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ABSTRACT

Time series data is abundantly available in the real world, but there is a distinct
lack of large, labeled datasets available for many types of learning tasks. Semi-
supervised models, which can leverage small amounts of expert-labeled data along
with a larger unlabeled dataset, have been shown to improve performance over
unsupervised learning models. Existing semi-supervised time series clustering
algorithms suffer from lack of scalability as they are limited to perform learning
operations within the original data space. We propose an autoencoder-based semi-
supervised learning model along with multiple semi-supervised objective func-
tions which can be used to improve the quality of the autoencoder’s learned latent
space via the addition of a small number of labeled examples. Experiments on a
variety of datasets show that our methods can usually improve k-Means clustering
performance. Our methods achieve a maximum average ARI of 0.897, a 140% in-
crease over an unsupervised CAE model. Our methods also achieve a maximum
improvement of 44% over a semi-supervised model.

1 INTRODUCTION

Time series data can be defined as any data which contains multiple sequentially ordered measure-
ments. Real world examples of time series data are abundant throughout many domains, including
finance, weather, and medicine. One common learning task is to partition a set of time series into
clusters. This unsupervised learning task can be used to learn more about the underlying structure
of a dataset, without the need for a supervised learning objective or ground-truth labels. Clustering
time series data is a challenging problem because time series data may be high-dimensional, and is
not always segmented cleanly, leading to issues with alignment and noise.

The most basic methods for time series clustering apply general clustering algorithms to raw time
series data. Familiar clustering algorithms like hierarchical clustering or k-Means clustering algo-
rithms may be applied using Euclidean Distance (ED) for comparisons. Although ED can perform
well in some cases, it is susceptible to noise and temporal shifting. The improved Dynamic Time
Warping (DTW) (Berndt & Clifford, 1994) metric provides invariance to temporal shifts, but is ex-
pensive to compute for clustering tasks. A more scalable alternative to DTW exists in k-Shape, a
measure based on the shape-based distance (SBD) metric for comparing whole time series (Paparri-
zos & Gravano, 2017). Shapelet-based approaches such as Unsupervised Shapelets (Zakaria et al.,
2012) can mitigate issues with shifting and noise but are limited to extracting a single pattern/feature
from each time series.

One alternative approach for clustering time series data is to apply dimensionality reduction through
the use of an autoencoder. Autoencoders are capable of learning low-dimensional projections of
high-dimensional data. Both LSTM and convolutional autoencoders have been shown to be success-
ful at learning latent representations of time series data. These models can extract a large number of
features at each time step. After training an autoencoder model, the learned low-dimensional latent
representation can then be fed to an arbitrary clustering algorithm to perform the clustering task.
Because autoencoder models reduce the dimensionality of the data, they naturally avoid issues with
noise, and provide a level of invariance against temporal shifting.

Recently, the field of semi-supervised learning has shown great success at boosting the performance
of unsupervised models using small amounts of labeled data. Dau et al. (2016) proposes a solution
for semi-supervised clustering using DTW. However, this solution is still based on DTW, and as
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such suffers from scalability issues. He et al. (2019) proposes a constraint-propagation approach for
semi-supervised clustering, which may (but is not required to) be used in conjunction with DTW.
However, this solution still performs time series comparisons within the raw data space, which may
cause issues with scalability for large datasets.

In this paper, we present a semi-supervised deep learning model based on a convolutional autoen-
coder (CAE), which may be used to perform clustering on time series datasets. We also present new
semi-supervised learning objectives, adapted from well-known internal clustering metrics, which
can significantly improve clustering performance when provided with a small number of labeled
time series. We perform experiments to show that our semi-supervised model can improve perfor-
mance relative to an unsupervised model when applied for clustering tasks. We also implement
a lightly modified batch-based version of the semi-supervised learning solution shown presented
in Ren et al. (2018), and show that our proposed solutions are competitive. In the best case, our
model semi-supervised model shows a best-case improvement in ARI of 140% over an unsuper-
vised CAE model when applying k-Means clustering, and a best-case improvement of 44% over a
similar model.

In the remainder of this paper, Section 2 reviews the related work on time series clustering, Section
3 presents our proposed method for semi-supervised time series clustering, and in Section 4.1 we
discuss our experimental methodology and present our experimental results. Finally, Section 5
details our conclusions and avenues for future research.

2 RELATED WORK

One of the most common ways to perform time series clustering is to apply the k-Means algorithm.
By default, k-Means uses Euclidean Distance (ED). ED is efficient to calculate, and in many cases
shows good results (Ding et al., 2008). However, ED comparison will fail when two similar time
series are shifted temporally relative to one another. Additionally, ED comparisons are sensitive
to noisy data. The Dynamic Time Warping (DTW) metric (Berndt & Clifford, 1994) improves on
ED by computing a warping path between a pair of time series. This approach solves issues with
temporal shifting, but requiresO(N2) time to compute for two time series of lengthN . Recent work
has provided bounds for this computation (Keogh & Ratanamahatana, 2005), (Lemire, 2009), but the
scalability of DTW remains an issue for large datasets and long time series. The k-Shape algorithm
(Paparrizos & Gravano, 2015) is a scalable and performant alternative to DTW, and offers similar
performance to DTW at a lower computational cost. The Unsupervised Shapelets (Zakaria et al.,
2012) clustering method operates by forming clusters around common subsequnces extracted from
the data. This approach provides invariance against shifts since the shapelet may appear anywhere
within each time series, and also provides some invariance against noise or outliers within the data,
since elementwise comparisons only occur between shapelets, rather than the full time series. In
this regard, the UShapelet algorithm has some advantages over DTW and k-Shape. However, this
method is constrained to extracting a single shapelet/feature from each time series.

Recently, semi-supervised learning has shown the benefit of augmenting a large unlabeled dataset
with a small amount of labeled data. There is some existing work for applying semi-supervised
learning to time series clustering. The semi-supervised time series clustering solution presented in
Dau et al. (2016) proposes a modified version of DTW, which operates in a semi-supervised manner
using supervised constraints. However, this method still relies on performing DTW comparison
within the original data space, and as such is not a scalable solution for large datasets or long time
series. Another methodology for semi-supervised time series clustering is He et al. (2019) which
is a graph-based approach using supervised examples to generate positive and negative constraints
between points. This approach does not rely on DTW, but the algorithm still performs comparisons
in the original data space, which can be problematic as the length of the time series grows.

Popular deep learning frameworks such as LSTMs and CNNs may also be applied to time series
data. Both LSTM and CNN networks may be arranged as autoencoders, allowing for unsupervised
feature learning for clustering, compression, or anomaly detection tasks. Holden et al. (2015) use
a Convolutional Autoencoder (CAE) model to learn a featurized representation of gait data. Au-
toencoder architectures may also be applied for anomaly detection, as is shown in Bao et al. (2017),
where the authors use autoencoders for anomaly detection. Performing comparisons on embedded
samples avoids many of the issues of direct pairwise comparisons. Since autoencoders reduce di-
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mensionality of the data, distance comparisons will be performed in a lower-dimensional space than
the original data, which improves scalability. Embedding the data before comparison also reduces
sensitivity to noise, since raw data are not compared directly. One work that takes advantage of this
approach is McConville et al. (2019), which learns a manifold for clustering on the trained latent
space of an autoencoder. Recent work in the generative model field has produced the Variational
Autoencoder (VAE) architecture (Kingma & Welling, 2013), which learns probability distributions
for latent features within the data and may also be applied for clustering as in Dilokthanakul et al.
(2016). This architecture has also been successfully applied in Fortuin et al. (2018), which uses a
VAE based method to learn feature representations of time series. We base our model on a CAE,
as the CAE architecture is simple and well-known, and provides a good platform for evaluating the
performance of our proposed objective functions.

3 SEMI-SUPERVISED LEARNING OF LATENT SPACE

Our proposed framework is a semi-supervised CAE model, which combines an unsupervised re-
construction loss Lrc with a semi-supervised loss Lsup, as shown in Figure 3.1. We show how an
existing semi-supervised learning objective function may be adapted to fit into our model, and also
propose two new objective functions based on well-known internal clustering metrics. We focus on
optimizing the autoencoder’s latent space for distance-based clustering algorithms, and specifically
perform our experimentation using the k-Means algorithm. The spherical, centroid-based clusters
generated by k-Means are a good fit for the proposed semi-supervised losses, which encourage each
cluster to converge around a single high-density point.

3.1 CAE MODEL ARCHITECTURE

Figure 1: Architecture of Proposed Semi-supervised CAE

We base our model off of a two-layer Convolutional Autoencoder (CAE) architecture. The CAE
uses two 1-D convolutional layers to featurize the time series. The filter widths for both layers are
calculated at runtime from the length of the time series. Each layer of the encoder contains a 1D
convolution operation, followed by a non-linear activation. These layers are paired with transpose
convolution layers in the decoder. After each convolution layer in the encoder, we also apply a
max-pooling operation to further reduce the length of the featurized sequence. Each max-pooling
operation is “reversed“ using a nearest-neighbor upsampling operation in the decoder. Alternatively,
large strides in the convolutional layer may be used instead of pooling operations. This accomplishes
the same goal of reducing the length of the featurized sequence, but does not require any up-sampling
operations in the decoder, since the transpose convolution operation with a stride will perform the
upsampling. We found that the max-pooling and large stride methods produced similar results in
practice.

3.2 SEMI-SUPERVISED LOSS FUNCTIONS

3.2.1 PROTOTYPE LOSS

Snell et al. (2017) present a system for performing few-shot learning, where a small number of
labeled examples for each class in the dataset are embedded using an encoder network. These points
are divided into two sets, query examples and support examples. In the latent space, the support
embeddings are averaged to determine a centroid or ”prototype” for each class. Training occurs by
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measuring the distance from each query example to the support centroid for the class. Each query
point is labeled with the class of the closest support prototype. The probability of a query point i
belonging to Class J is calculated as:

pij =
e−d(i,Cj)∑
j′ e
−d(i,Cj′ )

(1)

In Equation 1, −d(i, j) is the negative distance between query point i and the support prototype for
Class J . Any distance metric may be used for d, but for the remainder of this paper, we treat d as the
squared euclidean distance. Training proceeds by minimizing the cross entropy between the labels
for the query points and the probability distribution p. The objective of this approach is to learn a
latent space where similarities between examples are quantifiable using a distance metric like Eu-
clidean distance. Examples from the same class will be close to one another in the embedded space,
while examples from separate classes will have larger distances. In addition to the few-shot learning
scenario, a later work by Ren et al. (2018) demonstrates that the prototypical network objective can
be modified to support semi-supervised few-shot classification as well. The first objective function
proposed in Section 3.1.1 of Ren et al. (2018) is calculated in a two-stage process. In the first stage,
the labeled data prototypes are calculated as the centroid of the Nj embedded labeled data points
h(x) for each class J , as shown in Equation 2a. The second stage assigns each unlabeled point
a soft cluster weighting, based on the distances to each of the calculated prototypes Cj , shown in
Equation 2b. Finally, the original prototypes are updated to include the unlabeled data using the soft
cluster assignments from Equation 2b. In Equation 2c, the final prototype calculation is performed
by adding the embedded values for the labeled class J along with the weighted unlabeled values
from set U . This sum is then divided by the sum of Nj and

∑
j wi,j which capture the number of

labeled examples, and the sum of weights for class J , respectively.

Cj =
1

Nj

∑
i∈J

h(xi) wij =
e−||h(xi)−Cj ||2∑
j′ e
−||h(xi)−C′

j ||2
Ĉj =

∑
i∈J h(xi) +

∑
i∈U h(xi)wij

Nj +
∑

j wij

(2a,b,c)

We extend our vanilla CAE model into a semi-supervised learning context by calculating refined
prototypes from the labeled and unlabeled embeddings within the CAE’s embedded space. The
semi-supervised loss objective Lproto can be written as Equation 3. In Equation 3, N represents
the total number of samples in the batch (unlabeled and labeled), yij is the ground truth indicator
for Class j, and p̂ij is probability that sample i belongs to class J by performing the calculation in
Equation 1 using the refined prototypes from Equation 2c. Figure 1 presents the full architecture of
our model.

Lproto =
1

N

N∑
i

K∑
j

yij ∗ log(p̂ij) (3)

3.2.2 SILHOUETTE LOSS

When applying k-Means clustering to an unlabeled dataset, one must first choose the correct k,
or number of clusters to fit using the model. One metric for determining the correct number of
clusters is the Silhouette score Rousseeuw (1987). Silhouette score belongs to the family of internal
clustering metrics (Maulik & Bandyopadhyay, 2002), which provide a method for evaluating the
performance of a clustering algorithm when no ground truth labels are available. In the absence
of labels, internal clustering metrics instead evaluate the partitioning’s ability to separate data into
clusters which have low intra-cluster distance, but high inter-cluster distance. Silhouette is a per-
sample metric calculated using the following formulae:

a(i) =
1

|Ck| − 1

∑
l∈Ck

d(i, l) b(i) = min
k 6=i

1

|Ck|
∑
l∈Ck

d(i, l) s(i) =
b(i)− a(i)

max a(i), b(i)
(4a,b,c)

As mentioned in Section 3.2.1, d is an arbitrary distance metric, but we set d as the squared euclidean
distance for all experiments. Equation 4a represents the average intra-cluster distance from point i
to all other points with the same cluster label. Equation 4b represents the average distance from i
to the second closest cluster, or the inter-cluster distance. The second closest cluster is defined as
the cluster having the second lowest average distance. The silhouette score is then calculated as
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the difference between the inter-cluster distance and the intra-cluster distance in Equation 4c. To
normalize the term, the difference is divided by the maximum of a(i) and b(i). In our configuration,
we use silhouette score as a semi-supervised training objective, by providing ground-truth cluster
assignments for the labeled points, and calculating cluster assignments for the unlabeled points. In
this configuration, Silhouette score will represent the separability of our labeled points within the
embedded space. Labeled points will be encouraged to have similar embeddings in the latent space
by Equation 4a, and will also be encouraged to separate themselves from embeddings with a dif-
ferent label by Equation 4b. The silhouette values for the labeled points can be generated directly
from equations 4a,b,c. To calculate the silhouette values for the unlabeled points, we calculate the
closest embedded centroid for each unlabeled point, then calculate Equations 4a and 4b using dis-
tances between the unlabeled point and the labeled points in the closest and second-closest clusters
respectively. After the silhouette scores are calculated for both the labeled and unlabeled points, we
concatenate both groups and take the mean over the batch. We can rewrite Equation 4c as as training
objective:

Lsilh =
1

N

N∑
i

1− s(i) (5)

To formulate Equation 5, we take l(i) = 1−s(i) as a loss term, which has a minimum at s(i) = 1 and
a maximum at s(i) = −1. We take the mean over all l(i) to produce a scalar loss value, representing
the separability of our labeled examples within the embedded space. We can train on Equation 5
using gradient descent methods either alone, or in combination with a CAE reconstruction method.

3.2.3 DB INDEX LOSS

The Davies-Bouldin index is another example of a internal clustering metric. Similar to the Silhou-
ette score, the DB Index value is a measure of cluster quality, with lower values indicating higher
quality clusters. Like the Silhoutte index, the DB Index is comprised of two terms, which are com-
bined to form the metric value.

S(Ck) =
1

N

∑
i∈Ck

d(i, C̄k) M(Ck, Cl) = d(C̄k, C̄l) R(Ck, Cl) =
S(Ck) + S(Cl)

M(Ck, Cl)
(6a,b,c)

Equations 6a and 6b capture notions of intra- and inter-cluster similarity, respectively. Equation
6c is a metric which captures the quality of the separation between clusters Ck and Cl as defined
by their individual densities, as well as the distances between their centroids C̄k and C̄l. Lower
values of R indicate a higher quality of separation between clusters Ck amd Cl, thus R should be
minimized. DB Index differs from Silhouette in that the DB Index methods are calculated on each
pair of clusters, whereas the Silhouette index is calculated for each sample individually. Equation 7
forms our trainable loss function. As with our implementation for Silhouette loss, we calculate the
Equation 7 for both labeled and unlabeled points by assigning unsupervised points a label based on
the closest labeled cluster centroid.

Ldb =
∑
i 6=j

R(Ci, Cj) (7)

4 PERFORMANCE EVALUATION

In this following section, we evaluate the performance of our method using our unsupervised CAE
as the unsupervised baseline result, and the lightly modified Prototype Loss as a comparable semi-
supervised result.

4.1 EXPERIMENTAL METHODOLOGY

4.1.1 MODEL SETUP

For our experimental setup, we use a two-layer CAE model, where convolutional operations are
applied along the temporal dimension to featurize the data. In order to perform a fair comparison
on multiple datasets, we chose the hyper-parameters for the convolutional layers as follows. For
both convolutional layers, we set the filter size as f = b T10c, where T represents the length of the
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time series. In this way, we determined the filter widths for both layers automatically from the data.
For optimization, we use the Adam optimizer (Kingma & Ba, 2014) as implemented in Tensorflow
2.1.0. We use the default learning rate of lr = 0.001 for all experiments, and train for 200 epochs. In
experiments which apply two loss functions simultaneously, such as the experiments using a semi-
supervised loss along with the reconstruction loss, we optimize the sum of the losses. In practice, we
found that weighting the losses was not necessary as the model was able to optimize both objectives
simultaneously.

4.1.2 DESIGN OF EXPERIMENTS

In our experiments, we integrate both the adapted Prototype Loss from Section 3.2.1 and the pro-
posed Silhouette and DB Index Losses from Sections 3.2.2 and 3.2.3 into our CAE architecture as
presented in Figure 1 and measure the clustering performance as indicated by the Adjusted Rand In-
dex (ARI) (Hubert & Arabie, 1985), using the scikit-learn implementation of ARI (Pedregosa et al.,
2011) for our experiments. In order to perform a fair comparison, we performed tests using the
proposed ”combined” architectures, which integrate both the semi-supervised losses Lsup and the
CAE’s reconstruction loss Lrc and also measured the effect of disabling the CAE’s reconstruction
loss, and training solely on the proposed semi-supervised architectures. This allows us to isolate
the performance improvement for the semi-supervised architectures. Finally, we present a baseline
comparison against the CAE’s unsupervised performance, using only the reconstruction loss value.
The goal of these tests is to demonstrate the performance of each model as the number of super-
vised examples per-class increases. We perform 4 groups of tests, with each group using a fixed
number of supervised examples per-class in the range [4, 28]. We initialize 5 training runs for each
model within each group. Within a group we use the same 5 random seeds for each model initial-
ization to ensure that the supervised examples chosen, as well as the parameter initializations are all
identical within the group. After training, we use the latent space of the trained model to perform
k-Means clustering, and record the ARI. We use the k-Means algorithm because the centroid-based
nature of k-Means is a natural fit for the proposed losses. Notably, the Prototype Loss corresponds
almost exactly to a k-Means objective, and both Silhouette and DB Index loss also rely on notions
of cluster density around a centroid. However, any other general clustering method may be applied.
Labeled examples are included when fitting k-Means, but are not included in the ARI metric, to
avoid inflating ARI artificially as the number of labeled examples increases.

4.1.3 DATASETS

For our testing, we utilize three datasets chosen from the UCR Archive (Dau et al., 2018). All
UCR Archive datasets are labeled, which is useful for our evaluation since we may experiment
with differing amounts of labeled data. In a real-world scenario with unlabeled data, domain ex-
perts provide label information for a small subset of the data. The three datasets that we chose are
some of the largest within the UCR Archive. In the case of trainable architecture like our proposed
model, large datasets are advantageous, as larger numbers of samples will increase the quality of
the latent featurization, and help to improve generalization of the features for unseen samples. All
three datasets contains samples which are of the same length. In general , the CAE architecture
requires that all samples be the same length, although datasets with variable-length samples can
still be used by first applying interpolation or zero-padding to normalize the samples to a consistent
length. FacesUCR is a dataset containing face outlines from 14 different individuals, represented
as 1D time series. ECG5000 is a dataset containing ECG readings of heartbeats from a congestive
heart-failure patient. UWaveGestureLibraryAll is a dataset containing accelerometer recordings of
subjects performing different types of hand gestures. Table 2 in Appendix A presents a summary of
the characteristics of each dataset.

4.2 EXPERIMENTAL RESULTS

The results for the tests on all three datasets are presented in Figure 3. To provide a reference for
the performance of our models relative to the unsupervised models, we also present Table 1, which
provides ARI performance figures for the k-Means and k-Shape unsupervised clustering algorithms,
as applied to the raw data for each of our chosen datasets.
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Dataset
k-Means k-Means + PCA k-Shape
µ σ µ σ µ σ

ECG5000 0.555 0.092 0.515 0.011 0.441 0.085
FacesUCR 0.223 0.037 0.199 0.007 0.441 0.037
UWaveGestureLibraryAll 0.632 0.055 0.612 0.045 0.238 0.027

Table 1: Unsupervised methods performance

(a) FacesUCR (b) ECG5000 (c) UWaveGestureLibraryAll

Figure 2: Overall performance results for selected datasets

4.2.1 OVERALL PERFORMANCE

The results for FacesUCR are presented in Figure 2a. As shown in the figure, the semi-supervised
approaches significantly improve the performance of the model, relative to the baseline CAE ARI
of 0.35. According to Table 1, the CAE’s performance here is much better than the k-Means per-
formance on raw data, but slightly worse than k-Shape, which achieves an average ARI of 0.441.
Out of all the semi-supervised models, the Silhouette Loss + AE model performs slightly better on
average than the other models, including the Silhouette Loss without AE. This dataset is an excellent
candidate for this type of semi-supervised model, as even providing 4 labels per class can achieve
an ARI of 0.7 when using the Silhouette Loss. We can see that as the number of supervised ex-
amples per-class increases, the ARI achieved for all of the semi-supervised models also increases,
approaching a 0.9 ARI. All semi-supervised models perform well on this dataset, although the two
Silhouette Loss models seem to have a slight edge over the others.The results for ECG5000 in Fig-
ure 2b show that both DB Index methods perform poorly on this dataset. Both the DB Index and
DB Index + AE methods perform worse than the baseline CAE at all numbers of labeled examples.
The baseline CAE model performs similarly to k-Means clustering on ECG5000, and better than
k-Shape. The Prototype and Prototype + AE Methods do show some improvement over the baseline
CAE, but these improvements are relatively minor. The Silhouette and Silhouette + AE methods
outperform all other methods here, achieving a ARI of 0.8 for all numbers of labeled examples.
However, two of the Silhouette Loss trials at 28 examples seem to diverge, and produce poor results.
The Silhouette Loss + AE models do not suffer this same divergence, and provide a stable ARI of
around 0.8 for all trials at 28 examples per-class. We suspect that the AE model and associated
Lrc was able to help mediate the effect of the divergence in the Silhouette + AE model. The Sil-
houette + AE model does encounter one minor divergence at 4 examples per-class, where it only
achieves a ARI of 0.5. However, we expect that smaller numbers of labeled examples will tend
to be noisier, since the model performance depends heavily on the choice of supervised examples.
In this case, the Silhouette models are the winners, but do suffer from some divergence issues as
mentioned before. We believe that this issue is caused in part by the extremely unbalanced nature of
the ECG5000 dataset. Table 3 in Appendix A shows the distribution of classes. Two of the classes
are very sparse, and must be over-sampled during training in order to provide the correct number
of labeled examples. Additionally, most of the cluster points are concentrated in Clusters 1 and 2.
During training, the clusters with smaller numbers of ground-truth labels tend to ”steal” some of the
true members of Clusters 1 and 2, leading to a converged result where Clusters 3, 4, and 5 are much
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larger than in the ground-truth data. The results for UWaveGestureLibraryAll in Figure 2c show that
DB index performs consistently well over all numbers of labeled examples. At 4 labeled examples
per-class, the DB Index and DB Index + AE methods are the only methods which outperform the
standard baseline CAE. Starting at 12 examples per-class, the Silhouette and Prototype models do
start to outperform the CAE baseline, but perform noticeably worse than the DB Index models until
28 examples per-class. For this dataset, even the baseline CAE outperforms k-Means on the raw
data, which performs the best of the three unsupervised models in Table 1. In this experiment, the
DB Index models are the clear winner since they provide excellent performance for any number of
labeled examples tested.

4.2.2 HYPERPARAMETER STUDY

(a) Gradient Update (b) Filter Size

Figure 3: Hyperparameter Study Results

In the performance evaluation results from Section 4.2.1, we perform parameter updates at the end of
each batch. In order to better understand how the frequency of parameter updates affects the overall
performance, we also experiment by applying the update for the semi-supervised loss at the end of
each epoch, while still updating parameters from the autoencoder loss at the end of each batch. In
order to accomplish this, we calculate the semi-supervised gradients at each batch, accumulating
them and applying the sum as the gradient update at the end of each epoch. For this experiment, we
train the model on the UWaveGestureLibrary dataset and choose 12 supervised examples per class.
Since autoencoder updates are performed at the end of each batch, the autoencoder result does not
change based on gradient update method, and the results are only provided for comparison. We
train all versions of the model using the same random seed, only varying the gradient update method
between the two model instances. Figure 3a shows the result of the experiment. As expected, the AE
model obtains identical performance between the two update methods. The DB Index and Silhouette
methods see a marginal improvement when training using the per-batch methodology. The Prototype
Loss method sees marginally better performance when updating at the end of the epoch. In Section
4.1, we describe our method for determining the convolutional filter size dynamically based on data
input. In this experiment, we test the same model setup as the gradient test, but vary the filter
size. Gradient updates are performed at the end of each epoch. Figure 3b shows the result of this
experiment. Most models perform their best with the filter size of 50, but in general performance
does not differ much with different choices for filter size. In the real-world use case, a sub-optimal
choice for convolutional filter size should not degrade the performance of the model.

We also explored the usability of the learned latent space for classification by applying a KNN
classification. For this series of tests, we treat the randomly chosen ”labeled” examples for each
class as the training points for a KNN classifier, then predict the class of the unlabeled points. We
calculate the accuracy of the KNN classifier for each of the three datasets described in 4.1.3.
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(a) FacesUCR (b) ECG5000 (c) UWaveGestureLibraryAll

Figure 4: Classification performance for three selected datasets

In the results for FacesUCR as seen in Figure 4a, we see a clear distinction in performance between
the semi-supervised models and the unsupervised autoencoder. Even for low numbers of supervised
examples, all semi-supervised models outperform the autoencoder by a large margin, and the au-
toencoder never closes the gap in performance, even for larger numbers of supervised examples.
The results for ECG5000 show that all models struggle to perform better than the standard CAE.
We suspect that the model performs poorly here because of the imbalanced class size, as mentioned
previously. The results for UWaveGesture as shown in Figure 4c show more mixed performance.
At low numbers of samples, the Sihouette and Prototype losses perform marginally better than the
baseline AE, but show a large variance in performance. This demonstrates that both these models’
performance is highly sensitive to the choice for labeled examples. The DB Index models per-
form distinctly better than any other on this dataset, and show little variance in performance even
for lower numbers of labeled examples. We suspect that this is because the embedding clusters in
UWaveGesture are more distinct from each other, so the DB Index approach, which is based on op-
timizing distances between pairs of clusters, performs the best. The baseline AE also shows a large
improvement here as the number of labeled examples increases, although it does not outperform the
semi-supervised models.

5 CONCLUSION

In this paper, we proposed a framework for semi-supervised time series clustering, including three
alternative semi-supervised loss functions. Our experiments show that all three implemented semi-
supervised models can improve clustering performance after training. Experiments also show that
training the semi-supervised losses in combination with the reconstruction loss from the autoencoder
does provide a slight boost in performance, although this difference is usually small. Although all
solutions have generally stable performance across multiple parameter initialization and choices for
supervised examples, we do see occasional model divergences. Because these models rely on the
labeled examples for training, the quality of these labels is exceedingly important. In a real-world
usage scenario, we expect a data domain expert providing labels would be able to choose the most
relevant examples to label. Additionally, datasets with significantly unbalanced class sizes may
cause performance issues, as are exhibited by our models’ performance on the ECG5000 dataset.
The results in Tables 4-6 show that Silhouette Loss on average outperforms the baseline CAE, except
in the 4-sample case on the UWave dataset. In addition, the DB Index loss on average outperforms
the CAE on both the UWave and FacesUCR datasets.

In future work, we plan to explore methods for combining the predictions of these models by train-
ing multiple instances of the same model in parallel, then using a consensus clustering system to
generate the final set of labels. We expect that this will reduce the severity of model divergences.
In a similar vein, we will explore a way to determine an optimal weighting between the reconstruc-
tion and semi-supervised losses, since our method currently applies no weighting. Additionally, we
believe that training multiple models simultaneously and applying mutli-view learning constraints
like those proposed in Wang et al. (2015) could improve the quality of the model’s generated latent
space.
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A APPENDIX

Dataset Samples Classes Length
FacesUCR 2250 14 131
ECG5000 5000 5 140
UWaveGestureLibraryAll 4477 8 315

Table 2: Specifications of the selected datasets

Cluster N (%)
1 2919 (58.38%)
2 1767 (35.34%)
3 96 (1.92%)
4 194 (3.88%)
5 24 (0.48%)

Table 3: Specifications of ECG5000
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Examples Method
ARI

µ σ

4

AE 0.694 0.008
DB Index 0.796 0.034
DB Index + AE 0.785 0.020
Prototype Loss 0.560 0.057
Prototype Loss + AE 0.591 0.056
Silhouette Loss 0.592 0.073
Silhouette Loss + AE 0.602 0.045

12

AE 0.690 0.013
DB Index 0.845 0.011
DB Index + AE 0.842 0.027
Prototype Loss 0.715 0.020
Prototype Loss + AE 0.767 0.021
Silhouette Loss 0.793 0.044
Silhouette Loss + AE 0.835 0.029

20

AE 0.673 0.036
DB Index 0.860 0.013
DB Index + AE 0.874 0.018
Prototype Loss 0.764 0.038
Prototype Loss + AE 0.814 0.014
Silhouette Loss 0.839 0.022
Silhouette Loss + AE 0.853 0.034

28

AE 0.687 0.026
DB Index 0.876 0.021
DB Index + AE 0.878 0.019
Prototype Loss 0.819 0.007
Prototype Loss + AE 0.847 0.011
Silhouette Loss 0.861 0.024
Silhouette Loss + AE 0.871 0.021

Table 4: UWaveGestureLibrary Result Table
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Examples Method
ARI

µ σ

4

AE 0.537 0.051
DB Index 0.302 0.009
DB Index + AE 0.297 0.009
Prototype Loss 0.556 0.114
Prototype Loss + AE 0.558 0.125
Silhouette Loss 0.730 0.168
Silhouette Loss + AE 0.736 0.147

12

AE 0.537 0.034
DB Index 0.307 0.019
DB Index + AE 0.306 0.014
Prototype Loss 0.577 0.100
Prototype Loss + AE 0.598 0.090
Silhouette Loss 0.832 0.033
Silhouette Loss + AE 0.821 0.027

20

AE 0.565 0.006
DB Index 0.324 0.030
DB Index + AE 0.318 0.017
Prototype Loss 0.594 0.020
Prototype Loss + AE 0.626 0.035
Silhouette Loss 0.758 0.142
Silhouette Loss + AE 0.822 0.025

28

AE 0.504 0.055
DB Index 0.308 0.054
DB Index + AE 0.368 0.022
Prototype Loss 0.554 0.131
Prototype Loss + AE 0.636 0.071
Silhouette Loss 0.596 0.311
Silhouette Loss + AE 0.806 0.035

Table 5: ECG5000 Result Table
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Examples Method
ARI

µ σ

4

AE 0.366 0.023
DB Index 0.644 0.034
DB Index + AE 0.645 0.037
Prototype Loss 0.539 0.042
Prototype Loss + AE 0.666 0.014
Silhouette Loss 0.715 0.044
Silhouette Loss + AE 0.679 0.051

12

AE 0.357 0.025
DB Index 0.735 0.038
DB Index + AE 0.722 0.049
Prototype Loss 0.750 0.023
Prototype Loss + AE 0.802 0.027
Silhouette Loss 0.798 0.040
Silhouette Loss + AE 0.809 0.036

20

AE 0.370 0.043
DB Index 0.777 0.055
DB Index + AE 0.786 0.019
Prototype Loss 0.819 0.029
Prototype Loss + AE 0.858 0.026
Silhouette Loss 0.875 0.009
Silhouette Loss + AE 0.872 0.022

28

AE 0.346 0.023
DB Index 0.832 0.022
DB Index + AE 0.832 0.026
Prototype Loss 0.827 0.014
Prototype Loss + AE 0.864 0.017
Silhouette Loss 0.882 0.014
Silhouette Loss + AE 0.897 0.020

Table 6: FacesUCR Result Table
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