]−H
√

(κx/2)Varτ∼πb(·|x)[r(τ)]

Taking an expectation over x ∼ ρ on both sides, and using Jensen’s inequality,

σ2
e ≥ σ2

b −HEx∼ρ

[√
(κx/2)Varτ∼πb(·|x)[r(τ)]

]
≥ σ2

b −H
√

Ex∼ρ[κx/2]Ex∼ρ

[
Varτ∼πb(·|x)[r(τ)]

]
= σ2

b −Hσb

√
κ/2

Noting that Ex∼ρ[κx] ≤ κ. Solving for the larger root of the quadratic in Equation (5), we also arrive
at the upper bound,

A ≤ B +H
√
κxB/2 +

κxH
2

4

=⇒ σ2
e ≤ σ2

b +Hσb

√
κ/2 +

κH2

4
. (6)

which follows by taking an expectation over x ∼ ρ.

19

Published as a workshop paper at ICLR 2025

Optimality of Lemma 4.3. The above result is tight up to constants. Consider an autoregressive
MDP with a single prompt, where picking action a0 at time 1 results in hitting a staircase (so,
regardless of future actions, a reward of 1 is collected at each step) and picking action a1 results in
a reward of 0 forever. πb picks the first branch with probability p and the second with probability
1− p at t = 1. Then, σ2

b = p(1− p)H2 and by scaling p from 0 to 1/2, any 0 ≤ σ2
b ≤ H2/4 can be

achieved. On the other hand, consider the policy πe which plays a0 with probability p− θ at t = 1.
Suppose p is a constant. Then,

χ2(πe∥πb) =
(p− θ)2

p
+

1− 2(p− θ) + (p− θ)2

1− p
− 1

=
p2 − 2pθ + θ2

p
+

(1− p)2 + 2θ(1− p) + θ2

1− p
− 1

=
θ2

p
+

θ2

1− p

=
θ2

p(1− p)

Therefore, choosing θ = min{p,
√
κp(1− p)}, we get,

χ2(πe∥πb) ≤ κ

And furthermore that, σ2
e = (p− θ)(1− (p− θ))H2 and therefore,

σ2
e − σ2

b = (p− θ)(1− (p− θ))H2 − p(1− p)H2

= −(θ + θ2 − 2pθ)H2,

when θ = p, we get σ2
e = 0. When θ =

√
κp(1− p), this is assumed to be in the regime θ > p and

so,

σ2
e − σ2

b ≤ −(θ + pθ − 2pθ)H2

≤ −θ

2
H2

where in the last equation we recall the assumption that p ≤ 1/2. Plugging in θ and observing that
H2θ = Hσb

√
κ completes the proof.

D.3 PROOF OF THEOREM 4.4

We will state a slightly more formal version of Theorem 4.4 below in Appendix D.3.3. Prior to this,
we introduce some relevant notation necessary to state the main result.

D.3.1 MEASURE OF COMPLEXITY: L⋆
k

Consider an arbitrary partitioning of the prompt space X into k disjoint parts, denoted {Xi}ki=1. Let
{X ⋆

i }ki=1 denote the partitioning of the prompt space which maximizes,

L({Xi}ki=1) =: min {Ex∼ρ[σe,xI(x ∈ ∪i∈KXi)] : K ⊆ [k] and |K| ≥ k/4} . (7)

And let L⋆
k = L({X ⋆

i }ki=1). Our construction, and lower bounds derived therafter are stated in terms
of {X ⋆

i }ki=1 and L⋆
k. We devote the first part of this section toward interpretations of L⋆

k and show that
is always at least 1

16Median({σe,x : x ∈ X}). Later, we will show that if σ2
e ≤ cσ2

e for a sufficiently
small constant c > 1, L⋆

k ≥ c′σe for some constant c′ > 0.

D.3.2 INTERPRETATIONS OF, AND BOUNDS ON L⋆
k

Lemma D.5. Consider any 8 ≤ k ≤ |X |/4. Then, L⋆
k ≥ 1

32Median{σe,x : x ∈ X}).

Proof. First we argue that when k is a power of two, L⋆
k/2 ≥ L⋆

k. For a subset X ⊆ X , define its
score s(X) = Ex∼ρ[σe,xI(x ∈ X)]. In L⋆

k let the partitions {X ⋆
i }ki=1 be arranged in increasing

20

Published as a workshop paper at ICLR 2025

order of their scores. Note then, that L⋆
k =

∑k/4
i=1 s(Xi) Consider the partition of X into k/2 parts,

as {X ⋆
1 ∪ X ⋆

2 ,X ⋆
3 ∪ X ⋆

4 , · · · ,X ⋆
k−1 ∪ X ⋆

k }. Since scores are additive, the k/8 parts with the lowest

scores must be {X ⋆
i ∪ X ⋆

i+1}
k/8
i=1. This implies the first assertion.

Next we argue that for k as any power of two, and any k/2 ≤ k′ ≤ k, L⋆
k′ ≥ 1

2L
⋆
k. Consider the

optimal partition which induces L⋆
k, {X ⋆

i }ki=1 By dissolving the bottom k − k′ parts (in terms of
score) of {X ⋆

i }ki=1 and merging them with other parts, this results in a partitioning of X such that the
sum of k′/4 worst scores of the parts must be at least (k′/k)L⋆

k ≥ L⋆
k/2.

Consider the largest power of 2 between |X |/4 and |X |/2 as k. For this choice, consider the partition
of X into k sets by choosing the first k parts as singleton sets, consisting of the top k prompts x ∈ X
with the highest values of σe,x; the remaining prompts are distributed among sets in the partition
arbitrarily. Notably, the score of each part in this partition satisfies Median({s({x}) : x ∈ X}); by
implication, for any such value of k,

L⋆
k ≥

k

4
Median({s(x) : x ∈ X}) ≥ |X |

16
Median({s({x}) : x ∈ X}) = 1

16
Median({σe,x : x ∈ X})

(8)

where the last equation uses the fact that ρ is the uniform distribution over X . Therefore, for any
k′ ≤ k, we have that L⋆

k ≥ 1
2L

⋆
k =≥ 1

32Median({σe,x : x ∈ X}).

Lemma D.6. Suppose σ2
e ≤ 4

3σ
2
e, then Median({σe,x : x ∈ X}) ≥ 1

10σe ≥ 1
15σe.

Proof. By the Paley-Zygmund inequality,

Pr
x∼ρ

[
σe,x ≥

1

10
σe

]
≥ 4

5
× σ2

e

σ2
e

(9)

When σ2
e ≤ 4

3σ
2
e, the LHS is at least 3/5. This means that at least 3|X |/5 of the prompts satisfy

σe,x ≥ 1
10σe, and so Median({σe,x : x ∈ X}) ≥ 1

10σe. Combining with Equation (8) completes the
proof.

As a corollary of this lemma, we have that,

Corollary D.7. Under the condition σ2
e ≤ (4/3)σ2

e, for every k ≤ |X |/4, we have that L⋆
k ≥ 1

30σe.

Having introduced these interpretations of L⋆
k, we prove the following instance-dependent lower

bound on the suboptimality of any verifier-free algorithm.

D.3.3 LOWER BOUNDS ON VERIFIER-FREE APPROACHES

Below we introduce the class of rewards for which we prove the instance-dependent lower bound in
Theorem 4.4.

Definition D.8 (Half-staircase rewards). Define the class of half-staircase rewards,R1/2, as those
reward functions such that every trajectory contains a staircase at or before time t = ⌊H/2⌋. Namely,
for any trajectory (s1, a1, · · · , sH , aH), r(st, at) = 1 for every t ≥ ⌊H/2⌋ for any reward r ∈ R1/2.

Remark D.9. Although half-staircase rewards are constrained to have all their staircases before time
H/2, this does not preclude there from existing policies having high variance under rewards from
this class. In particular, there exists a policy π and a reward r ∈ R1/2 such that σ2

π = H2/16.

Theorem D.10. Suppose |X | ≥ 16 and choose any 4 ≤ k ≤ |X |/4. Consider any autoregressive
MDP and assume that ρ = Unif(X). Define εstat =

log(|Π′|)
16n and assume that n is sufficiently large

so that εstat ≤ minx∈X σ2
e,x/(Jr(πe|x))2. For any choice of reward r ∈ R1/2, base policy πb and

expert policy πe ∈ Πε, there exists an alternate family of expert policies Π′ of size ⌈2k/4⌉ and reward
classR′ ⊂ R (also of the same size), such that,

1. πe ∈ Π′ and r ∈ R′,

21

Published as a workshop paper at ICLR 2025

2. Π′ ⊆ Πε′ corresponds to a family of feasible expert policies with ε′ = 3(1 + ε) ·
max

{
H

√
εstat

σmin
, H2εstat

σ2
min

}
.

Here, σmin = minx∈X σe,x.

3. For every r′ ∈ R′ and policy π′ ∈ Π′, σ2
r′(π

′) ≤ σ2
e +Hσe

√
εstat +H2εstat.

4. For any realizable verifier-based learning algorithm, satisfying π̂vf
n ∈ Π′,

max
π′∈Π′

max
r′∈R

Pr
(
Jr′(π

′)− Jr′(π̂
vf
n) ≥ L⋆

k

√
εstat
)
≥ 1/8 (10)

Proof structure. We define the alternate policy class Π′ across Lemma D.14 and Lemma D.15,
culminating in Appendix D.3.4. Property 2 (i.e., Π′ ⊆ Πε′) and Property 3 (i.e., the bound on the
variance of policies in Π′ on rewards inR′) are established in Lemma D.14.

Remark D.11. The results of Foster et al. (2024a) establish a similar lower bound for autoregressive
MDPs. However their construction specifically assumes, either (i) there is a single prompt, or (ii)
the adversary constructing an alternate hard instance can change the initial state distribution ρ. This
follows from the fact that their alternate policy is constructed in a way which does not preserve the
initial state distribution of the MDP (cf. Lemma G.1 in their paper).

Our lower bound scales with L⋆
k ≥ σ̃e where σ̃e = Median({σe,x : x ∈ X}), rather than σe, as

previous work Foster et al. (2024a) hints in the case of a single prompt. In general, it turns out that it
is not possible to have an instance-dependent lower bound that scales as Ω(σe

√
log(|Π|)/n). There

exist a class of MDPs where verifier free approaches achieve an error of O(σ̃e

√
log(|Π|)/n), even

under the worst case choice of policy class, and improve over the suggested Θ(σe

√
log(|Π|)/n)

instance-dependent error.

Theorem D.12. Consider an autoregressive MDP with |A| = 2 and H = 1. There exists an expert
policy πe, such that for any policy class Π ∋ πe of size |Π| ≥ 2Ω(|X |), there exists a verifier-free
learner such that with probability at least 1− δ,

max
r∈R

Jr(πe)− Jr(π̂
vf
n) ≤ Õ|X |,δ

(
σ̃e

√
log(|Π|)

n
+

log(|Π′|)
n

)

= Θ̃|X |,δ

(
σe√
|X |
·
√

log(|Π′|)
n

+
log(|Π|)

n

)

as long as δ ≥ |X | exp(− 1
2

√
n/|X |).

Proof. WLOG, assume A = {0, 1}. Consider the following expert: for the ith prompt, arranged in
arbitrary order, let πe(1|xi) =

1
2i2 . Observe that,

σ̃e = Θ

(
1

|X |

)
σe = Eρ[σe,x] ≤ Eρ[

√
πe(1|x)] = Θ

(
log(|X |)
|X |

)
σe =

√
Eρ[σ2

e,x] ≥
√

1

2
Eρ[πe(1|x)] = Θ

(
1

2
√
|X |

)

For each action, construct the empirical distribution estimator, and return this policy as π̂vf
n (0|x).

Then, with probability at least 1−δ, conditioning on the number of samples nx observed with prompt
x,

|π̂vf
n (0|x)− πe(0|x)| ≤ min

1,

√
πe(0|x) log(2/δ)

nx
+

log(2/δ)

nx


22

Published as a workshop paper at ICLR 2025

Therefore, with probability at least 1− δ,
max
r∈R

Jr(πe)− Jr(π̂
vf
n) = Eρ

[
DTV

(
π̂vf
n (·|x), πe(·|x)

)]
≤ Eρ

1,

√
πe(0|x) log(2|X |/δ)

nx
+

log(2/δ)

nx


 (11)

With probability 1 − δ, we have that nx ≥ n
|X | −

√
n
|X | log(1/δ) for every x ∈ X . Assuming

δ ≥ |X | exp(− 1
2

√
n/|X |), by union bounding, we have that with probability at least 1− δ, for all

x ∈ X , nx ≥ n
2|X | . Combining with Equation (11), with probability at least 1− 2δ,

max
r∈R

Jr(πe)− Jr(π̂
vf
n) ≤ 2

∑
x∈X

√
πe(0|x) log(|X |/δ)

n|X | +
log(2/δ)

n

≤ 2 log(|X |)
√

log(|X |/δ)
n|X | + 2

|X | log(2/δ)
n

≤ 2σ̃e ·
√

log(|Π|) log(|X |/δ)
n

+
2 log(|Π|) log(2/δ)

n

where the last inequality uses the fact that |Π| ≥ 2Ω(|X |) and by construction, the value of σ̃e.

Lemma D.13. For any reward r ∈ R1/2, there exists another reward r̃ ∈ R such that, for any policy
π ∈ Π and input distribution ρ,

Eρ,π[r(τ)] = H − Eρ,π[r̃(τ)]

Varρ,π[r(τ)] = Varρ,π[r̃(τ)]

Proof. Consider the staircase reward r, and consider the set of minimal states:
∪τ∈AH{st⋆ where t⋆ = min{1 ≤ t ≤ H : r(st−1, at) > r(st−2, at−1)}. These are the
states where a staircase may be first visited. For each such minimal state, the staircase property
implies that any trajectory which visits this state collects a reward of 1 at every point in time
regardless of the sequence of actions played. Based on this construction, we define the reward r̃
as follows: for every minimal state s which appears at time t, consider the subtree rooted at this
node (i.e., the set of trajectories which visit this state). Delete this minimal state, and replace it by
the set of all 2H−t new minimal states corresponding to the set of all states in the subtree at depth
H − t. Let r̃ be induced by this new set of minimal states; moreover, it is feasible to construct this
set because of the assumption that r ∈ R1/2: every minimal state appears at some value of t ≤ H/2.

Consider any trajectory τ . Suppose this trajectory visits a staircase at time t ≤ H/2. Now the same
trajectory is guaranteed to visit a staircase at time H − t ≥ H/2. Thus, r̃(τ) = H − r(τ), and the
assertions about Eρ,π[r̃(τ)] and Varρ,π[r̃(τ)] follow suit.

Lemma D.14. For any policy π and reward r, and 0 ≤ ξ ≤ minx∈X
σ2
e,x

4(Jr(πe|x))2 , there exists a
class of 2k policies, Πk = {πz : z ∈ {0, 1}k} indexed by binary vectors, and a class of 2k rewards
indexed similarly asRk = {rz : z ∈ {0, 1}k}, such that,

1. For any z, z′ ∈ {0, 1}k, Dχ2 (πz∥πz′) ≤ 8ξ. Furthermore, Dχ2 (πz∥πe) ≤ 8ξ.

2. Jrz (πz)− Jrz (πz′) =
√
ξ
∑k

i=1 I(zi ̸= z′
i(x)) · Ex∼ρ[σe,xI(x ∈ X ⋆

i)],

3. For every reward r′ ∈ Rk and every π′ ∈ Πk: σ2
e,x(π

′, r′) ≤ σ2
e,x +Hσe,x

√
ξ +H2ξ.

4. Recall that πe ∈ Πε, the ε-radius KL ball around πb. Then, every π′ ∈ Πk belongs in the
ball Πε′ , where,

ε′ = 3(1 + ε) ·max

{√
ξH

σmin
,
ξH2

σ2
min

}
. (12)

and where σmin = minx∈X σe,x.

23

Published as a workshop paper at ICLR 2025

Proof. The policy πz is defined as follows. For each i ∈ [k] and x ∈ Xi,

πz(τ |x) ∝
{
(σe,x + θxr(τ))πe(τ |x), if zi = 1

πe(τ |x), otherwise.
(13)

where θx ≥ 0 is a parameter to be determined later. Likewise, the reward rz is defined as follows.
For each x ∈ Xi,

rz(τ |x) ∝
{
r(τ), if zi = 1

r̃(τ |x), otherwise.
(14)

where r̃ is the reward defined in Lemma D.13. Since we only care about values and variances, for all
intents and purposes, r̃ is the same as 1− r (which itself may not be a staircase reward).

Assertion 1: Bounding the χ2-divergence between πz and πz′ . Consider any pair of binary
vectors z, z′ ∈ {0, 1}k. If zi = z′

i, then Dχ2 (πz(·|x)∥πz′(·|x)) = 0 for any x ∈ Xi. Otherwise, if
zi = 1 and z′

i = 0, for any x ∈ Xi,
Dχ2 (πz(·|x)∥πz′(·|x)) = Dχ2 (πz(·|x)∥πe(·|x))

=
Eπe

[(σe,x + θxr(τ))
2|x]

Eπe [σe,x + θxr(τ)|x]2
− 1

=
σ2
e,x + 2θxσe,xJr(πe|x) + θ2x((Jr(πe|x))2 + σ2

e,x)

(σe + θxJr(πe|x))2
− 1

=
θ2xσ

2
e,x

(σe,x + θxJr(πe|x))2
= ξ (15)

where the last equation follows by choosing θx such that θxσe,x =
√
ξ(σe,x + θxJr(πe|x)). There

will always exist a feasible choice of θx ≥ 0 satisifying this equation as long as the condition√
ξ ≤ σe,x/Jr(πe|x) is satisfied, and under the stronger restriction

√
ξ ≤ σe,x/2Jr(πe|x) we will

have that θx ≤ 2
√
ξ. On the other hand, if z(x) = 0 and z′(x) = 1, for any x ∈ Xi,

Dχ2 (πz(·|x)∥πz′(·|x)) = Dχ2 (πe(·|x)∥πz(·|x))

= Eπ[σe,x + θxr(τ)|x] · Eπ

[
1

σe,x + θxr(τ)

∣∣∣∣x]− 1

= Eπ

[
σe,x + θxJr(πe|x)
σe,x + θxr(τ)

∣∣∣∣x]− 1

= Eπ

[
θx(Jr(πe|x)− r(τ))

σe,x + θxr(τ)

∣∣∣∣x]
(i)

≤ 2θ2x
≤ 8ξ (16)

where (i) follows from Lemma D.4 and the last inequality relies on the choice of θx ≤ 2
√
ξ.

Combining Equations (15) and (16) with an expectation over x ∼ ρ results in a proof of the first
assertion.

Assertion 2: Bounding the value gap. Observe that Jr(πz|x)− Jr(πz′ |x) = 0 for any x ∈ Xi if
zi = z′

i. In case zi = 1 and z′
i = 0 and any x ∈ Xi, rz(τ) = r(τ) for any τ which visits x and,

Jrz (πz|x)− Jrz (πz′ |x) = Eπ[σer(τ) + θx(r(τ))
2|x]

Eπ[σe,x + θxr(τ)|x]
− Jrz (πe|x)

=
σe,xJr(πe|x) + θx(Jr(πe|x))2 + σ2

e,x)

σe,x + θxJr(πe|x)
− Jr(πe|x)

=
θxσ

2
e,x

σe,x + θxJr(πe|x)
= σe,x

√
ξ (17)

24

Published as a workshop paper at ICLR 2025

where the last equation follows by choice of θx. When zi = 0 and z′
i = 1, the same analysis results

in the same bound Jr(πz|x)− Jr(πz′ |x) = σe,x

√
ξ for any x ∈ Xi, and taking an expectation over

x ∼ ρ proves the second assertion.

Assertion 3: Bound on variance of πz . This follows from Equation (6), which bounds the variance
of a policy which lies within a radius κ χ2 ball of another: in particular, πz(·|x) lies in a ξ-sized KL
ball around πe(·|x), which has variance σ2

e,x, and taking an expectation over x ∼ ρ. Note also that
the reward rz preserves variances across policies compared to r (cf. Lemma D.13 and the fact that rz
uses either r or r̃), so it suffices to carry out the variance computation under r.

Assertion 4: Bound on Dχ2 (π∥πb) for π ∈ Πk. For any z ∈ {0, 1}k, note that πz and πe have
density ratio upper bounded by,∥∥∥∥πz(τ |x)

πe(τ |x)

∥∥∥∥
∞
≤ σe,x + θxH

σe,x + θxJr(πe|x)

≤ 1 +
2
√
ξH

σmin

This upper bound on the density ratio implies that,

Dχ2 (πz∥πb) = Ex∼ρ

[
Dχ2 (πz(·|x)∥πb(·|x))

]
≤
(
1 +

2
√
ξH

σmin

)2

(1 +Dχ2 (πe∥πb))− 1

≤ 3(1 + ε) ·max

{√
ξH

σmin
,
ξH2

σ2
min

}

Lemma D.15. There exists a subset Z ⊆ {0, 1}k with |Z| = ⌈2k/4⌉ and such that every pair
z, z′ ∈ Z satisfies,

k∑
i=1

I(zi ̸= z′
i) ≥ k/4

Proof. This statement essentially follows from the Gilbert-Varshamov bound (cf. Theorem 5.2.6 in
Ling & Xing (2004)).

D.3.4 CONSTRUCTION OF POLICY CLASS Π′ AND REWARD CLASS R′

Consider the set of policies Π′ = {πz : z ∈ Z} ⊆ Πk and R′ = {rz : z ∈ Z} (see the proof of
Lemma D.14 for a definition of πz , Πk andRk). By Lemma D.15, |Π′| ≈ 2k/4, and furthermore, for
any z, z′ ∈ Z ,

Jrz (πz)− Jrz (πz′) ≥ L⋆
k

√
ξ (18)

where L⋆
k is defined in Equation (7). This bound follows from the first assertion in Lemma D.14 and

the fact that z and z′ differ in at least k/4 coordinates; L⋆
k, by definition, captures the deviation for

the worst-case choice of k/4 coordinates.

Definition D.16 (Chen et al. (2016); Rajaraman et al. (2024)). The χ2-informativity is defined as,

Iχ2(X;Y) ≜ inf
QY

χ2 (PXY ∥PX ×QY)

Theorem D.17. Consider the family of policies Π′ defined above. Let pΠ′ denote the uniform prior
over them (alternately, the distribution over πz for z ∼ Unif(Z)). Let the policy π̂ be constructed
via a dataset D and assume that the verifier-free learner is realizable, satisfying π̂vf

n ∈ Π′. Then,

Pr(Jrz (πz)− Jrz (π̂
vf
n) ≥ L⋆

k

√
ξ) ≥ 1− 1

|Π′|
√
Iχ2(z;D) + 1

25

Published as a workshop paper at ICLR 2025

Proof. Let P be the joint distribution of z and D. Let Q be the distribution Unif(Z)×Qdata for a
generic (arbitrary) data distribution Qdata. Let T : (z, D) 7→ I(Jrz (πz) − Jrz (π̂

vf
n) ≥ L⋆

k

√
ξ) be a

generic map, and P ◦ T−1 and Q ◦ T−1 be the pushforward measures of P and Q by T . Letting
E(z, D) = {Jrz (πz)− Jrz (π̂

vf
n) ≥ L⋆

k

√
ξ)}, the data-processing inequality gives,

Dχ2 (P∥Q) ≥ Dχ2

(
P ◦ T−1∥Q ◦ T−1

)
=

(P (E(z, D))−Q(E(z, D)))2

Q(E(z, D))(1−Q(E(z, D)))
(19)

Let us assume that the learner’s policy π̂ is realizable, and satisfies π̂ ∈ Π′. By the product structure
of Q, we have that,

Q(E(z, D)) ≤ sup
π∈Π′

Pr
(
Jrz (πz)− Jrz (π) ≥ L⋆

k

√
ξ
)
= 1− 1

|Π′| .

where the last inequality uses the fact that for any z′ ̸= z, Jrz (πz) − Jrz (πz′) ≥ L⋆
k

√
ξ (cf.

Equation (18)). Combining with Equation (19), rearranging, simplifying and taking the infimum over
Qdata completes the proof.

Lemma D.18. Consider any realizable verifier-free learner, satisfying π̂vf
n ∈ Π′. Then,

Pr

(
Jrz (πz)− Jrz (π̂

vf
n) ≥ L⋆

k

√
log(|Π′|)

16n

)
≥ 1

4

Proof. Observe that,

Iχ2(z;D) + 1 = inf
Qdata

∫ [
(pΠ(πz))

2
(∏

τ∈D πz(τ)
)2

pΠ(πz)Qdata(D)

]
dDdπ

(i)

≤
∫ [

pΠ(πz)
(∏

τ∈D πz(τ)
)2∏

τ∈D πe(τ)

]
dDdπ

=

∫ [
pΠ(πz)

(∏
τ∈D πz(τ)

)2∏
τ∈D πe(τ)

]
dDdπ

= Eπ∼pΠ [(1 +Dχ2 (πz∥πe))
n]

(ii)

≤ (1 + 8ξ)n

where in (i) we choose Qdata as the data distribution realized by πe and in (ii), we use the first
assertion of Lemma D.14. Choose ξ = εstat =

log(|Π′|)
16n , we get,

Pr

(
Jrz (πz)− Jrz (π̂

vf
n) < L⋆

k

√
log(|Π′|)

n

)
≥ 1

4

D.4 BOUNDING THE PERFORMANCE OF ALGORITHM 1

D.4.1 UNDERSTANDING THE ANTI-CONCENTRATION ASSUMPTION

Recall that the anticoncentration assumption controls the probability of the reward r(τ) for τ ∼
πb(·|x) of exceeding its mean by a margin of

√
ε times its standard deviation. Namely,

cx(ε) =: Prπb(·|x)
(
r(τ) ≥ Eπb(·|x) [r(τ)] + σb,x

√
ε
)
.

The interpretation of cx(ε) is natural, as a prompt-conditional measure of anticoncentration of
the rewards r(τ) collected by the base policy. However, as we discuss in the next lemma, the
deviation term Eπb(·|x) [r(τ)] + σb,x

√
ε serves a dual purpose: it precisely captures the maximum

value achievable in a χ2 ball around πb of radius ε.

26

Published as a workshop paper at ICLR 2025

Lemma D.19 (Characterizing the optimal value within the χ2 ball). For a single prompt x ∈ X ,
consider the set of policies Πε,x = {π : Dχ2 (π(·|s)∥πb(·|x)) ≤ ε}. Then,

sup
π∈Πε,x

Eτ∼π(·|x)[r(τ)] ≥ Eπb(·|x)[r(τ)] + σb,x

√
ε. (20)

Furthermore, as long as ε ≤ σ2
b,x

(Jr(πb|x))2 , this inequality is an equality.

Proof. Consider the candidate policy π(τ |x) ∝ (σb,x + θr(τ))πb(·|x) for θ to be chosen later.
Mirroring the calculation in Equation (15) (with πe replaced by πb), we see that,

Dχ2 (π(·|x)∥πb(·|x)) =
θ2σ2

b,x

(σb,x + θJr(πb|x))2

The maximum achievable value of the χ2 divergence by this policy is
σ2
b,x

(Jr(πb|x))2 . Likewise, mirroring
the calculation in Equation (17),

Jr(π|x)− Jr(πb|x) =
θσ2

b,x

σx + θJr(πb|x)
= σb,x

√
Dχ2 (π(·|x)∥πb(·|x)) = σb,x

√
ε

Therefore, with the appropriate choice of θ, this policy is a feasible policy achieving the supremum in
the statement. What remains is to show that the supremum can be no larger. By Lemma D.2, with
the choice of Y = r(τ), P as the distribution over τ induced by π(·|x) and Q the distribution over
trajectories induced by πb(·|x). Then,∣∣Eτ∼π(·|x)[r(τ)]− Eτ∼πb(·|x)[r(τ)]

∣∣ ≤√Varτ∼πb(·|x)[r(τ)] ·Dχ2 (π(·|x)∥πb(·|x)) = σb,x

√
ε

This shows that the supremizing value is exactly σb,x
√
ε.

Property D.20 (Regularity). Assume that for each x ∈ X that Jr(πb|x) > 0 and,

εx =: Dχ2 (π̄κ(·|x)∥πb(·|x)) ≤
σ2
b,x

(Jr(πb|x))2
.

where π̄κ is any policy which collects the maximum value, while remaining within Πκ.
Lemma D.21. Suppose πb is c0-anticoncentrated for some problem horizon h0 and assume that
Property D.20 holds true for the base policy at this value of h0. Define a collection of parameters,
λ = {λx : x ∈ X} where R ∋ λx ∈ (0, σb

√
2/c0]. Then, there exists a policy πc such that,

1. Almost surely, r(τ) > 0 for τ ∼ πc(·|x) and any x ∈ X .

2. πc is no worse than πe. Namely, Jr(πc) ≥ supπ∈Πκ
Jr(π) ≥ Jr(πe).

3. For every x ∈ X , supτ :Prπb
(τ |x)>0

Prπc (τ |x)
Prπb

(τ |x) ≤ c−1
0

Proof. Fix a prompt x ∈ X . We will construct πc separately for each prompt and later argue about
each of these four assertions. Since πb is c0-anticoncentrated for some problem horizon h0, as long

as εx =: Dχ2 (π̄κ(·|x)∥πb(·|x)) ≤ σ2
b,x

(Jr(πb|x))2 , by Lemma D.19, defining T as the set of trajectories
{r(τ) ≥ supπ∈Πεx,x

Eτ∼π(·|x)[r(τ)]}. Then,

Pr
τ∼πb(·|x)

(τ ∈ T) ≥ c0 (21)

Consider the policy πc(·|x) which is the mixture over the trajectories T = {τ : r(τ) ∈} with mixture
weights wτ ∝ Prπb(·|x)(τ). Since the MDP is autoregressive (i.e., tree-like), πc(·|x) corresponds
to a simple policy (as opposed to a mixture over policies), since two trajectories in T can not visit
the same state again after a different action is played between them, i.e., a breakpoint. This implies
that the mixture of these two trajectories is the same as the policies which agrees with them until the
breakpoint and picks one of the trajectories to follow at the breakpoint, proportional to its weight.
The same argument applies when considering a mixture over more than two trajectories. Next, we
prove the three assertions of this lemma.

27

Published as a workshop paper at ICLR 2025

Assertion 1: Rewards are strictly positive. πc(·|x) is only supported on trajectories which collect
rewards which exceed supπ∈Πεx,x

Eτ∼π(·|x)[r(τ)] ≥ Eτ∼πb(·|x)[r(τ)]. By Property D.20, we have
that Eτ∼πb(·|x)[r(τ)] > 0; this implies that the reward collected by every such trajectory is not only
strictly positive, but must be at least 1 (by the staircase property of the rewards).

Assertion 2: Value bound. πc(·|x) is supported on trajectories which collect reward at
least supπ∈Πεx,x

Eτ∼π(·|x)[r(τ)]. Thus, with probability 1, for any trajectory τ sampled from
πc(·|x), r(τ) ≥ supπ∈Πεx,x

Eτ∼π(·|x)[r(τ)]. Taking an expectation over τ ∼ πc(·|x), we get,
Eτ∼πc(·|x)[r(τ)] ≥ supπ∈Πεx,x

Eτ∼π(·|x)[r(τ)]. Further, taking an expectation over x ∼ ρ,

Eρ,πc
[r(τ)] ≥ Ex∼ρ

[
sup

π∈Πεx,x

Eτ∼π(·|x)[r(τ)]

]
≥ sup

π∈
⋂

x∈X Πεx,x

Eρ,π[r(τ)]

= sup
π∈Πκ

Eρ,π[r(τ)]

where the last equation follows by definition of εx (cf. Property D.20).

Assertion 3: Bounds on coverage. Note that πc(·|x) is the policy
∑

τ∈T wτδτ . In particular, for
any trajectory τ in the support of πc(·|x),

Prπc
(τ |x)

Prπb
(τ |x) =

wτ

Prπb(·|x)(τ)
=

1∑
τ∈T Prπb(·|x)(τ)

(22)

where the last equation follows by definition of wτ . By Equation (21),
∑

τ∈T Prπb(·|x)(τ) ≥ c0.
This completes the proof of the last assertion.

Lemma D.22. Suppose πb is c0-anticoncentrated for some problem horizon h0 and assume that
Property D.20 holds true for the base policy πb at this value of h0. Consider the policy πc introduced
in Lemma D.21 at this value h0. For any horizon H > h0, there exists a policy π̃c which satisfies
essentially the same conditions,

1. Almost surely, r(τ) > 0 for τ ∼ π̃c(·|x) for any x ∈ X ,

2. π̃c is no worse than πe when deployed on horizon H . Namely, JH
r (π̃c) ≥

supπ∈ΠH
κ
JH
r (π) ≥ JH

r (πe).

3. supτ :Prπb
(τ |x)>0

Prπc (τ |x)
Prπb

(τ |x) ≤ c−1
0 .

Here, we point out that the in the fourth assertion (coverage), (a) trajectories τ are of length H ,
and (b) the variance term σb(h0) that appears is that of the base policy evaluated on the horizon h0.
Everywhere, we take care to superscript Jr and Πκ to indicate the horizon over which the policies
are considered.

Proof. Consider the “extension” of πc, defined till time h0, by πb (which we assume is defined
for every t ∈ N). Namely, consider the policy π̃c which follows πc till time h0 and plays actions
according to πb thereon.

The first three assertions follow from the fact that πc is only supported on trajectories with strictly
positive reward. By the staircase property, each of these trajectories collect 1 unit of reward at
every t > h0. Thus, JH

r (π̃c) = Jh0
r (π̃c) + (H − h0), while supπ∈ΠH

κ
JH
r (π) ≤ sup

π∈Π
h0
κ

JH
r (π) +

(H − h0). This follows from the fact that the supremizing policy for the H horizon problem can be
truncated to the first h0 steps to result in a candidate policy in Πh0

κ ; in the process the value of the
policy decreases by at most H − h0. The last assertion follows from the fact that π̃c and πb agree
after time h0, so the worst-case density ratio cannot increase as H increases beyond h0.

28

Published as a workshop paper at ICLR 2025

D.4.2 ANALYSIS OF ALGORITHM 1: PROOF OF THEOREM 4.7

Below, we provide implementation details of Algorithm 1 and a slightly more formal version of
Theorem 4.7. We will define the confidence set R̂γ below, and choose γ appropriately as any upper
bound to EstOff

n (δ) (see Equation (23)). One such upper bound is provided in Lemma D.25. For the
purpose of this section, we will assume that Algorithm 1 carries out least square estimation with
respect to some reward classRvb such that r belongs to this class, and may be a subset or superset of
the set of all staircase rewards,R.
Theorem D.23 (Formal version of Theorem 4.7). Consider a bi-level reward r, base policy πb that
is c0-anticoncentrated at some horizon h0 ≤ H and assume that Property D.20 is satisfied at h0.
Suppose the verifier is used to label the cumulative reward of every trajectory and results in a dataset
of noisy reward annotations, {(xi, τi, yi)}ni=1: assume that the reward annotations are of the form
yi = r(τi) + Zi where the Zi’s are independent and standard normal with trajectory level variance
Var[Zi] ≤ σ2

noise. Then, the policy π̂vb
n returned by Algorithm 1, the suboptimality gap w.r.t. the best

expert π̄κ ∈ Πκ satisfies: with probability ≥ 1− δ,

Jr(π̄κ)− Jr(π̂
vb
n) <∼

(H + σ2
noise) log(|Rvb|/δ)

nc0
,

With independent O(1)-variance noise at steps of a trajectory, note that σ2
noise ≤ O(H).

Below we instantiate the confidence set R̂γ in Algorithm 1. Recall that we assume that Algorithm 1
carries out least square estimation with respect to some reward classRvb: with r̂ls as the least squares
estimator,

r̂ls ← inf
r′∈Rvb

1

n

n∑
i=1

(r′(τi)− yi)
2

R̃γ =

{
r′ ∈ Rvb

∣∣∣∣∣ 1n
n∑

i=1

(r′(τi)− r̂ls(τi))
2 ≤ γ

}
R̂γ =

{
{round(r′(·))} : r′ ∈ R̃γ

}
Where round(r(·)) is the “rounding” of the reward r, for every τ , r(τ) is rounded to the nearest
integer, breaking ties arbitrarily. We define the offline estimation error of the least-squares estimator
below. Define Eδ as the event,

1

n

n∑
i=1

(r̂ls(τi)− r(τi))
2 ≤ EstOff

n (δ) (23)

And suppose Pr(Eδ) ≥ 1− δ where the probability is computed over the randomness of the training
dataset {(xi, τi)}ni=1.

The analysis of the verifier-based learner in Algorithm 1 follows the standard analysis of pessimism-
based algorithms. For an arbitrary comparator policy πc,

Jr(πc)− Jr(π̂
vb
n) ≤ Jr(πc)− min

r̂∈R̂γ

Jr̂(π̂
vb
n)

≤ Jr(πc)− min
r̂∈R̂γ

Jr̂(πc)

≤ sup
r̂∈R̂γ

Eρ,πc
[|r(τ)− r̂(τ)|] (24)

With the choice of the comparator policy πc = π̃c, as defined in Lemma D.22,

sup
π∈Πκ

Jr(π)− Jr(π̂
vb
n) ≤ sup

r̂∈R̂γ

c−1
0 Eρ,πb

[|r(τ)− r̂(τ)|] .

where note that the base policy is assumed to be c0-anticoncentrated for the horizon h0. The
performance of the algorithm thus relies on establishing a generalization bound for the reward
estimation problem, which is proved below in Theorem D.24. In conjunction, this results in the upper
bound: with probability 1− δ,

sup
π∈Πκ

Jr(π)− Jr(π̂
vb
n) ≤ O

(
(H + σ2

noise) · log(|Rvb|/δ)

c0n

)

29

Published as a workshop paper at ICLR 2025

Theorem D.24. Recall that the reward annotations are of the form yi = r(τi) + Zi where the noise
Zi is assumed to be independent and standard normal with trajectory level variance σ2

noise. Consider
any δ ∈ (0, 1). Then, with probability 1− δ, simultaneously for all r′ ∈ R̂γ ,

Eρ,πb
[|r(τ)− r′(τ)|] ≤ O

(
(H + σ2

noise) · log(|Rvb|/δ)

n

)
Note that with independent noise at each step, σ2

noise ≤ O(H).

Proof. This result is a direct combination of Lemmas D.25 and D.27.

Lemma D.25 (Lemma C.1 in Foster et al. (2024b)). It suffices to choose,

EstOff
n (δ) =

8σ2
noise log(|Rvb|/δ)

n
(25)

to guarantee that Pr(Eδ) ≥ 1− δ.

Lemma D.26. With the choice γ = EstOff
n (δ), under the event Eδ , r ∈ R̂γ . Under the same event, for

every reward r′′ ∈ R̂γ ,

1

n

n∑
i=1

|r′′(τi)− r(τi)| ≤ 16 · EstOff
n (δ)

Proof. The first assertion follows by definition of R̃γ and Equation (23), and the fact that r is a
staircase reward, so it is unperturbed by the round(·) operation. For the second assertion: under Eδ ,
for any reward r′ ∈ R̃γ ,

1

n

n∑
i=1

(r′(τi)− r(τi))
2 ≤ 2

n

n∑
i=1

(r′(τi)− r̂ls(τi))
2 + (r(τi)− r̂ls(τi)))

2 ≤ 4EstOff
n (δ) (26)

Consider the r′′ = round(r′) ∈ R̂γ , for this choice of reward, observe that r′′(τ)− r(τ) ∈ Z, since
both rewards only take integer values. Furthermore, (a) if |r′(τ)− r(τ)| < 1/2, then we know that
r′′(τ) − r(τ) = 0 surely, and (b) if |r′(τ) − r(τ)| ≥ 1/2, then |r′′(τ) − r(τ)| ≤ 2|r′(τ) − r(τ)|.
This implies,

1

n

n∑
i=1

|r′′(τi)− r(τi)| =
1

n

n∑
i=1

|r′′(τi)− r(τi)| · I(|r′(τ)− r(τ)| > 1/2)

≤ 2

n

n∑
i=1

|r′(τi)− r(τi)| · I(|r′(τ)− r(τ)| > 1/2)

≤ 4

n

n∑
i=1

|r′(τi)− r(τi)|2 · I(|r′(τ)− r(τ)| > 1/2)

≤ 16 · EstOff
n (δ)

where the last inequality follows from Equation (26).

D.4.3 PROOF OF PROPOSITION 4.5

Lemma D.27 (Generalization bound for learning in L1-error). With probability 1−2δ, simultaneously
for all r′ ∈ R̂γ ,

Eρ,πb
[|r(τ)− r′(τ)|] ≤ O

(
H · log(|Rvb|/δ)

n
+ EstOff

n (δ)

)

30

Published as a workshop paper at ICLR 2025

Proof. For any fixed reward r′ ∈ Rvb, by Bernstein concentration, with probability ≥ 1− δ,

Eρ,πb
[|r(τ)− r′(τ)|]− 1

n

n∑
i=1

[|r(τi)− r′(τi)|] ≤
√

Varρ,πb
[|r(τ)− r′(τ)|] · log(1/δ)

n

≤
√

Eρ,πb
[(r(τ)− r′(τ))2] · log(1/δ)

n

≤
√

H · Eρ,πb
[|r(τ)− r′(τ)|] · log(1/δ)

n

Union bounding over rewards in Rvb, and choosing an arbitrary r′ ∈ R̂γ , by Lemma D.26, with
probability ≥ 1− 2δ,

Eρ,πb
[|r(τ)− r′(τ)|] ≤ 16 · EstOff

n (δ) +

√
H · Eρ,πb

[|r(τ)− r′(τ)|] · log(|Rvb|/δ)

n
Solving the quadratic equation results in the upper bound: with probability ≥ 1− 2δ,

∀r′ ∈ R̂γ , Eρ,πb
[|r(τ)− r′(τ)|] ≤ O

(
H · log(|Rvb|/δ)

n
+ EstOff

n (δ)

)

D.5 PROOF OF THEOREM 4.8

The proof of this result follows directly from the instance lower bound in Theorem 4.4 and subopti-
mality upper bound result in Theorem 4.7. When, σ̃b = Ω(H), the lower bound on the suboptimality
gap of any VF method scales as H log(|Π|)/n, with respect to any expert in a O(1)-χ2 ball around the
baser policy πb, where as if πb is c0 anti-concentrated, then there exists an algorithm that yields an
upper bound on the suboptimality gap of H log |R|/n, with constant probability. Thus, in compliance
with the definition of scaling test-time compute in Definition 3.2, as we scale n = Ω(H), we get the
result in Theorem 4.1.

As an example of such a πb, consider a single prompt, and a base policy that gets a reward of 1 with
probability > 3

5 on any trajectory rolled out till horizon H = H0, and that this mass remains constant
as we scale H → ∞, i.e., the fraction of in correct trajectories (in the set SH0

) remain incorrect
no matter how much we rollout πb. For this distribution, it is easy to see that σ̃b = Ω(H), but is
0.5-anti-concentrated.

D.6 ANALYZING VERIFIER ACCURACY UNDER 0/1 LOSS

Consider the following modified version of Algorithm 1.

Algorithm 2 Simple Verifier-Based Algorithm with ℓ0/1 loss

Require: Base policy πb, dataset {(xi, τi)}ni=1 of prompts xi ∼ ρ and traces τi ∼ πb(· | x).
1: For every τi annotate (xi, τi) with bi-level reward r(τi).
2: Learn set of classifiers R̂γ ⊂ R that are γ-optimal, i.e.,

R̂γ =:

{
r′ ∈ R

∣∣∣∣ 1n∑n

i=1
ℓ0/1(r

′(τi), r(τi)) ≤ γ

}
3: Return any optimal pessimistic verifier-based policy,

π̂vb
n ∈ argmax

π∈Π
min
r∈R̂γ

Jr(π̂).

Proposition D.28 (Verifier accuracy). For any bi-level reward r, base policy πb, there exists an
algorithm querying the at most reward annotator n times to learn r̂ ∈ R, s.t. w.p. 1− δ,

Eρ,πb
[ℓ0/1(r(τ), r̂(τ))] = Õn

(
log(|R|/δ) logH

n

)
=: γstat.

31

Published as a workshop paper at ICLR 2025

In Algorithm 1, setting γ = γstat =⇒ r ∈ R̂γ w.p. ≥ 1− δ.

Definition D.29 (Graph dimension). LetH be a hypothesis class on an input space X and label space
Y . Let S ⊆ X . The class H is said to G-shatter S if there exists an f : S → Y such that for every
T ⊆ S, there is a g ∈ H such that ∀x ∈ T, g(x) = f(x), and ∀x ∈ S \ T , g(x) ̸= f(x). The graph
dimension ofH, denoted dG(H), is the maximal cardinality of a set that is G-shattered byH.

Theorem D.30 (Sample complexity of multiclass classification Daniely et al. (2011)). There exists an
absolute constant C > 0 such that for every hypothesis classH, given aH-realizable i.i.d. dataset
D of size n ≥ n(ε), where,

n(ε) = C

(
dG(H) log(1/ε) + log(1/δ)

ε

)
, (27)

empirical risk minimization on D with the hypothesis class H incurs 0-1 loss of at most ε with
probability at least 1− δ.

Proof.

Lemma D.31 (Upper bound on the graph dimension). For any hypothesis class H, dG(H) ≤
log2(|H|).

Proof. For a set S ⊆ X to be G-shattered byH if there exists a function f such that for any subset
T ⊆ S there exists an discriminator gT ∈ H that agrees with f on T and disagrees with it on S \ T .
Across different choices of the subset T ⊆ S, the discriminating gT cannot be the same: indeed
for T1 ̸= T2 ⊆ S, gT1 and gT2 must disagree on points in (T1 \ T2) ∪ (T2 \ T1), the symmetric
difference of the two subsets. This is simply because on points in T1 \ T2, gT1 agrees with f and gT2

disagrees with f , while on points in T2 \ T1, gT2
agrees with f and gT1

disagrees with f . Since the
map T → gT is injective, and there are 2|S| choices of T , this means that S can only be G-shattered
if |H| ≥ 2|S|.

Theorem D.32. Given a dataset of n(ε) trajectories from πb, there exists an algorithm which calls
the verifier n(ε)⌈log2(H)⌉ times and learns a reward model such that,

Eρ,πb
[I(r(τ) ̸= r̂(τ))] ≤ ε. (28)

Proof. Recall that R is assumed to be a staircase reward class. For each r ∈ R, consider the
multiclass classifier fr : (S×A)H → [H+1] which maps a trajectory τ = {(s1, a1), · · · , (sH , aH)}
to the value of h ∈ [H] such that h is the first point in the trajectory where r(sh, ah) = 1, i.e., the
location of the staircase in the trajectory. If the reward stays 0 entirely through the trajectory, then
fr(τ) = H + 1. First, we relate the 0-1 error of a reward estimator r̂ to the multiclass classification
error of fr, assuming the labels come from fr. Observe that,

Eρ,πb
[I(r(τ) ̸= r̂(τ))] ≤ Eρ,πb

[I(fr(τ) ̸= fr̂(τ))] . (29)

This follows from the fact that, if r(τ) ̸= r̂(τ), then the staircase in this trajectory τ is identified
incorrectly, implying that fr(τ) ̸= fr̂(τ). Recall that the expert dataset is composed of n = n(ε)
trajectories D = {(xi, τi)}ni=1 for some ε > 0 (see Equation (27) for the definition of n(ε)). Using
the verifier to annotate rewards, by a binary searching, the location of the staircase in any of these n
trajectories may be located: thus with n⌈log2(H)⌉ calls to the verifier, a dataset of n examples may
be constructed of the form {(τi, fr(τ))}ni=1 for the ground truth reward r. By carrying out empirical
risk minimization over the hypothesis class F = {fr : r ∈ R} to learn a hypothesis f̂ , and invoking
Theorem D.30, with probability ≥ 1− δ,

Eρ,πb

[
I(fr(τ) ̸= f̂(τ))

]
≤ ε. (30)

32

Published as a workshop paper at ICLR 2025

D.7 PROOF OF THEOREM 4.4 FOR THE SINGLE PROBLEM INSTANCE

For the case, where we have a single prompt x, we use the following Lemma to argue that given an
expert policy πe, we can always construct another policy π̃e, and a pair of rewards {r, r̃} that satisfy
certain properties, while ensuring that each policy observes a variance of σ2 in the range (0, H2/4]
for either of the rewards.

Next, we consider the following inequality, which holds for any ∆ > 0:

min
Alg

max
π∈{πe,π̃e}

max
r∈{r,r̃}

P [Jr(π)− Jr(π̂) ≥ ∆] ≥ min
Alg

max
π∈{πe,π̃e}

P [|Jr(π)− Jr(π̂)| ≥ ∆] .

Here, Jr(π) denotes the expected reward under the reward function r, and for convenience, we
abbreviate J(π) ≡ Jr(π) going forward. Let Pπ

n represent the probability distribution of the offline
imitation learning dataset when the data is collected under policy π. By choosing ∆ = |J(πe)−J(π̃e)|

2 ,
and applying the standard Le Cam two-point argument, we can conclude that:

max
{
Pπe
n [|J(πe)− J(π̂)| ≥ ∆] ,Pπ̃e

n [|J(π̃e)− J(π̂)| ≥ ∆]
}

is bounded below by:

1

2

(
1− Pπe

n [|J(πe)− J(π̂)| < ∆] + Pπ̃e
n [|J(π̃e)− J(π̂)| ≥ ∆]

)
.

This, in turn, is further bounded below by:

1

2

(
1− Pπe

n [|J(π̃e)− J(π̂)| ≥ ∆] + Pπ̃e
n [|J(π̃e)− J(π̂)| ≥ ∆]

)
,

and by a standard application of the data processing inequality for the total variation distance, we
have:

1

2

(
1−DTV

(
Pπe
n ,Pπ̃e

n

))
.

Utilizing the tensorization property of the Hellinger distance Wainwright (2019), we further lower
bound this by:

1

2

(
1−

√
n ·DH (Pπe ,Pπ̃e)

)
.

Next, we proceed to show the following key inequality:

ωπe
(ε) := sup

π

{
|J(π)− J(πe)|

∣∣DH (Pπe ,Pπ) ≤ ε2
}
≥ Ω(1) ·

√
σ2
πe
· ε2,

for any ε > 0 sufficiently small. The final result follows by setting ε2 ∝ 1
n , and defining:

π̃e = argmax
π

{
|J(π)− J(πe)|

∣∣DH (Pπe ,Pπ) ≤ ε2
}
.

To prove this, we invoke the following technical lemma:
Lemma D.33 (Lemma G.1 in Foster et al. (2024a)). For any distribution Q and any function h

satisfying |h| ≤ R almost surely, it holds that for all 0 ≤ ε2 ≤ VarQ[h]
4R2 , there exists a distribution P

such that:

1. EP[h]− EQ[h] ≥ 2−3
√
VarQ[h] · ε2,

33

Published as a workshop paper at ICLR 2025

2. DKL(Q∥P) ≤ ε2.

In the case of stochastic policies π in the autoregressive Markov Decision Process M∗, these
policies are equivalent to defining arbitrary joint distributions over the sequence (a1, . . . , aH) using
Bayes’ rule. Consequently, since J(π) = Eπ

[∑H
h=1 rh

]
, Lemma D.33 ensures that for any ε2 ≤

Varπe [
∑H

h=1 rh]
4R2 , there exists a policy π̃e such that:

DH
(
Pπe ,Pπ̃e

)
≤ DKL

(
Pπe ,Pπ̃e

)
≤ ε2,

and:

J(π̃e)− J(πe) ≥ 2−3

√√√√Varπe

[
H∑

h=1

rh

]
· ε2.

This establishes the desired inequality. Setting ε2 = c
n for some constant c > 0, we achieve√

n ·DH (Pπe ,Pπ̃e) ≤ 1
2 , which is valid provided that n ≥ c′ · R2

σ2
πe

.

E ADDITIONAL EXPERIMENTS IN THE DIDACTIC SETUP

Details on the setup. We generalize the planted subsequence problem from Setlur et al. (2024b). The
input prompt is a sequence of length 5 with the tokens chosen randomly from the set {1, 2, 3, . . . , 10}.
We fix the unknown function to be g(x) = 2x + 5. We fix the vocabulary for the policy we are
training to be the set V =: {0, . . . , 30}. Here 0 is treated as the padding token. Concretely, for an
input problem x = (x1,.., x5), we say that a response y with H tokens from the vocabulary V is a
correct trace if there exists a gold contiguous subsequence (g(x1),..,g(x5)) planted in y. Here, the
underlying mapping g :[10]7→[30] is fixed but unknown. For a state s =: (x, a1,.., ah), the bi-level
reward r(s) = 1 if and only if there exists some h′ ≤ h such that the last 5 tokens before h′ i.e.,
(ah′−4,..,ah′) match the gold subsequence. In order to use the same performance scale to compare
methods trained for different horizon H values (test-time compute budget), we Jr(π) and divide it by
the maximum reward of H − 4.

We wish to construct base policies πb that: (i) differ in heterogeneity, and (ii) satisfy the anti-
concentration condition. To do so, we finetune GPT2-xl Radford et al. (2019) on samples obtained
from a mixture of hand-designed “procedural” policies. Inspired from Setlur et al. (2024b), a
procedural policy µγ(y

⋆
k+1|s)∝ γ, when the last k tokens in the state s, match the first k tokens

in the gold subsequence y⋆. Thus, the normalized return for µγ→1, as γ→∞. We vary the
heterogeneity of πb by finetuning GPT2-xl on data from a mixture of procedural policies with γ ∈
{5, 10, 20, 50, 100, 500}. Once the last 5 tokens match the gold sequence, the procedural policy puts
mass ∝ γ on the padding token 0. See Figure 7 for an illustration of data sampled from different
procedural policies.

For any compute budget H (token length), we train separate SFT and RL policies, where SFT is run
on traces that are H tokens long. We also run RL on the same token budget, against a trained verifier.
The verifier is trained on samples from the base policy. For this, we train a GPT2-xl transformer as a
multiclass classifier, that takes in an H length sequence and outputs a single value in 0 to H (i.e., it is
an H + 1-way classifier).

Experiment details. For the RL runs, we use REINFORCE Ahmadian et al. (2024) train for 20k
iterations in both with a batch size of 64, and a constant learning rate of 1e − 4, with the Adam
optimizer. The RL runs are initialized with the base policy, and to prevent reward hacking we also
use a KL penalty (with weight 0.2), in addition to the REINFORCE training objective. For every
trace in a batch, we query the trained verifier, which outputs a value between 0 and H , which directly
tells us where the “staircase” appears in the bi-level reward. For example, a value of 2 implies that
the staircase appears on the second last token. We convert this outcome supervision into token-level
0/1 rewards and update the policy with the computed policy gradient. For SFT, we also use the
Adam optimizer with a learning rate of 2e − 4, and a batch size of 64. Similar to RL, we apply a

34

Published as a workshop paper at ICLR 2025

Unknown mapping: 𝑔 𝑥 = 2𝑥 + 5

Procedural policy
𝛾 = 1000

Input
(Context)

1, 2, 5, 3, 8

Procedural policy
𝛾 = 10

7, 9, 3, 7, 25, 7, 9, 15, 14, 20 7, 9, 15, 11, 21, 0, 0, 0, 0, 0
Reward: 0, Normalized: 0 Reward: 6, Normalized: 1

3, 1, 7, 2, 6 11, 7, 3, 11, 7, 19, 9, 17, 2, 5 11, 7, 19, 9, 17, 0, 0, 0, 0, 0
Reward: 3, Normalized: 0.5 Reward: 6, Normalized: 1

Gold subsequence

Figure 7: Procedural policies for the generalized planted subsequence problem: For two values
of γ: 10, and 1000, we show examples of two draws, over H = 10 tokens from each. Here, the
unknown mapping is g(x) = 2x+ 5. When γ is 1000, the policy (over the first 5 tokens) is almost
like a dirac delta distribution on the gold subsequence, followed by which it samples the padding
tokens. On the other hand, when γ = 10, it makes multiple attempts and completing the sequence.
Once it fails, it makes a new attempt. In the second sample, we see that after a few tokens it gets the
correct sequence, achieving a total bi-level reward of 3, and normalizing it with H − 4, we get a
normalized reward of 0.5.

KL regularization term in addition to the next token prediction loss (ignoring the padding token 0),
where the strength of the KL term is the same as RL. SFT runs are also initialized with the base
policy. Using the same hyperparameters, we obtain the base policy by running SFT on 200k data
points sampled i.i.d. from the uniform mixture over procedural policies outlined above. To collect
training data for the verifier, we draw a random sample of n/logH prompts in Dtr, and then make
log(H) calls on each of them to binary search for the token where the correct answer first appeared.
This way, we only query reward annotator n times. Finally, for our experiments, where we vary base
and expert policy heterogeneity, we simply change γ (reducing variance over it), in a way that the
average performance of the base/expert policy remains roughtly the same.

23 24 25 26 27 28 29

Horizon H (compute at test-time)

0.45

0.55

0.65

0.75

0.85

0.95

T
es

t-
ti

m
e

effi
ci

en
cy

π̂vb
n (RL) πvb

? (RL w/ GT)

0.45

0.55

0.65

0.75

0.85

0.95

A
cc

ur
ac

y

103 102 101 100

Base policy heterogeneity σb

0.60

0.70

0.80

0.90

A
cc

ur
ac

y

Accuracy on learned policy π̂vb
n

Accuracy on base policy πb

Figure 8: Accuracy of trained verifier: (Left) we plot the accuracy of the verifier (black line), as
we scale the horizon (black line). We also plot the performance of RL with ground-truth (GT)
bi-level rewards, and compare it with RL using the trained verifier. (Right) As we vary base policy
heterogeneity we plot the accuracy of the verifier on two distributions: (i) on base policy πb, (ii) on
policy learned by running RL π̂vb

n .

Accuracy of trained verifier. In Figure 8(left), we plot the accuracy of the verifier (black line), as we
scale the horizon. We fix the data budget to n = 214 here. Since, here budget implies a multi-class
classification over more classes, the problem hardness increases for the verifier, which explains the
performance drop. Initially, we do see an improvement with H , since the coverage over high reward
trajectories improves with H , as we sample the base policy for longer. We also plot the upper bound
on RL performance, where we train the RL policy with ground-truth staircase rewards. Looking at
its performance, it is clear that across all horizons, RL with trained verifier mainly suffers from the
inaccuracy of the trained verifier (i.e., reward hacking issues). In Figure 8(right), we plot the accuracy
of the learned verifier on two distributions (base policy), and the policy learned by RL. As we reduce
base policy heterogeneity, it is easier to generalize on the base policy, but the verifier is inaccurate
outside the narrow distribution of the base policy, making it more susceptible to reward hacking. As a
result, we observe poor accuracy on the learned policy’s distribution.

35

Published as a workshop paper at ICLR 2025

F ADDITIONAL: EXPERIMENTS ON MATH

Experiment details. We run all our training on the questions in the training set of MATH Hendrycks
et al. (2021), and run our test on the MATH500 evaluation benchmark. Any problem instance is
determined by the data budget n and compute budget H . For a fixed compute budget H , we run SFT
on trajectories of search traces. A single search trace consists of multiple turns of responses. Each
response is at most 512 tokens long. A trace can thus comprise of anywhere between 1 to H/512
turns (sometimes more for shorter responses). Here, all turns except the last one are responses that
result in incorrect final answers for the problem. This is exactly the recipe followed by Qu et al.
(2024) and Snell et al. (2024), for learning to self-correct, revise responses, or more generally use
sequential compute at test-time. See below for examples of search traces of SFT. For training the
verifier, we simply use samples from the base LLM, and use 0/1 rewards to train a model of the same
size as the policy with cross-entropy loss. We use a batchsize of 32 and learning rate of 1e− 6 for
all our experiments. We run SFT and verifier training for 10000 iterations on each instance. We use
a weight decay of 0.01 for training both. At test-time, we measure the performance of SFT using
majority voting over sequential revisions, following Snell et al. (2024). We sample rollouts with
temperature 1.0.

12 13 14 15 16
log2(data budget n)

0.75

0.79

0.83

0.87

0.91

A
cc

ur
ac

y

Verifier accuracy

8B

3B

Figure 9: Accuracy of verifier: We plot the accuracy of verifier as we scale data. We find that the
larger model generalizes better across all data budgets.

Verifier accuracy. In Figure 9 we plot the test accuracy of the trained verifier as we scale data.
Interestingly, we find that the bigger model always generalizes better.

Search trace with sequential revisions for SFT (example with 2 episodes)

Query: A farmer has three times as many chickens as cows on his farm. If he has 15 cows,
how many chickens does he have?
Turn-1 Response: Step 1: Let’s assume the number of cows as x. Step 2: According to the
given information, the farmer has three times as many chickens as cows. So, the number of
chickens can be expressed as 3x. Step 3: We are given that there are 15 cows, so let’s substitute
x = 15 into the equation:

3x = 3(15) = 30

Answer: 30 INCORRECT
Turn-3 Response: Let’s solve the problem step by step: Step 1: Let’s denote the number of
cows as x. Step 2: We are given that the farmer has three times as many chickens as cows. So,
the number of chickens can be expressed as 3x. Step 3: We are also given that there are 15
cows, so we can substitute x = 15 into the expression for the number of chickens:

3× 15 = 45

Answer: 45 CORRECT

36

Published as a workshop paper at ICLR 2025

Search trace with sequential revisions for SFT (example with 3 episodes)

Query: A rectangle’s length is five more than twice its width. If its perimeter is 58 cm, what is
its width?
Turn-1 Response: Step 1: Let’s assume the width of the rectangle as x. Step 2: According
to the given information, the length is five more than twice the width. So, the length can be
expressed as 2x+ 5. Step 3: The perimeter of a rectangle is given by the formula:

Perimeter = 2(Length + Width)

Step 4: Substituting the given perimeter of 58 cm and our expressions for length and width:

2(x+ 2x+ 5) = 58

x =
53

6

Answer:
53

6
INCORRECT

Turn-2 Response (Subtle Error Introduced): Step 1: The width is x and the length is 2x+ 5.
Step 2: Using the perimeter formula:

2(x+ 2x+ 5) = 58

6x+ 5 = 58

x = 7

Answer: 7 INCORRECT
Turn-3 Response: Let’s solve the problem step by step: Step 1: Let’s denote the width of the
rectangle as x. Step 2: The length is five more than twice the width, so it can be expressed as
2x+ 5. Step 3: The perimeter formula for a rectangle is:

Perimeter = 2(Length + Width)

Step 4: Substituting the given perimeter of 58 cm:

2(x+ 2x+ 5) = 58

x = 8

Answer: 8 INCORRECT

37

	Introduction
	Notation and Preliminaries
	Effectively Scaling Test-Time Compute
	Theory: When Does Verification Enable Asymptotic Scaling of Test-Time Compute?
	Lower Bounds for Verifier-Free Expert Cloning
	A Simple Verifier-Based Algorithm

	Results: Large-Scale Math Reasoning
	Didactic Setting: Illustrating Theory in Practice
	Related Work
	Discussion, Limitations and Future Work
	Proofs from Section 4
	Useful Lemmas
	Lower bound on e: Proof of Lemma 4.3
	Proof of Theorem 4.4
	Measure of complexity: Lk
	Interpretations of, and bounds on Lk
	Lower bounds on verifier-free approaches
	Construction of policy class and reward class R

	Bounding the performance of alg:algorithmsimplevb
	Understanding the anti-concentration assumption
	Analysis of alg:algorithmsimplevb: Proof of thm:verifier-based-thm
	Proof of Proposition 4.5

	Proof of Theorem 4.8
	Analyzing Verifier Accuracy Under 0/1 Loss
	Proof of Theorem 4.4 for the single problem instance

	Additional Experiments in the Didactic Setup
	Additional: Experiments on MATH

