
Accelerating Matroid Optimization through Fast
Imprecise Oracles

Franziska Eberle
Technical University of Berlin

Germany
f.eberle@tu-berlin.de

Felix Hommelsheim
University of Bremen

Germany
fhommels@uni-bremen.de

Alexander Lindermayr
University of Bremen

Germany
linderal@uni-bremen.de

Zhenwei Liu
University of Bremen

Germany
zhenwei@uni-bremen.de

Nicole Megow
University of Bremen

Germany
nmegow@uni-bremen.de

Jens Schlöter
Centrum Wiskunde & Informatica

The Netherlands
jens.schloter@cwi.nl

Abstract

Querying complex models for precise information (e.g. traffic models, database
systems, large ML models) often entails intense computations and results in long
response times. Thus, weaker models that give imprecise results quickly can be ad-
vantageous, provided inaccuracies can be resolved using few queries to a stronger
model. In the fundamental problem of computing a maximum-weight basis of a
matroid, a well-known generalization of many combinatorial optimization prob-
lems, algorithms have access to a clean oracle to query matroid information. We
additionally equip algorithms with a fast but dirty oracle. We design and ana-
lyze practical algorithms that only use few clean queries w.r.t. the quality of the
dirty oracle, while maintaining robustness against arbitrarily poor dirty oracles, ap-
proaching the performance of classic algorithms for the given problem. Notably,
we prove that our algorithms are, in many respects, best-possible. Further, we
outline extensions to other matroid oracle types, non-free dirty oracles and other
matroid problems.

1 Introduction

We study the power of a two-oracle model [1, 4, 5, 34, 36] for fundamental matroid optimization
problems, which generalize many problems in combinatorial optimization.

The two-oracle model is an emerging technique for augmenting a problem where algorithms access
information via oracles. The idea is to abstract from subroutines, such as Neuronal Network (NN)
inference or graph algorithms, which compute required information from underlying models. Al-
ready today the size of such models can be arbitrarily large, and they are expected to grow further
in the near future. Thus, computing precise results for each oracle query can be (too) expensive. To
mitigate these costs, we assume to have access to a second oracle that is less expensive but gives
possibly imprecise answers. Such an oracle can be an efficient heuristic or a smaller NN. The goal is
to leverage this fast dirty oracle to obtain enough information in order to query the expensive clean
oracle as little as possible. This model has been successfully applied to, e.g., clustering [4, 34],
sorting [1], priority queues [5], or data labeling [36].

We study this model in the context of matroid optimization. Matroids play a central and unifying
role in combinatorial optimization as numerous classic problems can be framed as matroid basis
problems, e.g., problems in resource allocation and network design. A matroid M = (E, I) is a

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

downward-closed set system with a certain augmentation property. It is represented by a ground
set E of elements and a family I ⊆ 2E of independent sets. A basis is an inclusion-wise maximal
independent set, and all bases of a matroid have the same size, which is the rank of the matroid;
we give formal definitions later. A prominent matroid is the graphic matroid in which, given an
undirected graph, every subset of edges that induces an acyclic subgraph is independent.

Since |I| can be exponential in n := |E|, algorithms operating on matroids are given access to
oracles. The independence oracle answers for a query S ⊆ E whether S ∈ I . Given a weight
we ≥ 0 for every e ∈ E, a classic goal in matroid optimization is to find a basis ofM of maximum
total weight. In his seminal work, Edmonds [18] showed that the greedy algorithm, which greedily
adds elements in order of non-increasing weight, solves this problem using an optimal number of
n oracle calls, and, vice versa, that matroids are the most general downward-closed set systems
for which this algorithm is correct. For graphic matroids, this greedy algorithm corresponds to
the classic algorithm of Kruskal [15] for computing a minimum-weight spanning tree in an edge-
weighted graph, which is commonly taught in undergraduate algorithm classes.

To motivate the two-oracle model for matroid optimization, we continue with the special case of
computing a minimum spanning tree in a large network. This problem arises, e.g., to ensure con-
nectivity in a telecommunication network or as a subroutine to approximate a cheap tour between
certain points of interest in a road network. Here, the elements E correspond to the edges of the
network. The clean oracle for this graphic matroid has to decide whether a set of edges is cycle-
free. While this is doable in time linear in the query size, it can be prohibitively expensive for huge
queries. However, there are several ways to design a dirty oracle of reasonable quality:

• Networks, especially telecommunication networks, often evolve over time. In this case, the
dirty oracle could quickly return cached results of the previous (now outdated) network.

• If the network is clustered into many highly connected components that are only loosely
connected to each other, such as road networks are clustered around big cities, the dirty
oracle can check the query for each (city) component individually. Since there may only
be few highways between the cities, this can be quite close to the clean answer.

• The dirty oracle could operate in a sparsified subnetwork, e.g., by restricting it to only
major roads or data links.

We initiate the study of the following two-oracle model for general matroid problems: In addition to
the clean oracle of a given matroidM = (E, I), an algorithm has access to a fast dirty oracle. For
simplicity, we assume that this oracle belongs to a matroidMd = (E, Id) and answers for a query
S whether S ∈ Id. In fact, the former assumption is not necessary, and we will adapt our results to
weaker dirty-oracle variants such as arbitrary downward-closed set systems. We emphasize that the
algorithm has no knowledge about the relationship between the dirty oracle and the true matroidM.
Finally, we assume for now that calling the dirty oracle is free and discuss mitigations later. Since
calling the dirty oracle is free, our goal is to minimize the number of clean-oracle calls required to
solve the underlying matroid problem.

Our work neatly aligns with the celebrated framework of learning-augmented algorithms [30],
which is receiving tremendous attention [29]. Here, an algorithm has access to a problem-specific
prediction and yields a good performance when the prediction is accurate (consistency) and does not
perform too bad when given arbitrary predictions (robustness). Ideally, the performance degrades
gracefully with the prediction’s quality, measured by an error function (smoothness). The type of
performance thereby depends on the problem, and could be, e.g., a quality guarantee of the computed
solution of an optimization problem, or the running time of an algorithm. The latter is intricately
related to the goal of the two-oracle model: the overall running time highly depends on the number
of clean-oracle calls. From this perspective, the consistency of an algorithm in the two-oracle model
is the worst-case number of clean-oracle calls it uses when the dirty oracle is perfect, i.e.,M =Md,
while the robustness is the worst-case number of clean oracles independent of the quality of the dirty
oracle.

More generally, we can interpret algorithms for one model also in the other model and vice versa:
On the one hand, our two-oracle model fits into the learning-augmented algorithm framework by
considering an optimal solution w.r.t. the dirty oracle as a possibly imprecisely predicted solution.
On the other hand, a predicted solution Bd ⊆ E can be used to construct the dirty oracle Md =
(E, 2Bd). Thus, our main results are also applicable in the learning-augmented setting.

2

1.1 Our results

In this paper, we design optimal algorithms in the two-oracle model for the problem of finding a
maximum-weight basis (defined later) of a matroid.

1. Two-oracle algorithms: For any integer k ≥ 1, there is an algorithm which computes a
maximum-weight basis of a matroidM using at most

min

{
n− r + k + ηA · (k + 1) + ηR · (k + 1)⌈log2 rd⌉,

(
1 +

1

k

)
n

}
many oracle calls toM (see Theorem 3.8).

Here, r is the rank of the matroid, i.e., the size of any basis, and rd the rank of Md. In terms
of learning-augmented algorithms, our algorithm has a consistency of at most n − r + k and a
robustness of at most (1 + 1

k)n. Moreover, the bound of our algorithm smoothly degrades w.r.t.
the quality of the dirty oracle, measured by our error measures ηA and ηR (the prediction errors).
Intuitively, ηA and ηR denote the number of elements that have to be added to and removed from
a maximum-weight basis ofMd, respectively, to reach a maximum-weight clean basis; we give a
formal definition later. Our algorithm has a tuning parameter k to regulate the level of robustness
against a dirty oracle of bad quality; a beneficial feature when the quality of the dirty oracle can be
roughly estimated. In Section 2, we present slightly improved bounds for the case of unit weights.

Observe that, given a dirty oracle of reasonable quality, our algorithm significantly improves upon
the greedy algorithm whenever the rank r is not too small (due to the dependence on n− r), which
is always the case for, e.g., graphic matroids in sparse networks like road or telecommunication
networks. We further show that this dependence is best possible for any deterministic algorithm for
any rank r. Moreover, our algorithm is optimal w.r.t. to the dependence on ηA and ηR:

2. Tight lower bounds: For every rank r, every deterministic algorithm requires at least n−r+ηA
and at least n− r+ ηR⌈log2 rd⌉ clean-oracle calls to compute a basis of a matroid (Appendix B).

Yet we present an algorithm which bypasses the dependence on n−r by leveraging the slightly more
powerful clean rank oracle (see Section 4.1 for the definition). Note that any algorithm requires at
least n clean rank oracle calls in the traditional setting for this problem in the worst case.

3. Rank oracles: There is an algorithm which computes a basis of a matroid M using at most
2+ηA⌈log2(n−rd)⌉+ηR⌈log2 rd⌉ and at most n+1 calls to the rank oracle ofM (Section 4.1).

Finally, we initiate the study of extensions, with which we hope to foster future research.

4. Costly oracles: In this model, every dirty-oracle call incurs cost 1, and every clean-oracle call
costs p > 1. We are interested in minimizing the total cost. We illustrate that this model requires
new algorithmic techniques compared to our main setting (see Section 4.2).

5. Matroid intersection: We give two different approaches on how our techniques can be incor-
porated in textbook algorithms for reducing the number of clean-oracle calls in the fundamental
matroid intersection problem using dirty oracles (see Section 4.3).

All omitted proofs are deferred to the appendix.

1.2 Further related work

Noisy oracles, two-oracle model, imprecise predictions. Optimization in the presence of im-
precise oracles is a fundamental problem and has been studied extensively, also for submodular
optimization [25, 26, 27, 28, 35], which is connected to matroid optimization via the submodular-
ity of rank functions. The majority of previous work assumes access only to a single noisy oracle,
where the noise usually is of stochastic nature. Only recently, a two-oracle model as in our work
has been studied from a theoretical perspective. Bai and Coester [1] consider sorting with a clean
and a dirty comparison operator. They minimize the number of clean-comparison-operator calls and
give guarantees that smoothly degrade with the number of wrong dirty-comparison answers. Similar
strong and weak oracles have also been considered by Bateni et al. [4] for the Minimum Spanning

3

Tree problem and clustering, and by Benomar and Coester [5] in the context of priority queues. In
contrast to our model, they consider oracles for accessing the distance between two points and not
for deciding cycle freeness (graphic matroid). Besides these explicit results on two-oracle models,
explorable uncertainty with predictions [20, 21] can also be interpreted as such a model.

Two- and multistage problems. All algorithms presented in this paper also solve the following
two-stage problem: Given a maximum-weight basis Bd for a first-stage matroidMd (dirty matroid),
compute a maximum-weight basis B for a second stage matroidM (clean matroid) with minimum
|Bd△B|, where Bd△B denotes the symmetric difference of Bd and B, and minimize the number of
oracle calls toM. Two- (or multi-) stage problems of this type have been studied extensively, mostly
for graph problems [2, 3, 12, 13, 19, 22, 23, 33] but also for matroids [8, 9, 14, 24]. Most of these
works consider a combined objective optimizing the quality of the second stage solution and the
distance between the first- and second-stage solutions. In contrast, we insist on an optimal second-
stage solution and minimize the number of clean-oracle calls. Furthermore, to our knowledge, all
previous work on matroid problems in these models assumes that the matroid stays the same for all
stages but the weights of the elements change, whereas we assume the opposite. Blikstad et al. [7]
consider the somewhat similar problem of dynamically maintaining a basis of a matroid, but in a
different oracle model.

1.3 Preliminaries

Matroids. A matroid M is a tuple (E, I) consisting of a finite ground set E of n elements and
a family of independent sets I ⊆ 2E with ∅ ∈ I that satisfy the following properties: (i) I is
downward-closed, i.e., A ∈ I implies B ∈ I for all B ⊆ A and (ii) if A,B ∈ I with |A| > |B|,
then there exists a ∈ A \ B s.t. B + a ∈ I . (We write X + e when we add e ∈ E \X to X ⊆ E
and X − e when we remove e ∈ X from X ⊆ E.) An important notion are bases, which are the
(inclusion-wise) maximal elements of I; for a fixed matroid, we denote the set of bases by B. For
a dirty matroid Md, we refer to the set of bases by Bd. A circuit is a minimal dependent set of
elements. The main results of this paper consider the problem of finding a maximum-weight basis,
i.e., given matroid M = (E, I) and weights we for all e ∈ E, the goal is to find a basis B ∈ B
maximizing

∑
e∈B we. The greedy algorithm solves this problem by iteratively adding elements in

non-increasing order of their weight to the solution if possible, i.e., if the solution stays independent
inM [18]. Given a weighted ground set, we always assume that the elements of E = {e1, . . . , en}
are indexed according to the weight order, i.e., i ≤ j implies wei ≥ wej , with ties broken arbitrarily.
Given that, for any i and S ⊆ E we define S≤i = {ej ∈ S | j ≤ i} (S≥i analogously).

Requirements on algorithms and optimal solutions. For all considered problems, we require
algorithms to execute clean queries (oracle calls) until the answers to these queries reveal sufficient
information to solve the given problem, e.g., find a maximum-weight basis for the clean matroid.
More precisely, the queries executed by the algorithm together with the answers must be a certificate
that a third party with only access to the clean matroid and without any additional knowledge can
use in order to find a provable solution. In particular, an optimal algorithm that knows the answers
to all clean queries upfront has to execute queries in order to satisfy the certificate requirement.

We refer to the robustness of an algorithm, when bounding the maximum number of clean-oracle
calls the algorithm needs for any input instance, independently of the quality of the dirty oracle.

Definition of our error measure. We define an error measure that quantifies the quality of the
dirty oracle w.r.t. the clean oracle. We define the error measure for the case that the dirty oracle is a
matroid and describe in the next section how this extends to arbitrary downward-closed set systems.
Let B∗ be the set of maximum-weight bases ofM and B∗d be the set of maximum-weight bases of
Md. (In the unweighted case, B∗ = B and B∗d = Bd.) We first define for every S ∈ B∗

d the sets
A(S), R(S) as any cardinality-wise smallest set A ⊆ E \ S and R ⊆ S, respectively, such that
S ∪A ⊇ B and S \R ⊆ B′ for some B,B′ ∈ B∗.

These sets describe the smallest number of additions/removals necessary to transform S into a su-
perset/subset of some maximum-weight basis of M. We call |A(S)| + |R(S)| the modification
distance from S to B∗. Our final error measure is defined as the largest modification distance of any
maximum-weight basis ofMd, that is, ηA = maxS∈B∗

d
|A(S)| and ηR = maxS∈B∗

d
|R(S)|.

Assume both oracles are matroids. It follows from standard matroid properties that, for any dirty
basis Bd, there are modification sets A,R with |A| = |A(Bd)|, |R| = |R(Bd)| and Bd \R∪A ∈ B.

4

Hence r = rd + ηA − ηR. Also, for all S1, S2 ∈ Bd, |A(S1)| ≤ |A(S2)| if and only if |R(S1)| ≤
|R(S2)|.

1.4 Discussion of the model

Computing a dirty basis upfront. For all our results on computing a (maximum-weight) basis,
it suffices to first compute a (maximum-weight) dirty basis and afterwards switch to exclusively
using the clean oracle. A similar observation can be made for the results of Bai and Coester [1] on
sorting, where it would be possible to initially compute a tournament graph for the dirty comparator
and afterwards switch to only using the clean comparator without increasing the number of clean-
comparator calls. In Section 4, we observe that separating the usage of the dirty and clean oracles in
this way does not work anymore if dirty-oracle calls also incur costs.

Counting wrong answers as error measure. Bai and Coester [1] use the number of wrong dirty-
comparator answers as error measure. While this is a meaningful error measure for sorting, a similar
error measure for our problem does not seem to accurately capture the quality of the dirty oracle.
Consider an instance with unit weights, where we have Bd ⊂ B. This can lead to an exponential
number of wrong dirty oracle answers, but the dirty oracle still allows us to compute a clean basis.
For this reason, we use the modification distance as error measure instead.

Relaxing requirements on the dirty oracle. We illustrate how to extend the error definition of Sec-
tion 1.3 to arbitrary downward-closed set systems in the unweighted case: For every inclusion-wise
maximal set S of the dirty oracle we compute A(S) and R(S) as before. The addition and removal
error are then defined analogously by replacing B∗d with the set of all inclusion-wise maximal inde-
pendent sets (instead of all maximum sets in the unweighted case). Then, all our results in this paper
also carry over to this more general setting. Using an error definition with respect to some greedy al-
gorithm on weighted downward-closed set systems, one can also obtain the same result for arbitrary
weighted downward-closed set systems. However, for clarity, we only prove our statements for the
case that the dirty oracle is a matroid.

1.5 Organization of the paper

We begin in Section 2 with a gentle introduction to our techniques and algorithms by studying the
simpler problem of computing any basis of a matroid. Then, we extend these ideas in Section 3 and
present our main algorithmic results. Finally, in Section 4, we demonstrate how to generalize and
adapt our approach to other settings and problems. Many proofs for these sections are deferred to
the appendix. In Appendix B, we also included a detailed section on our lower bounds.

2 Warm-up: computing an unweighted basis

The goal of this section is to give a gentle introduction to our algorithmic methods, which we extend
in the next sections. Consider the basic problem of finding any basis of a matroid. Note that without
the dirty oracle, we need exactly n clean-oracle calls to find and verify any basis in the worst-case.

In the following, we assume that we are given an arbitrary basis Bd of the dirty matroidMd, which
can be computed without any call to the clean oracle. We first analyze the so-called simple algorithm:
If Bd ∈ I , we set B to Bd. Otherwise, we set B to the empty set. Next, for each element e ∈ E \B,
we add it to B if B + e ∈ I and output B at the end.

The idea of the simple algorithm is to only use the dirty basis Bd if it is independent in the clean
matroid, as we then can easily augment it to a clean basis. Otherwise, we abandon it and effectively
run the classic greedy algorithm. Formalizing this sketch proves the following lemma.

Lemma 2.1. The simple algorithm computes a clean basis using at most n + 1 clean-oracle calls.
Further, if Bd ∈ B, it terminates using at most n− r + 1 clean-oracle calls.

Surprisingly, in Appendix B, we will see that this simple algorithm achieves a best-possible trade-off
between optimizing the cases Bd ∈ B and Bd /∈ B at the same time.

5

2.1 An error-dependent algorithm

The simple algorithm discards the dirty basis Bd if it is not independent in M. This approach
may be wasteful, especially if removing just one element from Bd, such as in the case of a circuit,
leads to independence. This seems particularly drastic if the clean and dirty oracle are relatively
“close”, i.e., the error measured by the modification distance is small. This suggests a refinement
with a more careful treatment of the dirty basis Bd. We propose a binary search strategy to remove
elements from Bd until it becomes independent. A key feature is that this allows for an error-
dependent performance guarantee bounding the number of clean-oracle calls by ηA and ηR, the
smallest numbers of elements to be added and removed to turn a dirty basis into a basis of the
clean matroid.

We define the error-dependent algorithm: First, set B to Bd and fix an order of the elements in B.
Repeatedly use binary search to find the smallest index i s.t. B≤i /∈ I and remove ei from B until
B ∈ I . Then add each element e ∈ E \Bd to B if B + e ∈ I and output the final set B.
Lemma 2.2. The error-dependent algorithm computes a clean basis using at most n− r+1+ ηA+
ηR · ⌈log2 rd⌉ clean-oracle calls.

Proof. The algorithm simulates finding a maximal independent subset of Bd w.r.t. the clean ma-
troid, and augments the resulting set to a clean basis. Hence, the correctness follows from matroid
properties. We remove |R(Bd)| ≤ ηR elements from Bd. Hence, the removal loop is executed
|R(Bd)| times. In each iteration, we use at most 1 + ⌈log2 rd⌉ clean queries (one for checking
B ∈ I and at most ⌈log2 rd⌉ for the binary search). Thus, the removing process uses at most
|R(Bd)|(1 + ⌈log2 rd⌉) clean queries. Augmenting B uses n − rd clean queries. Combined, our
algorithm uses at most |R(Bd)|(1 + ⌈log2 rd⌉) + n − rd + 1 oracle calls. We conclude using
|R(Bd)| ≤ ηR and r = rd − ηR + ηA.

2.2 An error-dependent and robust algorithm

The error-dependent algorithm has a good bound on the number of clean-oracle calls (less than n)
when ηA and ηR are small. However, in terms of robustness—i.e., the maximum number of oracle
calls for any instance, regardless of the dirty-oracle quality—this algorithm performs asymptotically
worse than the gold standard n, achieved by the classic greedy algorithm. This is the case when the
dirty basis is equal to E, but the clean matroid is empty: the error-dependent algorithm executes n
binary searches over narrowing intervals, using log2(n!) ∈ Θ(n log n) clean-oracle calls. By look-
ing closer at the error-dependent algorithm, the special structure of this example can be explained
because queries charged to n − r + ηA are essentially also done by the greedy algorithm. Hence,
they are in a sense already robust. Motivated by the greedy algorithm, another extreme variant of
the removal process would be to go linearly through Bd and greedily remove elements. This gives
an optimal robustness, but is clearly bad if ηR is small.

For our main result in the unweighted setting, we combine both extremes into a robustification
framework and achieve a trade-off using the following key observation. If we have to remove many
elements (ηR is large), some elements must be close to each other. In particular, if the next removal
is close to the last one (in terms of the fixed total order), a linear search costs less than a binary
search. Based on this, after a removal, we first check the next Θ(log(rd)) elements of Bd linearly
for other removals before executing a binary search. This bounds the number of binary searches by
Θ(rd

log(rd)
), each incurring a cost of ⌈log2(rd)⌉. However, the linear search also incurs some cost.

Thus, we further parameterize this idea (see Algorithm 3), and obtain the following main result.
Theorem 2.3. For every k ∈ N+, there is an algorithm that, given a dirty matroidMd of rank rd
with unknown ηA and ηR, computes a basis of a matroidM of rank r with at most min{n− r+ k+
ηA + ηR · (k + 1)⌈log2 rd⌉, (1 + 1

k)n} oracle calls toM.

3 Computing a maximum-weight basis

Consider the weighted setting. Recall that B∗d and B∗ denote the sets of maximum-weight bases of
the dirty and clean matroid, respectively. We assume that we are given a maximum-weight basis
Bd ∈ B∗

d, which can be computed without any clean-oracle calls. The main difficulty compared to
the unweighted setting is as follows: In the unweighted setting, the error-dependent algorithm first

6

e1 e2 e3 e4 e5 e6 e7 e8 e9

1. remove2. add

(a) Modification to an arbitrary clean basis.

e1 e2 e3 e4 e5 e6 e7 e8 e9

2. add 1. remove4. add3. remove

(b) Modification to a maximum-weight clean ba-
sis. Adding e2 is necessary for its high weight.
Element e5 is only blocking after adding e2 to
Bd − e9, hence cannot be detected earlier.

Figure 1: A matroid with elements e1, . . . , e9 (displayed as circles) ordered left-to-right by non-
increasing weight. The elements of the maximum-weight dirty basis Bd are filled.

computes an arbitrary maximal independent set B′ ⊆ Bd and then easily augments B′ to a clean
basis. In the weighted setting, however, there clearly can be independent sets B′ ⊆ Bd that are
not part of any maximum-weight basis; hence we need to be more careful. Finding such a special
independent subset of Bd only by removing elements from Bd and testing its independence seems
difficult: Bd itself could be independent, but not part of any maximum-weight basis. However, even
in this case, Bd can be very close to a maximum-weight basis w.r.t. ηA and ηR. Therefore, we cannot
avoid carefully modifying Bd since strategies like the greedy algorithm would use too many queries.

Thus, we alternatingly add and remove elements to and from Bd. Intuitively, we want to ensure,
as the greedy algorithm, that we do not miss adding elements with large weight. Thus, we try to
add them as soon as possible. However, even if they are part of every basis in B∗, this might result
in a dependent current solution unless we now remove elements, which were not detectable before.
An example of such a situation is given in Figure 1. This observation rules out simple two-stage
algorithms as used in the unweighted case.

We now present our algorithm. Its full description is shown in Algorithm 1. Given elements E =
{e1, . . . , en} in non-decreasing order of their weight, it maintains a preliminary solution, which
initially is set to the dirty basis Bd. It modifies this solution over n iterations and tracks modifications
in the variable sets A ⊆ E\Bd (added elements) and R ⊆ Bd (removed elements). In every iteration
ℓ, the algorithm selects elements to add and remove such that at the end of iteration ℓ its preliminary
solution (Bd \R) ∪A satisfies two properties, which we define and motivate now.

Property (i) requires that the preliminary solution (Bd \ R) ∪ A up to eℓ should be a maximal
subset of some maximum-weight basis. For the sake of convenience, we introduce the matroid
M∗ = (E, I∗), where I∗ is the set of all subsets of B∗. Then, we can use the following definition.

Definition 3.1. A set S is k-safe if S≤k ∈ I∗ and for every e ∈ E≤k\S≤k it holds that S≤k+e /∈ I∗.

In other words, a set S is k-safe if it is a basis of the truncated matroid of the kth prefix of E. Using
this definition, Property (i) requires that at the end of iteration ℓ, the current solution (Bd \R) ∪ A
is ℓ-safe. Establishing this property in every iteration will give us that the final solution is n-safe,
and, thus, a maximum-weight basis ofM. This works because the algorithm does not modify its
solution for the ℓth prefix of E after the ℓth iteration.

To establish Property (i) after every iteration without using too many clean queries, it also maintains
Property (ii): at the end of every iteration the current solution is independent, i.e., (Bd \R)∪A ∈ I .

We now give some intuition on how our algorithm achieves this. Initially, say for ℓ = 0, before
Line 2 Property (i) is fulfilled trivially. For Property (ii), before Line 5 the algorithm greedily adds
minimum-weight elements of Bd to R that close a circuit in the smallest prefix of (Bd \ R) ∪ A
(Lines 2-4). This subroutine can be implemented via binary search. To guarantee both properties at
the end of iteration ℓ, first observe that Property (ii) holds as long as A and R have not changed in
this iteration. However, this might be necessary to establish Property (i). Intuitively, our algorithm
wants to act like the classic greedy algorithm to ensure ℓ-safeness. Thus, it checks whether eℓ should
be in the solution by considering its solution for E≤ℓ. Clearly, if eℓ ∈ Bd \ R or eℓ ∈ R, there is
nothing to modify (Line 6), because the current solution is independent due to Property (ii) for
the previous iteration. Similarly, if eℓ /∈ Bd and the current solution for E≤ℓ together with eℓ is
independent, we add eℓ to our solution (Lines 6-7). However, by adding an element, Property (ii)
can become false due to an introduced circuit, which we have to break (Lines 8-10). Finally, there
might be the situation that eℓ ∈ Bd has been added to R in an earlier iteration, so eℓ ∈ R. In this

7

Algorithm 1: Find a maximum-weight basis
Input: dirty basis Bd ⊆ E, matroidM = (E, I)

1 A← ∅;R← ∅ {added / removed elements}
2 while (Bd \R) ∪A /∈ I do
3 Find the smallest index i s.t. ((Bd \R) ∪A)≤i /∈ I via binary search
4 R← R+ ei

5 for ℓ = 1 to n do
6 if eℓ /∈ Bd and ((Bd \R) ∪A+ eℓ)≤ℓ ∈ I then
7 A← A+ eℓ
8 if (Bd \R) ∪A /∈ I then
9 Find the smallest index i s.t. ((Bd \R) ∪A)≤i /∈ I via binary search

10 R← R+ ei

11 return (Bd \R) ∪A

case, we clearly do not want to even consider adding eℓ again, as queries for verifying this addition
cannot be bounded by our error measure. Indeed, removing and re-adding an element cannot be part
of any minimal modification distance. Thus, our algorithm skips such elements (Line 6). To justify
this, we prove that removing element eℓ is always necessary, in the sense that there always is a circuit
that eℓ breaks and that cannot be broken by removing elements in later iterations by Lines 8-10. This
follows from classic matroid properties for circuits. Formally, we prove in Appendix C:
Lemma 3.2 (Property (ii)). At the start (end) of each iteration of Line 5, it holds (Bd \R)∪A ∈ I .

Lemma 3.3 (Property (i)). At the end of every iteration ℓ of Line 5, (Bd \R) ∪A is ℓ-safe.

Since there are at most n elements in R, the algorithm clearly terminates, and we conclude as fol-
lows.
Corollary 3.4. Algorithm 1 terminates with an n-safe set.

It remains to bound the number of clean queries. Fix A and R to their final sets. Assume that
elements are non-increasingly ordered by their weight; among elements of equal weight, elements
of Bd come before elements of E \Bd. For such an ordering, the algorithm modifies Bd to a closest
basis of B∗.
Lemma 3.5. It holds that |A| ≤ ηA and |R| ≤ ηR.

To conclude, we use a charging scheme and Lemma 3.5 to derive the following bound; for details,
we refer to Appendix C.
Lemma 3.6. Algorithm 1 computes a max-weight basis with at most n−r+1+2ηA+ηR ·⌈log2(rd)⌉
clean queries.

We complement this algorithmic result by a lower bound. It proves that our error-dependent guaran-
tees in the unweighted case are not possible in the weighted case. Hence, it separates both settings.

Lemma 3.7. Every deterministic algorithm for finding a maximum-weight basis executes strictly
more than n− r + ηA + ηR · ⌈log2(rd)⌉+ 1 clean-oracle calls in the worst-case.

Application of the robustification framework. As in the unweighted case, our algorithm may
perform poorly when the dirty oracle is of low quality, i.e., ηA and ηR are large. We extend the
ideas for robustifying the error-dependent algorithm (cf. Section 2.2) and combine them with the
concepts developed above. The key idea for robustifying Algorithm 1 is to start a binary search
only after a sufficient number of linear search steps. However, as observed above (cf. Figure 1),
we cannot remove all blocking elements in one iteration. While the simple argument that the linear
search partitions Bd still holds, it does not cover the total removal cost, because a later addition can
create a removal at a previously checked position. To overcome this, we observe that in Algorithm 1,
immediate removal of every detected element from the current solution is not necessary; we just
need to decide whether in iteration ℓ element eℓ should be part of the solution.

8

Algorithm 2: Find a maximum-weight basis (robustified)
Input: dirty basis Bd, matroid (E, I), integer k ≥ 1

1 A← ∅;R← ∅; dmax ← maxei∈Bd
i

2 q ← 0;LS← true {linear search counter / flag}
3 for ℓ = 1 to n do
4 if eℓ /∈ Bd then
5 if ((Bd \R) ∪A+ eℓ)≤ℓ ∈ I then A← A+ eℓ and LS← true

6 else if eℓ ∈ Bd \R and LS = true then
7 q ← q + 1
8 if ((Bd \R) ∪A)≤ℓ /∈ I then R← R+ eℓ and q ← 0

9 if ℓ = dmax or (q = k − 1 and (Bd \R) ∪A ∈ I) then q ← 0 and LS← false
10 else if q = k⌈log2 rd⌉ then
11 Find the smallest index i s.t. ((Bd \R) ∪A)≤i /∈ I via binary search
12 R← R+ ei and q ← 0

13 return (Bd \R) ∪A

In our robustified algorithm (Algorithm 2) we exploit this as follows. While in Algorithm 1 we
linearly check prefixes of E \ Bd for additions, we now linearly check prefixes of E for additions
(Lines 4-5) and removals (Lines 6-8). However, for the sake of a good error-dependency, we count
these removal checks (cf. increment counter q in Line 7) and execute a binary search only if we
checked enough elements in Bd linearly (Lines 10-12). Then, we can again bound the total cost
for the binary searches using a density argument. Whenever we remove an element, we charge the
previous cost of the linear searches to this removal error and reset q, which re-activates the linear
search. However, if the current solution is already independent, we do not want to search for removal
errors at all (cf. Lines 2 and 8 in Algorithm 1). Unfortunately, doing such a check after every addition
and removal already rules out a robustness close to n. Thus, we slightly delay this check w.r.t. the
counter q, and stop the removal search accordingly (Line 9). Finally, whenever an element is added,
we make sure that the linear search is running or that we start it again (Line 5), as a new circuit could
have been introduced in our solution. Formalizing this sketch proves our main theorem.

Theorem 3.8. For any k ∈ N+, there is an algorithm that, given a dirty matroid Md of rank rd
with unknown ηA and ηR, computes a maximum-weight basis of a matroidM of rank r with at most
min{n− r + k + ηA · (k + 1) + ηR · (k + 1)⌈log2 rd⌉, (1 + 1

k)n} oracle calls toM.

4 Extensions and future work

4.1 Rank oracles

Another common type of matroid oracles is the rank oracle: Given any S ⊆ E, a rank oracle returns
the cardinality of a maximum independent set contained in S, denoted by r(S). Since r(S) = |S| if
and only if S ∈ I , our algorithmic results for independence oracles directly transfer. Moreover, for
the unweighted setting, we can even reduce the number of oracle calls using a rank oracle, implying
that some lower bounds do not translate. For example, given Bd we can compute its rank r(Bd) to
obtain ηR = |Bd|− r(Bd) and decide whether to remove elements via binary search or immediately
switch to the greedy algorithm. Further, we can improve the dependency on ηA if ηA is small as we
can find the elements to be added via a binary search. Hence, we get the following result.

Proposition 4.1. There is an algorithm that computes a clean basis with at most min
{
n + 1, 2 +

ηR · ⌈log2 rd⌉+min
{
ηA · ⌈log2(n− rd)⌉, n− rd

}}
clean rank-oracle calls.

The full discussion on rank oracles can be found in the appendix. For future work it would be
interesting to see if the error-dependency and the worst-case bound can be improved, and if rank
oracles can be used to improve the results for the weighted setting.

9

4.2 Dirty independence oracle with cost

We consider the generalized setting where a dirty-oracle call has cost 1 and a clean-oracle call has
cost p > 1 with the objective to minimize the total cost. Lemma B.1 translates to this setting, giving
a lower bound p(n− r + 1). Note that the previous results assume that p≫ 1 in this setup.

The main takeaway of this generalization is that it can be beneficial for an algorithm to delay dirty-
oracle calls for clean-oracle calls, depending on p and r. This contrasts the previous sections, where
we can meet lower bounds by computing a dirty basis upfront.

To see this, we consider two algorithms and assume for simplicity thatMd = M. The first algo-
rithm starts with E and removes elements via binary search until it reaches an independent set. It
only uses clean-oracle calls of total cost p(n − r)⌈log2(n)⌉ + p. The second algorithm computes
a dirty basis and verifies it, incurring a total cost of n + p(n − r + 1), as Md = M. Thus, for
small p and large r, the first algorithm incurs less cost than the second algorithm, which is optimal
among the class of algorithms which only initially use dirty-oracle calls. Specifically, having access
to rank oracles, one can compute the value of r upfront using one clean-oracle call and, thus, select
the better algorithm.

4.3 Matroid intersection

In the matroid intersection problem, we are given two matroidsM1 = (E, I1) andM2 = (E, I2),
and we seek a maximum set of elements X ⊆ E that is independent in both matroids, i.e., X ∈
I1 ∩ I2.

The textbook algorithm for finding such a maximum independent set is to iteratively increase the
size of a solution one by one using an augmenting-path type algorithm until no further improvement
is possible. This algorithm has a running time of O(r2n) [17]. There are faster algorithms known
for matroid intersection, which run in time O(nr3/4) [6] and in time O(n1+o(1)) for the special case
of two partition matroids [11]. (In a partition matroid M = (E, I), the elements are partitioned
into classes Ci with capacities ki, and a set S ⊆ E is independent if and only if |Ci ∩ S| ≤ ki
holds for each Ci.) Here, we focus on improving the running time of the simple textbook algorithm
by (i) using dirty oracles calls in each of the augmentation steps and (ii) by computing a warm-start
solution using an optimal dirty solution, i.e., a feasible solution of a certain size dependent on the
error.

Matroid intersection via augmenting paths. Our error measure is as follows: We define η1 =
{F ∈ I1d | F /∈ I1} and η2 = {F ∈ I2d | F /∈ I2} to be the number of different sets which are
independent in the dirty matroid but not independent in the clean matroid. In order to simplify the
setting, we assume here that (i) the dirty matroids are supersets of the clean matroids, i.e., I1 ⊆ I1d
and I2 ⊆ I2d , and (ii) that the clean matroids are partition matroids. We note that in general the
intersection of two partition matroids can be reduced to finding a maximum b-matching.
Proposition 4.2. There is an algorithm that computes an optimum solution for matroid intersection
using at most (r + 1) · (2 + (η1 + η2) · (⌈log2(n)⌉+ 2)) clean-oracle calls.

Matroid intersection via warm-starting. We show how to exploit the dirty matroids to obtain a
good starting solution that is independent in both clean matroids. The idea of warm-starting using
predictions has been used for other prediction models in [10, 16, 31] for problems like weighted
bipartite matching or weighted matroid intersection. These results are tailored to the weighted
setting and do not directly translate to improvements in the unweighted case. As error measure
we adjust the removal error for matroid intersection: Let s∗d = maxSd∈I1

d∩I2
d
|Sd| and define

S∗d = {Sd ∈ I1d ∩ I2d | |Sd| = s∗d} to be the set of optimum solutions to the dirty matroid in-
tersection problem. We define ηr = maxSd∈S∗

d
minSc∈I1∩I2{|Sd \ Sc| : Sc ⊆ Sd}.

Our algorithm computes an optimal solution to the dirty matroid, then greedily removes elements
until we obtain a feasible solution for the clean matroid. By observing that this reverse greedy
algorithm is a 2-approximation in the number of elements to be removed, ηr, we obtain the follow-
ing result.
Proposition 4.3. There is an algorithm that computes a feasible solution S′

c ∈ I1 ∩ I2 of size
|S′

c| ≥ s∗d − 2ηr using at most 2 + 2ηr · (1 + ⌈log2(n)⌉) clean-oracle calls.

10

Acknowledgments and Disclosure of Funding

We thank Kevin Schewior for initial discussions on the topic of this paper.

This research is supported by the German Research Foundation (DFG) through grant no. 517912373
and by the University of Bremen with the 2023 Award for Outstanding Doctoral Supervision.
Further, the first author is funded by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under Germany’s Excellence Strategy The Berlin Mathematics Research Center
MATH+ (EXC-2046/1, project ID: 390685689).

References
[1] Xingjian Bai and Christian Coester. Sorting with Predictions. In: NeurIPS. 2023.
[2] Evripidis Bampis, Bruno Escoffier, Michael Lampis, and Vangelis Th. Paschos. Multistage

Matchings. In: SWAT. Vol. 101. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018, 7:1–7:13.

[3] Evripidis Bampis, Bruno Escoffier, Kevin Schewior, and Alexandre Teiller. Online Multistage
Subset Maximization Problems. In: Algorithmica 83.8 (2021), pp. 2374–2399.

[4] MohammadHossein Bateni, Prathamesh Dharangutte, Rajesh Jayaram, and Chen Wang. Met-
ric Clustering and MST with Strong and Weak Distance Oracles. In: COLT. Vol. 247. Pro-
ceedings of Machine Learning Research. PMLR, 2024, pp. 498–550.

[5] Ziyad Benomar and Christian Coester. Learning-Augmented Priority Queues. In: CoRR
abs/2406.04793 (2024).

[6] Joakim Blikstad. Breaking O(nr) for Matroid Intersection. In: ICALP. Vol. 198. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 31:1–31:17.

[7] Joakim Blikstad, Sagnik Mukhopadhyay, Danupon Nanongkai, and Ta-Wei Tu. Fast Algo-
rithms via Dynamic-Oracle Matroids. In: STOC. ACM, 2023, pp. 1229–1242.

[8] Niv Buchbinder, Shahar Chen, and Joseph Naor. Competitive Analysis via Regularization. In:
SODA. SIAM, 2014, pp. 436–444.

[9] Niv Buchbinder, Shahar Chen, Joseph Naor, and Ohad Shamir. Unified Algorithms for Online
Learning and Competitive Analysis. In: COLT. Vol. 23. JMLR Proceedings. JMLR.org, 2012,
pp. 5.1–5.18.

[10] Justin Y. Chen, Sandeep Silwal, Ali Vakilian, and Fred Zhang. Faster Fundamental Graph
Algorithms via Learned Predictions. In: ICML. Vol. 162. Proceedings of Machine Learning
Research. PMLR, 2022, pp. 3583–3602.

[11] Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and
Sushant Sachdeva. Maximum Flow and Minimum-Cost Flow in Almost-Linear Time. In:
FOCS. IEEE, 2022, pp. 612–623.

[12] Markus Chimani, Niklas Troost, and Tilo Wiedera. Approximating Multistage Matching Prob-
lems. In: Algorithmica 84.8 (2022), pp. 2135–2153.

[13] Markus Chimani, Niklas Troost, and Tilo Wiedera. A general approximation for multi-
stage subgraph problems. In: LAGOS. Vol. 223. Procedia Computer Science. Elsevier, 2023,
pp. 334–342.

[14] Edith Cohen, Graham Cormode, Nick G. Duffield, and Carsten Lund. On the Tradeoff be-
tween Stability and Fit. In: ACM Trans. Algorithms 13.1 (2016), 7:1–7:24.

[15] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. fourth. MIT Press, 2022.

[16] Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii.
Faster Matchings via Learned Duals. In: NeurIPS. 2021, pp. 10393–10406.

[17] Jack Edmonds. Submodular functions, matroids, and certain polyhedra, combinatorial struc-
tures and their applications, R. Guy, H. Hanani, N. Sauer, and J. Schonheim, eds. In: New
York (1970), pp. 69–87.

[18] Jack Edmonds. Matroids and the greedy algorithm. In: Math. Program. 1.1 (1971), pp. 127–
136.

[19] David Eisenstat, Claire Mathieu, and Nicolas Schabanel. Facility Location in Evolving Met-
rics. In: ICALP (2). Vol. 8573. Lecture Notes in Computer Science. Springer, 2014, pp. 459–
470.

11

http://papers.nips.cc/paper%5C%5C_files/paper/2023/hash/544696ef4847c903376ed6ec58f3a703-Abstract-Conference.html
http://dx.doi.org/10.4230/LIPICS.SWAT.2018.7
http://dx.doi.org/10.4230/LIPICS.SWAT.2018.7
http://dx.doi.org/10.1007/S00453-021-00834-7
http://dx.doi.org/10.1007/S00453-021-00834-7
https://proceedings.mlr.press/v247/bateni24a.html
https://proceedings.mlr.press/v247/bateni24a.html
https://arxiv.org/abs/2406.04793
http://dx.doi.org/10.4230/LIPICS.ICALP.2021.31
http://dx.doi.org/10.1145/3564246.3585219
http://dx.doi.org/10.1145/3564246.3585219
http://dx.doi.org/10.1137/1.9781611973402.32
http://proceedings.mlr.press/v23/buchbinder12/buchbinder12.pdf
http://proceedings.mlr.press/v23/buchbinder12/buchbinder12.pdf
https://proceedings.mlr.press/v162/chen22v.html
https://proceedings.mlr.press/v162/chen22v.html
http://dx.doi.org/10.1109/FOCS54457.2022.00064
http://dx.doi.org/10.1007/S00453-022-00951-X
http://dx.doi.org/10.1007/S00453-022-00951-X
http://dx.doi.org/10.1016/J.PROCS.2023.08.245
http://dx.doi.org/10.1016/J.PROCS.2023.08.245
http://dx.doi.org/10.1145/2963103
http://dx.doi.org/10.1145/2963103
https://proceedings.neurips.cc/paper/2021/hash/5616060fb8ae85d93f334e7267307664-Abstract.html
http://dx.doi.org/10.1007/BF01584082
http://dx.doi.org/10.1007/978-3-662-43951-7_39
http://dx.doi.org/10.1007/978-3-662-43951-7_39

[20] Thomas Erlebach, Murilo S. de Lima, Nicole Megow, and Jens Schlöter. Sorting and Hyper-
graph Orientation under Uncertainty with Predictions. In: IJCAI. ijcai.org, 2023, pp. 5577–
5585.

[21] Thomas Erlebach, Murilo Santos de Lima, Nicole Megow, and Jens Schlöter. Learning-
Augmented Query Policies for Minimum Spanning Tree with Uncertainty. In: ESA. Vol. 244.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 49:1–49:18.

[22] Till Fluschnik, Rolf Niedermeier, Carsten Schubert, and Philipp Zschoche. Multistage s-t
Path: Confronting Similarity with Dissimilarity in Temporal Graphs. In: ISAAC. Vol. 181.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 43:1–43:16.

[23] Dimitris Fotakis, Loukas Kavouras, and Lydia Zakynthinou. Online Facility Location in
Evolving Metrics. In: Algorithms 14.3 (2021), p. 73.

[24] Anupam Gupta, Kunal Talwar, and Udi Wieder. Changing Bases: Multistage Optimization
for Matroids and Matchings. In: ICALP (1). Vol. 8572. Lecture Notes in Computer Science.
Springer, 2014, pp. 563–575.

[25] Avinatan Hassidim and Yaron Singer. Submodular Optimization under Noise. In: COLT.
Vol. 65. Proceedings of Machine Learning Research. PMLR, 2017, pp. 1069–1122.

[26] Elad Hazan and Satyen Kale. Online submodular minimization. In: J. Mach. Learn. Res. 13
(2012), pp. 2903–2922.

[27] Lingxiao Huang, Yuyi Wang, Chunxue Yang, and Huanjian Zhou. Efficient Submodular Op-
timization under Noise: Local Search is Robust. In: NeurIPS. 2022.

[28] Shinji Ito. Submodular Function Minimization with Noisy Evaluation Oracle. In: NeurIPS.
2019, pp. 12080–12090.

[29] Alexander Lindermayr and Nicole Megow. Repository of papers on algorithms with predic-
tions. http://algorithms-with-predictions.github.io/ [Accessed: (October 21,
2024)]. 2024.

[30] Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with Predictions. In: Beyond the
Worst-Case Analysis of Algorithms. Cambridge University Press, 2020, pp. 646–662.

[31] Shinsaku Sakaue and Taihei Oki. Discrete-Convex-Analysis-Based Framework for Warm-
Starting Algorithms with Predictions. In: NeurIPS. 2022.

[32] Alexander Schrijver. Combinatorial Optimization - Polyhedra and Efficiency. Algorithms and
Combinatorics. Springer, 2003.

[33] Hadas Shachnai, Gal Tamir, and Tami Tamir. A Theory and Algorithms for Combinatorial
Reoptimization. In: LATIN. Vol. 7256. Lecture Notes in Computer Science. Springer, 2012,
pp. 618–630.

[34] Sandeep Silwal, Sara Ahmadian, Andrew Nystrom, Andrew McCallum, Deepak Ramachan-
dran, and Seyed Mehran Kazemi. KwikBucks: Correlation Clustering with Cheap-Weak and
Expensive-Strong Signals. In: ICLR. OpenReview.net, 2023.

[35] Yaron Singer and Avinatan Hassidim. Optimization for Approximate Submodularity. In:
NeurIPS. 2018, pp. 394–405.

[36] Chicheng Zhang and Kamalika Chaudhuri. Active Learning from Weak and Strong Labelers.
In: NIPS. 2015, pp. 703–711.

12

http://dx.doi.org/10.24963/IJCAI.2023/619
http://dx.doi.org/10.24963/IJCAI.2023/619
http://dx.doi.org/10.4230/LIPICS.ESA.2022.49
http://dx.doi.org/10.4230/LIPICS.ESA.2022.49
http://dx.doi.org/10.4230/LIPICS.ISAAC.2020.43
http://dx.doi.org/10.4230/LIPICS.ISAAC.2020.43
http://dx.doi.org/10.3390/A14030073
http://dx.doi.org/10.3390/A14030073
http://dx.doi.org/10.1007/978-3-662-43948-7_47
http://dx.doi.org/10.1007/978-3-662-43948-7_47
http://proceedings.mlr.press/v65/hassidim17a.html
http://dx.doi.org/10.5555/2503308.2503334
http://papers.nips.cc/paper%5C%5C_files/paper/2022/hash/a774503daed55eb53c634847ae071ec7-Abstract-Conference.html
http://papers.nips.cc/paper%5C%5C_files/paper/2022/hash/a774503daed55eb53c634847ae071ec7-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2019/hash/58d2d622ed4026cae2e56dffc5818a11-Abstract.html
http://algorithms-with-predictions.github.io/
http://dx.doi.org/10.1017/9781108637435.037
http://papers.nips.cc/paper%5C%5C_files/paper/2022/hash/844e61124d9e1f58632bf0c8968ad728-Abstract-Conference.html
http://papers.nips.cc/paper%5C%5C_files/paper/2022/hash/844e61124d9e1f58632bf0c8968ad728-Abstract-Conference.html
http://dx.doi.org/10.1007/978-3-642-29344-3_52
http://dx.doi.org/10.1007/978-3-642-29344-3_52
https://openreview.net/forum?id=p0JSSa1AuV
https://openreview.net/forum?id=p0JSSa1AuV
https://proceedings.neurips.cc/paper/2018/hash/cfa0860e83a4c3a763a7e62d825349f7-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/eba0dc302bcd9a273f8bbb72be3a687b-Abstract.html

Appendix

A Proofs omitted from Section 2

A.1 Proof of Lemma 2.1

Lemma 2.1. The simple algorithm computes a clean basis using at most n + 1 clean-oracle calls.
Further, if Bd ∈ B, it terminates using at most n− r + 1 clean-oracle calls.

Proof. The correctness follows easily from matroid properties. If the dirty oracle is perfectly correct,
i.e. Bd ∈ B, then we only need to use one clean-oracle call to check whether Bd ∈ I and n− r calls
for checking the maximality. If Bd /∈ I , we start from the empty set and check whether to add each
of the n elements. Thus, the algorithm uses at most n+ 1 clean-oracle calls in any case.

A.2 Proofs omitted from Section 2.2

We give the formal description of the algorithm discussed in Section 2.2 in Algorithm 3.

Algorithm 3: Find a basis (robustified)
Input: dirty basis Bd, matroidM = (E, I), integer k ≥ 1

1 B ← ∅ and S ← Bd

2 Fix an order for S = {e1, . . . , erd}
3 while S ̸= ∅ do
4 Re-index the elements in S from 1 to |S|, keeping the relative order
5 Find the smallest index i ∈ {1, . . . ,min{|S|, k − 1}} with B ∪ S≤i /∈ I via linear search
6 if such an i exists then
7 B ← B ∪ S≤i−1 and S ← S \ S≤i and go to next iteration of Line 3.
8 if |S| ≤ k − 1 or B ∪ S ∈ I then
9 B ← B ∪ S and S ← ∅ and go to next iteration of Line 3

10 Find the smallest index i ∈ {k, . . . ,min{k⌈log2 rd⌉, |S|}} with B ∪ S≤i /∈ I via linear
search

11 if there is no such index i then
12 Find the smallest index i ∈ {k⌈log2 rd⌉+ 1, . . . , |S|} with B ∪ S≤i /∈ I via binary

search (guaranteed to exist)
13 B ← B ∪ S≤i−1 and S ← S \ S≤i

14 for e ∈ E \Bd do
15 if B + e ∈ I then
16 B ← B + e

17 return B

This algorithm is essentially the same as the error-dependent algorithm from Section 2.1 but uses
a robust way of finding removals. The parameter k measures the trade-off between linear searches
and binary searches. Note that each linear search has two parts (Line 5 and Line 10). Between the
two parts, we insert a check B ∪ S ∈ I (Line 8), which is necessary to prevent using too many
queries when there are no further removals necessary. A small detail here is that we only have to do
this check if there actually are elements to check in the second part.

Theorem 2.3. For every k ∈ N+, there is an algorithm that, given a dirty matroidMd of rank rd
with unknown ηA and ηR, computes a basis of a matroidM of rank r with at most min{n− r+ k+
ηA + ηR · (k + 1)⌈log2 rd⌉, (1 + 1

k)n} oracle calls toM.

Proof. We analyze Algorithm 3. Observe that the algorithm finds a maximal independent subset
of Bd in the clean matroid and greedily tries to add all remaining elements, similar to the error-
dependent algorithm. Hence, the correctness follows as in the proof of Lemma 2.2.

13

It remains to bound the number of clean-oracle calls. We first prove the error-dependent upper bound.
Note that the algorithm removes |R(Bd)| ≤ ηR elements from Bd, and then adds |A(Bd)| ≤ ηA
elements. For every removed element, the algorithm uses at most k⌈log2 rd⌉ clean-oracle calls due
to the two linear searches, ⌈log2 rd⌉ calls in the binary search, and one extra query for the check
between the two linear searches. Once we have a solution B ∪ S that is not necessarily maximum
but feasible, which we do not know yet, we need to use at most k additional queries until we verify
that this solution is indeed feasible: We have up to k − 1 queries of linear search in Line 5 and one
query in Line 8. After removing elements, the algorithm makes n− rd queries in Line 15. Thus, the
total number of clean-oracle calls is at most |R(Bd)|((k + 1)⌈log2 rd⌉+ 1) + n− rd. By plugging
in rd − ηR + ηA = r, we proof the stated upper bound of

n− r + k + ηA + ηR(k + 1)⌈log2 rd⌉.

Second, we prove the robust upper bound that is independent of ηA and ηR. To this end, we partition
Bd = {e1, . . . , erd} into segments separated by the removed elements. Each segment (except the
last one, which we treat separately below) contains exactly one removed element at the end. If a
linear search (Lines 5 and 10) finds the element to be removed, we call the corresponding segment
short. Otherwise, we say it is long.

Let the total length of short segments be Lshort. The cost of a short segment is equal to its length,
plus one for the check between the two linear searches in Line 8 if its length is at least k. Thus, the
total cost of all short segments is at most (1 + 1

k)Lshort.

Let the total length of long segments be Llong. In a long segment, there are exactly k⌈log2 rd⌉
queries done by the linear searches (Lines 5 and 10), one query due to Line 8 and at most ⌈log2 rd⌉
many queries by the binary search in Line 12. Thus, the total cost of a long segment is at most
(k + 1)⌈log2 rd⌉ + 1. Moreover, there can be at most Llong

k⌈log2 rd⌉+1 many long segments. Therefore,
the total cost of all long segments is at most (1 + 1

k)Llong.

Finally, let Llast be the length of the last segment, where no elements are removed. If this does not
exist we set Llast = 0. When the algorithm considers this segment, the condition that B ∪ S ∈ I in
Line 8 is true because no further elements are removed afterwards. Regarding the other condition
in Line 8, there are two cases. If |S| ≤ k − 1, then we do not query B ∪ S ∈ I and terminate the
while-loop. Before that, we use exactly Llast many oracle calls in Line 5. Otherwise, that is |S| ≥ k,
we use k− 1 oracle calls in Line 5 and one query in Line 8, which evaluates true and terminates the
while-loop. Since k ≤ |S| ≤ Llast, we conclude that in both cases we use at most Llast many oracle
calls during the last segment.

Therefore, the total number of queries done in Lines 3-13 is at most(
1 +

1

k

)
(Lshort + Llong) + Llast ≤

(
1 +

1

k

)
rd.

Together with the n− rd oracle calls in Line 15, we conclude that the total number of oracle calls is
at most

n− rd +

(
1 +

1

k

)
rd ≤

(
1 +

1

k

)
n.

This concludes the proof of Theorem 2.3.

B Lower bounds

We present lower bounds on the worst-case number of clean queries required by any deterministic
algorithm. Note that all lower bounds hold even if the dirty oracle indeed follows a matroid. First,
we show that, even if M = Md, the worst-case number of clean queries is at least n − r + 1.
The following lemma also shows that this is best-possible number of queries for instances with
M =Md and the best-possible worst-case bound of n queries cannot be achieved at the same time.

Lemma B.1. For every rank r ≥ 1, no deterministic algorithm can use less than n − r + 1 clean
queries, even if M = Md. Further, for any algorithm that uses exactly n − r + 1 clean queries
wheneverM =Md, there is at least one instance where it uses at least n+ 1 clean queries.

14

Proof. Consider arbitrary n and r with 1 ≤ r ≤ n. We give a clean matroid M such that the
statement of the lemma holds for the instance defined byM and the dirty matroidMd =M. Let
E = {e1, . . . , en} denote the ground set of elements. We defineM =Md as a partition matroid
with two classes of elements C1 = {e1, . . . , er−1} and C2 = {er, . . . , en}. Each set S ⊆ E with
|S∩C1| ≤ r−1 and |S∩C2| ≤ 1 is independent inM =Md, and we denote the set of independent
sets by I and the set of bases by B. Each basis of this matroid completely contains C1 and exactly
one member of C2. Thus, the rank of M is indeed r. We show that even if the algorithm knows
that the underlying matroid is a partition matroid (but it does not know the exact classes), it needs at
least n− r + 1 queries.

As we require algorithms to show some certificate for a clean basis (see Section 1.3), every feasible
algorithm has to verify that (i) some B ∈ Bd = B is independent inM and that (ii) B ∪ {e} is not
independent inM =Md for every e ∈ E \B.

Consider the instance defined above. To prove (i), an algorithm has to make the oracle call B ∈ I
as calls to supersets of B will return false and calls to sets A with B ̸⊆ A cannot prove that B is
independent.

Let e denote the element of C2 that is part of the basis B selected by the algorithm. To prove (ii), the
algorithm has to verify that the elements {er, . . . , en} \ {e} are all part of the same class as e and
that this class has capacity one. Otherwise, the queries by the algorithm would not reveal sufficient
information to distinguish between the matroidM and a potential alternative matroidM′ that has
a third class with capacity one. However, as B would not be a basis for M′, the queries by the
algorithm must reveal sufficient information to distinguishM andM′.

To prove that an element e′ is part of the same class as e, an algorithm has to execute a query A ∈ I
with A ∩ C2 = {e′, e′′} for an element e′′ that is already known to be in the same class as e. This
is because queries A ∈ I with either |A ∩ C2| = 1, |A ∩ C2| ≥ 3 or e′ ̸∈ A would always give the
same answer even for the potential alternative matroidM′ in which e′ forms a class of capacity one
on its own.

In total, this leads to at least n − r + 1 oracle calls. Further, consider the robustness case that the
algorithm is given an instance with a dirty matroid as described above and a clean matroid whose
only independent set is the empty set. By the above arguments, in order to use only n−r+1 queries
for the caseM =Md, the algorithm has to query some B ∈ Bd. But this query does not help the
algorithm to find out that the only clean basis is the empty set, i.e., it still needs n more queries to
show the fact.

The next lemma gives a lower bound that justifies the linear dependency on ηA in our algorithmic
results. In fact, it prohibits improvements over the linear dependency unless the error grows quite
large. But even then, we complement the result with a different lower bound that grows stronger
with increasing number of errors.
Lemma B.2. For every ηA ≥ 1, there is no deterministic algorithm that uses less than{

n− r + ηA if 1 ≤ ηA ≤ n−rd
2

1 + ⌈log2
(
n−rd
ηA

)
⌉ if ηA ≥ n−rd

2

clean queries in the worst-case, even if it knows ηA upfront.

We prove the lemma by dividing the two different lower bounds into two lemmas, Lemma B.3 and
Lemma B.4, which we prove individually.
Lemma B.3. For every number of addition errors ηA with 1 ≤ ηA ≤ n−rd

2 , there is no deterministic
algorithm that uses less than n− r+ηA clean queries in the worst-case even if the algorithm knows
the value of ηA upfront and ηR = 0.

Proof. For the statement of the lemma, we assume that the algorithm has full knowledge of ηA.
However, we still require that the queries of the algorithm can be used as a certificate for a third
party without knowledge of ηA to find a provable clean basis. Nevertheless, the assumption that the
algorithm knows ηA still restricts the query answers that can be returned by an adversary.

Fix ηA ∈ {1, . . . , ⌊n−rd
2 ⌋}. Consider a problem instance with the ground set of elements E =

{e1, . . . , en}. LetMd be a partition matroid with two classes of elements C1 = {e1, . . . , erd} and

15

C2 = {erd+1, . . . , en}. Each set S ⊆ E with |E ∩ C1| ≤ rd and |E ∩ C2| = 0 is independent in
Md. Thus, C1 is the only basis.

Consider an arbitrary algorithm for the instance. Depending on the algorithm’s oracle calls, the
adversary will create a clean partition matroid M = (E, I) with the three classes of elements
C1 = {e1, . . . , erd}, C2 and C3. The elements of N := {erd+1, . . . , en} will be distributed to C2

and C3 depending on the algorithm’s actions, and the class capacities will be rd for C1, 0 for C2

and ηA for C3. The adversary will assign exactly ηA elements to C3, so the only basis of the clean
matroid will be C1 ∪ C3 and the addition error will be indeed ηA.

The adversary starts out with empty C2 and C3 and later on adds elements to these sets in a consistent
manner. We distinguish between two types of oracle calls by the algorithm: (i) queries to sets S ⊆ E
with |(S ∩ N) \ C3| ≥ 2 and (ii) queries to sets S ⊆ E with |(S ∩ N) \ C3| = 1 for the current
C3, which is initially empty. All other oracle calls only contain elements of (E \N)∪C3. For such
queries the adversary has to return true.

For queries of type (ii), the queried set S ⊆ E contains a single element e ∈ (S ∩N) \ C3 for the
current C3. If e has already been fixed as a member of C2, the oracle call returns false. Otherwise,
the adversary returns true and adds the single element of (S ∩N) \ C3 to C3. After ηA elements of
N have been fixed as members of C3, the adversary starts to return false on all type-(ii) and assigns
the single element e ∈ (S ∩N) \ C3 to C2 instead.

Before we move on to type-(i) queries, we give some intuition on the strategy of the adversary for
type-(ii) queries. The adversary is designed to reveal the elements C3 that lead to addition errors
as fast as possible if the algorithm executes type-(ii) queries. If the algorithm would only execute
type-(ii) queries, then after ηA such queries the algorithm would have identified C3. Since the
algorithm knows ηA, it then also knows that none of the remaining elements of N \C3 can be added
to the basis C1 ∪ C3 and, thus, has also identified C2. However, in order to query a certificate that
proves to a third party without knowledge of ηA that the elements of C2 can indeed not be added,
the algorithm will still require |C2| additional queries. Therefore, revealing C3 fast will lead to
|C2| + |C3| = n − r + ηA queries if the algorithm only executes type-(ii) queries. If the adversary
would instead reveal the elements of C2 first, then the algorithm that only executes type-(ii) queries
could use the knowledge of ηA to conclude after n− r queries that C1 ∪C3 must be an independent
set, as otherwise the number of errors would be too small. In contrast to the previous case, the
algorithm can prove this efficiently with a single query to C1 ∪ C3. Thus, revealing C2 first would
allow the algorithm to save queries.

For queries of type (i), the adversary will use a different strategy. If the adversary would also start
by returning true for type-(i) queries, then every element of N \ C3 that is part of the query would
have to be added to C3. Since there are at least two such elements by definition of type-(i) queries,
a single query would prove membership of C3 for at least two elements. This would allow to reduce
the number of queries below n− r + ηA.

Instead, we define the adversary to return false as long as this is possible. To make this query result
consistent with the clean matroid, the adversary has to add one of the queried elements to C2. If
S ∩ C2 ̸= ∅ already holds for the queried set S and the current set C2, then the adversary can
return false without adding a further element to C2. Otherwise, we define the adversary to select
two elements e1, e2 of (S ∩ N) \ (C3 ∪ C2). These elements must exist by definition of type-(i)
queries and as we assume S ∩ C2 = ∅. The adversary will later on add one of e1 and e2 to C2

depending on the algorithms actions. Assume without loss of generality that e1 is the element that
appears first (or at the same time as e2) in another later oracle call. Once e1 appears in this second
query, the adversary adds e1 to C2. If C2 already contains n− rd− ηA elements, then the adversary
has to add it to C3 instead and answer the query accordingly.

To show the lower bound, we consider two cases: (1) n− rd − ηA elements are added to C2 before
ηA elements are added to C3 and (2) ηA elements are added to C3 before n − rd − ηA elements
are added to C2. If we show that the algorithm in both cases needs at least n− r + ηA queries, the
lemma follows.

Case 1. First, assume the algorithm queries in such a way that n− rd− ηA elements are assigned to
C2 before ηA elements are assigned to C3. Since this is the case, an element e is only added to C2 if
there was a type-(i) query for which the adversary selected {e, e′} with e ̸= e′ to potentially add to
C2. By definition of the adversary, each such element e is afterwards added to C2 while appearing in

16

a second query after the type-(i) query. Thus, e must appear in at least two queries. Note that these
two queries are distinct for each e ∈ C2 because the assignment of e is fixed immediately once e
appears in a second query after being selected by the adversary as part of the pair {e, e′} in the type-
(i) query. In particular, for e′ to also be added to C2, it would need to be selected by the adversary in
another type-(i) query and appear in another query afterwards. Since |C2| = n− rd− ηA, this leads
to a total number of queries of least 2 · (n− rd − ηA). As ηA ≤ n−rd

2 , we have 2 · (n− rd − ηA) ≥
2 · (n− rd)− (n− rd) = n− rd = n− r+ ηA. If there exist elements that are never selected by the
adversary in response to a type-(i) query, then the adversary must add those elements to C3 as C2 is
already full. Since the algorithm knows ηA, it potentially knows that this is the case and can prove
that these elements are in C3 with a single additional query to C1 ∪ C3.

Case 2. Next, assume the algorithm queries in such a way that ηA elements are added to C3 before
n− rd− ηA elements are added to C2. Then, the algorithm must have executed ηA type-(ii) queries
to sets S where the unique element of (S ∩N) \ C3 was added to C3 afterwards.

Each element e ∈ C2 must appear in a query to a set S for which each other member is either part of
C1 or C3 (or eventually added to C3). As the algorithm knows ηA, it might be able to conclude that
none of the elements in N \C3 can be added to the independent set C1∪C3 without actually querying
them. However, the queries of the algorithm must be a certificate for a third party without knowledge
of ηA. Thus, despite knowing that none of these elements can be added, the algorithm still has to
prove it using type-(ii) queries. This leads to a total of at least n − rd − ηA + ηA = n − r + ηA
queries.

Since the previous lemma only holds for errors of at most n−rd
2 , we complement it with the following

lower bound for large errors.

Lemma B.4. For every number of removal errors ηA with 1 ≤ ηA, there is no deterministic algo-
rithm that uses less than 1 + ⌈log2

(
n−rd
ηA

)
⌉ queries in the worst-case, even if the algorithm knows

the value of ηA upfront.

Proof. The idea is similar to Lemma B.6. Consider an instance with the dirty matroidMd = (E, Id)
for the ground set of elements {e1, . . . , en}. Let Md be a partition matroid with the two classes
C1 = {e1, . . . , erd} and C2 = {erd+1, . . . , rn}. Each set I with |I ∩ C1| ≤ rd and |I ∩ C2| ≤ 0 is
independent inMd. Thus, C1 is the only dirty basis.

Fix a number of addition errors ηA ≥ 1. The adversary will create a clean matroidM = (E, I) by
selecting ηA elements from C2 and add to C1 instead. Formally, the clean matroid will be a partition
matroid with the two classes C ′

1 = C1 ∪ A and C ′
2 = C2 \ A for some set A ⊆ C2 with |A| = ηA.

The capacities for the classes are rd + ηA and 0, respectively.

Firstly, the algorithm has to query C1, otherwise it cannot know whether there’s some element in
C1 that should be removed (it does not know ηR). Then, the adversary has to identify the set A (or
equivalently C2 \ A) in order to execute a final query to the clean basis C1 ∪ A. In order to do so,
it has to use queries of the form D1 ∪D2 where D1 ⊆ C1 and D2 ⊆ C2. The adversary has

(|C2|
ηA

)
choices to decide A, and each of the queries by the algorithm can rule out at most one half of these
choices (the adversary can always choose to answer “yes” or “no” depending on which preserves
more choices). Thus the algorithm needs at least ⌈log2

(|C2|
ηA

)
⌉ = ⌈log2

(
n−rd
ηA

)
⌉ queries. Note that

this bound is weaker than that in Lemma B.3 when ηA is small compared to n− rd.

We show that there exists an improved algorithm in terms of the error dependency if ηR = 0 and
ηA ≥ 3

4 (n− rd) + 1 (cf. Lemma B.5). Hence, a distinction depending on ηA in the lower bound (as
in Lemma B.2) is indeed necessary.

Lemma B.5. For problem instances with ηR = 0 and ηA ≥ 3
4 (n−rd)+1, there exists an algorithm

that executes strictly less than n− r + ηA clean queries in the worst-case.

Proof. Let B be a basis of the given dirty matroid Md. Let N = {e1, . . . , en−rd} denote the
elements of E \B indexed in an arbitrary order. Note that |N | ≥ 1 as ηR = 0 and ηA ≥ 1. Consider
the following algorithm:

17

1. If |N | ≥ 2, continue with Step 2. Otherwise, query B ∪ {e} ∈ I for the single element
e ∈ N . Add e to B if this query returns true. Afterwards, terminate.

2. Pick two arbitrary distinct elements e, e′ of N and execute the oracle call B ∪ {e, e′} ∈ I .
Remove both elements from N .

3. If the oracle call returns true, then add {e, e′} to B.

4. Otherwise, query B∪{e} ∈ I . If this returns true, add e to B. Otherwise, query B∪{e′} ∈
I. If this returns true, add e′ to B.

5. If N is empty now, then terminate. Otherwise, go to Step 1.

We show that this algorithm satisfies the asserted statement.

Assume for now that |N | is even and, thus, no queries are executed in Step 1. We call one execution
of Steps 1 to 5 an iteration. Let ki with i ∈ {0, 1, 2} denote the number of iterations in which i many
elements have been added to B. Then, the number of queries executed by the algorithm is at most
3 · (k0 + k1) + k2.

Since (n − rd) − ηA elements of N are not part of the basis B computed by the algorithm, we
must have 2 · k0 + k1 = (n − rd) − ηA as k0 iterations identify two such elements each and k1
iterations identify one such element each. Similarly, we have k1 + 2 · k2 = ηA. By combining the
two equalities, we obtain k0 + k1 + k2 = n−rd

2 . Hence, the number of queries executed by the
algorithm is at most

3 · (k0 + k1) + k2 =
n− rd

2
+ 2k0 + 2k1 ≤

n− rd
2

+ 2(2k0 + k1)

=
n− rd

2
+ 2(n− rd − ηA) ≤

n− rd
2

+ 2

(
n− rd

4
− 1

)
= n− rd − 2 = n− r + ηA − 2.

The last inequality uses our assumed lower bound on ηA.

We note that there is a straightforward example which shows that this analysis is tight, where in
particular k0 = 0 and the algorithm alternatingly adds two and one elements.

Finally, if |N | is odd, we have one additional query in Step 1 of the algorithm. Thus, the number of
queries is in this case at most n− r + ηA − 1.

Finally, we justify the logarithmic error-dependency on the removal error ηR in our algorithmic
results for small ηR.
Lemma B.6. For every ηR ≥ 1, there is no deterministic algorithm that uses less than n − r +
1+ ⌈log2

(
rd
ηR

)
⌉ clean queries in the worst-case even if the algorithm knows the value of ηR upfront.

Further, if ηR ≤ rd
2k

for some fixed k ≥ 0, the bound is at least n− r + 1 + ⌈ηR(log2 rd − k)⌉.

Proof. Consider an instance with the dirty matroidMd = (E, Id) for the ground set of elements
{e1, . . . , en}. Let Md be a partition matroid with the two classes C1 = {e1, . . . , erd} and C2 =
{erd+1, . . . , en}. Each set I with |I ∩ C1| ≤ rd and |I ∩ C2| ≤ 0 is independent inMd. Thus, C1

is the only dirty basis.

Fix a number of removal errors ηR ≥ 1. The adversary will create a clean matroidM = (E, I) by
selecting ηR elements to remove from C1 and add to C2 instead. Formally, the clean matroid will
be a partition matroid with the two classes C ′

1 = C1 \ R and C ′
2 = C2 ∪ R for some set R ⊆ C1

with |R| = ηR. The capacities for the classes are rd − ηR and 0, respectively.

Consider an arbitrary deterministic algorithm. For each e ∈ C2 = C ′
2 \ R, the algorithm has to

query a set S with S ∩ C2 = {e} and S \ {e} ⊆ C ′
1, as this is the only way of verifying that the

elements in C2 cannot be added to the basis. Even if the algorithm knows that ηA = 0, it still has to
prove this by using such queries. This leads to at least n− rd ≥ n− r + 1 queries.

For the elements in R, the algorithm has to do the same. However, it does not know which elements
of C1 belong to R and which do not. Instead, the algorithm has to iteratively query subsets of C1

18

until it has sufficient information to identify the set R. Note that queries to sets containing members
of C1 and C2 always return false independent of whether the queried members of C1 belong to R
or not, which means that such queries do not reveal any information helpful for identifying R.

We can represent each such algorithm for identifying R as a search tree. A vertex v in the search tree
represents the current state of the algorithm and is labeled by the set Pv ⊆ C1 of elements that still
could potentially belong to R given the information already obtained by the algorithm and a family
of subsets Sv such that each S ∈ Sv is guaranteed to contain at least one member of R given the
algorithm’s information. For the root r of the search tree, we have Pr = C1 and Sr = {C1}. As the
algorithm executes queries to sets S ⊆ C1, it gains more information about which elements could
potentially belong to R. Thus, each vertex v in the search tree has (up-to) two successors v′, v′′ with
different labels Pv′ and Pv′′ depending on the answer to the query executed by the algorithm while
being in the state represented by v. The algorithm can only terminate once it reaches a state u in the
search tree with |Pu| = ηR, because only then it has identified the set R = Pu. We refer to such
vertices as leaves. Since, depending on the query results returned by the adversary, each subset of
S ⊆ C1 with |S| = ηR could be the set R, there are at least

(|C1|
ηR

)
=

(
rd
ηR

)
leaves.

The search tree representing the algorithm has a maximum out-degree of two and at least
(
rd
ηR

)
leaves, which implies that the depth of the search tree is at least ⌈log2

(
rd
ηR

)
⌉. Since the adversary

can select the query results in such a way that it forces the algorithm to query according to a longest
root-leaf-path, this implies that the algorithm needs at least ⌈log2

(
rd
ηR

)
⌉ queries to identify R.

In total, the algorithm has to execute at least n − r + 1 + ⌈log2
(
rd
ηR

)
⌉ queries. Note that

(
n
k

)
≥ nk

kk

for any positive integer n, k with k ≤ n. If ηR is small compared to rd, say, ηR ≤ rd
2k

for some
constant k ≥ 0, then log2

(
rd
ηR

)
≥ ηR(log2 rd − k).

C Proofs omitted from Section 3

Lemma 3.2 (Property (ii)). At the start (end) of each iteration of Line 5, it holds (Bd \R)∪A ∈ I .

Proof. At the beginning of the first iteration, (Bd \R)∪A ∈ I by the condition in Line 2. It suffices
to show if (Bd \R)∪A ∈ I holds before iteration ℓ = j, then it also holds before iteration ℓ = j+1.
If in iteration ℓ = j, the condition in Line 6 is not satisfied, then A,R do not change and we are
done. The remaining case is that ej is added to A. If then (Bd \R) ∪A ∈ I , Line 8 evaluates false
and we are done. Otherwise, that is, (Bd \R) ∪ A /∈ I , we execute the binary search in Line 9 and
add an element to R. To conclude also this case, we argue that at the end of this iteration we have
that (Bd \R) ∪ A ∈ I . Adding ej to our solution, which by induction hypothesis was independent
before, creates at most one (in this case exactly one) circuit in our solution (cf. Theorem 39.35 in
[32]). Since the binary search in Line 9 detects exactly this unique circuit, an element of the circuit
is added to R, which breaks the circuit and makes (Bd \R) ∪A independent again.

Lemma 3.3 (Property (i)). At the end of every iteration ℓ of Line 5, (Bd \R) ∪A is ℓ-safe.

Proof. First, we introduce some notations. Let Ak, Rk be the sets represented by the variables A,R
at the end of iteration k (equivalently at the beginning of iteration k + 1). We prove by induction
over the iterations of Line 5 that the statement holds at the end of every iteration. First, note that
every set is 0-safe, thus, this also applies to our solution before the first iteration of Line 5. Let
ℓ ∈ {1, . . . , n}. We write B = (Bd \Rℓ−1)∪Aℓ−1 for our preliminary solution after iteration ℓ−1,
and B′ = (Bd \Rℓ)∪Aℓ for the solution after iteration ℓ. By induction hypothesis, we can assume
that B is (ℓ − 1)-safe, and we now prove that B′ is ℓ-safe. To this end, we distinguish three cases
concerning element eℓ.

In the first case we assume that eℓ /∈ Bd, Then, the algorithm makes one more query (Line 6). If
B≤ℓ + eℓ /∈ I , it must hold that B is ℓ-safe, and since in this case B = B′, we are done. Otherwise,
that is, B≤ℓ + eℓ ∈ I , we add eℓ to A and, thus, B≤ℓ + eℓ = B′

≤ℓ. We now prove that B′
≤ℓ is part

of a maximum-weight basis, which implies that B′ is ℓ-safe. Let B∗ be some optimal basis such
that B≤ℓ−1 ⊆ B∗. Such a basis exists because B is (ℓ − 1)-safe by assumption. If eℓ ∈ B∗, then
also B′

≤ℓ ⊆ B∗, and we are done. Otherwise, that is, eℓ /∈ B∗, there must be a circuit C in B∗ + eℓ.

19

Moreover, C must contain some other element ek with k > ℓ, because B′
≤ℓ ∈ I due to Lemma 3.2.

By the ordering of the elements, weℓ ≥ wek , and therefore B∗+eℓ−ek is a maximum-weight basis.
Further, it contains B′

≤ℓ. Thus, we conclude B′
≤ℓ ∈ I∗.

For the second case, suppose that eℓ ∈ Bd \Rℓ−1. Thus, the condition in Line 6 evaluates false, and
we have B = B′. Thus, B′

≤ℓ = B≤ℓ−1 + eℓ, and we can prove analogously to the previous case
that B′

≤ℓ in included in a maximum-weight basis.

Finally, it remains the case where eℓ ∈ Rℓ−1. In this case, eℓ is added to R in some earlier iteration
ℓ′ < ℓ, and, thus, eℓ /∈ B′. Also, B = B′ because eℓ ∈ Bd. We show that B′

≤ℓ−1 + eℓ is dependent,
which implies that B′ is ℓ-safe. To this end, we prove for q = ℓ′, . . . , ℓ − 1 the invariant that
((Bd \ Rq) ∪ Aq)≤ℓ−1 + eℓ contains a circuit C such that eℓ ∈ C and that eℓ is the element with
the largest index in C. Note that the invariant holds at the time eℓ is added to R in iteration ℓ′ due to
Lines 3 and 10. Suppose the invariant holds for q = j − 1, witnessed by circuit C1. We now prove
the invariant for q = j. If C1 ⊆ ((Bd \Rj)∪Aj)≤ℓ−1 + eℓ, we are done. Otherwise, the algorithm
must have added element ej ∈ C1 to R in iteration j. By Lines 2 and 9, ej is the element with largest
index in a circuit C2 in (Bd \Rj−1)∪Aj . As eℓ has the largest index in C1 by induction hypothesis
and ej ∈ C1, we conclude j < ℓ. Thus, eℓ /∈ C2. Since ej ∈ C1 ∩ C2 and eℓ ∈ C1 \ C2, there
exists a circuit C3 ⊆ (C1 ∪ C2) \ {ej} such that eℓ ∈ C3 (cf. Theorem 39.7 in [32]). In particular,
C3 ⊆ ((Bd \ Rj) ∪ Aj)≤ℓ−1 + eℓ and eℓ has the largest index in C3. This makes C3 a witness for
the invariant for q = j, and, thus, concludes the proof.

Lemma 3.5. It holds that |A| ≤ ηA and |R| ≤ ηR.

Proof. Let A∗ = A(Bd), R∗ = R(Bd) be some minimum modification sets for Bd and I∗ =
(Bd ∪A∗) \R∗. We choose A∗ and R∗ such that |R△R∗|+ |A△A∗| is minimized. By definition,
I∗ ∈ B∗, and we have |R∗| ≤ ηR and |A∗| ≤ ηA.

Let I denote the solution computed by the algorithm. If all elements have distinct weights, it is well
known that a maximum-weight basis is unique. Since I is n-safe by Corollary 3.4, no elements can
be added to I while maintaining independence inM∗. Hence, I = I∗. Further, since R∩A = ∅, we
have |R| = |R∗| and |A| = |A∗|, which asserts the statement in this case. The same argumentation
holds if some elements have the same weight and I = I∗ holds.

Hence, we assume from now on I ̸= I∗ for the sake of contradiction. Let κ < n be the number of
distinct weights. We partition E according to weight into weight classes of elements with the same
weight. We use subscript i on any set of elements to refer to the subset of elements of the ith weight
class. Since I is n-safe by Corollary 3.4, both I and I∗ have maximum weight. Using again the
observation that A ∩R = ∅, we have that

|Ri| − |Ai| = |R∗
i | − |A∗

i | and |Ii| = |I∗i | (1)

for every i ∈ [κ].

We now either find new modification sets R̃∗ and Ã∗ with |R△R̃∗|+|A△Ã∗| < |R△R∗|+|A△A∗|
or show I∗ /∈ B∗; a contradiction in both cases. In the former case, we additionally require that

|R∗| = |R̃∗|, |A∗| = |Ã∗| and Ĩ∗ ∈ B∗. (2)

That is, R̃∗ and Ã∗ are minimum modification sets.

Let i be the weight class of the largest weight such that Ii ̸= I∗i . Since |Ii| = |I∗i |, we have
I∗i \ Ii ̸= ∅.

If there exists an element e ∈ (I∗i \ Ii) ∩ A∗
i , there exists an element e′ ∈ Ii \ I∗i with Ĩ∗ := I∗ −

e+ e′ ∈ B∗ due to the basis exchange property (cf. Theorem 39.6 in [32]). If e′ ∈ ((Bd)i \Ri) \ I∗i ,
setting R̃∗ := R∗ − e′ and Ã∗ := A∗ − e we obtain Ĩ∗ := (Bd \ R̃∗) ∪ Ã∗ ∈ B∗. However,
this contradicts our assumption that A∗ and R∗ are minimum modification sets for Bd since |R̃∗|+
|Ã∗| < |R∗| + |A∗|. Thus, e′ ∈ Ai \ I∗i . Therefore, setting R̃∗ := R∗ and Ã∗ := A∗ − e + e′

implies (2) and contradicts our minimality assumption on |R△R∗|+ |A△A∗| since e′ ∈ A \A∗.

Otherwise, it must hold that A∗
i ⊆ Ai, and there must exist an element e ∈ (I∗i \ Ii)∩ ((Bd)i \R∗

i).
If A∗

i = Ai, there must exist an element e′ ∈ ((Bd)i \ Ri) ∩ R∗
i such that I∗ − e + e′ ∈ B∗ by

20

the basis exchange property. Setting R̃∗
i = R∗

i − e′ + e and Ã∗ = A∗ in this case implies (2) and
contradicts again our minimality assumption on |R△R∗|+ |A△A∗|. Therefore, A∗

i ⊊ Ai and, in
particular, |A∗

i | < |Ai|. Due to (1) and (2), |R∗
i | < |Ri|. Observe that for all 1 ≤ j ≤ i− 1, we have

by our choice of i that I∗j = Ij . In the prefix P =
∪i−1

j=1 Ij ∪ (Bd)i, our algorithm guarantees that
the largest independent set in P has size |P |− |Ri|. This implies P \R∗

i /∈ I , which contradicts our
assumption that I∗ is a basis.

Lemma 3.6. Algorithm 1 computes a max-weight basis with at most n−r+1+2ηA+ηR ·⌈log2(rd)⌉
clean queries.

Proof. The correctness follows from Corollary 3.4. It remains to bound the number of clean queries.
Note that we use clean-oracle calls only in Lines 2,3,6,8 and 9.

In Lines 3 and 9, each removal incurs a binary search, which costs at most ⌈log2(rd)⌉ queries. Since
every binary search increments the size of R, the total number of queries used in these lines is at
most ⌈log2(rd)⌉ · |R|. In Line 2, the number of queries is equal to the number of elements added to
R in Line 4 plus a final one where the condition evaluates false, which we charge extra. Similarly,
we charge the queries in Line 8 to the removals in Line 10 if Line 8 holds and to the added element
in Line 7 otherwise. In Line 6, we have that each e ∈ E \Bd incurs a query, hence the total number
is n− rd.

Summarized, the total number of clean queries is at most ⌈log2(rd)⌉ · |R|+ |R|+1+ |A|+n− rd.
Using r = rd + ηA − ηR and Lemma 3.5, we conclude the proof.

Lemma 3.7. Every deterministic algorithm for finding a maximum-weight basis executes strictly
more than n− r + ηA + ηR · ⌈log2(rd)⌉+ 1 clean-oracle calls in the worst-case.

Proof. Consider the ground set of elements E = {e1, . . . , en} with weights wei = n + 1 − i for
all ei ∈ E. Let the dirty matroid Md be a partition matroid that is defined by the two classes
C1 = {e1, . . . , en−1} and C2 = {en} with capacities n − 2 and 1, respectively. That is, each set
I ⊆ E with |I∩C1| ≤ n−2 and |I∩C2| ≤ 1 is independent inMd. Then, Bd = E \{en−1} is the
only dirty maximum-weight basis. Furthermore, ifM =Md, then the only way of verifying that
Bd is indeed a maximum-weight clean basis is to query Bd and {e1, . . . , en−1}. The first query is
necessary to prove independence and the second query is necessary to prove that Bd is a maximum-
weight basis. Note that querying Bd and E would also suffice to prove that Bd is a basis, but it
would not exclude the possibility that {e1, . . . , en−1} is also a basis with strictly more weight. Thus,
the queries Bd and E are not a certificate for proving that Bd is a maximum-weight basis.

Consider an arbitrary deterministic algorithm. We prove the statement by giving an adversary that,
depending on the algorithms clean-oracle calls, creates a clean matroidM that forces the algorithm
to execute strictly more clean-oracle calls than the bound of the lemma.

First, we can observe that ifM =Md, we have n− r+ ηA + ⌈log2(rd)⌉ · ηR +1 = 2. This means
that if the algorithm starts by querying anything but Bd or P := {e1, . . . , en−1}, the adversary can
just useMd as the clean matroid. By the argumentation above, the algorithm then has to also query
Bd and P , leading to 3 > 2 queries. Thus, it only remains to consider algorithms that start by
querying either Bd or P .

Case 1: The algorithm queries P first. In this case, the adversary will return false. Note that this
answer is consistent with the dirty matroid Md. This implies that the algorithm has to query Bd

next, as the adversary can otherwise select M = Md, which again forces the algorithm to also
query Bd. Thus, the algorithm would execute 3 > 2 queries.

Consider the case where the second query of the algorithm goes to Bd. We define the adversary to
return that Bd is not independent.

Instead, the adversary will select a clean partition matroid that is defined by the three classes C ′
1 =

{e1, . . . , en−2}\{ē} for an element ē ∈ {e1, . . . , en−2} that is selected by the adversary in response
to the further clean-oracle calls by the algorithm, C ′

2 = {ē, en−1} and C ′
3 = {en}. The capacities

will be n − 3, 0 and 1, respectively. This implies ηR = 1 as the element ē induces a removal error,
and ηA = 0 as en−1 is still not part of any maximum-weight basis, and n − r = 2. The bound of
the lemma then becomes n− r + ηA + ⌈log2(rd)⌉ · ηR + 1 = 3 + ⌈log2(rd)⌉.

21

Following the proof of Lemma B.6, the adversary can force the algorithm to use ⌈log2
(
rd−1

1

)
⌉ =

⌈log2 (rd − 1)⌉ oracle calls to find the element ē. If we pick rd as a sufficiently large power of two,
we get ⌈log2 (rd − 1)⌉ = ⌈log2 rd⌉.
Note that queries containing en−1 do not contribute to finding ē as they always return false. This
implies that the algorithm needs an additional query containing en−1 to prove that (Bd \ {ē}) ∪
{en−1} is not independent in the clean matroid. Combined with the two queries to Bd and P and
the ⌈log2 rd⌉ queries for finding ē, this already leads to 3+⌈log2(rd)⌉ queries. Any additional query
would imply that the algorithm executes strictly more queries than the bound of the lemma.

The algorithm however needs one additional query to verify that Bd \ {ē} is independent. Note that
the query Bd \ {ē} could in principle be executed during the search for ē. However, the adversary
would only answer true to a query of form Bd \ {e} for any e ∈ Bd if e is the only remaining
choice for ē since returning true to that query would reveal e = ē, which the adversary never does.
However, if e is the only remaining choice for ē, then algorithm already knows ē, which means that
the query is not counted within the ⌈log2 rd − 1⌉ = ⌈log2 rd⌉ for finding ē. In total, this leads to
4 + ⌈log2 rd⌉ > 3 + ⌈log2 rd⌉ queries.

Case 2: The algorithm queries Bd first. Then, the adversary will return true, which is consistent with
the dirty matroid. In order to avoid three queries in case that the adversary choosesM =Md, the
algorithm has to query P next. The adversary will answer that P is indeed independent and choose
E as the only basis of the clean matroid. Afterwards, the algorithm has to query also E to prove that
E is indeed independent. This leads to a total of three queries. However, we have n−r = 0, ηA = 1
and ηR = 0, which implies n− r + ηA + ⌈log2(rd)⌉ · ηR + 1 = 2 < 3.

Theorem 3.8. For any k ∈ N+, there is an algorithm that, given a dirty matroid Md of rank rd
with unknown ηA and ηR, computes a maximum-weight basis of a matroidM of rank r with at most
min{n− r + k + ηA · (k + 1) + ηR · (k + 1)⌈log2 rd⌉, (1 + 1

k)n} oracle calls toM.

Proof. To prove this theorem, we consider Algorithm 2. It is not hard to see that the correctness of
Algorithm 2 follows from the correctness of Algorithm 1. We now prove the stated bound on the
number of clean-oracle calls.

The algorithm uses clean-oracle calls only in Lines 5, 8, 9, and 11. We separately prove the error-
dependent bound and the robustness bound.

Proof of the error-dependent bound. We start by bounding the number of queries in Lines 5, 9,
and 11:

• In Line 5, each element e ∈ E \ Bd incurs a query and the total number of such queries is
n− rd.

• In Line 11, the binary search is incurred by elements in R. Thus, the total number of such
queries is at most |R|⌈log2 rd⌉.

• To bound the number of queries in Line 9, we observe that whenever q reaches k − 1, we
execute one such query, unless ℓ = dmax, because then we know that ((Bd \R) ∪A)≤ℓ =
(Bd\R)∪A and the independence follows because the condition in Line 10 evaluated false.
Therefore, it suffices to bound how often q reaches k− 1. Note that q can be decreased to 0
only in Lines 8, 9, and 12. Lines 8 and 12 correspond to an element in R and Line 9 sets the
variable LS to false which must have been set to true by Line 2 or Line 5 (in which case
we added an element to A). Hence, we conclude that the number of times q reaches k − 1,
which upper bounds the number of queries executed in Line 9, is at most |R|+ |A|+ 1.

In total, the number of clean queries in Lines 5, 9, and 11 is at most

n− rd + |R|⌈log2 rd⌉+ |R|+ |A|+ 1. (3)

It remains to bound the number of queries executed in Line 8. To this end, we first show q ≤ k − 2
when the algorithm terminates. This follows from the fact that at the end of the algorithm we have
a feasible solution by Corollary 3.4. Assume for contradiction that q ≥ k − 1 at the end of the
algorithm. Then at some previous iteration, we entered Line 9. Consider the iteration with largest

22

index in which we entered Line 9. Note that the if-statement in Line 9 has to be false as otherwise q
was set to 0 again. But, in particular, this implies that the current solution (Bd\R)∪A in this iteration
is not independent and hence the algorithm must enter Line 8 or Line 11 at some later iteration in
order to output an independent solution. This implies that q is set to 0 again, a contradiction.

Observe that q is increased by 1 before each query executed in Line 8 and the number of times q is
increased is at most the total decrease of q plus k − 2 (the value of q at the end of the algorithm).
As shown before, q can only be decreased by k − 1 in Line 9 which happens at most |A|+ 1 times,
or decreased by at most k⌈log2 rd⌉ in Lines 8 or 12, which happens |R| times. To be more precise,
Line 9 is executed at most |A| (rather than |A| + 1) times if q > 0 at the end of algorithm. This
follows from the fact that q > 0 implies LS = true at the end of the algorithm, which means Line 9
is not executed after the last execution of Line 5.

To finally bound the number of queries in Line 8 we distinguish whether q = 0 or q > 0 holds at the
end of the algorithm. If q > 0 at the end of the algorithm, then the number of queries executed in
Line 8 is at most |A| · (k− 1)+ |R| · k⌈log2 rd⌉+ k− 2, where the additive k− 2 are caused by the
final at most k − 2 increases of q at the end of the algorithm after the last reset of q. If q = 0, then
there are no final queries after the last reset of q. However, as argued above, Line 9 is potentially
executed (|A| + 1) times instead of only |A| times. Thus, the number of queries in Line 8 in that
case is at most (|A|+ 1) · (k− 1) + |R| · k⌈log2 rd⌉. In both cases, the number of queries in Line 8
is at most

|A| · (k − 1) + |R| · k⌈log2 rd⌉+ k − 1. (4)
We can conclude the target bound on the number of clean queries by summing up Equation (3) and
Equation (4), plugging in rd+|A|−|R| = r and using Lemma 3.5, which also holds for Algorithm 2:

n− rd + |R|⌈log2 rd⌉+ |R|+ |A|+ 1 + |A| · (k − 1) + |R| · k⌈log2 rd⌉+ k − 1

= n− rd + |R|+ |A| · k + |R| · (k + 1)⌈log2 rd⌉+ k

= n− (r − |A|+ |R|) + |R|+ |A| · k + |R| · (k + 1)⌈log2 rd⌉+ k

= n− rd + |A| · (k + 1) + |R| · (k + 1)⌈log2 rd⌉+ k

≤ n− rd + ηA · (k + 1) + ηR · (k + 1)⌈log2 rd⌉+ k.

Proof of the robustness bound. Let QA denote the set of queries of Line 5 that trigger the execu-
tion of A ← A + el, i.e., QA contains the queries that detect an addition error. Let QN denote the
queries of Line 5 that do not trigger the execution of A ← A + el and let QR denote the set of all
remaining queries.

First, observe that each query in QN is incurred by a distinct element of E \ (Bd ∪ A). Thus, we
have |QN | = n− rd − |A|.
Next, we continue by bounding |QA| and |QR|. To this end, we partition QR into segments Ti. A
segment Ti contains the queries of QR that occur after the i’th reset of variable q but before reset
i + 1. We use reset to refer to an execution of Line 2, 8, 9 or 12 that sets the variable q to 0. Since
we count the execution of Line 2 as a reset, segment T1 contains the queries of QR that take place
between the execution of Line 2 and the first execution of Line 8, 9 or 12 (if such an execution
exists).

For a segment Ti, let qi denote the current value of variable q at the final query of the segment. We
distinguish between long, short and tiny segments:

• A segment Ti is long if it contains queries executed in Line 11.

• A segment Ti is tiny if it satisfies qi ≤ k − 1.

• A segment is Ti is short if it is neither long nor tiny.

First, consider the long segments. Let Ilong denote the index set of the long segments and let Llong =∑
i∈Ilong

qi. Each long segment Ti contains k⌈log2 rd⌉ queries of Line 8 since qi must increase to
at least this value in order to trigger queries in Line 11 and q is reset afterwards. Additionally,
the segment must contain a query of Line 9 as qi increases to a value larger than k − 1. Finally,
Ti contains up-to ⌈log2 rd⌉ queries of Line 11. Thus, a long segment Ti contains at most (k +

1)⌈log2 rd⌉+1 queries. The number of long segments is at most Llong

k⌈log2 rd⌉ as each long segment Ti

23

has qi = k⌈log2 rd⌉. By using that the total number of long segments is also at most |R| (since each
execution of Line 11 finds a distinct removal error), we get that the total number of queries over all
long segments is∑
i∈Ilong

|Ti| ≤
Llong

k⌈log2 rd⌉
((k+1)⌈log2 rd⌉+1) =

(
1 +

1

k

)
Llong+|Ilong| ≤

(
1 +

1

k

)
Llong+|Rlong|,

where Rlong ⊆ R denotes the set of removal errors that where added to R in Line 12.

Next, consider the short segments. As before let Ishort denote the index set of the short segments and
let Lshort =

∑
i∈Ishort

qi. A short segment Ti contains exactly qi queries of Line 8. Furthermore, it
must contain a query of Line 9 since it is not tiny and, thus, has qi ≥ k − 1. This implies that Ti

contains qi + 1 = (1 + 1
qi
)qi queries. As Ti is not tiny, we have (1 + 1

qi
)qi ≤ (1 + 1

k)qi. We can
conclude that the total number of queries over all short segments is at most∑

i∈Ishort

|Ti| ≤
(
1 +

1

k

) ∑
i∈Ishort

qi =

(
1 +

1

k

)
· Lshort.

Finally, consider the tiny segments. As before let Itiny denote the index set of the tiny segments and
let Ltiny =

∑
i∈Itiny

qi. Observe that each tiny segment Ti either ends with the reset in Line 14 or it
ends even before the reset because the algorithm terminates before qi reached value k−1. The latter
case can happen at most once in the final segment. Since each reset in Line 9 sets the LS flag to
false and the flag is only set to true again in Line 5 when an addition error is detected, the number
of tiny segments is at most 1 + |A|.
Each tiny segment contains at most qi +1 queries (up-to qi in Line 8 and up-to one in Line 9). Let t
denote the index of the final segment and let L̄tiny =

∑
i∈Itiny\{t} qi. Without the final segment, we

get ∑
i∈Itiny\{t}

|Ti| =
∑

i∈Itiny\{t}

(qi + 1) = L̄tiny + |Itiny| − 1 = L̄tiny + |A|.

We can combine the bound for the queries of these tiny segments with a bound for |QA|. Since
each query of QA detects an addition error in Line 5, we have |QA| = |A|. Furthermore, we have
L̄tiny + |A| = k · |A| as there are |A| tiny segments that are not the final one and each such segment
Ti has qi = k − 1. Putting it together we achieve the following combined bound:∑

i∈Itiny\{t}

|Ti|+ |QA| = L̄tiny + |A|+ |A| ≤
(
1 +

1

k

)
· (L̄tiny + |A|).

It remains to consider the final segment Tt. If this segment does not query in Line 9, then we have
|Tt| = qt. In this case, we can combine all previous bounds and use that Llong +Lshort + L̄tiny + qt +
|A| ≤ rd + |A| − |Rlong| to conclude that the total number of queries is at most:

|QN |+ |QR|+ |QA| = |QN |+
∑
i∈Ilong

|Ti|+
∑

i∈Ishort

|Ti|+
∑

i∈Itiny\{t}

|Ti|+ |QA|+ |Tt|

≤ n− rd − |A|+
(
1 +

1

k

)
· (L̄tiny + |A|+ Lshort + Llong) + |Rlong|+ qt

≤ n− rd − |A|+
(
1 +

1

k

)
· (rd + |A| − |Rlong|) + |Rlong|

≤
(
1 +

1

k

)
(n− rd − |A|+ rd + |A| − |Rlong|+ |Rlong|) =

(
1 +

1

k

)
n.

Note that the last inequality holds because |A| ≤ n− rd.

If Tt executes a query in Line 9, then we have |Tt| = qt + 1. On the other hand, the query in Line 9
implies ℓ < dmax for the current index ℓ when the query is executed and for dmax = maxei∈Bd

i.
This means that the variable q is increased at most rd − |Rlong| − 1 times and, thus, Llong + Lshort +

24

L̄tiny + qt + |A| ≤ rd + |A| − |Rlong| − 1. Plugging these inequalities into the calculations above
yields the same result:

|QN |+ |QR|+ |QA| = |QN |+
∑
i∈Ilong

|Ti|+
∑

i∈Ishort

|Ti|+
∑

i∈Itiny\{t}

|Ti|+ |QA|+ |Tt|

≤ n− rd − |A|+
(
1 +

1

k

)
(L̄tiny + |A|+ Lshort + Llong) + |Rlong|+ qt + 1

≤ n− rd − |A|+
(
1 +

1

k

)
(rd + |A| − |Rlong| − 1) + |Rlong|+ 1

≤
(
1 +

1

k

)
(n− rd − |A|+ rd + |A| − |Rlong| − 1 + |Rlong|+ 1)

=

(
1 +

1

k

)
n.

This concludes the proof of Theorem 3.8.

D Proofs omitted from Section 4

D.1 Discussion omitted from Section 4.1

Another commonly used type of matroid oracle is the rank oracle: given any S ⊆ E, a rank oracle
returns the cardinality of a maximum independent set contained in S, denoted by r(S). We show
in this section that a rank oracle can be much more powerful than an independence oracle for our
problem. First note that since r(S) = |S| if and only if S ∈ I , our previous results for independence
oracles immediately translate. Moreover, we can even reduce the number of oracle calls using a rank
oracle. We briefly discuss key ideas for the unweighted case below. It would be interesting to see
whether these ideas can also be used for the weighted case.

We start by adapting the simple algorithm from Section 2: Assume w.l.o.g. Bd ̸= ∅. If r(Bd) ̸= |Bd|
(Bd /∈ I), we run the greedy algorithm. Otherwise, we check whether r(E) = |Bd|. If it holds, we
can conclude Bd ∈ B and are done. (This is the main difference compared to the simple algorithm
with an independence oracle.) If not, we greedily try to add each element e ∈ E \Bd using in total
n − |Bd| ≤ n − 1 queries. Thus, in every case the algorithm does at most n + 1 clean-oracle calls.
Moreover, unlike the simple algorithm with an independence oracle, it only does 2 oracle calls if
Bd ∈ B. In particular, this shows that Lemma B.1 does not hold for rank oracles anymore.

Using the same idea, we can improve the number of oracle calls whenever Bd ∈ B for the error-
dependent algorithm from Section 2.1 to 2. Furthermore, we can also improve its worst-case number
of queries from Θ(n log2 n) to n+ 1. Recall that this bad case happens when ηR is large. However,
now we can simply compute r(Bd) and obtain ηR = |Bd| − r(Bd). Depending on ηR, we then
decide whether to remove elements via binary-search or immediately switch to the greedy algorithm.
In particular, achieving this worst-case guarantee of n+1 does not affect the error-dependent bound
on the number of oracle calls.

Finally, we can improve the dependency on ηA. Recall that in the error-dependent algorithm, we
iteratively augment an independent set B with ηA many elements from E \ Bd to a basis. But with
a rank oracle, we can find these elements faster via binary search: find the first prefix (E \ Bd)≤i

which satisfies r(B∪(E \Bd)≤i) > r(B), and add (E \Bd)=i to B. Doing this exhaustively incurs
at most ηA⌈log2(n− rd)⌉ clean-oracle calls. Thus, whenever ηA < n−rd

⌈log2 (n−rd)⌉ , this strategy gives
an improved error-dependent bound over considering elements in E \Bd linearly. Furthermore, this
condition can be easily checked with the rank oracle. Note that this contrasts Lemma B.2.

To conclude the discussion, we obtain the following proposition.

Proposition 4.1. There is an algorithm that computes a clean basis with at most min
{
n + 1, 2 +

ηR · ⌈log2 rd⌉+min
{
ηA · ⌈log2(n− rd)⌉, n− rd

}}
clean rank-oracle calls.

25

D.2 Proofs omitted from Section 4.3

In the matroid intersection problem we are given two matroidsM1 = (E, I1) andM2 = (E, I2)
on the same set of elements E and we seek to find a maximum set of element X ⊆ E such that
X ∈ I1 ∩ I2, i.e., it is independent in both matroids. For i ∈ {1, 2} we define ri to be the rank of
matroid Ii.

D.2.1 Matroid intersection via augmenting paths

The textbook algorithm for finding such a maximum independent set is to iteratively increase the
size of a solution by one and eventually reach a point in which no improvement is possible; in that
case we also get a certificate: U ⊆ E with |X| ≥ r1(U) + r2(E \U). Given some feasible solution
X ∈ I1 ∩ I2, in every iteration the algorithm executes the following steps.

1. Construct the directed bipartite exchange graph D(X) for sets X and E \ X , where for
every x ∈ X and y ∈ E \ X there is an edge (x, y) if X − x + y ∈ I1 and there is
an edge (y, x) if X − x + y ∈ I2. Compute sets Y1 = {y ∈ E \ X | X + y ∈ I1}
and Y2 = {y ∈ E \X | X + y ∈ I2}.

2. If Y1 = ∅ terminate with certificate U = E. If Y2 = ∅ terminate with certificate U = ∅.
Otherwise, compute a shortest path P between any vertex of Y1 and any vertex of Y2.

3. If no such path exists, terminate with the certificate U ⊆ E of elements for which there
exists a directed path in D(X) to some element of Y2. Otherwise, augment X along P ,
that is, X ← X△P , and continue with the next iteration.

We call the path found in step 2 an augmenting path. The running time of this classic algorithm is
O(r2n) [17], where n = |E| and r = min{r1, r2}. Recently, there has been a lot of significant
progress concerning the running times for matroid intersection, culminating in the currently best
running time of O(nr3/4) for general matroids [6] and time O(n1+o(1)) for special cases, e.g., the
intersection of two partition matroids [11].

Here, we focus on improving the running-time of the simple textbook algorithm for matroid intersec-
tion, by (i) using dirty oracles calls in each of the augmentation steps or (ii) by using warm-starting
ideas, i.e., by computing a feasible solution of a certain size dependent on the error using an optimal
dirty solution.

Formally, additionally to the input for matroid intersection we are also given two dirty matroids
M1

d = (E, I1d) and M2
d = (E, I2d). Our goal is to improve the classic textbook algorithm from

above by using dirty-oracle calls. We attempt the following approach: Given a feasible solution X
(for the clean oracles), we do one iteration of the above algorithm using the dirty oracles. If there
is an augmenting path, which is also an augmenting path for the clean matroids, we augment our
solution and go to the next iteration. Otherwise, we found an augmenting path using dirty oracles,
which is not an augmenting path for the clean matroids. In this case we do a binary search to find the
error, update our dirty matroids and start the algorithm again. Finally, if there is no augmenting path
in the dirty matroid, we need to augment the solution using clean-oracle calls, as we do not benefit
from using the dirty oracle anymore. To avoid this situation, throughout this section we assume that
the dirty matroids are supersets of the clean matroids, i.e., I1 ⊆ I1d and I2 ⊆ I2d .

Further, in step 2 of the augmenting path algorithm it is crucial that the path from Y1 to Y2 is a
path without chords1, as otherwise the computed solution may not be feasible. Note that in step 2
we compute a shortest path, which is always a path without chords. Therefore, if we use the dirty
oracles to compute a shortest path w.r.t. the dirty oracles, we need to verify in each step that the
computed path has no chords for the clean matroids as well. To avoid such a situation, we restrict
to the case that the clean matroids are partition matroids, as for those matroids we do not need to
find an augmenting path without chords, but just any augmenting path. We note that in general the
intersection of two partition matroids can be reduced to finding a maximum b-matching.

Therefore, from now on we assume that the clean matroids are partition matroids and that the dirty
matroids are supersets of the clean matroids. Our algorithm works as follows. We assume that we

1A chord e of some s-t path P is an edge such that P + e admits an s-t path P ′ that is strictly shorter than
P .

26

are given a feasible solution for the clean matroid and wish to increase its size by one if possible.
Additionally, we are given two lists F1 and F2 of false dirty queries forM1

d andM2
d, respectively,

i.e., two list of sets F ⊆ E for which we have already queried that F is not independent inM1 or
M2, respectively (but it was independent in the respective dirty matroid). For each iteration, we use
the following algorithm.

Algorithm 4: Augmenting path via dirty oracles

Input: A feasible solution X ∈ I1 ∩ I2 and two lists of false dirty queries F1,F2

1 Compute augmenting path P in DF
d (X)

2 if there is no such path P then
3 return X (in this case X is optimal)
4 if P is augmenting path for clean matroids then
5 X ′ ← X∆P , F ′

1 ← F1,F ′
2 ← F2

6 if P is not an augmenting path for clean matroids then
7 find the first edge on P such that e /∈ D(X) via binary search. Add corresponding set to F1

or F2 and go to Line 1.

Here, DF
d (X) is the bipartite exchange graph for the dirty matroidsM1

d andM2
d, in which we have

excluded the list of false queries F . More formally, for every x ∈ X and y ∈ E \ X there is an
edge (x, y) in DF

d (X) if X−x+y ∈ I1 and X−x+y /∈ F1 and there is an edge (y, x) in DF
d (X)

if X − x+ y ∈ I2 and X − x+ y /∈ F2.

Next, we analyze this augmenting path algorithm. In order to define an error measure, let η1 = {F ∈
I1d | F /∈ I1} and η2 = {F ∈ I2d | F /∈ I2} be the number of different sets which are independent
in the dirty matroid but not independent in the clean matroid. We now show the following result,
which is stronger than Proposition 4.2.

Proposition D.1. LetM1 andM2 be two partition matroids andM1
d andM2

d be two dirty matroids
such thatM1

d andM2
d are supersets ofM1 andM2, respectively. Given a feasible solution X ∈

I1 ∩I2 of value k, there is an algorithm that either returns a solution of value k+1 or outputs that
X is maximum using at most 2 + (η1 + η2) · (⌈log2(n)⌉+ 2) clean-oracle calls.

Moreover, there is an algorithm that computes an optimum solution for matroid intersection using
at most (r + 1) · (2 + (η1 + η2) · (⌈log2(n)⌉+ 2)) clean-oracle calls.

Proof. We first prove that the solution output by the algorithm is feasible. If there is no augmenting
path in DF

d (X), then there is no augmenting path in D(X) since the dirty matroids are supersets of
the clean matroids and in F1 and F2 we only save queries which are not independent in the clean
matroid. Once we find an augmenting path P in DF

d (X), we always verify it using two clean-oracle
calls: We query if X∆P is independent in M1 and in M2. Hence, we only augment X if the
augmenting path P is also an augmenting path in D(X). Since both clean matroids are partition
matroids, we do not need to verify that P is an augmenting path without chords and hence X∆P is
an independent set in both clean matroids.

It remains to prove that we use at most 2 + (η1 + η2) · ⌈log2(n)⌉ clean-oracle calls. As described
above, after finding an augmenting path P in DF

d (X), we verify it using two clean-oracle calls: We
query if X∆P is independent in M1 and in M2. If it is independent, we are done. This check
needs 2 clean-oracle calls. Otherwise, one of the queries tells us that X∆P is not independent, i.e.,
one of the edges e in P corresponds to a resulting set Xe such that Xe is independent in, sayM1

d,
but not independent inM1. In particular, in this case Line 7 is executed.

We now show the following: Whenever Line 7 is executed, we add to F1 or F2 an additional set and
we can find such a set using at most log2(n) many clean-oracle calls. Since |F1|+ |F2| ≤ η1 + η2
by definition, this shows the desired bound.

The exchange graph D(X) is a subgraph of the exchange graph DF
d (X) since the dirty matroids

are supersets of the clean matroid and by definition of F1 and F2. Hence, if P = e1, e2, ..., ep is
an augmenting path in DF

d (X) but not an augmenting path in D(X), there must be an edge ei ∈ P
which is not in D(X). Let ei be the first such edge. In order to find ei, we simply do a binary search:

27

In each iteration, we have two pointers ℓ and r, satisfying 0 ≤ ℓ ≤ i and i ≤ r ≤ p, for which we
know that the first ℓ edges of P are also in D(X) and among the edges eℓ+1, ..., er there must be
an edge which is not in D(X). Then, for P ′ = e1, e2, ..., eℓ+⌊ r−ℓ

2 ⌋ we simply query if X∆P ′ is

independent in both clean matroids. If yes, then we set ℓ = ℓ+ ⌊ r−ℓ
2 ⌋. If no, we set r = ℓ+ ⌊ r−ℓ

2 ⌋.
We repeat this until we found ei. This binary search algorithm finds the first edge e ∈ P which is not
in D(X) using at most ⌈log2(n)⌉ many clean-oracle calls, where n is the number of elements |E|.
The additional +2 in the bound appears since whenever we compute a new candidate augmenting
path P , we first test if it is also an augmenting path in D(X) using 2 clean-oracle calls. Therefore,
we obtain the bound of at most 2 + (η1 + η2) · (⌈log2(n)⌉+ 2) clean-oracle calls.

We obtain the final bound of (r+1)·(2+(η1+η2)·(⌈log2(n)⌉+2)) clean-oracle calls for computing
an optimum solution for matroid intersection as follows: In each iteration we increase the size of
the current solution by one or prove that there is no improvement possible (and hence the solution is
optimal). Therefore, there are at most r + 1 iterations, which proves the bound.

D.2.2 Matroid intersection via warm-starting using a dirty solution

In this subsection we consider the task of using a solution to the dirty matroid intersection instance
as a “warm-start” for the clean matroid intersection instance. In particular, we compute a maximal
subset of the dirty solution using only few clean-oracle calls, which again will depend on the error
of the dirty matroids. Similar approaches for warm-starting using predictions have been used in [10,
16, 31] for problems like weighted bipartite matching or weighted matroid intersection. We show
here that this is also possible using dirty matroids.

Before we start with the algorithm, let us define our error measure for this subsection. Here, we are
just interested in the removal error: for a given maximum solution Sd for the dirty matroid intersec-
tion, we compute the shortest distance to obtain a feasible solution to the clean matroid intersection
problem. Then, the error is simply the maximum value of this shortest distance among all maximum
solutions Sd for the dirty matroid intersection. More formally, let s∗d = maxSd∈I1

d∩I2
d
|Sd| and

define S∗d = {Sd ∈ I1d ∩ I2d | |Sd| = s∗d} to be the set of optimum solutions to the dirty matroid
intersection problem. We define ηr = maxSd∈S∗

d
minSc∈I1∩I2{|Sd \ Sc| : Sc ⊆ Sd}.

Our algorithm works as follows. We first compute a maximum solution Sd ∈ I1d ∩ I2d using some
algorithm for matroid intersection. Then, via binary search we greedily remove elements to first
obtain a solution which is in I1, and then do the same to obtain a solution which is also in I2. We will
then show that this solution satisfies |S′

c| ≥ |Sd|−2ηr and that we use at most 2+2ηr ·(1+⌈log2(n)⌉)
many clean-oracle calls to compute S′

c.

Algorithm 5: Obtaining a warm-start solution
Input: Two dirty and clean matroids.

1 Compute maximum-cardinality solution Sd ∈ I1d ∩ I2d
2 for i = 1, 2 do
3 if Sd ∈ Ii then
4 go to Line 2 with i = 2 or return S′

c = Sd if i = 2

5 else
6 sort elements in Sd in arbitrary order e1, e2, ..., e|Sd|
7 find the first element ej ∈ Sd such that {e1, ..., ej−1} ∈ Ii and {e1, ..., ej} /∈ Ii via

binary search. Set Sd = Sd − ej and go to Line 3

Proposition 4.3. There is an algorithm that computes a feasible solution S′
c ∈ I1 ∩ I2 of size

|S′
c| ≥ s∗d − 2ηr using at most 2 + 2ηr · (1 + ⌈log2(n)⌉) clean-oracle calls.

Proof. Feasibility is clear since we check in Line 3 for both matroids whether the solution is indeed
feasible. We first prove that we remove at most 2ηr many elements from Sd to obtain a feasible
solution S′

c ∈ I1 ∩ I2. By the definition of the error ηr, there is some set Sc ∈ I1 ∩ I2 with
Sc ⊆ Sd of size |Sd| − ηr. Hence, there is some set R1

η such that Sd \ R1
η ∈ I1 and some set R2

η

such that Sd\R2
η ∈ I2, where |R1

η| ≤ ηr and |R2
η| ≤ ηr. Therefore, S′

c := Sd\(R1
η∪R2

η) ∈ I1∩I2

28

and |S′
c| ≥ |Sd|−2ηr. Note that sinceM1 andM2 are matroids, the set R1

η can be found by greedily
removing elements from Sd such that Sd \ R1

η ∈ I1 and, afterwards, the set R2
η can be found by

greedily removing elements from Sd \ R1
η such that (Sd \ R1

η) \ R2
η ∈ I2. Since Algorithm 5

computes such a set, we conclude that Line 5 is executed at most 2ηr times.

Next, we show that whenever Line 5 is executed, we use at most ⌈log2(n)⌉ many clean-oracle calls.
We fix some i ∈ {1, 2}. Let e1, e2, ..., e|Sd| be any order of the elements. To find the first element
ej ∈ Sd such that {e1, ..., ej−1} ∈ Ii and {e1, ..., ej} /∈ Ii, the algorithm performs a binary
search. By folklore results, we use at most ⌈log2(n)⌉many clean-oracle calls to do so. Furthermore,
whenever Line 5 is executed, we have previously executed a clean query in Line 3. Finally, we
additionally need 2 clean-oracle calls, as Line 5 is executed for both matroids even if there is no
error at all. Therefore, we use at most 2 + 2ηr · (1 + ⌈log2(n)⌉) many clean-oracle calls.

29

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our results are mentioned in full detail in Section 1.1 and the main result
(Maximum-Weight Basis) appears in the abstract; in Section 1.2 we further relate to exist-
ing results. The rest of the paper is dedicated to proving these results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have clearly stated the necessary assumptions in the respective theorem
statements and mention generalizations, which require new algorithmic ideas.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

30

Answer: [Yes]
Justification: We have clearly stated the necessary assumptions in the respective theorem
statements. While we give (some) proof sketches in the main parts, the formal proofs to all
our theoretical results can be found in the appropriate section in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

31

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The paper does not include experiments requiring code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

32

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Since our research does neither involve human subjects or participants nor
use any datasets, the research process did not cause harm. Since we do not directly train
ML models, but rather analyze a theoretical framework within which ML models can be
used for matroid optimization, we do not anticipate negative societal impact or potential
harmful consequences.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Since we do not directly train ML models, but rather analyze a theoretical
framework within which ML models can be used for matroid optimization, we do not
anticipate a direct societal impact.

Guidelines:

33

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Since we do not train a ML model but analyze a theoretical framework of how
to decrease their query time or how to incorporate them into pre-existing algorithms, our
paper does not directly pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: As the paper is purely theoretical, we are not using existing assets. Where
applicable, we do cite the relevant papers with related and / or similar models.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.

34

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

35

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

36

	Introduction
	Our results
	Further related work
	Preliminaries
	Discussion of the model
	Organization of the paper

	Warm-up: computing an unweighted basis
	An error-dependent algorithm
	An error-dependent and robust algorithm

	Computing a maximum-weight basis
	Extensions and future work
	Rank oracles
	Dirty independence oracle with cost
	Matroid intersection

	Proofs omitted from sec:unweighted
	Proof of thm:simple
	Proofs omitted from sec:unweighted:robustness

	Lower bounds
	Proofs omitted from sec:weighted
	Proofs omitted from sec:extensions
	Discussion omitted from sec:extensions:ranks
	Proofs omitted from sec:extensions:matroid-intersection
	Matroid intersection via augmenting paths
	Matroid intersection via warm-starting using a dirty solution

