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ABSTRACT

Dataset condensation aims to distill a large-scale dataset into a compact set of
synthetic samples for efficient training. Existing methods primarily focus on re-
ducing the number of samples but generally assume full-precision representations.
While effective, this assumption limits their applicability in resource-constrained
scenarios due to several major drawbacks: (1) Transmission bottlenecks—full-
precision datasets consume excessive bandwidth and introduce latency during
network transfer, especially in cloud–edge collaborative learning; (2) Memory over-
head—storing and processing full-precision data rapidly exhausts GPU memory or
RAM, restricting batch sizes; and (3) Hardware underutilization—modern accelera-
tors are optimized for low-precision operations, yet full-precision data prevents full
efficiency gains in training and inference. To address these challenges, we propose a
novel approach that fine-tunes distilled full-precision datasets into compact low-bit
representations, substantially reducing memory usage with minimal computational
overhead. Central to our method is a differentiable bit-conscious optimization
framework. This framework allows more synthetic samples to be stored within
the same memory budget, thereby improving downstream performance. Beyond
the algorithmic contribution, we provide theoretical analysis that characterizes (1)
the trade-off between compression error and generalization error under memory
constraints, and (2) the extent to which Fisher information is preserved under bit
compression. Extensive experiments compared to state-of-the-art baselines validate
both the effectiveness and efficiency of our method.

1 INTRODUCTION

Dataset condensation is an emerging technique that synthesizes a compact dataset from a large-scale
one, enabling more efficient training of machine learning models. Unlike traditional data selection
or compression methods, condensation generates artificial samples that are explicitly optimized to
preserve the key learning properties of the original data. As a result, models trained on these synthetic
datasets can achieve comparable performance to those trained on the full dataset. This paradigm
is particularly appealing in resource-constrained scenarios, such as deployment on edge devices,
distributed learning environments, or continual learning settings where storage and communication
overheads are critical bottlenecks.

Despite advances in dataset condensation (Zhao & Bilen, 2021; Zhou et al., 2022), most methods
assume that synthetic samples are stored and used in full precision. While effective, this design
limits their practicality in low-resource settings. Using low-bit representations addresses several
major challenges: (1) Transmission: Large high-precision datasets can saturate networks, especially
wireless links, causing bandwidth and latency issues. In contrast, low-bit data requires less bandwidth,
enabling efficient transfer between cloud servers and edge devices in distributed or federated learning.
(2) Memory: Data storage in GPU memory or RAM is often a bottleneck. Low-bit datasets reduce
the memory footprint, allowing larger batches of data to fit in memory and improving training
efficiency—crucial for devices with limited RAM. (3) Hardware efficiency: Many modern accelerators
are optimized for low-precision operations. Storing distilled datasets in low-bit formats allows full
use of these hardware capabilities, yielding faster training and inference.

In contrast, the benefits of bit compression—widely studied in the context of model compression and
efficient inference—have not yet been explored for representing the synthetic datasets themselves.
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Moreover, bit compression introduces non-differentiable operations, making it challenging to integrate
into the gradient-based dataset condensation optimization frameworks that underpin most dataset
condensation methods. To bridge this gap, we introduce a novel and efficient dataset condensation
framework that fine-tunes full-precision distilled datasets to generate highly compact low-bit data
representations with only minimal computational burden, significantly enhancing storage efficiency.
Specifically, we introduce a differentiable condensation optimization algorithm tailored for reducing
the number of bits to represent synthetic data. Our approach allows the condensation process to jointly
optimize data content and its low-bit representation, enabling the generation of a substantially larger
number of samples under the same memory budget. This flexibility is crucial in maximizing the utility
of condensed data in memory-constrained applications. We name our approach as Bit-Conscious
Dataset Condensation (BCDC).

In addition to our algorithmic contributions, we provide extensive theoretical analysis that charac-
terizes: (1) the fundamental trade-off between the quantization error and generalization error under
fixed memory constraints; and (2) Fisher information preservation under bit compression. These
analyses offer deeper insights into how quantization affects the effectiveness of condensed datasets
and guide practical design choices.

Comprehensive experiments across multiple benchmarks and state-of-the-art baselines show that:
(1) our method delivers strong performance while significantly reducing memory usage when using
the same number of distilled images; and (2) under a fixed memory budget, it accommodates more
distilled images, resulting in markedly improved performance and advancing the practicality and
scalability of dataset condensation.

Our main contributions in this paper are summarized as follows:

• We propose a novel and general dataset condensation framework through low-bit compres-
sion, enabling memory-efficient learning.

• We develop an efficient dataset condensation optimization algorithm, facilitating more
effective dataset distillation.

• The theoretical analysis is derived to characterize: (1) the trade-off between quantiza-
tion error and generalization error under memory constraints; and (2) Fisher information
preservation under bit compression.

• Extensive experiments are conducted on multiple benchmarks and state-of-the-art baselines
to validate the effectiveness and efficiency of the proposed method.

2 RELATED WORK

2.1 CORESET SELECTION AND DATA CONDENSATION

Coreset Selection Coreset selection (Har-Peled & Mazumdar, 2004) aims to identify a small, repre-
sentative subset of the original dataset such that training a model on this subset yields performance
comparable to training on the full dataset. Importantly, the selected subset consists of actual data
samples rather than synthetic ones. This idea has been extensively explored in domains such as active
learning (Settles, 2009) and continual learning (Lopez-Paz & Ranzato, 2017), where the goal is to
select the most informative examples for training (Yang et al., 2023b; Welling, 2009; Chen et al.,
2010; Rebuffi et al., 2017; Aljundi et al., 2019). However, coreset selection inherently relies on
choosing a portion of the original dataset and thus may fail to capture useful information contained in
the remaining samples.

Data Condensation Dataset condensation (DC) (Wang et al., 2018) synthesizes compact data that
retains the essential information of the original dataset, enabling efficient model training with fewer
samples. Unlike coreset selection, which chooses real data points, condensation generates synthetic
ones informed by the full dataset. Approaches include: (I) Bi-level Optimization (e.g., DD (Wang
et al., 2018), Qin et al. (Qin et al., 2024), EDC (Shao et al., 2024)); (II) Analytical Methods such as
KRR (Nguyen et al., 2021); (III) Surrogate Matching, including gradient (DC (Zhao et al., 2021),
DSA (Zhao & Bilen, 2021)), trajectory (MTT (Cazenavette et al., 2022)), and loss/feature matching
(LCMat (Shin et al., 2023), CAFE (Wang et al., 2022a), DM (Zhao & Bilen, 2023)); (IV) Parameter-
Efficient Methods using data partitioning (IDC (Kim et al., 2022), IDM (Zhao et al., 2023), DQ (Zhou
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et al., 2023)), basis factorization (HaBa (Liu et al., 2022), RememberThePast (Deng & Russakovsky,
2022)), or low-rank techniques (LoDC (Yang et al., 2023a)); (V) Regularization (DWA (Du et al.,
2024), CMI (Zhong et al., 2025)); (VI) Diffusion Models (D3HR (Zhao et al., 2025), D4M (Su et al.,
2024)); and (VII) Optimization-Free Methods like RDED (Sun et al., 2024).

Despite these advances, most approaches rely on full-precision representations, limiting efficiency
in resource-constrained settings. In contrast, our method targets low-bit synthetic data generation,
significantly reducing memory usage while maintaining competitive model performance.

2.2 CONTINUAL LEARNING

Continual learning (CL) seeks to enable models to learn from non-stationary data distributions without
forgetting knowledge acquired from previously encountered tasks. Most existing CL approaches rely
on storing and replaying raw data samples (Kirkpatrick et al., 2017; Schwarz et al., 2018; Zenke
et al., 2017; Rebuffi et al., 2017; Chaudhry et al., 2018; Lopez-Paz & Ranzato, 2017; Riemer et al.,
2019; Chaudhry et al., 2019; Buzzega et al., 2020; Prabhu et al., 2020; Pham et al., 2021; Verwimp
et al., 2021; Arani et al., 2022; Caccia et al., 2022; Wang et al., 2022c) or on using synthetic data
generated at full precision (Yang et al., 2023a). However, data efficiency and privacy remain critical
challenges in CL, as raw data from previous tasks may be unavailable or sensitive during the training
of new tasks. In this paper, we integrate our BCDC into CL, enabling the training of CL models that
simultaneously improve data efficiency, enhance privacy, and maintain strong performance.

2.3 LOW BITS QUANTIZATION

To our best knowledge, BCDC is the first to explore bit-efficient dataset distillation. Unlike network
quantization (Wang et al., 2022b; Gong et al., 2019; Yao et al., 2021), which targets model parameters,
our method focuses on reducing the memory footprint of the distilled dataset itself. Moreover, our
approach is seamlessly compatible with existing dataset distillation pipelines.

There is no prior work that integrates quantization into dataset condensation. Existing DC methods
always operate with full-precision samples, and quantization research focuses exclusively on model
parameters or activations rather than synthetic data. This gap directly motivates BCDC, which is the
first framework to introduce quantization-aware dataset condensation.

3 METHOD

3.1 PROBLEM DEFINITION

Traditional Dataset Distillation The goal of dataset distillation is to distill a large-scale dataset of
T = {(xi, yi)}i=N

i=1 into a small-scale dataset S = {(xi, yi)}i=m
i=1 , wherem≪ N . The objective is to

ensure that the network trained on the compressed dataset, with parameters θS , achieves performance
comparable to that of the network trained on the original dataset T , with parameters θT , where:

θT = argmin
θT

[L(θT , T ) = 1

|T |
∑

(x,y)∼T

L(x, y,θT )] (1)

θS = argmin
θS

[L(θS ,S) = 1

|S|
∑

(x,y)∼S

L(x, y,θS)] (2)

The dataset distillation can be formulated as a bi-level optimization problem:

S = argmin
S

L(θS , T ) satisfy θS = argmin
θS

L(θS ,S) (3)

where the inner loop optimizes a network to train on the synthetic dataset S and the outer loop
optimization optimizes on the original dataset to learn the synthetic dataset.

Low-Bits Dataset Quantization Given an original dataset T = {(xi, yi)}Ni=1, we first compress it
into a small-scale full-precision dataset S = {(xi, yi)}mi=1, where m ≪ N . Our goal is to further
fine-tune a condensed low-bit dataset Squant = {(x̃i, yi)}mi=1, where each x̃i is a quantized version of
xi represented using b-bit precision.

3
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3.2 PROPOSED METHOD

We adopt a uniform quantization method:

xlow = minx, xhigh = maxx, ∆ =
xhigh − xlow

2b − 1
(4)

where b denotes the number of bits used to encode each dimension of a data sample. ∆ denotes the
length of the quantization interval. The uniform quantization-dequantization can be defined as:

Qb(x) = round(
x− xlow

∆
)∆ (5)

Differentiable Data Quantization (DDQ) The near-zero gradients of the uniform quantization
function (Eq. 5) at most input values hinder effective training on the quantized data, resulting in
unstable learning dynamics. To address this issue, we introduce a differentiable asymptotic function
that approximates a uniform data quantizer. Specifically, DDQ replaces hard quantization with a
smooth, continuous approximation.

ϕ(x) = s · tanh
(
k(x−mi)

)
, if x ∈ Pi = [xlow + i∆,xlow + (i+ 1)∆]

where mi = xlow + (i+ 0.5)∆, s =
1

tanh(0.5k∆)
. (6)

Where in Eq. 6, s ensures that the outputs of ϕ(x) are normalized to −1 and +1 at the boundaries of
quantization intervals. mi denotes the midpoint of each quantization interval. We then define a soft
quantization function (Eq. 7) to provide a smooth and differentiable approximation to Eq. (5):

QV (x) = xlow + (i+
ϕ(x) + 1

2
)∆ (7)

Bi-Level Optimization for Low-Bit Condensation We optimize S in full precision but penalize
deviations from quantized values:

min
S

E(x,y)∼Tval [L(fθ∗(x), y)]︸ ︷︷ ︸
Validation loss

+λ ∥S −QV (S)∥22︸ ︷︷ ︸
Quantization loss

s.t. θ∗ = argmin
θ

E(x̃,y)∼QV (S) [L(fθ(x̃), y)]

Inner Loop (Model Training): Update θ on QV (S) via SGD:

θ ← θ − η1∇θL(fθ(QV (S)),y)

Outer Loop (Dataset Update): Compute ∇SLval via chain rule:

∇SLval =
∂Lval

∂S
+
∂Lval

∂θ∗ ·
∂θ∗

∂QV (S)
· ∂QV (S)

∂S
(8)

where

∂θ∗

∂QV (S)
= −

(
∂2Ltrain

∂θ2

)−1
∂2Ltrain

∂QV (S)∂θ
(9)

Derivations of Eq. 9 are presented in Appendix A. Then, we update S with the following gradients:

S ← S − η2
(
∇SLval + λ∇S∥S −QV (S)∥22

)
Final Quantization After convergence, we apply the following quantization to each image:

x̃i = round
(

clip(xi,xlow,xhigh)− xlow

∆

)

4
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3.3 INTEGRATE BCDC WITH EXISTING APPROACHES

Bi-level Dataset Condensation with Quantized Data Representations Our proposed BCDC
serves as a general, versatile framework that integrates seamlessly with existing approaches. The
proposed algorithm integrated with bi-level dataset condensation loss function (Wang et al., 2018) is
presented in Algorithm 1. Integrating BCDC with surrogate loss function, e.g., DM (Zhao & Bilen,
2023) is presented in Algorithm 2 in Appendix.
Algorithm 1 Bi-level Dataset Condensation with Quantized Data Representations

Input: Training set T , distilled dataset learning rates γ
Initialize: Initialize distilled dataset and labels S.
while not converged do

Sample a training batch from the training set: {x, y} ∼ T
Perform K optimization steps on inner objective to obtain θ∗

i
Compute synthetic data gradient ∇SLval by Eq. (8)
Update the distilled dataset: S ← S − γ∇SLval
Train the model θi on the current distilled dataset S for one step

end while

4 THEORETICAL ANALYSIS

We use D to represent the ground truth distribution governing data generation, RD(fθ) =
E

(x,y)∼DL(fθ(x), y), which is the expected loss (or risk) over the true data distribution and also
known as generalization error. R̂Qb(S)(fθ) = E

(x,y)∼Qb(S)
L(fθ(x), y) denotes the empirical risk on

the quantized data.
Assumption 4.1. A hypothesis function fθ : Rd → R is called Lipschitz continuous with constant
L > 0 if

∥fθ(x1)− fθ(x2)∥ ≤ L∥x1 − x2∥, ∀x1,x2 ∈ Rd.

If h is differentiable, this implies a bound on its gradient: ||∇fθ(x)|| ≤ L, ∀x ∈ Rd.
Assumption 4.2. The empirical risk function RD(fθ) : Rd → R is β-smooth if

RS(fθ) ≤ RD(fθ) + ⟨∇RD(fθ), fθ(S)− fθ(D)⟩+
β

2
∥fθ(S)− fθ(D)∥2,

Assumption 4.3. Qb be a b-bit quantizer with E[∥Qb(x)−x∥] ≤ C2−b (following (Gray & Neuhoff,
2002)) where C is a constant.
Assumption 4.4. H be a hypothesis class with Rademacher complexity (Bartlett & Mendelson, 2002)
Rn(H) ≤ κ/

√
n, where κ is a constant and n denotes the number of training samples.

Let M denote the total memory budget in bits and d be the data dimension. m(b) = ⌊M/(bd)⌋
denotes the number of stored samples under b-bit quantization.
Theorem 4.5 (Memory-Constrained Quantization-Generalization Trade-off). With probability ≥
1− δ:

RD(fθ) ≤ R̂Qb(S)(fθ)︸ ︷︷ ︸
Empirical Risk

+
2κ√
m(b)

+

√
log(2/δ)

2m(b)︸ ︷︷ ︸
Generalization Error

+LC2−b + βC22−2b︸ ︷︷ ︸
Quantization Error

(10)

Implications: Each term in the above generalization bound can be interpreted as the following:

(1) The term 2κ√
m(b)

reflects the reduced model complexity from more samples; (2)
√

log(2/δ)
2m(b) is

the classical Hoeffding concentration term; (3) LC2−b shows the first-order quantization error; (4)
βC22−2b captures the second-order quantization effects.

The generalization bound in equation 10 exhibits a trade-off between quantization error and gen-
eralization error influenced by the choice of b, as shown in Table 1: selecting a smaller b tightens
the generalization bound but at the cost of increased quantization error; selecting a larger b reduces
quantization error but may lead to looser generalization bounds due to fewer samples. Balancing
these factors is crucial for optimizing model performance under memory constraints.
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Table 1: Trade-off between generalization error and quantization error.

m(b) 2κ√
m(b)

+
√

log(2/δ)
2m(b) LC2−b + βC22−2b

b decreases (↓) ↑ ↓ ↑
b increases (↑) ↓ ↑ ↓

Theorem 4.6 (Fisher Information Retention in Bit-Conscious Condensation). Let I(T ; θ) and
I(Qb(S); θ) denote the Fisher information of the original and quantized condensed datasets, respec-
tively. For a b-bit quantizer:

I(T ;θ)− I(Qb(S);θ) ≤
L2∆2

8
tr
(
E
[
∇θ log p(θ|S)∇θ log p(θ|S)⊤

])
where ∆ = 2−b+1(max(S) − min(S)). tr denotes the trace of the Fisher information matrix(
E
[
∇θ log p(θ|S)∇θ log p(θ|S)⊤

])
.

Implications: As b increases, ∆1 decreases and the right-hand side bound becomes tighter, since
more bits allow finer-grained image details to be preserved. Conversely, as b decreases, ∆1 increases
and the bound becomes looser, due to the loss of fine-grained detail with fewer bits. Due to space
limitations, we provide detailed theorem proof in Appendix B.

5 EXPERIMENT

5.1 DATASET CONDENSATION FOR DEEP LEARNING

Datasets We assess the effectiveness of BCDC on the following benchmark datasets: MNIST (LeCun
et al., 1998), CIFAR10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky et al., 2009), TinyIma-
geNet (Le & Yang, 2015) and ImageNet-1K (Deng et al., 2009).

Baselines We compare to both coreset selection and dataset distillation methods.

(I) Coreset Selection: Selecting a representative subset of real data: (1) Random: Selects images
randomly from the dataset; (2) Herding: Selects samples heuristically, aiming for those closest to the
class center (Welling, 2009; Belouadah & Popescu, 2020); (3) Forgetting: Selects samples that are
most likely to be forgotten during model training (Toneva et al., 2019).

(II) Dataset Distillation: DD (Wang et al., 2018), LD (Bohdal et al., 2020), DC (Zhao et al., 2021),
DSA (Zhao & Bilen, 2021), MTT (Cazenavette et al., 2022), IDC (Kim et al., 2022), HaBa (Liu et al.,
2022), RememberThePast (Deng & Russakovsky, 2022) DM (Zhao & Bilen, 2023), DataDAM (Sajedi
et al., 2023), TESLA (Cui et al., 2023), SRe2L (Yin et al., 2023), DWA (Du et al., 2024), RDED (Sun
et al., 2024), D4M (Su et al., 2024), CMI (Zhong et al., 2025), D3HR (Zhao et al., 2025).

Implementation Details Following the experimental protocol established in (Kim et al., 2022), we
ensure that all methods operate under an equal memory budget. For each trial, we either select
a coreset (Random, Herding, or Forgetting) or optimize a synthetic dataset (DD, LD, DC, DSA,
DM, etc), and then use it to train 20 independently initialized ConvNet models (Rocco et al., 2017).
All other hyperparameters are aligned with those used in prior work (Zhao et al., 2021; Zhao &
Bilen, 2021; 2023). Each experiment setup is repeated five times, and we report the average test
accuracy across runs. In addition, as detailed in Sec. 5.2, we assess the generalization capability of
the synthetic datasets across architectures by evaluating them on five commonly used deep networks:
ConvNet (Rocco et al., 2017), LeNet (LeCun et al., 1998), AlexNet (Krizhevsky et al., 2017),
VGG11 (Simonyan & Zisserman, 2015), and ResNet18 (He et al., 2016). For this set of experiments,
we use 2, 4, 4 and 4-bit representations for MNIST, CIFAR10, CIFAR100 and TinyImageNet
respectively. The number of bits for each dataset is selected from {2, 4, 8}, based on the configuration
that yields the highest validation performance. λ = 0.2. All experiments are conducted on a single
NVIDIA A6000 GPU.

Results and Analysis Table 2 and 4 compares dataset condensation with coreset selection approaches,
showing that dataset condensation generally outperforms coreset selection. In Table 3, we compare
our BCDC with conventional dataset condensation methods (DC, DSA, DM) under two scenarios:
using the same number of images (SI) and using the same memory budget (SM). The results highlight
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Table 2: Comparison with coreset selection methods and dataset condensation methods.

DataSet Img/Cls
Coreset Selection Methods Dataset Condensation Methods

Random Herding Forgetting DD LD DC DSA DM DM+BCDC (Ours)

MNIST
1 64.9±3.5 89.2±1.6 35.5±5.6 - 60.9±3.2 91.7±0.5 88.7±0.6 89.7±0.6 91.5±0.3

10 95.1±0.9 93.7±0.3 68.1±3.3 79.5±8.1 87.3±0.7 97.4±0.2 97.1±0.1 96.5±0.2 97.8±0.3
50 97.9±0.2 94.8±0.2 88.2±1.2 - 93.3±0.3 98.8±0.2 99.2±0.1 97.5±0.5 98.4±0.2

CIFAR10
1 14.4±2.0 21.5±1.2 13.5±1.2 - 25.7±0.7 28.3±0.5 28.8±0.7 26.0±0.8 45.1±0.8

10 26.0±1.2 31.6±0.7 23.3±1.0 36.8±1.2 38.3±0.4 44.9±0.5 51.1±0.5 48.9±0.6 60.6±0.5
50 43.4±1.0 40.4±0.6 23.3±1.1 - 42.5±0.4 53.9±0.5 60.6±0.5 63.0±0.4 65.9±0.2

CIFAR100
1 4.2±0.3 8.4±0.3 4.5±0.2 - 11.5±0.4 12.8±0.3 13.9±0.3 11.4±0.3 26.3±0.5

10 14.6±0.5 17.3±0.3 15.1±0.3 - - 25.2±0.3 32.3±0.3 29.7±0.3 38.3±0.7

TinyImageNet
1 1.4±0.1 2.8±0.2 1.6±0.1 - - 4.61±0.2 4.79±0.2 3.9±0.2 10.6±0.4

10 5.0±0.2 6.3±0.2 5.1±0.2 - - 11.6±0.3 14.7±0.2 12.9±0.4 18.9±0.5

Table 3: Comparison with dataset distillation methods on the same number of image (SI) or same
memory (SM).

DataSet Img/Cls DC +BCDC (SI) +BCDC (SM) DSA +BCDC (SI) +BCDC (SM) DM +BCDC (SI) +BCDC (SM)

MNIST 1 91.7±0.5 - 93.5±0.4 88.7±0.6 - 90.3±0.7 89.7±0.6 88.1±0.8 91.5±0.3
10 97.4±0.2 96.0±0.2 97.7±0.4 97.1±0.1 96.2±0.3 97.8±0.3 96.5±0.2 95.7±0.6 97.8±0.2
50 98.6±0.3 97.8±0.3 98.9±0.5 98.0±0.2 97.1±0.4 98.6±0.4 97.2±0.3 96.6±0.5 98.9±0.3

CIFAR10 1 28.3±0.5 28.1±0.4 36.1±0.6 28.8±0.7 28.6±0.7 42.2±0.3 26.0±0.8 25.0±0.4 45.1±0.8
10 44.9±0.5 43.1±0.5 51.2±0.4 51.1±0.5 49.7±0.6 57.3±0.4 48.9±0.6 47.1±0.8 60.6±0.5
50 53.9±0.5 52.8±0.6 60.5±0.5 60.6±0.5 58.6±0.5 68.2±0.3 63.0±0.4 58.2±0.7 65.9±0.2

CIFAR100 1 12.8±0.3 12.5±0.4 19.1±0.2 13.9±0.3 13.7±0.3 23.7±0.4 11.4±0.3 10.5±0.6 26.3±0.5
10 25.2±0.3 24.6±0.3 27.6±0.5 32.3±0.3 30.9±0.2 34.2±0.6 29.7±0.3 28.6±0.4 38.3±0.7

TinyImageNet 1 4.61±0.2 4.32±0.3 7.10±0.2 4.79±0.2 4.52±0.4 10.80±0.5 3.9±0.2 3.7±0.3 10.6±0.4
10 11.6±0.3 10.2±0.3 18.31±0.3 14.7±0.2 13.61±0.5 20.70±0.6 12.9±0.4 11.6±0.4 18.9±0.5

the following observations: (i) With an equal number of images, our method achieves more reductions
in storage requirements—while maintaining performance close to that of the traditional DC approach.
(ii) When the memory budget is the same, our method is able to store more samples within the same
budget, thereby retaining richer information from the original dataset. As a result, it significantly
outperforms existing condensation methods. For example, on CIFAR10 with 1 image per class,
BCDC achieves improvements of 13.4% and 19.1% over DSA and DM, respectively. In Table 5, we
compare our method against recent approaches—MTT (Cazenavette et al., 2022), DataDAM (Sajedi
et al., 2023), TESLA (Cui et al., 2023), SRe2L (Yin et al., 2023) and DWA (Du et al., 2024)—on
both Tiny-ImageNet and ImageNet-1K benchmarks. The results show that our BCDC can enhance
dataset distillation performance under the same memory budget.

5.2 ABLATION STUDY

Cross-Architecture Transferability Analysis To assess how well BCDC generalizes across different
model architectures, we perform a cross-architecture evaluation. Specifically, we generate the
condensed dataset using a single architecture (such as AlexNet or ConvNet) and then use it to train
five different network architectures from scratch. We evaluate the resulting models on the CIFAR-10
test set. As shown in Table 7, BCDC consistently delivers strong performance across these diverse
architectures, highlighting its effectiveness in supporting cross-architecture knowledge transfer.

(a) 2-bit image quantization (b) 4-bit image quantization (c) 8-bit image quantization

Figure 1: Visualization of different bits image quantization by integrating BCDC with DC.

Computation Efficiency Evaluation To evaluate the training efficiency of our proposed BCDC
compared to traditional dataset condensation methods without quantization, we report the training

7
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Table 4: Compare with other advanced dataset condensation methods.

CIFAR10 (Img/Cls=1)

MTT IDC-I IDC HaBa RememberThePast
46.3% 36.7% 50.6% 48.3% 66.4%

MTT+BCDC IDC-I+BCDC IDC+BCDC HaBa+BCDC RememberThePast+BCDC
59.0% 50.1% 56.7% 65.3% 68.4%

CIFAR100 (Img/Cls=1)

MTT IDC-I IDC HaBa RememberThePast
24.3% 16.6% 24.9% 33.4% -

MTT+BCDC IDC-I+BCDC IDC+BCDC HaBa+BCDC RememberThePast+BCDC
31.2% 27.6% 33.4% 36.5% -

Table 5: Evaluation against state-of-the-art dataset distillation methods on Tiny-ImageNet and ImageNet-1K.
Unless stated otherwise, we adopt the same model architecture during both the distillation and evaluation
phases. Consistent with the configurations reported in their respective works, MTT (Cazenavette et al., 2022)
and TESLA (Cui et al., 2023) employ ConvNet-128. In contrast, SRe2L (Yin et al., 2023) generates synthetic
data using ResNet-18 and assesses performance across ResNet-18, ResNet-50, and ResNet-101. The symbol †
denotes that MTT is applied to a 10-class subset of the complete ImageNet-1K dataset.

Dataset ipc
ConvNet ResNet-18 ResNet-50 ResNet-101

MTT DataDAM TESLA SRe2L DWA +BCDC SRe2L DWA +BCDC SRe2L DWA +BCDC

Tiny-ImageNet 50 28.0±0.3 28.7±0.3 - 41.1±0.4 52.8±0.2 55.1±0.3 42.2±0.5 53.7±0.2 55.6±0.3 42.5±0.2 54.7±0.3 57.8±0.4
100 - - - 49.7±0.3 56.0±0.2 59.6±0.3 51.2±0.4 56.9±0.4 59.1±0.5 51.5±0.3 57.4±0.3 59.6±0.4

ImageNet-1K
10 64.0±1.3† 6.3±0.0 17.8±1.3 21.3±0.6 37.9±0.2 39.6±0.3 28.4±0.1 43.0±0.5 45.5±0.6 30.9±0.1 46.9±0.4 49.2±0.3
50 - - 27.9±1.2 46.8±0.2 55.2±0.2 57.5±0.3 55.6±0.3 62.3±0.1 65.6±0.2 60.8±0.5 63.3±0.7 64.5±0.8
100 - - - 52.8±0.3 59.2±0.3 61.7±0.4 61.0±0.4 65.7±0.4 67.8±0.3 62.8±0.2 66.7±0.2 68.0±0.4

cost comparison in Table 9 in Appendix D. Although BCDC introduces additional quantization-
aware fine-tuning cost, it results in only a modest increase in training cost—ranging from 17% to
20%—while offering improved performance under quantized settings.

Table 8: Comparison of testing performance using naive quantization versus our BCDC.
Method Without Quantization + Naive Quantization (Naive-Q) + BCDC (Ours)

DC 28.3±0.5 31.8±0.5 36.1±0.6
DSA 28.8±0.7 35.6±0.7 42.2±0.3
DM 26.0±0.8 34.3±0.2 45.1±0.8

Effect of Bit-Width b: Table 10 (in Appendix D) illustrates the effect of bit-width on dataset
distillation performance. Lower bit-widths reduce the memory required per image, enabling the
storage of a larger number of samples within a fixed memory budget. However, this reduction in
precision also degrades image quality, which can hinder model performance. Conversely, higher bit-
widths preserve more visual detail and improve image fidelity but increase the memory footprint per
image, limiting the number of samples that can be stored. Empirically, we observe that performance
improves as the bit-width increases from 2 bits, reaching its peak at 4 bits. Beyond this point, however,
performance begins to decline despite the improved image quality, primarily due to the reduced
number of stored samples. This highlights a trade-off between image quality and sample quantity,
emphasizing the need to select an optimal bit-width that balances memory constraints and model
performance in practical applications.

Comparison Between Our BCDC and Direct Quantization: To assess the effectiveness of our
quantization-aware fine-tuning strategy, we compare the performance of our BCDC against a baseline
approach that applies direct quantization to the distilled dataset without any additional fine-tuning.
This comparison is presented in Table 8. The results clearly demonstrate that BCDC achieves
substantially better performance, highlighting the importance of adapting the distilled representations
to the quantized setting. By incorporating quantization into the fine-tuning process, BCDC effectively
mitigates the performance degradation typically caused by direct quantization, thereby preserving the
utility of the condensed data under limited bit precision.
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Figure 2: Test accuracy on the class-incremental learning task.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 6: Comparison of dataset condensation methods on Tiny-ImageNet and ImageNet-1K. Results
are reported as test accuracy (%) on condensed dataset.

Dataset Img/Cls D4M RDED CMI DWA +BCDC D3HR +BCDC
Tiny-ImageNet 50 46.2 58.2 ± 0.1 53.7 ± 0.3 52.8 ± 0.2 55.1 ± 0.3 56.9 ± 0.2 59.3 ± 0.4
Tiny-ImageNet 100 51.4 — 56.9 ± 0.3 56.0 ± 0.2 59.6 ± 0.3 59.3 ± 0.1 61.8 ± 0.2
ImageNet-1K 10 27.9 42.0 ± 0.1 38.5 ± 0.3 37.9 ± 0.2 39.6 ± 0.3 44.3 ± 0.3 46.9 ± 0.5
ImageNet-1K 50 55.2 56.5 ± 0.1 55.6 ± 0.3 55.2 ± 0.2 57.5 ± 0.3 59.4 ± 0.1 62.6 ± 0.3
ImageNet-1K 100 59.3 — 59.8 ± 0.4 59.2 ± 0.3 61.7 ± 0.4 62.5 ± 0.0 64.7 ± 0.2

Table 7: Cross-architecture evaluation on CIFAR-10 using 10 images per class. Train denotes the
architecture used to condense the dataset, while Transfer refers to the architecture trained on the
condensed data.

Method Train \ Transfer ConvNet LeNet AlexNet VGG11 ResNet18

DSA AlexNet 30.4±0.7 24.2±0.4 28.3±0.4 27.2±1.0 27.8±1.1
ConvNet 31.4±1.1 21.7±1.6 25.9±0.8 27.6±0.8 27.6±1.4

DM AlexNet 41.4±0.8 31.4±0.2 37.5±0.9 36.8±0.5 34.9±1.1
ConvNet 42.2±0.5 33.4±0.6 38.8±1.3 36.2±1.0 34.6±0.5

DM+BCDC (ours) AlexNet 57.6±0.5 33.8±0.7 51.2±0.6 52.3±0.7 52.1±0.8
ConvNet 58.0±0.5 46.9±0.8 54.6±0.9 52.0±0.7 51.8±0.9

Comparison with standard image compression techniques (JPEG, WebP.) We compare our
approach with standard image compression methods, such as JPEG and WebP, in Table 11 in
Appendix. Notably, our method can be seamlessly combined with these compression techniques and
yields substantial additional improvements in dataset distillation performance.

Dataset Condensation Visualization We present visualizations of the condensed images under
different quantization levels integrating with DC in Figure 1 and integrating with DM in Figure 3 in
Appendix. As the number of bits used to represent each image increases, more fine-grained visual
details are preserved, resulting in higher image quality. However, this comes at the cost of increased
storage requirements per image. Conversely, using fewer bits reduces the fidelity of the image,
leading to some loss of detail, but significantly lowers the memory footprint. This trade-off enables
the storage of a larger number of images within the same memory budget, which is particularly
beneficial in resource-constrained scenarios.

Hyperparameter Sensitivity We present hyperparameter sensitivity, e.g., λ, in Appendix D.

5.3 DATASET CONDENSATION FOR CONTINUAL LEARNING

In this section, we evaluate the effectiveness of BCDC in the context of continual learning. We adopt
a class-incremental learning setting under tight memory constraints—specifically, 10 images per
class for CIFAR10 and 20 images per class for CIFAR100. We integrate BCDC with the GDumb
framework (Prabhu et al., 2020) using either coreset selection strategies (Random, Herding) or
dataset distillation techniques (DSA, DM). Experiments are conducted on two standard benchmarks:
CIFAR10, split into 5 sequential tasks, and CIFAR100, evaluated under both 5-task and 10-task
settings. As shown in Fig. 2, GDumb combined with BCDC consistently outperforms all other
variants. This demonstrates that our low-bit condensed data remains highly informative and effective
in CL scenarios.

6 CONCLUSION

In this paper, we proposed a low-bit data representation quantization method to compress datasets
into small-scale condensed versions, significantly reducing memory storage costs. Through extensive
experiments across multiple datasets and settings, we demonstrated the effectiveness of our approach
in maintaining data utility while achieving substantial compression. The results highlight the potential
of our method to facilitate efficient data storage and processing in resource-constrained environments.
Future work could explore adaptive quantization strategies to further enhance performance.
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Appendix

A DERIVATIONS FOR DATA-GRADIENTS

When adapting parameters θ to a task via fine-tuning, the optimal post-adaptation parameters Q(S)
depend implicitly on θ. We compute ∂Q(S)

∂θ using chain rule on the optimality condition:

Fine-Tuning (Inner Loop) At convergence, the gradient of the fine-tuning loss Ltrain w.r.t. Q(S) is
zero:

∂Ltrain(θ)

∂θ
= 0 (Optimality condition)

Differentiate the optimality condition w.r.t. θ:

∂

∂Q(S)

(
∂Ltrain(θ)

∂θ

)
= 0

∂2Ltrain

∂Q(S)∂θ
+
∂2Ltrain

∂θ2

∂θ

∂Q(S)
= 0

Solve for ∂θ
∂Q(S)

∂θ

∂Q(S)
≈ −

(
∂2Ltrain

∂θ2

)−1
∂2Ltrain

∂Q(S)∂θ

where ∂2Ltrain
∂Q(S)2 : Hessian of the fine-tuning loss; ∂2Ltrain

∂Q(S)∂θ : Mixed partial derivative; The inverse
Hessian adjusts the meta-gradient for inner-loop dynamics.

B THEOREM PROOF

B.1 PROOF FOR THEOREM 4.5

Proof. We decompose the true risk RD(h) as:

RD(h) = R̂Qb(S)(h)︸ ︷︷ ︸
Empirical Risk

+RD(h)−RS(h)︸ ︷︷ ︸
Condensation Error

+RS(h)− R̂Qb(S)(h)︸ ︷︷ ︸
Quantization Error

(11)

Using Rademacher complexity and Hoeffding’s inequality:

RD(h)−RS(h) ≤ 2Rm(b)(H) +

√
log(2/δ)

2m(b)
(12)

≤ 2κ√
m(b)

+

√
log(2/δ)

2m(b)
(13)

Rademacher Complexity Foundation For any hypothesis classH, the generalization gap can be
bounded via Rademacher complexity:

RD(h)−RS(h) ≤ 2Rm(H) + sup
h∈H
|RD(h)−RS(h)| (14)

Where Rm(H) = ESEσ

[
suph∈H

1
m

∑m
i=1 σiℓ(h(x

s
i ), y

s
i )
]

with σi ∈ {±1} being Rademacher
variables.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Finite-Sample Concentration Applying Hoeffding’s inequality to the second term, for any fixed
h:

P (|RD(h)−RS(h)| ≥ ϵ) ≤ 2 exp

(
−2mϵ2

L2

)
(15)

Taking a union bound overH with finite VC-dimension d:

P
(
sup
h∈H
|RD(h)−RS(h)| ≥ ϵ

)
≤ 2N (H, ϵ) exp

(
−2mϵ2

L2

)
(16)

Where N (H, ϵ) is the covering number. For parametric models, logN (H, ϵ) ≍ d log(1/ϵ).

Solving for High Probability Bound Set the RHS to δ/2 and solve for ϵ:

2 exp

(
d log(1/ϵ)− 2mϵ2

L2

)
= δ/2 (17)

⇒ ϵ ≍
√
d log(m/d) + log(2/δ)

m
(18)

This gives the standard generalization bound:

RD(h)−RS(h) ≤
2κ√
m

+

√
log(2/δ)

2m
(19)

Using Lipschitz and β-smoothness properties:

|RS(h)− R̂Qb(S)(h)| ≤ LE[∥h(x)− h(Qb(x))∥] +
β

2
E[∥h(x)− h(Qb(x))∥2] (20)

≤ LC2−b + βC22−2b (21)

Applying the union bound and rescaling δ:

RD(h) ≤ R̂Qb(S)(h) +
2κ√
m(b)

+

√
log(2/δ)

2m(b)
+ LC2−b + βC22−2b (22)

The following is a detailed derivation of how Rademacher complexity and Hoeffding’s inequality are
applied in the proof with probabilistic bounds and their interaction with quantization:

Incorporating Quantization Effects When replacing S with Qb(S), the key modification appears
in the Rademacher term:

Rm(H, Qb) = E

[
sup
h

1

m

∑
i

σiℓ(h(Qb(x
s
i )), y

s
i )

]
(23)

≤ Rm(H) + LE

[
sup
h

1

m

∑
i

σi(h(Qb(x
s
i ))− h(xsi ))

]
(24)

≤ Rm(H) + LC2−b

√
d

m
(25)

The second inequality uses the Lipschitz property and the quantization error bound.

15
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Final Composition Combining all terms while accounting for the memory constraint m(b) =
M/(bd):

RD(h) ≤ R̂Qb(S)(h) +
2κ√
m(b)

+

√
log(2/δ)

2m(b)
+ LC2−b + βC22−2b (26)

C DERIVATION OF KL DIVERGENCE BOUND

The Fisher Information Matrix (FIM) is defined as the covariance of the score function (gradient of
log-posterior):

F = I(S;θ) = Ep(θ|S)

[
∇θ log p(θ|S)∇θ log p(θ|S)⊤

]
(27)

This matrix captures the local curvature of the log-posterior, measuring how sensitive the distribution
is to small changes in θ.

Lemma C.1.

DKL ≤
L2∆2

8
tr(F) (28)

Proof. Using the Largest Eigenvalue (λmax)

∆⊤F∆ ≤ λmax(F)∥∆∥2 (29)

This gives:

DKL ≤
1

2
λmax(F)∥∆∥2 (30)

Since tr(F) =
∑

i λi ≥ λmax(F), we can write:

∆⊤F∆ ≤ tr(F)∥∆∥2 (31)

Thus:

DKL ≤
1

2
tr(F)∥∆∥2 (32)

If ∥∇θ log p(θ|S)∥ ≤ L, then:

The perturbation ∆ may be scaled by L (i.e., ∥∆∥ ≤ L∆
2 ). This leads to:

DKL ≤
L2∆2

8
tr(F) (33)

Combining these results:

DKL ≤
L2∆2

8
tr(I(S;θ)) (34)

where tr(I(S;θ)) measures total sensitivity, L is the Lipschitz constant, ∆ is the perturbation
magnitude

C.1 THEOREM PROOF FOR THEOREM 4.6

We aim to prove:

I(T ;θ)− I(Qb(S);θ) ≤ ED [DKL(p(θ|T )∥p(θ|Qb(S)))] ,

16
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EXPRESS MUTUAL INFORMATION AS KL DIVERGENCE

Mutual information can be written as:
I(T ;θ) = ED [DKL(p(θ|T )∥p(θ))] ,

I(Qb(S);θ) = EQb(S) [DKL(p(θ|Qb(S))∥p(θ))] .
Since Qb(S) is a function of D, we rewrite:

I(Qb(S);θ) = ED [DKL(p(θ|Qb(S))∥p(θ))] .

I(T ;θ)− I(Qb(S);θ) = ED [DKL(p(θ|T )∥p(θ))−DKL(p(θ|Qb(S))∥p(θ))] .

EXPAND KL DIVERGENCE

Using DKL(p∥q) = Ep

[
log p

q

]
:

DKL(p(θ|T )∥p(θ)) = Eθ|T

[
log

p(θ|T )
p(θ)

]
,

DKL(p(θ|Qb(S))∥p(θ)) = Eθ|Qb(S)

[
log

p(θ|Qb(S))
p(θ)

]
.

REWRITE THE DIFFERENCE INSIDE EXPECTATION

DKL(p(θ|T )∥p(θ))−DKL(p(θ|Qb(S))∥p(θ))

= Eθ|T

[
log

p(θ|T )
p(θ)

− log
p(θ|Qb(S))

p(θ)

]
= Eθ|T

[
log

p(θ|T )
p(θ|Qb(S))

]
= DKL(p(θ|T )∥p(θ|Qb(S))).

Take Expectation Over D
I(T ;θ)− I(Qb(S);θ) = ED [DKL(p(θ|T )∥p(θ|Qb(S)))] .

INEQUALITY FOR STOCHASTIC Qb(S)

For stochastic Qb(S) (e.g., variational approximations), we have:
I(T ;θ | Qb(S)) ≤ ED [DKL(p(θ|T )∥p(θ|Qb(S)))] ,

where I(T ;θ | Qb(S)) = I(T ;θ) − I(Qb(S);θ). This holds because equality is achieved when
Qb(S) is deterministic in D. For stochastic Qb(S), the KL divergence overcounts discrepancies,
making it an upper bound.

I(T ;θ)− I(Qb(S);θ) ≤ ED [DKL(p(θ|T )∥p(θ|Qb(S)))]

The second-order Taylor expansion of log p(θ | Qb(S)) around S is:

log p(θ | Qb(S)) ≈ log p(θ | S)+∇S log p(θ | S)⊤(Qb(S)−S)+
1

2
(Qb(S)−S)⊤∇2

S log p(θ | S)(Qb(S)−S).
(35)

The KL divergence between p(θ | S) and p(θ | Qb(S)) is:
DKL(p(θ | S) ∥ p(θ | Qb(S))) = Ep(θ|S) [log p(θ | S)− log p(θ | Qb(S))] . (36)

Substituting the Taylor expansion:

DKL ≈ Ep(θ|S)

[
−∇S log p(θ | S)⊤(Qb(S)− S)−

1

2
(Qb(S)− S)⊤∇2

S log p(θ | S)(Qb(S)− S)
]
.

(37)

17
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• The score function ∇S log p(θ | S) has zero expectation under p(θ | S):

Ep(θ|S) [∇S log p(θ | S)] = 0. (38)

• The Fisher information matrix is defined as:

F = −Ep(θ|S)

[
∇2

S log p(θ | S)
]
. (39)

Thus, the KL divergence simplifies to:

DKL ≈
1

2
(Qb(S)− S)⊤F(Qb(S)− S). (40)

We define ϵ = Qb(S)− S

The KL divergence becomes:

DKL ≈
1

2
E
[
ϵ⊤

(
−∇2

S log p(θ|S)
)
ϵ
]

Bounding the Terms:

∥∇2
S log p(θ|S)∥op ≤ L2 ⇒ −∇2

S log p(θ|S) ⪯ L2I

∥ϵ∥2 = ∥S −Qb(S)∥2 ≤
√
d∆/2

DKL ≤
∆2

8
tr
(
E
[
∇θ log p(θ|S)∇θ log p(θ|S)⊤

])
=
L2∆2

8
tr(I(S;θ))

The Fisher information loss due to b-bit quantization is bounded by:

I(T ;θ)− I(Qb(S);θ) ≤
L2∆2

8
tr
(
E
[
∇θ log p(θ|S)∇θ log p(θ|S)⊤

])
where ∆ = 2−b+1(max(S)−min(S)).

D MORE EXPERIMENTAL RESULTS

Table 9: Training Efficiency Comparison of Dataset Distillation Methods
Method DC DC+BCDC DM DM+BCDC

Running Time (hours) 10.97 12.83 7.15 8.62

Table 10: Effect of Bandwidth on Dataset Distillation Performance on CIFAR10 Under the Same
Memory Budget

Bandwidth (bits/sample) 2-bit 4-bit 8-bit
DC+BCDC (SM) 25.2±0.9 36.1±0.6 27.3±0.7
DSA+BCDC (SM) 28.3±0.6 42.2±0.3 29.4±0.5
DM+BCDC (SM) 31.7±0.3 45.1±0.8 30.5±0.6
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(a) 2-bit image quantization (b) 4-bit image quantization (c) 8-bit image quantization

Figure 3: Visualization of different bits image quantization by integrating BCDC with DM.

D.1 COMPARISON WITH STANDARD IMAGE COMPRESSION TECHNIQUES (JPEG, WEBP.)

We compare our approach with standard image compression methods, such as JPEG and WebP, in
Table 11. Notably, our method can be seamlessly combined with these compression techniques and
yields substantial additional improvements in dataset distillation performance.

Dataset Img/Cls DM DM+BCDC (Ours) BCDC+JPEG BCDC+WebP
CIFAR100 10 29.7± 0.3 38.3± 0.7 41.2± 0.6 43.6± 0.8

Table 11: Comparison with standard image compression techniques (JPEG, WebP, etc.) on CIFAR100.

Dataset Condensation with Distribution Matching By Quantized Data Representations Inte-
grating BCDC with surrogate loss function, e.g., DM (Zhao & Bilen, 2023) is presented in Algorithm
2.

Algorithm 2 Dataset Condensation with Distribution Matching By Quantized Data Representations
1: Require: Training set T , randomly initialized synthetic samples S for J classes, deep neural

network ψθ parameterized by θ, parameter distribution Pθ, differentiable augmentation Aω

parameterized by ω, augmentation distribution Ω, training iterations K, learning rate η
2: for k = 0 to K − 1 do
3: Sample θ ∼ Pθ

4: for each class j = 0 to J − 1 do
5: Sample mini-batch pairs BT

c ∼ T , BS
c ∼ S, and ωc ∼ Ω

6: end for
7: Compute the loss:

L =
∑C−1

c=0

∥∥∥ 1
|BT

c |
∑

(x,y)∈BT
c
ψθ(Aωc(x))− 1

|BS
c |

∑
(s,y)∈BS

c
ψθ(Aωc(QV (s)))

∥∥∥2
8: Update S ← S − η∇SL
9: end for

10: Output: S
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