TOWARD BIT-EFFICIENT DATASET CONDENSATION: A GENERAL FRAMEWORK

Anonymous authors

000

001

002003004

006

008 009

010 011

012

013

014

016

018

019

021

024

025

026

027

028

029

031

033 034

037

040

041

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Dataset condensation aims to distill a large-scale dataset into a compact set of synthetic samples for efficient training. Existing methods primarily focus on reducing the number of samples but generally assume full-precision representations. While effective, this assumption limits their applicability in resource-constrained scenarios due to several major drawbacks: (1) Transmission bottlenecks—fullprecision datasets consume excessive bandwidth and introduce latency during network transfer, especially in cloud-edge collaborative learning; (2) Memory overhead—storing and processing full-precision data rapidly exhausts GPU memory or RAM, restricting batch sizes; and (3) Hardware underutilization—modern accelerators are optimized for low-precision operations, yet full-precision data prevents full efficiency gains in training and inference. To address these challenges, we propose a novel approach that fine-tunes distilled full-precision datasets into compact low-bit representations, substantially reducing memory usage with minimal computational overhead. Central to our method is a differentiable bit-conscious optimization framework. This framework allows more synthetic samples to be stored within the same memory budget, thereby improving downstream performance. Beyond the algorithmic contribution, we provide theoretical analysis that characterizes (1) the trade-off between compression error and generalization error under memory constraints, and (2) the extent to which Fisher information is preserved under bit compression. Extensive experiments compared to state-of-the-art baselines validate both the effectiveness and efficiency of our method.

1 Introduction

Dataset condensation is an emerging technique that synthesizes a compact dataset from a large-scale one, enabling more efficient training of machine learning models. Unlike traditional data selection or compression methods, condensation generates artificial samples that are explicitly optimized to preserve the key learning properties of the original data. As a result, models trained on these synthetic datasets can achieve comparable performance to those trained on the full dataset. This paradigm is particularly appealing in resource-constrained scenarios, such as deployment on edge devices, distributed learning environments, or continual learning settings where storage and communication overheads are critical bottlenecks.

Despite advances in dataset condensation (Zhao & Bilen, 2021; Zhou et al., 2022), most methods assume that synthetic samples are stored and used in full precision. While effective, this design limits their practicality in low-resource settings. Using low-bit representations addresses several major challenges: (1) *Transmission*: Large high-precision datasets can saturate networks, especially wireless links, causing bandwidth and latency issues. In contrast, low-bit data requires less bandwidth, enabling efficient transfer between cloud servers and edge devices in distributed or federated learning. (2) *Memory*: Data storage in GPU memory or RAM is often a bottleneck. Low-bit datasets reduce the memory footprint, allowing larger batches of data to fit in memory and improving training efficiency—crucial for devices with limited RAM. (3) *Hardware efficiency*: Many modern accelerators are optimized for low-precision operations. Storing distilled datasets in low-bit formats allows full use of these hardware capabilities, yielding faster training and inference.

In contrast, the benefits of bit compression—widely studied in the context of model compression and efficient inference—have not yet been explored for representing the synthetic datasets themselves.

Moreover, bit compression introduces non-differentiable operations, making it challenging to integrate into the gradient-based dataset condensation optimization frameworks that underpin most dataset condensation methods. To bridge this gap, we introduce a novel and efficient dataset condensation framework that *fine-tunes* full-precision distilled datasets to generate highly compact low-bit data representations with only minimal computational burden, significantly enhancing storage efficiency. Specifically, we introduce a differentiable condensation optimization algorithm tailored for reducing the number of bits to represent synthetic data. Our approach allows the condensation process to jointly optimize data content and its low-bit representation, enabling the generation of a substantially larger number of samples under the same memory budget. This flexibility is crucial in maximizing the utility of condensed data in memory-constrained applications. We name our approach as *Bit-Conscious Dataset Condensation* (BCDC).

In addition to our algorithmic contributions, we provide extensive theoretical analysis that characterizes: (1) the fundamental trade-off between the quantization error and generalization error under fixed memory constraints; and (2) Fisher information preservation under bit compression. These analyses offer deeper insights into how quantization affects the effectiveness of condensed datasets and guide practical design choices.

Comprehensive experiments across multiple benchmarks and state-of-the-art baselines show that: (1) our method delivers strong performance while significantly reducing memory usage when using the same number of distilled images; and (2) under a fixed memory budget, it accommodates more distilled images, resulting in markedly improved performance and advancing the practicality and scalability of dataset condensation.

Our main contributions in this paper are summarized as follows:

- We propose a novel and general dataset condensation framework through low-bit compression, enabling memory-efficient learning.
- We develop an efficient dataset condensation optimization algorithm, facilitating more effective dataset distillation.
- The theoretical analysis is derived to characterize: (1) the trade-off between quantization error and generalization error under memory constraints; and (2) Fisher information preservation under bit compression.
- Extensive experiments are conducted on multiple benchmarks and state-of-the-art baselines to validate the effectiveness and efficiency of the proposed method.

2 Related Work

2.1 Coreset Selection and Data Condensation

Coreset Selection Coreset selection (Har-Peled & Mazumdar, 2004) aims to identify a small, representative subset of the original dataset such that training a model on this subset yields performance comparable to training on the full dataset. Importantly, the selected subset consists of actual data samples rather than synthetic ones. This idea has been extensively explored in domains such as active learning (Settles, 2009) and continual learning (Lopez-Paz & Ranzato, 2017), where the goal is to select the most informative examples for training (Yang et al., 2023b; Welling, 2009; Chen et al., 2010; Rebuffi et al., 2017; Aljundi et al., 2019). However, coreset selection inherently relies on choosing a portion of the original dataset and thus may fail to capture useful information contained in the remaining samples.

Data Condensation Dataset condensation (Wang et al., 2018) synthesizes compact data that retains the essential information of the original dataset, enabling efficient model training with fewer samples. Unlike coreset selection, which chooses real data points, condensation generates synthetic ones informed by the full dataset. Approaches include: (I) Bi-level Optimization (e.g., DD (Wang et al., 2018), Qin et al. (Qin et al., 2024), EDC (Shao et al., 2024)); (II) Analytical Methods such as KRR (Nguyen et al., 2021); (III) Surrogate Matching, including gradient (DC (Zhao et al., 2021), DSA (Zhao & Bilen, 2021)), trajectory (MTT (Cazenavette et al., 2022)), and loss/feature matching (LCMat (Shin et al., 2023), CAFE (Wang et al., 2022a), DM (Zhao & Bilen, 2023)); (IV) Parameter-Efficient Methods using data partitioning (IDC (Kim et al., 2022), IDM (Zhao et al., 2023), DQ (Zhou

et al., 2023)), basis factorization (HaBa (Liu et al., 2022), RememberThePast (Deng & Russakovsky, 2022)), or low-rank techniques (LoDC (Yang et al., 2023a)); (V) Regularization (DWA (Du et al., 2024), CMI (Zhong et al., 2025)); (VI) Diffusion Models (D³HR (Zhao et al., 2025), D⁴M (Su et al., 2024)); and (VII) Optimization-Free Methods like RDED (Sun et al., 2024).

Despite these advances, most approaches rely on full-precision representations, limiting efficiency in resource-constrained settings. In contrast, our method targets low-bit synthetic data generation, significantly reducing memory usage while maintaining competitive model performance.

2.2 CONTINUAL LEARNING

108

110

111

112

113

114

115 116

117 118

119

120

121

122

123

124

125

126

127 128

129 130

131

132

133 134 135

136 137

138

139

140 141

142

143

144 145

146 147

148 149

150

151

152 153

154

156 157

158 159

160

161

Continual learning (CL) seeks to enable models to learn from non-stationary data distributions without forgetting knowledge acquired from previously encountered tasks. Most existing CL approaches rely on storing and replaying raw data samples (Kirkpatrick et al., 2017; Schwarz et al., 2018; Zenke et al., 2017; Rebuffi et al., 2017; Chaudhry et al., 2018; Lopez-Paz & Ranzato, 2017; Riemer et al., 2019; Chaudhry et al., 2019; Buzzega et al., 2020; Prabhu et al., 2020; Pham et al., 2021; Verwimp et al., 2021; Arani et al., 2022; Caccia et al., 2022; Wang et al., 2022c) or on using synthetic data generated at full precision (Yang et al., 2023a). However, data efficiency and privacy remain critical challenges in CL, as raw data from previous tasks may be unavailable or sensitive during the training of new tasks. In this paper, we integrate our BCDC into CL, enabling the training of CL models that simultaneously improve data efficiency, enhance privacy, and maintain strong performance.

2.3 Low Bits Quantization

To our best knowledge, BCDC is the first to explore bit-efficient dataset distillation. Unlike network quantization (Wang et al., 2022b; Gong et al., 2019; Yao et al., 2021), which targets model parameters, our method focuses on reducing the memory footprint of the distilled dataset itself. Moreover, our approach is seamlessly compatible with existing dataset distillation pipelines.

3 METHOD

PROBLEM DEFINITION

Traditional Dataset Distillation The goal of dataset distillation is to distill a large-scale dataset of $\mathcal{T} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^{i=N}$ into a small-scale dataset $\mathcal{S} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^{i=m}$, where $m \ll N$. The objective is to ensure that the network trained on the compressed dataset, with parameters $\boldsymbol{\theta}^{\mathcal{S}}$, achieves performance comparable to that of the network trained on the original dataset \mathcal{T} , with parameters $\theta^{\mathcal{T}}$, where:

$$\boldsymbol{\theta}^{\mathcal{T}} = \underset{\boldsymbol{\theta}^{\mathcal{T}}}{\operatorname{arg\,min}} [\mathcal{L}(\boldsymbol{\theta}^{\mathcal{T}}, \mathcal{T}) = \frac{1}{|\mathcal{T}|} \sum_{(\boldsymbol{x}, y) \sim \mathcal{T}} \mathcal{L}(\boldsymbol{x}, y, \boldsymbol{\theta}^{\mathcal{T}})]$$
(1)

$$\boldsymbol{\theta}^{\mathcal{S}} = \underset{\boldsymbol{\theta}^{\mathcal{S}}}{\operatorname{arg\,min}} [\mathcal{L}(\boldsymbol{\theta}^{\mathcal{S}}, \mathcal{S}) = \frac{1}{|\mathcal{S}|} \sum_{(\boldsymbol{x}, y) \sim \mathcal{S}} \mathcal{L}(\boldsymbol{x}, y, \boldsymbol{\theta}^{\mathcal{S}})]$$
(2)

The dataset distillation can be formulated as a bi-level optimization problem:
$$\mathcal{S} = \underset{\mathcal{S}}{\arg\min} \mathcal{L}(\boldsymbol{\theta}^{\mathcal{S}}, \mathcal{T}) \quad \text{satisfy} \quad \boldsymbol{\theta}^{\mathcal{S}} = \underset{\boldsymbol{\theta}^{\mathcal{S}}}{\arg\min} \mathcal{L}(\boldsymbol{\theta}^{\mathcal{S}}, \mathcal{S}) \tag{3}$$

where the inner loop optimizes a network to train on the synthetic dataset ${\cal S}$ and the outer loop optimization optimizes on the original dataset to learn the synthetic dataset.

Low-Bits Dataset Quantization Given an original dataset $\mathcal{T} = \{(x_i, y_i)\}_{i=1}^N$, we first compress it into a small-scale full-precision dataset $\mathcal{S} = \{(x_i, y_i)\}_{i=1}^m$, where $m \ll N$. Our goal is to further fine-tune a condensed low-bit dataset $\mathcal{S}_{\text{quant}} = \{(\tilde{x}_i, y_i)\}_{i=1}^m$, where each \tilde{x}_i is a quantized version of x_i represented using b-bit precision.

3.2 Proposed Method

We adopt a uniform quantization method:

$$\boldsymbol{x}_{\text{low}} = \min \boldsymbol{x}, \quad \boldsymbol{x}_{\text{high}} = \max \boldsymbol{x}, \quad \Delta = \frac{\boldsymbol{x}_{\text{high}} - \boldsymbol{x}_{\text{low}}}{2^b - 1}$$
 (4)

where b denotes the number of bits used to encode each dimension of a data sample. Δ denotes the length of the quantization interval. The uniform quantization-dequantization can be defined as:

$$Q_b(\mathbf{x}) = \text{round}(\frac{\mathbf{x} - \mathbf{x}_{\text{low}}}{\Lambda})\Delta \tag{5}$$

Differentiable Data Quantization (DDQ) The near-zero gradients of the uniform quantization function (Eq. 5) at most input values hinder effective training on the quantized data, resulting in unstable learning dynamics. To address this issue, we introduce a differentiable asymptotic function that approximates a uniform data quantizer. Specifically, DDQ replaces hard quantization with a smooth, continuous approximation.

$$\phi(\mathbf{x}) = s \cdot \tanh(k(\mathbf{x} - \mathbf{m}_i)), \text{ if } \mathbf{x} \in P_i = [\mathbf{x}_{low} + i\Delta, \mathbf{x}_{low} + (i+1)\Delta]$$

where
$$m_i = x_{low} + (i + 0.5)\Delta$$
, $s = \frac{1}{\tanh(0.5k\Delta)}$. (6)

Where in Eq. 6, s ensures that the outputs of $\phi(x)$ are normalized to -1 and +1 at the boundaries of quantization intervals. m_i denotes the midpoint of each quantization interval. We then define a soft quantization function (Eq. 7) to provide a smooth and differentiable approximation to Eq. (5):

$$Q_V(\mathbf{x}) = \mathbf{x}_{low} + (i + \frac{\phi(\mathbf{x}) + 1}{2})\Delta \tag{7}$$

Bi-Level Optimization for Low-Bit Condensation We optimize S in full precision but penalize deviations from quantized values:

$$\min_{\mathcal{S}} \underbrace{\mathbb{E}_{(\boldsymbol{x},y) \sim \mathcal{T}_{\text{val}}} \left[\mathcal{L}(f_{\boldsymbol{\theta}^*}(\boldsymbol{x}),y) \right]}_{\text{Validation loss}} + \lambda \underbrace{\|\mathcal{S} - Q_V(\mathcal{S})\|_2^2}_{\text{Quantization loss}}$$

$$\text{s.t.} \quad \boldsymbol{\theta}^* = \mathop{\arg\min}_{\boldsymbol{\theta}} \mathbb{E}_{(\tilde{\boldsymbol{x}}, y) \sim Q_V(\mathcal{S})} \left[\mathcal{L}(f_{\boldsymbol{\theta}}(\tilde{\boldsymbol{x}}), y) \right]$$

Inner Loop (Model Training): Update θ on $Q_V(S)$ via SGD:

$$\theta \leftarrow \theta - \eta_1 \nabla_{\theta} \mathcal{L}(f_{\theta}(Q_V(\mathcal{S})), \mathbf{v})$$

Outer Loop (Dataset Update): Compute $\nabla_{\mathcal{S}} \mathcal{L}_{val}$ via chain rule:

$$\nabla_{\mathcal{S}} \mathcal{L}_{\text{val}} = \frac{\partial \mathcal{L}_{\text{val}}}{\partial \mathcal{S}} + \frac{\partial \mathcal{L}_{\text{val}}}{\partial \boldsymbol{\theta}^*} \cdot \frac{\partial \boldsymbol{\theta}^*}{\partial Q_V(\mathcal{S})} \cdot \frac{\partial Q_V(\mathcal{S})}{\partial \mathcal{S}}$$
(8)

where

$$\frac{\partial \boldsymbol{\theta}^*}{\partial Q_V(\mathcal{S})} = -\left(\frac{\partial^2 L_{\text{train}}}{\partial \boldsymbol{\theta}^2}\right)^{-1} \frac{\partial^2 L_{\text{train}}}{\partial Q_V(S)\partial \boldsymbol{\theta}} \tag{9}$$

Derivations of Eq. 9 are presented in Appendix A. Then, we update S with the following gradients:

$$S \leftarrow S - \eta_2 \left(\nabla_{S} \mathcal{L}_{\text{val}} + \lambda \nabla_{S} \|S - Q_V(S)\|_2^2 \right)$$

Final Quantization After convergence, we apply the following quantization to each image:

$$\tilde{\boldsymbol{x}}_i = \operatorname{round}\left(\frac{\operatorname{clip}(\boldsymbol{x}_i, \boldsymbol{x}_{\text{low}}, \boldsymbol{x}_{\text{high}}) - \boldsymbol{x}_{\text{low}}}{\Delta}\right)$$

3.3 INTEGRATE BCDC WITH EXISTING APPROACHES

Bi-level Dataset Condensation with Quantized Data Representations Our proposed BCDC serves as a general, versatile framework that integrates seamlessly with existing approaches. The proposed algorithm integrated with bi-level dataset condensation loss function (Wang et al., 2018) is presented in Algorithm 1. Integrating BCDC with surrogate loss function, e.g., DM (Zhao & Bilen, 2023) is presented in Algorithm 2 in Appendix.

Algorithm 1 Bi-level Dataset Condensation with Quantized Data Representations

Input: Training set \mathcal{T} , distilled dataset learning rates γ

Initialize: Initialize distilled dataset and labels S.

while not converged do

Sample a training batch from the training set: $\{x,y\} \sim \mathcal{T}$

Perform K optimization steps on inner objective to obtain θ_i^*

Compute synthetic data gradient $\nabla_{\mathcal{S}} \mathcal{L}_{\text{val}}$ by Eq. (8)

Update the distilled dataset: $S \leftarrow S - \gamma \nabla_{S} \mathcal{L}_{val}$

Train the model θ_i on the current distilled dataset S for one step

end while

4 THEORETICAL ANALYSIS

We use \mathcal{D} to represent the *ground truth* distribution governing data generation, $R_{\mathcal{D}}(f_{\theta}) = \mathbb{E}_{(x,y)\sim\mathcal{D}}\mathcal{L}(f_{\theta}(x),y)$, which is the expected loss (or risk) over the true data distribution and also known as generalization error. $\hat{R}_{Q_b(\mathcal{S})}(f_{\theta}) = \mathbb{E}_{(x,y)\sim Q_b(\mathcal{S})}\mathcal{L}(f_{\theta}(x),y)$ denotes the empirical risk on the quantized data.

Assumption 4.1. A hypothesis function $f_{\theta}: \mathbb{R}^d \to \mathbb{R}$ is called Lipschitz continuous with constant L > 0 if

$$||f_{\theta}(x_1) - f_{\theta}(x_2)|| \le L||x_1 - x_2||, \quad \forall x_1, x_2 \in \mathbb{R}^d.$$

If h is differentiable, this implies a bound on its gradient: $||\nabla f_{\theta}(x)|| \le L, \forall x \in \mathbb{R}^d$.

Assumption 4.2. The empirical risk function $R_{\mathcal{D}}(f_{\theta}): \mathbb{R}^d \to \mathbb{R}$ is β -smooth if

$$R_{\mathcal{S}}(f_{\theta}) \leq R_{\mathcal{D}}(f_{\theta}) + \langle \nabla R_{\mathcal{D}}(f_{\theta}), f_{\theta}(\mathcal{S}) - f_{\theta}(\mathcal{D}) \rangle + \frac{\beta}{2} \|f_{\theta}(\mathcal{S}) - f_{\theta}(\mathcal{D})\|^{2},$$

Assumption 4.3. Q_b be a b-bit quantizer with $\mathbb{E}[\|Q_b(x) - x\|] \le C2^{-b}$ (following (Gray & Neuhoff, 2002)) where C is a constant.

Assumption 4.4. \mathcal{H} be a hypothesis class with Rademacher complexity (Bartlett & Mendelson, 2002) $\mathfrak{R}_n(\mathcal{H}) \leq \kappa/\sqrt{n}$, where κ is a constant and n denotes the number of training samples.

Let M denote the total memory budget in bits and d be the data dimension. $m(b) = \lfloor M/(bd) \rfloor$ denotes the number of stored samples under b-bit quantization.

Theorem 4.5 (Memory-Constrained Quantization-Generalization Trade-off). With probability $\geq 1 - \delta$:

$$R_{\mathcal{D}}(f_{\theta}) \leq \underbrace{\hat{R}_{Q_{b}(\mathcal{S})}(f_{\theta})}_{Empirical\ Risk} + \underbrace{\frac{2\kappa}{\sqrt{m(b)}} + \sqrt{\frac{\log(2/\delta)}{2m(b)}}}_{Convertiset in\ Error} + \underbrace{LC2^{-b} + \beta C^{2}2^{-2b}}_{Quantization\ Error}$$
(10)

Implications: Each term in the above generalization bound can be interpreted as the following: (1) The term $\frac{2\kappa}{\sqrt{m(b)}}$ reflects the reduced model complexity from more samples; (2) $\sqrt{\frac{\log(2/\delta)}{2m(b)}}$ is the classical Hoeffding concentration term; (3) $LC2^{-b}$ shows the first-order quantization error; (4) βC^22^{-2b} captures the second-order quantization effects.

The generalization bound in equation 10 exhibits a trade-off between quantization error and generalization error influenced by the choice of b, as shown in Table 1: selecting a smaller b tightens the generalization bound but at the cost of increased quantization error; selecting a larger b reduces quantization error but may lead to looser generalization bounds due to fewer samples. Balancing these factors is crucial for optimizing model performance under memory constraints.

Theorem 4.6 (Fisher Information Retention in Bit-Conscious Condensation). Let $I(\mathcal{T};\theta)$ and $I(Q_b(\mathcal{S});\theta)$ denote the Fisher information of the original and quantized condensed datasets, respectively. For a b-bit quantizer:

$$I(\mathcal{T}; \boldsymbol{\theta}) - I(Q_b(\mathcal{S}); \boldsymbol{\theta}) \leq \frac{L^2 \Delta^2}{8} tr \left(\mathbb{E} \left[\nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{\theta}|\mathcal{S}) \nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{\theta}|\mathcal{S})^\top \right] \right)$$

Table 1: Trade-off between generalization error and quantization error.

	m(b)	$\frac{2\kappa}{\sqrt{m(b)}} + \sqrt{\frac{\log(2/\delta)}{2m(b)}}$	$LC2^{-b} + \beta C^2 2^{-2b}$
b decreases (\downarrow)	\uparrow	\downarrow	<u> </u>
b increases (\uparrow)	\downarrow	\uparrow	\downarrow

where $\Delta = 2^{-b+1}(\max(S) - \min(S))$. tr denotes the trace of the Fisher information matrix $(\mathbb{E}\left[\nabla_{\theta} \log p(\theta|S)\nabla_{\theta} \log p(\theta|S)^{\top}\right])$.

Implications: As b increases, Δ_1 decreases and the right-hand side bound becomes tighter, since more bits allow finer-grained image details to be preserved. Conversely, as b decreases, Δ_1 increases and the bound becomes looser, due to the loss of fine-grained detail with fewer bits. Due to space limitations, we provide detailed theorem proof in Appendix B.

5 EXPERIMENT

5.1 Dataset Condensation for Deep Learning

Datasets We assess the effectiveness of BCDC on the following benchmark datasets: MNIST (LeCun et al., 1998), CIFAR10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky et al., 2009), TinyImageNet (Le & Yang, 2015) and ImageNet-1K (Deng et al., 2009).

Baselines We compare to both coreset selection and dataset distillation methods.

- (I) *Coreset Selection:* Selecting a representative subset of real data: (1) *Random:* Selects images randomly from the dataset; (2) *Herding:* Selects samples heuristically, aiming for those closest to the class center (Welling, 2009; Belouadah & Popescu, 2020); (3) *Forgetting:* Selects samples that are most likely to be forgotten during model training (Toneva et al., 2019).
- (II) Dataset Distillation: DD (Wang et al., 2018), LD (Bohdal et al., 2020), DC (Zhao et al., 2021), DSA (Zhao & Bilen, 2021), MTT (Cazenavette et al., 2022), IDC (Kim et al., 2022), HaBa (Liu et al., 2022), RememberThePast (Deng & Russakovsky, 2022) DM (Zhao & Bilen, 2023), DataDAM (Sajedi et al., 2023), TESLA (Cui et al., 2023), SRe 2 L (Yin et al., 2023), DWA (Du et al., 2024), RDED (Sun et al., 2024), D 4 M (Su et al., 2024), CMI (Zhong et al., 2025), D 3 HR (Zhao et al., 2025).

Implementation Details Following the experimental protocol established in (Kim et al., 2022), we ensure that all methods operate under an equal memory budget. For each trial, we either select a coreset (Random, Herding, or Forgetting) or optimize a synthetic dataset (DD, LD, DC, DSA, DM, etc), and then use it to train 20 independently initialized ConvNet models (Rocco et al., 2017). All other hyperparameters are aligned with those used in prior work (Zhao et al., 2021; Zhao & Bilen, 2021; 2023). Each experiment setup is repeated five times, and we report the average test accuracy across runs. In addition, as detailed in Sec. 5.2, we assess the generalization capability of the synthetic datasets across architectures by evaluating them on five commonly used deep networks: ConvNet (Rocco et al., 2017), LeNet (LeCun et al., 1998), AlexNet (Krizhevsky et al., 2017), VGG11 (Simonyan & Zisserman, 2015), and ResNet18 (He et al., 2016). For this set of experiments, we use 2, 4, 4 and 4-bit representations for MNIST, CIFAR10, CIFAR100 and TinyImageNet respectively. The number of bits for each dataset is selected from $\{2,4,8\}$, based on the configuration that yields the highest validation performance. $\lambda = 0.2$. All experiments are conducted on a single NVIDIA A6000 GPU.

Results and Analysis Table 2 and 4 compares dataset condensation with coreset selection approaches, showing that dataset condensation generally outperforms coreset selection. In Table 3, we compare our BCDC with conventional dataset condensation methods (DC, DSA, DM) under two scenarios: using the same number of images (SI) and using the same memory budget (SM). The results highlight the following observations: (i) With an equal number of images, our method achieves more reductions in storage requirements—while maintaining performance close to that of the traditional DC approach. (ii) When the memory budget is the same, our method is able to store more samples within the same budget, thereby retaining richer information from the original dataset. As a result, it significantly outperforms existing condensation methods. For example, on CIFAR10 with 1 image per class,

Table 2: Comparison with coreset selection methods and dataset condensation methods.

DataSet	Img/Cls	Coreset	Selection	Methods	Dataset Condensation Methods					
Dataset	mig/Cis	Random	Herding	Forgetting	DD	LD	DC	DSA	DM	DM+BCDC (Ours)
	1	64.9±3.5	89.2±1.6	35.5±5.6	-	60.9 ± 3.2	91.7±0.5	88.7 ± 0.6	89.7±0.6	91.5±0.3
MNIST	10	95.1±0.9	93.7 ± 0.3	68.1 ± 3.3	79.5±8.1	87.3 ± 0.7	97.4±0.2	97.1 ± 0.1	96.5 ± 0.2	97.8 ± 0.3
	50	97.9±0.2	94.8 ± 0.2	88.2 ± 1.2	-	93.3 ± 0.3	98.8 ± 0.2	99.2 ± 0.1	97.5 ± 0.5	98.4 ± 0.2
	1	14.4±2.0	21.5±1.2	13.5 ± 1.2	-	25.7±0.7	28.3 ± 0.5	28.8 ± 0.7	26.0 ± 0.8	45.1±0.8
CIFAR10	10	26.0 ± 1.2	31.6 ± 0.7	23.3 ± 1.0	36.8±1.2	38.3 ± 0.4	44.9 ± 0.5	51.1 ± 0.5	48.9 ± 0.6	60.6 ± 0.5
	50	43.4±1.0	40.4 ± 0.6	23.3 ± 1.1	-	42.5 ± 0.4	53.9 ± 0.5	60.6 ± 0.5	63.0 ± 0.4	65.9 ± 0.2
CIFAR100	1	4.2±0.3	8.4 ± 0.3	4.5 ± 0.2	-	11.5 ± 0.4	12.8 ± 0.3	13.9 ± 0.3	11.4±0.3	26.3±0.5
CITARTOO	10	14.6±0.5	17.3 ± 0.3	15.1 ± 0.3	-	-	25.2 ± 0.3	32.3 ± 0.3	29.7 ± 0.3	38.3 ± 0.7
TinyImageNet	1	1.4±0.1	2.8±0.2	1.6±0.1	-	-	4.61 ± 0.2	4.79 ± 0.2	3.9 ± 0.2	10.6±0.4
	10	5.0±0.2	6.3 ± 0.2	5.1 ± 0.2	-	-	11.6±0.3	14.7±0.2	12.9±0.4	18.9±0.5

Table 3: Comparison with dataset distillation methods on the same number of image (SI) or same memory (SM).

DataSet	Img/Cls	DC	+BCDC (SI)	+BCDC (SM)	DSA	+BCDC (SI)	+BCDC (SM)	DM	+BCDC (SI)	+BCDC (SM)
MNIST	1	91.7±0.5	-	93.5±0.4	88.7±0.6	-	90.3±0.7	89.7±0.6	88.1±0.8	91.5±0.3
MINIST	10	97.4±0.2	96.0 ± 0.2	97.7 ± 0.4	97.1 ± 0.1	96.2 ± 0.3	97.8 ± 0.3	96.5±0.2	95.7 ± 0.6	97.8 ± 0.2
CIEA D 10	1	28.3 ± 0.5	28.1 ± 0.4	36.1 ± 0.6	28.8 ± 0.7	28.6 ± 0.7	42.2 ± 0.3	26.0 ± 0.8	25.0 ± 0.4	45.1±0.8
CIFAR10	10	44.9±0.5	43.1 ± 0.5	51.2 ± 0.4	51.1 ± 0.5	49.7 ± 0.6	57.3 ± 0.4	48.9±0.6	47.1 ± 0.8	60.6 ± 0.5
CIEAD 100	1	12.8 ± 0.3	12.5 ± 0.4	19.1 ± 0.2	13.9 ± 0.3	13.7 ± 0.3	23.7 ± 0.4	11.4 ± 0.3	10.5 ± 0.6	26.3±0.5
CIFAR 100	10	25.2±0.3	24.6 ± 0.3	27.6 ± 0.5	32.3 ± 0.3	30.9 ± 0.2	34.2 ± 0.6	29.7±0.3	28.6 ± 0.4	38.3 ± 0.7
TinyImageNet	1	4.61 ± 0.2	4.32 ± 0.3	7.10 ± 0.2	4.79 ± 0.2	4.72 ± 0.4	10.80 ± 0.5	3.9±0.2	3.7 ± 0.3	10.6 ± 0.4

BCDC achieves improvements of 13.4% and 19.1% over DSA and DM, respectively. In Table 5, we compare our method against recent approaches—MTT (Cazenavette et al., 2022), DataDAM (Sajedi et al., 2023), TESLA (Cui et al., 2023), SRe²L (Yin et al., 2023) and DWA (Du et al., 2024)—on both Tiny-ImageNet and ImageNet-1K benchmarks. The results show that our BCDC can enhance dataset distillation performance under the same memory budget.

5.2 ABLATION STUDY

Cross-Architecture Transferability Analysis To assess how well BCDC generalizes across different model architectures, we perform a cross-architecture evaluation. Specifically, we generate the condensed dataset using a single architecture (such as AlexNet or ConvNet) and then use it to train five different network architectures from scratch. We evaluate the resulting models on the CIFAR-10 test set. As shown in Table 7, BCDC consistently delivers strong performance across these diverse architectures, highlighting its effectiveness in supporting cross-architecture knowledge transfer.

Figure 1: Visualization of different bits image quantization by integrating BCDC with DC.

Computation Efficiency Evaluation To evaluate the training efficiency of our proposed BCDC compared to traditional dataset condensation methods without quantization, we report the training cost comparison in Table 9 in Appendix D. Although BCDC introduces additional quantization-aware fine-tuning cost, it results in only a modest increase in training cost—ranging from 17% to 20%—while offering improved performance under quantized settings.

Table 4: Compare with other advanced dataset condensation methods.

	MTT	IDC-I	IDC	HaBa	RememberThePast
CIFAR10 (Img/Cls=1)	46.3%	36.7%	50.6%	48.3%	66.4%
CHARTO (IIIg/Cis=1)	MTT+BCDC	IDC-I+BCDC	IDC+BCDC	HaBa+BCDC	RememberThePast+BCDC
	59.0%	50.1%	56.7%	65.3%	68.4%
CIFAR100 (Img/Cls=1)	MTT	IDC-I	IDC	HaBa	RememberThePast
	24.3%	16.6%	24.9%	33.4%	-
	MTT+BCDC	IDC-I+BCDC	IDC+BCDC	HaBa+BCDC	RememberThePast+BCDC
	31.2%	27.6%	33.4%	36.5%	-

Table 5: Evaluation against state-of-the-Art Dataset Distillation Methods on Tiny-ImageNet and ImageNet-1K. Unless stated otherwise, we adopt the same model architecture during both the distillation and evaluation phases. Consistent with the configurations reported in their respective works, MTT (Cazenavette et al., 2022) and TESLA (Cui et al., 2023) employ ConvNet-128. In contrast, SRe²L (Yin et al., 2023) generates synthetic data using ResNet-18 and assesses performance across ResNet-18, ResNet-50, and ResNet-101. The symbol † denotes that MTT is applied to a 10-class subset of the complete ImageNet-1K dataset.

Datasat			ConvNet	ıvNet		ResNet-18		ResNet-50		:	ResNet-101		
Dataset	ipc	MTT	DataDAM	TESLA	SRe ² L	DWA	+BCDC	SRe ² L	DWA	+BCDC	SRe ² L	DWA	+BCDC
Tiny-ImageNet	50 100	28.0±0.3	28.7±0.3							55.6±0.3 59.1±0.5			
ImageNet-1K	10 50 100	64.0±1.3 [†]		27.9 ± 1.2	46.8±0.2	55.2 ± 0.2	57.5 ± 0.3	55.6±0.3	62.3 ± 0.1	45.5±0.6 65.6±0.2 67.8±0.3	60.8 ± 0.5	63.3 ± 0.7	$64.5 {\pm} 0.8$

Table 8: Comparison of testing performance using naive quantization versus our BCDC.

Method	Without Quantization	+ Naive Quantization (Naive-Q)	+ BCDC (Ours)
DC	$28.3{\pm}0.5$	31.8±0.5	36.1 ± 0.6
DSA	28.8 ± 0.7	35.6 ± 0.7	42.2 ± 0.3
DM	$26.0 {\pm} 0.8$	$34.3 {\pm} 0.2$	45.1 ± 0.8

Effect of Bit-Width *b*: Table 10 (in Appendix D) illustrates the effect of bit-width on dataset distillation performance. Lower bit-widths reduce the memory required per image, enabling the storage of a larger number of samples within a fixed memory budget. However, this reduction in precision also degrades image quality, which can hinder model performance. Conversely, higher bit-widths preserve more visual detail and improve image fidelity but increase the memory footprint per image, limiting the number of samples that can be stored. Empirically, we observe that performance improves as the bit-width increases from 2 bits, reaching its peak at 4 bits. Beyond this point, however, performance begins to decline despite the improved image quality, primarily due to the reduced number of stored samples. This highlights a trade-off between image quality and sample quantity, emphasizing the need to select an optimal bit-width that balances memory constraints and model performance in practical applications.

Comparison Between Our BCDC and Direct Quantization: To assess the effectiveness of our quantization-aware fine-tuning strategy, we compare the performance of our BCDC against a baseline approach that applies direct quantization to the distilled dataset without any additional fine-tuning. This comparison is presented in Table 8. The results clearly demonstrate that BCDC achieves substantially better performance, highlighting the importance of adapting the distilled representations to the quantized setting. By incorporating quantization into the fine-tuning process, BCDC effectively mitigates the performance degradation typically caused by direct quantization, thereby preserving the utility of the condensed data under limited bit precision.

Figure 2: Test accuracy on the class-incremental learning task.

Table 6: Comparison of dataset condensation methods on Tiny-ImageNet and ImageNet-1K. Results are reported as test accuracy (%) on condensed dataset.

Dataset	Img/Cls	$\mathbf{D}^4\mathbf{M}$	RDED	CMI	DWA	+BCDC	D^3HR	+BCDC
Tiny-ImageNet	50	46.2	58.2 ± 0.1	53.7 ± 0.3	52.8 ± 0.2	55.1 ± 0.3	56.9 ± 0.2	59.3 ± 0.4
Tiny-ImageNet	100	51.4	_	56.9 ± 0.3	56.0 ± 0.2	59.6 ± 0.3	59.3 ± 0.1	61.8 ± 0.2
ImageNet-1K	10	27.9	42.0 ± 0.1	38.5 ± 0.3	37.9 ± 0.2	39.6 ± 0.3	44.3 ± 0.3	46.9 ± 0.5
ImageNet-1K	50	55.2	56.5 ± 0.1	55.6 ± 0.3	55.2 ± 0.2	57.5 ± 0.3	59.4 ± 0.1	62.6 ± 0.3
ImageNet-1K	100	59.3	_	59.8 ± 0.4	59.2 ± 0.3	61.7 ± 0.4	62.5 ± 0.0	64.7 ± 0.2

Table 7: Cross-architecture evaluation on CIFAR-10 using 10 images per class. *Train* denotes the architecture used to condense the dataset, while *Transfer* refers to the architecture trained on the condensed data.

Method	Train \ Transfer					
DSA	AlexNet	30.4 ± 0.7	24.2 ± 0.4	28.3 ± 0.4	27.2 ± 1.0	27.8 ± 1.1
DSA	ConvNet	$31.4 {\pm} 1.1$	$21.7 {\pm} 1.6$	$25.9{\pm}0.8$	27.6 ± 0.8	27.6 ± 1.4
DM	AlexNet	41.4 ± 0.8	31.4 ± 0.2	37.5 ± 0.9	36.8 ± 0.5	34.9 ± 1.1
DIVI	ConvNet	$42.2 {\pm} 0.5$	33.4 ± 0.6	38.8 ± 1.3	36.2 ± 1.0	34.6 ± 0.5
DM+BCDC (ours)	AlexNet	57.6±0.5	33.8 ± 0.7	51.2±0.6	52.3 ± 0.7	52.1±0.8
DIVI+BCDC (OUIS)	ConvNet	58.0 ± 0.5	46.9 ± 0.8	54.6 ± 0.9	52.0 ± 0.7	51.8 ± 0.9

Comparison with standard image compression techniques (JPEG, WebP.) We compare our approach with standard image compression methods, such as JPEG and WebP, in Table 11 in Appendix. Notably, our method can be seamlessly combined with these compression techniques and yields substantial additional improvements in dataset distillation performance.

Dataset Condensation Visualization We present visualizations of the condensed images under different quantization levels integrating with DC in Figure 1 and integrating with DM in Figure 3 in Appendix. As the number of bits used to represent each image increases, more fine-grained visual details are preserved, resulting in higher image quality. However, this comes at the cost of increased storage requirements per image. Conversely, using fewer bits reduces the fidelity of the image, leading to some loss of detail, but significantly lowers the memory footprint. This trade-off enables the storage of a larger number of images within the same memory budget, which is particularly beneficial in resource-constrained scenarios.

Hyperparameter Sensitivity We present hyperparameter sensitivity, e.g., λ , in Appendix D.

5.3 Dataset Condensation for Continual Learning

 In this section, we evaluate the effectiveness of BCDC in the context of continual learning. We adopt a class-incremental learning setting under tight memory constraints—specifically, 10 images per class for CIFAR10 and 20 images per class for CIFAR100. We integrate BCDC with the GDumb framework (Prabhu et al., 2020) using either coreset selection strategies (Random, Herding) or dataset distillation techniques (DSA, DM). Experiments are conducted on two standard benchmarks: CIFAR10, split into 5 sequential tasks, and CIFAR100, evaluated under both 5-task and 10-task settings. As shown in Fig. 2, GDumb combined with BCDC consistently outperforms all other variants. This demonstrates that our low-bit condensed data remains highly informative and effective in CL scenarios.

6 CONCLUSION

In this paper, we proposed a low-bit data representation quantization method to compress datasets into small-scale condensed versions, significantly reducing memory storage costs. Through extensive experiments across multiple datasets and settings, we demonstrated the effectiveness of our approach in maintaining data utility while achieving substantial compression. The results highlight the potential of our method to facilitate efficient data storage and processing in resource-constrained environments. Future work could explore adaptive quantization strategies to further enhance performance.

REFERENCES

- Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection for online continual learning. *Advances in neural information processing systems*, 32, 2019.
- Elahe Arani, Fahad Sarfraz, and Bahram Zonooz. Learning fast, learning slow: A general continual learning method based on complementary learning system. In *International Conference on Learning Representations*, 2022.
 - Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. *Journal of Machine Learning Research*, 3(Nov):463–482, 2002.
 - Eden Belouadah and Adrian Popescu. Scail: Classifier weights scaling for class incremental learning. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*, pp. 1266–1275, 2020.
 - Ondrej Bohdal, Yongxin Yang, and Timothy Hospedales. Flexible dataset distillation: Learn labels instead of images. *arXiv preprint arXiv:2006.08572*, 2020.
 - Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark experience for general continual learning: a strong, simple baseline. *Advances in neural information processing systems*, 33:15920–15930, 2020.
 - Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuytelaars, Joelle Pineau, and Eugene Belilovsky. New insights on reducing abrupt representation change in online continual learning. In *International Conference on Learning Representations*, 2022.
 - George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. Dataset distillation by matching training trajectories. In *IEEE Conference on Computer Vision and Pattern Recognition*, pp. 4750–4759, 2022.
 - Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian walk for incremental learning: Understanding forgetting and intransigence. In *ECCV*, pp. 532–547, 2018.
 - Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K. Dokania, Philip H. S. Torr, and Marc'Aurelio Ranzato. Continual learning with tiny episodic memories. https://arxiv.org/abs/1902.10486, 2019.
 - Yutian Chen, Max Welling, and Alex Smola. Super-samples from kernel herding. In *Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence*, pp. 109–116, 2010.
 - Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Scaling up dataset distillation to imagenet-1k with constant memory. In *International Conference on Machine Learning*, pp. 6565–6590. PMLR, 2023.
 - Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*, pp. 248–255. Ieee, 2009.
 - Zhiwei Deng and Olga Russakovsky. Remember the past: Distilling datasets into addressable memories for neural networks. *Advances in Neural Information Processing Systems*, 35:34391–34404, 2022.
 - Jiawei Du, Xin Zhang, Juncheng Hu, Wenxin Huang, and Joey Tianyi Zhou. Diversity-driven synthesis: Enhancing dataset distillation through directed weight adjustment. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.
- Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li, Peng Hu, Jiazhen Lin, Fengwei Yu, and Junjie Yan. Differentiable soft quantization: Bridging full-precision and low-bit neural networks. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 4852–4861, 2019.

- Robert M. Gray and David L. Neuhoff. Quantization. *IEEE transactions on information theory*, 44 (6):2325–2383, 2002.
- Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pp. 291–300, 2004.
 - Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, pp. 770–778. IEEE Computer Society, 2016.
 - Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo Yun, Hwanjun Song, Joonhyun Jeong, Jung-Woo Ha, and Hyun Oh Song. Dataset condensation via efficient synthetic-data parameterization. In *International Conference on Machine Learning*, pp. 11102–11118. PMLR, 2022.
 - James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks. *Proceedings of the national academy of sciences*, 114 (13):3521–3526, 2017.
 - Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
 - Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. *Communications of the ACM*, 60(6):84–90, 2017.
 - Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.
 - Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.
 - Songhua Liu, Kai Wang, Xingyi Yang, Jingwen Ye, and Xinchao Wang. Dataset distillation via factorization. *Advances in Neural Information Processing Systems*, 35:1100–1113, 2022.
 - David Lopez-Paz and Marc'Aurelio Ranzato. Gradient episodic memory for continual learning. *Advances in neural information processing systems*, 30, 2017.
 - Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset meta-learning from kernel ridge-regression. In *International Conference on Learning Representations*, 2021.
 - Quang Pham, Chenghao Liu, and Steven HOI. Dualnet: Continual learning, fast and slow. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*, 2021.
 - Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb: A simple approach that questions our progress in continual learning. In *The European Conference on Computer Vision (ECCV)*, pp. 524–540. Springer, 2020.
 - Tian Qin, Zhiwei Deng, and David Alvarez-Melis. A label is worth a thousand images in dataset distillation. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.
 - Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. iCaRL: Incremental classifier and representation learning. In *IEEE Conference on Computer Vision and Pattern Recognition*, pp. 5533–5542, 2017.
 - Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing interference. In *ICLR*, 2019.
 - Ignacio Rocco, Relja Arandjelovic, and Josef Sivic. Convolutional neural network architecture for geometric matching. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 6148–6157, 2017.

- Ahmad Sajedi, Samir Khaki, Ehsan Amjadian, Lucy Z Liu, Yuri A Lawryshyn, and Konstantinos N Plataniotis. Datadam: Efficient dataset distillation with attention matching. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 17097–17107, 2023.
 - Jonathan Schwarz, Jelena Luketina, Wojciech M. Czarnecki, Agnieszka Grabska-Barwinska, Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress and compress: A scalable framework for continual learning. In *Proceedings of the International Conference on Machine Learning*, 2018.
 - Burr Settles. Active learning literature survey. 2009.
 - Shitong Shao, Zikai Zhou, Huanran Chen, and Zhiqiang Shen. Elucidating the design space of dataset condensation. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.
 - Seungjae Shin, Heesun Bae, Donghyeok Shin, Weonyoung Joo, and Il-Chul Moon. Loss-curvature matching for dataset selection and condensation. In *International Conference on Artificial Intelligence and Statistics*, pp. 8606–8628. PMLR, 2023.
 - Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. In 3rd International Conference on Learning Representations, 2015.
 - Duo Su, Junjie Hou, Weizhi Gao, Yingjie Tian, and Bowen Tang. D[^] 4: Dataset distillation via disentangled diffusion model. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 5809–5818, 2024.
 - Peng Sun, Bei Shi, Daiwei Yu, and Tao Lin. On the diversity and realism of distilled dataset: An efficient dataset distillation paradigm. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9390–9399, 2024.
 - Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and Geoffrey J Gordon. An empirical study of example forgetting during deep neural network learning. In *International Conference on Learning Representations*, 2019.
 - Eli Verwimp, Matthias De Lange, and Tinne Tuytelaars. Rehearsal revealed: The limits and merits of revisiting samples in continual learning. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 9385–9394, 2021.
 - Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang, Hakan Bilen, Xinchao Wang, and Yang You. Cafe: Learning to condense dataset by aligning features. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 12196–12205, 2022a.
 - Longguang Wang, Xiaoyu Dong, Yingqian Wang, Li Liu, Wei An, and Yulan Guo. Learnable lookup table for neural network quantization. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 12423–12433, 2022b.
 - Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. *arXiv* preprint arXiv:1811.10959, 2018.
 - Zhenyi Wang, Li Shen, Le Fang, Qiuling Suo, Tiehang Duan, and Mingchen Gao. Improving task-free continual learning by distributionally robust memory evolution. In *International Conference on Machine Learning*, pp. 22985–22998. PMLR, 2022c.
 - Max Welling. Herding dynamical weights to learn. In *Proceedings of the 26th Annual International Conference on Machine Learning*, pp. 1121–1128, 2009.
 - Enneng Yang, Li Shen, Zhenyi Wang, Tongliang Liu, and Guibing Guo. An efficient dataset condensation plugin and its application to continual learning. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023a.
 - Shuo Yang, Zeke Xie, Hanyu Peng, Min Xu, Mingming Sun, and Ping Li. Dataset pruning: Reducing training data by examining generalization influence. *The Eleventh International Conference on Learning Representations*, 2023b.

- Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric Tan, Leyuan Wang, Qijing Huang, Yida Wang, Michael Mahoney, et al. Hawq-v3: Dyadic neural network quantization. In *International Conference on Machine Learning*, pp. 11875–11886. PMLR, 2021.
- Zeyuan Yin, Eric Xing, and Zhiqiang Shen. Squeeze, recover and relabel: Dataset condensation at imagenet scale from a new perspective. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
- Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence. In *International conference on machine learning*, pp. 3987–3995. PMLR, 2017.
- Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In *International Conference on Machine Learning*, pp. 12674–12685. PMLR, 2021.
- Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 6514–6523, 2023.
- Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching. In *Ninth International Conference on Learning Representations* 2021, 2021.
- Ganlong Zhao, Guanbin Li, Yipeng Qin, and Yizhou Yu. Improved distribution matching for dataset condensation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 7856–7865, 2023.
- Lin Zhao, Yushu Wu, Xinru Jiang, Jianyang Gu, Yanzhi Wang, Xiaolin Xu, Pu Zhao, and Xue Lin. Taming diffusion for dataset distillation with high representativeness. In *Forty-second International Conference on Machine Learning*, 2025.
- Xinhao Zhong, Bin Chen, Hao Fang, Xulin Gu, Shu-Tao Xia, and EN-HUI YANG. Going beyond feature similarity: Effective dataset distillation based on class-aware conditional mutual information. In *The Thirteenth International Conference on Learning Representations*, 2025.
- Daquan Zhou, Kai Wang, Jianyang Gu, Xiangyu Peng, Dongze Lian, Yifan Zhang, Yang You, and Jiashi Feng. Dataset quantization. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 17205–17216, 2023.
- Yongchao Zhou, Ehsan Nezhadarya, and Jimmy Ba. Dataset distillation using neural feature regression. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022. URL https://openreview.net/forum?id=2clwrA2tfik.

Appendix

A DERIVATIONS FOR DATA-GRADIENTS

When adapting parameters θ to a task via fine-tuning, the optimal post-adaptation parameters Q(S) depend implicitly on θ . We compute $\frac{\partial Q(S)}{\partial \theta}$ using chain rule on the optimality condition:

Fine-Tuning (Inner Loop) At convergence, the gradient of the fine-tuning loss L_{train} w.r.t. $Q(\mathcal{S})$ is zero:

$$\frac{\partial L_{\text{train}}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = 0 \quad \text{(Optimality condition)}$$

Differentiate the optimality condition w.r.t. θ :

$$\frac{\partial}{\partial Q(\mathcal{S})} \left(\frac{\partial L_{\text{train}}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right) = 0$$

$$\frac{\partial^2 L_{\text{train}}}{\partial Q(\mathcal{S})\partial \boldsymbol{\theta}} + \frac{\partial^2 L_{\text{train}}}{\partial \boldsymbol{\theta}^2} \frac{\partial \boldsymbol{\theta}}{\partial Q(\mathcal{S})} = 0$$

Solve for $\frac{\partial \theta}{\partial Q(S)}$

$$rac{\partial oldsymbol{ heta}}{\partial Q(\mathcal{S})} pprox - \left(rac{\partial^2 L_{ ext{train}}}{\partial oldsymbol{ heta}^2}
ight)^{-1} rac{\partial^2 L_{ ext{train}}}{\partial Q(\mathcal{S})\partial oldsymbol{ heta}}$$

where $\frac{\partial^2 L_{\text{train}}}{\partial Q(S)^2}$: Hessian of the fine-tuning loss; $\frac{\partial^2 L_{\text{train}}}{\partial Q(S)\partial \theta}$: Mixed partial derivative; The inverse Hessian adjusts the meta-gradient for inner-loop dynamics.

B THEOREM PROOF

B.1 Proof for Theorem 4.5

Proof. We decompose the true risk $R_{\mathcal{D}}(h)$ as:

$$R_{\mathcal{D}}(h) = \underbrace{\hat{R}_{Q_b(\mathcal{S})}(h)}_{\text{Empirical Risk}} + \underbrace{R_{\mathcal{D}}(h) - R_{\mathcal{S}}(h)}_{\text{Condensation Error}} + \underbrace{R_{\mathcal{S}}(h) - \hat{R}_{Q_b(\mathcal{S})}(h)}_{\text{Quantization Error}}$$
(11)

Using Rademacher complexity and Hoeffding's inequality:

$$R_{\mathcal{D}}(h) - R_{\mathcal{S}}(h) \le 2\mathfrak{R}_{m(b)}(\mathcal{H}) + \sqrt{\frac{\log(2/\delta)}{2m(b)}}$$
(12)

$$\leq \frac{2\kappa}{\sqrt{m(b)}} + \sqrt{\frac{\log(2/\delta)}{2m(b)}} \tag{13}$$

Rademacher Complexity Foundation For any hypothesis class \mathcal{H} , the generalization gap can be bounded via Rademacher complexity:

$$R_{\mathcal{D}}(h) - R_{\mathcal{S}}(h) \le 2\mathfrak{R}_m(\mathcal{H}) + \sup_{h \in \mathcal{H}} |R_{\mathcal{D}}(h) - R_{\mathcal{S}}(h)| \tag{14}$$

Where $\mathfrak{R}_m(\mathcal{H}) = \mathbb{E}_{\mathcal{S}} \mathbb{E}_{\sigma} \left[\sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^m \sigma_i \ell(h(x_i^s), y_i^s) \right]$ with $\sigma_i \in \{\pm 1\}$ being Rademacher variables

 Finite-Sample Concentration Applying Hoeffding's inequality to the second term, for any fixed *h*:

$$\mathbb{P}\left(|R_{\mathcal{D}}(h) - R_{\mathcal{S}}(h)| \ge \epsilon\right) \le 2\exp\left(-\frac{2m\epsilon^2}{L^2}\right) \tag{15}$$

Taking a union bound over \mathcal{H} with finite VC-dimension d:

$$\mathbb{P}\left(\sup_{h\in\mathcal{H}}|R_{\mathcal{D}}(h) - R_{\mathcal{S}}(h)| \ge \epsilon\right) \le 2\mathcal{N}(\mathcal{H}, \epsilon) \exp\left(-\frac{2m\epsilon^2}{L^2}\right)$$
(16)

Where $\mathcal{N}(\mathcal{H}, \epsilon)$ is the covering number. For parametric models, $\log \mathcal{N}(\mathcal{H}, \epsilon) \approx d \log(1/\epsilon)$.

Solving for High Probability Bound Set the RHS to $\delta/2$ and solve for ϵ :

$$2\exp\left(d\log(1/\epsilon) - \frac{2m\epsilon^2}{L^2}\right) = \delta/2\tag{17}$$

$$\Rightarrow \epsilon \times \sqrt{\frac{d\log(m/d) + \log(2/\delta)}{m}}$$
 (18)

This gives the standard generalization bound:

$$R_{\mathcal{D}}(h) - R_{\mathcal{S}}(h) \le \frac{2\kappa}{\sqrt{m}} + \sqrt{\frac{\log(2/\delta)}{2m}}$$
 (19)

Using Lipschitz and β -smoothness properties:

$$|R_{\mathcal{S}}(h) - \hat{R}_{Q_b(\mathcal{S})}(h)| \le L\mathbb{E}[\|h(\boldsymbol{x}) - h(Q_b(\boldsymbol{x}))\|] + \frac{\beta}{2}\mathbb{E}[\|h(\boldsymbol{x}) - h(Q_b(\boldsymbol{x}))\|^2]$$
 (20)

$$\leq LC2^{-b} + \beta C^2 2^{-2b} \tag{21}$$

Applying the union bound and rescaling δ :

$$R_{\mathcal{D}}(h) \le \hat{R}_{Q_b(\mathcal{S})}(h) + \frac{2\kappa}{\sqrt{m(b)}} + \sqrt{\frac{\log(2/\delta)}{2m(b)}} + LC2^{-b} + \beta C^2 2^{-2b}$$
 (22)

The following is a detailed derivation of how Rademacher complexity and Hoeffding's inequality are applied in the proof with probabilistic bounds and their interaction with quantization:

Incorporating Quantization Effects When replacing S with $Q_b(S)$, the key modification appears in the Rademacher term:

$$\mathfrak{R}_m(\mathcal{H}, Q_b) = \mathbb{E}\left[\sup_h \frac{1}{m} \sum_i \sigma_i \ell(h(Q_b(x_i^s)), y_i^s)\right]$$
(23)

$$\leq \mathfrak{R}_m(\mathcal{H}) + L\mathbb{E}\left[\sup_h \frac{1}{m} \sum_i \sigma_i(h(Q_b(x_i^s)) - h(x_i^s))\right]$$
(24)

$$\leq \mathfrak{R}_m(\mathcal{H}) + LC2^{-b}\sqrt{\frac{d}{m}} \tag{25}$$

The second inequality uses the Lipschitz property and the quantization error bound.

Final Composition Combining all terms while accounting for the memory constraint m(b) = M/(bd):

 $R_{\mathcal{D}}(h) \le \hat{R}_{Q_b(\mathcal{S})}(h) + \frac{2\kappa}{\sqrt{m(b)}} + \sqrt{\frac{\log(2/\delta)}{2m(b)}} + LC2^{-b} + \beta C^2 2^{-2b}$ (26)

C DERIVATION OF KL DIVERGENCE BOUND

The Fisher Information Matrix (FIM) is defined as the covariance of the score function (gradient of log-posterior):

$$\mathbf{F} = I(\mathcal{S}; \boldsymbol{\theta}) = \mathbb{E}_{p(\boldsymbol{\theta}|\mathcal{S})} \left[\nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{\theta}|\mathcal{S}) \nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{\theta}|\mathcal{S})^{\top} \right]$$
(27)

This matrix captures the **local curvature** of the log-posterior, measuring how sensitive the distribution is to small changes in θ .

Lemma C.1.

$$D_{KL} \le \frac{L^2 \Delta^2}{8} \operatorname{tr}(\mathbf{F}) \tag{28}$$

Proof. Using the Largest Eigenvalue (λ_{max})

$$\Delta^{\top} \mathbf{F} \Delta \le \lambda_{\max}(\mathbf{F}) \|\Delta\|^2 \tag{29}$$

This gives:

$$D_{KL} \le \frac{1}{2} \lambda_{\max}(\mathbf{F}) \|\Delta\|^2 \tag{30}$$

Since $tr(\mathbf{F}) = \sum_{i} \lambda_{i} \geq \lambda_{max}(\mathbf{F})$, we can write:

$$\Delta^{\top} \mathbf{F} \Delta \le \operatorname{tr}(\mathbf{F}) \|\Delta\|^2 \tag{31}$$

Thus:

$$D_{KL} \le \frac{1}{2} \operatorname{tr}(\mathbf{F}) \|\Delta\|^2 \tag{32}$$

If $\|\nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{\theta}|\mathcal{S})\| \leq L$, then:

The perturbation Δ may be scaled by L (i.e., $\|\Delta\| \leq \frac{L\Delta}{2}$). This leads to:

$$D_{KL} \le \frac{L^2 \Delta^2}{8} \operatorname{tr}(\mathbf{F}) \tag{33}$$

Combining these results:

$$D_{\mathrm{KL}} \le \frac{L^2 \Delta^2}{8} \operatorname{tr}(I(\mathcal{S}; \boldsymbol{\theta}))$$
 (34)

where $\operatorname{tr}(I(\mathcal{S}; \boldsymbol{\theta}))$ measures total sensitivity, L is the Lipschitz constant, Δ is the perturbation magnitude

C.1 THEOREM PROOF FOR THEOREM 4.6

We aim to prove:

$$I(\mathcal{T}; \boldsymbol{\theta}) - I(Q_b(\mathcal{S}); \boldsymbol{\theta}) \leq \mathbb{E}_D \left[D_{KL}(p(\boldsymbol{\theta}|\mathcal{T}) || p(\boldsymbol{\theta}|Q_b(\mathcal{S}))) \right],$$

EXPRESS MUTUAL INFORMATION AS KL DIVERGENCE

Mutual information can be written as:

$$I(\mathcal{T}; \boldsymbol{\theta}) = \mathbb{E}_D \left[D_{KL}(p(\boldsymbol{\theta}|\mathcal{T}) || p(\boldsymbol{\theta})) \right],$$

$$I(Q_b(\mathcal{S}); \boldsymbol{\theta}) = \mathbb{E}_{Q_b(\mathcal{S})} \left[D_{KL}(p(\boldsymbol{\theta}|Q_b(\mathcal{S})) || p(\boldsymbol{\theta})) \right].$$

Since $Q_b(S)$ is a function of D, we rewrite:

$$I(Q_b(S); \boldsymbol{\theta}) = \mathbb{E}_D \left[D_{KL}(p(\boldsymbol{\theta}|Q_b(S)) || p(\boldsymbol{\theta})) \right].$$

$$I(\mathcal{T}; \boldsymbol{\theta}) - I(Q_b(\mathcal{S}); \boldsymbol{\theta}) = \mathbb{E}_D \left[D_{KL}(p(\boldsymbol{\theta}|\mathcal{T}) || p(\boldsymbol{\theta})) - D_{KL}(p(\boldsymbol{\theta}|Q_b(\mathcal{S})) || p(\boldsymbol{\theta})) \right].$$

EXPAND KL DIVERGENCE

Using $D_{\mathrm{KL}}(p\|q) = \mathbb{E}_p \left[\log \frac{p}{q} \right]$:

$$D_{\mathrm{KL}}(p(\boldsymbol{\theta}|\mathcal{T})||p(\boldsymbol{\theta})) = \mathbb{E}_{\boldsymbol{\theta}|\mathcal{T}} \left[\log \frac{p(\boldsymbol{\theta}|\mathcal{T})}{p(\boldsymbol{\theta})} \right],$$
$$D_{\mathrm{KL}}(p(\boldsymbol{\theta}|Q_b(\mathcal{S}))||p(\boldsymbol{\theta})) = \mathbb{E}_{\boldsymbol{\theta}|Q_b(\mathcal{S})} \left[\log \frac{p(\boldsymbol{\theta}|Q_b(\mathcal{S}))}{p(\boldsymbol{\theta})} \right].$$

REWRITE THE DIFFERENCE INSIDE EXPECTATION

$$D_{KL}(p(\boldsymbol{\theta}|\mathcal{T})||p(\boldsymbol{\theta})) - D_{KL}(p(\boldsymbol{\theta}|Q_b(\mathcal{S}))||p(\boldsymbol{\theta}))$$

$$= \mathbb{E}_{\boldsymbol{\theta}|\mathcal{T}} \left[\log \frac{p(\boldsymbol{\theta}|\mathcal{T})}{p(\boldsymbol{\theta})} - \log \frac{p(\boldsymbol{\theta}|Q_b(\mathcal{S}))}{p(\boldsymbol{\theta})} \right]$$

$$= \mathbb{E}_{\boldsymbol{\theta}|\mathcal{T}} \left[\log \frac{p(\boldsymbol{\theta}|\mathcal{T})}{p(\boldsymbol{\theta}|Q_b(\mathcal{S}))} \right]$$

$$= D_{KL}(p(\boldsymbol{\theta}|\mathcal{T})||p(\boldsymbol{\theta}|Q_b(\mathcal{S}))).$$

Take Expectation Over D

$$I(\mathcal{T}; \boldsymbol{\theta}) - I(Q_b(\mathcal{S}); \boldsymbol{\theta}) = \mathbb{E}_D \left[D_{KL}(p(\boldsymbol{\theta}|\mathcal{T}) || p(\boldsymbol{\theta}|Q_b(\mathcal{S}))) \right].$$

INEQUALITY FOR STOCHASTIC $Q_b(S)$

For stochastic $Q_b(\mathcal{S})$ (e.g., variational approximations), we have:

$$I(\mathcal{T}; \boldsymbol{\theta} \mid Q_b(\mathcal{S})) \leq \mathbb{E}_D \left[D_{KL}(p(\boldsymbol{\theta} | \mathcal{T}) || p(\boldsymbol{\theta} | Q_b(\mathcal{S}))) \right],$$

where $I(\mathcal{T}; \boldsymbol{\theta} \mid Q_b(\mathcal{S})) = I(\mathcal{T}; \boldsymbol{\theta}) - I(Q_b(\mathcal{S}); \boldsymbol{\theta})$. This holds because equality is achieved when $Q_b(\mathcal{S})$ is deterministic in D. For stochastic $Q_b(\mathcal{S})$, the KL divergence overcounts discrepancies, making it an upper bound.

$$I(\mathcal{T}; \boldsymbol{\theta}) - I(Q_b(\mathcal{S}); \boldsymbol{\theta}) \leq \mathbb{E}_D \left[D_{KL}(p(\boldsymbol{\theta}|\mathcal{T}) || p(\boldsymbol{\theta}|Q_b(\mathcal{S}))) \right]$$

The second-order Taylor expansion of $\log p(\theta \mid Q_b(S))$ around S is:

$$\log p(\boldsymbol{\theta} \mid Q_b(\mathcal{S})) \approx \log p(\boldsymbol{\theta} \mid \mathcal{S}) + \nabla_{\mathcal{S}} \log p(\boldsymbol{\theta} \mid \mathcal{S})^{\top} (Q_b(\mathcal{S}) - \mathcal{S}) + \frac{1}{2} (Q_b(\mathcal{S}) - \mathcal{S})^{\top} \nabla_{\mathcal{S}}^2 \log p(\boldsymbol{\theta} \mid \mathcal{S}) (Q_b(\mathcal{S}) - \mathcal{S}).$$
(35)

The KL divergence between $p(\theta \mid S)$ and $p(\theta \mid Q_b(S))$ is:

$$D_{KL}(p(\boldsymbol{\theta} \mid \mathcal{S}) \parallel p(\boldsymbol{\theta} \mid Q_b(\mathcal{S}))) = \mathbb{E}_{p(\boldsymbol{\theta} \mid \mathcal{S})} \left[\log p(\boldsymbol{\theta} \mid \mathcal{S}) - \log p(\boldsymbol{\theta} \mid Q_b(\mathcal{S})) \right]. \tag{36}$$

Substituting the Taylor expansion:

$$D_{KL} \approx \mathbb{E}_{p(\boldsymbol{\theta}|\mathcal{S})} \left[-\nabla_{\mathcal{S}} \log p(\boldsymbol{\theta} \mid \mathcal{S})^{\top} (Q_b(\mathcal{S}) - \mathcal{S}) - \frac{1}{2} (Q_b(\mathcal{S}) - \mathcal{S})^{\top} \nabla_{\mathcal{S}}^2 \log p(\boldsymbol{\theta} \mid \mathcal{S}) (Q_b(\mathcal{S}) - \mathcal{S}) \right].$$
(37)

• The score function $\nabla_{\mathcal{S}} \log p(\boldsymbol{\theta} \mid \mathcal{S})$ has zero expectation under $p(\boldsymbol{\theta} \mid \mathcal{S})$:

$$\mathbb{E}_{p(\boldsymbol{\theta}|\mathcal{S})} \left[\nabla_{\mathcal{S}} \log p(\boldsymbol{\theta} \mid \mathcal{S}) \right] = 0. \tag{38}$$

• The Fisher information matrix is defined as:

$$\mathbf{F} = -\mathbb{E}_{p(\boldsymbol{\theta}|\mathcal{S})} \left[\nabla_{\mathcal{S}}^2 \log p(\boldsymbol{\theta} \mid \mathcal{S}) \right]. \tag{39}$$

Thus, the KL divergence simplifies to:

$$D_{KL} \approx \frac{1}{2} (Q_b(\mathcal{S}) - \mathcal{S})^{\top} \mathbf{F} (Q_b(\mathcal{S}) - \mathcal{S}). \tag{40}$$

We define
$$\epsilon = Q_b(\mathcal{S}) - \mathcal{S}$$

The KL divergence becomes:

$$D_{\mathrm{KL}} pprox rac{1}{2} \mathbb{E} \left[\epsilon^{\top} \left(-
abla_{\mathcal{S}}^2 \log p(oldsymbol{ heta} | \mathcal{S})
ight) \epsilon
ight]$$

Bounding the Terms:

$$\|\nabla_{\mathcal{S}}^2 \log p(\boldsymbol{\theta}|\mathcal{S})\|_{\text{op}} \leq L^2 \quad \Rightarrow \quad -\nabla_{\mathcal{S}}^2 \log p(\boldsymbol{\theta}|\mathcal{S}) \leq L^2 I$$

$$\|\epsilon\|_2 = \|\mathcal{S} - Q_b(\mathcal{S})\|_2 \le \sqrt{d}\Delta/2$$

$$D_{\mathrm{KL}} \leq \frac{\Delta^2}{8} \mathrm{tr} \left(\mathbb{E} \left[\nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{\theta}|\mathcal{S}) \nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{\theta}|\mathcal{S})^\top \right] \right) = \frac{L^2 \Delta^2}{8} \mathrm{tr} (I(\mathcal{S}; \boldsymbol{\theta}))$$

The Fisher information loss due to b-bit quantization is bounded by:

$$I(\mathcal{T}; \boldsymbol{\theta}) - I(Q_b(\mathcal{S}); \boldsymbol{\theta}) \leq \frac{L^2 \Delta^2}{8} \text{tr} \left(\mathbb{E} \left[\nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{\theta} | \mathcal{S}) \nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{\theta} | \mathcal{S})^\top \right] \right)$$

where $\Delta = 2^{-b+1}(\max(\mathcal{S}) - \min(\mathcal{S}))$.

D MORE EXPERIMENTAL RESULTS

Table 9: Training Efficiency Comparison of Dataset Distillation Methods

Method	DC	DC+BCDC	DM	DM+BCDC
Running Time (hours)	10.97	12.83	7.15	8.62

Table 10: Effect of Bandwidth on Dataset Distillation Performance on CIFAR10 Under the Same Memory Budget

Bandwidth (bits/sample)	2-bit	4-bit	8-bit
DC+BCDC (SM)	25.2±0.9	36.1±0.6	27.3±0.7
DSA+BCDC (SM)	28.3 ± 0.6	42.2 ± 0.3	29.4 ± 0.5
DM+BCDC (SM)	31.7 ± 0.3	45.1 ± 0.8	30.5 ± 0.6

Figure 3: Visualization of different bits image quantization by integrating BCDC with DM.

COMPARISON WITH STANDARD IMAGE COMPRESSION TECHNIQUES (JPEG, WEBP.)

We compare our approach with standard image compression methods, such as JPEG and WebP, in Table 11. Notably, our method can be seamlessly combined with these compression techniques and yields substantial additional improvements in dataset distillation performance.

Dataset	Img/Cls	DM	DM+BCDC (Ours)	BCDC+JPEG	BCDC+WebP
CIFAR100	10	29.7 ± 0.3	38.3 ± 0.7	41.2 ± 0.6	43.6 ± 0.8

Table 11: Comparison with standard image compression techniques (JPEG, WebP, etc.) on CIFAR100.

Dataset Condensation with Distribution Matching By Quantized Data Representations Integrating BCDC with surrogate loss function, e.g., DM (Zhao & Bilen, 2023) is presented in Algorithm

Algorithm 2 Dataset Condensation with Distribution Matching By Quantized Data Representations

- 1: **Require:** Training set \mathcal{T} , randomly initialized synthetic samples \mathcal{S} for J classes, deep neural network ψ_{θ} parameterized by θ , parameter distribution P_{θ} , differentiable augmentation A_{ω} parameterized by ω , augmentation distribution Ω , training iterations K, learning rate η
- 2: **for** k = 0 to K 1 **do**
- 3: Sample $\theta \sim P_{\theta}$
- 4:
- $\begin{array}{l} \textbf{for each class } j = 0 \text{ to } J 1 \textbf{ do} \\ \text{Sample mini-batch pairs } B_c^{\mathcal{T}} \sim \mathcal{T}, B_c^{\mathcal{S}} \sim \mathcal{S}, \text{ and } \omega_c \sim \Omega \end{array}$ 5:
- end for 6:
- 7: Compute the loss:

Compute the loss.
$$\mathcal{L} = \sum_{c=0}^{C-1} \left\| \frac{1}{|B_c^T|} \sum_{(\boldsymbol{x}, y) \in B_c^T} \psi_{\boldsymbol{\theta}}(\mathcal{A}_{\omega_c}(\boldsymbol{x})) - \frac{1}{|B_c^S|} \sum_{(\mathbf{s}, y) \in B_c^S} \psi_{\boldsymbol{\theta}}(\mathcal{A}_{\omega_c}(Q_V(\mathbf{s}))) \right\|^2$$
Update $\mathcal{S} \leftarrow \mathcal{S} - \eta \nabla_{\mathcal{S}} \mathcal{L}$

- 9: end for
- 10: Output: S