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ABSTRACT

Bayesian Low-Rank Adaptation (LoRA) has shown excellent performance in re-
ducing the overconfidence of inference by large language models as it can ac-
curately quantify the inference uncertainty. However, the general Bayesian LoRA
technique requires huge memory as it fine-tunes three low-rank matrices with large
size: two matrices have size of n × r and the other has size of r × m, where r
denotes rank, and n,m denote the size of input and output, respectively. The large
amount of memory required by this technique precludes its practical applications
especially for the cases with long input or output. Here, we propose a memory ef-
ficient Bayesian LoRA technique (called Me-LoRA) that needs only two low-rank
matrices plus two small matrices with size of only r × r. The key idea of our ap-
proach is that we introduce a small matrix (with size r×r) to describe the variance
estimates required by Bayesian LoRA, which is calculated through sampling two
other samll matrices. Compared with the general Bayesian LoRA technique, our
approach reduces the memory requirement by nearly 1

3 as the rank r is generally
very small. Experimental results using both LlaMA-7B and LlaMA-13B models
on representative data sets suggest that our approach achieves the same perfor-
mance as the original Bayesian LoRA techniques and outperforms the existing
approaches. In summary, the memory-efficient Bayesian LoRA presented in this
study circumvents the challenge of high memory requirement and thus paves a
new way to the practical applications of Bayesian LoRA in the cases with larger
input and output size.

1 INTRODUCTION

In recent years, efficient parameter training has become increasingly important, particularly in large-
scale neural networks Hu et al. (2021); Ding et al. (2023); Fu et al. (2023). As models grow, manag-
ing and optimizing parameters is crucial for training speed and performance. This requirement has
led to growing interest in techniques that can achieve comparable results with fewer trainable param-
eters, especially in large language models (LLMs). Parameter-efficient fine-tuning (PEFT) methods
have garnered significant attention for their ability to reduce computational cost and memory usage
while maintaining model performance Liu et al. (2022); Han et al. (2024).

As fine-tuning large language models (LLMs) becomes increasingly crucial, various techniques have
emerged to optimize this process Houlsby et al. (2019); Hu et al. (2021); Ding et al. (2023). In fine-
tuning large models, Bayesian methods are frequently employed to mitigate overconfidence, en-
hance factual accuracy, and reduce potential harmful consequences Amodei et al. (2016); Weidinger
et al. (2021); Azaria & Mitchell (2023). Bayesian fine-tuning for large models involves incorporat-
ing probabilistic frameworks to model uncertainty in the model parameters, enabling the model to
make more robust predictions in the face of uncertainty. This approach allows for considering pa-
rameter distributions rather than solely on point estimates, thus providing more reliable inferences
when encountering new data.

Despite the potential advantages of Bayesian methods, current state-of-the-art (SOTA) Bayesian
approaches still need to address the issue of parameter efficacy. This challenge underscores the dif-
ficulty of effectively estimating and updating parameters during complex fine-tuning tasks. Conse-
quently, further research to enhance the performance and reliability of Bayesian fine-tuning methods
is crucial for advancing the deployment of large models in practical applications.
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Among the approaches to Bayesian fine-tuning, some of the most common are post-training methods
like Monte Carlo Dropout (MCD) Gal & Ghahramani (2016) and Deep Ensembles (ENS) Lakshmi-
narayanan et al. (2017); Wang et al. (2023); Balabanov & Linander (2024) only gains in generaliza-
tion and uncertainty estimation remain marginal. More promising post-training approaches, such as
the Kronecker-factored Laplace approximation, apply after any optimization algorithm’s maximum
a posteriori (MAP) estimate MacKay (1992). However, this two-step procedure inherently leads to
suboptimal posterior estimates due to the separation of training and uncertainty estimation phases.

In contrast, Bayesian fine-tuning methods like BLoB Wang et al. (2024) jointly estimate the mean
and covariance of a low-rank variational distribution. Unlike post-training approaches, BLoB esti-
mates the parameter mode (i.e., the mean if one assumes Gaussian distributions) and the parameter
variance simultaneously. While BLoB enhances the mode estimate by randomly sampling from the
variance estimates, the method requires significant additional memory, increasing the number of
trainable parameters by nearly half. BLoB introduces a storage burden that scales with the size of
LLMs. Our approach improves upon BLoB by reducing the number of trainable parameters and
addressing the memory overhead while retaining the advantages of Bayesian fine-tuning.

Our method, Memory-efficient Bayesian Low-Rank Adaptation (Me-LoRA), extends the benefits of
BLoB, significantly optimizing the parameter efficacy. Me-LoRA reduces training parameters by
approximately one-third compared to BLoB, making Bayesian uncertainty estimation feasible for
larger models while retaining the accuracy and uncertainty benefits that have been proven valuable
in both in-distribution and out-of-distribution settings.

In summary, this work presents a pioneering approach to optimizing Bayesian fine-tuning methods,
highlighting the necessity and potential of reducing training parameters for large-scale models. Our
contributions are as follows:

• We propose Memory-efficient Bayesian Low-Rank Adaptation (Me-LoRA). This novel
method reduces trainable parameters by approximately one-third compared to SOTA
Bayesian fine-tuning methods without compromising performance.

• Me-LoRA significantly lowers the memory overhead of Bayesian fine-tuning, making it
more scalable for large language models.

• We preserve the critical advantages of Bayesian methods, including enhanced calibration
and uncertainty estimation, across 7B and 13B model.

• Extensive experiments demonstrate the efficiency and effectiveness of Me-LoRA, achiev-
ing state-of-the-art performance with fewer trainable parameters.

2 BACKGROUND

2.1 LOW-RANK ADAPTATION (LORA)

Low-Rank Adaptation (LoRA) Hu et al. (2021) is a technique that significantly reduces the number
of trainable parameters in large-scale models by leveraging their inherent low-rank structure Li et al.
(2018); Aghajanyan et al. (2020). In LoRA, the weight update matrix ∆W is decomposed into two
low-rank matrices:

∆W = BA, (1)

where B ∈ Rm×r and A ∈ Rr×n, with r ≪ min(m,n). Here, m and n are the dimensions of
the input and output layers, respectively, while r represents the intrinsic rank of the decomposition.
This factorization leads to a substantial reduction in the number of parameters to train, from O(mn)
in the full-rank case to O(r(m+ n)). The forward pass of the model is then expressed as:

z = W0h+∆Wh = W0h+BAh, (2)

where h is the input to the layer, z is the output, and W0 is the pre-trained weight matrix. By
updating only the low-rank matrices A and B, LoRA reduces memory consumption for storing
optimizer states and accelerates fine-tuning, especially for large language models (LLMs). This
method achieves performance comparable to full-rank fine-tuning, while drastically lowering the
hardware requirements, making it a practical solution for fine-tuning massive models.
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2.2 BAYESIAN LOW-RANK ADAPTATION BY BACKPROPAGATION (BLOB)

In Bayesian Low-Rank Adaptation by Backpropagation (BLoB) Wang et al. (2024), the posterior
distribution of the model parameters is inferred rather than relying on point estimates Bishop &
Nasrabadi (2006); Wang & Yeung (2020), offering a probabilistic view of the model’s weights.
Given the intractability of exact posterior inference, BLoB approximate the true posterior by mini-
mizing the Kullback-Leibler (KL) divergence between the variational distribution q(W |θ) (denoted
as q(W ) ) and the true posterior P (W |D) (denoted as P (W ) ) Hinton & Van Camp (1993); Graves
(2011); Blundell et al. (2015). We can then minimize the variational free energy concerning the vari-
ational distribution parameters θ Neal & Hinton (1998); Yedidia et al. (2001); Friston et al. (2007):

min
θ

H(D,θ) = −Eq(W )[logP (D|W )] +DKL[q(W )∥P (W )]. (3)

Here, the first term corresponds to the expected log-likelihood, encouraging the model to fit the data.
In contrast, the second term is a regularizer by penalizing the divergence between the variational dis-
tribution and the true posterior. This objective ensures a balance between model complexity and data
fit, improving both the expressiveness and tractability of the posterior approximation. Such a for-
mulation provides a principled framework for Bayesian learning, facilitating uncertainty estimation
and regularization in neural networks.

BLoB optimizes the first term in Equation 3 using Monte Carlo gradient estimation LeCun (1985);
Rumelhart et al. (1986), combined with the reparameterization trick, allowing gradients to propagate
through the underlying parameters θ Opper & Archambeau (2009); Kingma (2013); Rezende et al.
(2014). The variational distribution is simplified to a diagonal Gaussian N (µ,σ2), where σ =
ρ2 ensures the positivity of the standard deviation and accelerates convergence. Here, ρ denote
parameters of the weight matrix W , expressed as W = µ+ ρ2 ⊙ ϵ, where ϵ ∼ N (0, I).

Figure 1: Overview of the general Bayesian LoRA technique BLoB (left) and our memory-efficient
Bayesian low-rank adaptation (Me-LoRA) approach (right). BLoB updates the weight matrix W0

using the product of two low-rank matrices A ∈ Rr×n and B ∈ Rm×r, in which r denotes the
rank, and A is calculated through sampling two other matrices MA and ΩA with the same size.
Thus, BLoB needs three large matrices in total. In contrast, Me-LoRA introduces a small low-
dimensional matrix C ∈ Rr×r. This approach only requires two low rank matrices A, B and two
small matrices mean MC and variance ΩC . This way, Me-LoRA reduces the memory requirement
by nearly 1

3 as the rank r is significantly smaller than m and n

3
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3 METHOD

In this section, we introduce Memory-efficient Bayesian Low-Rank Adaptation (Me-LoRA), a novel
method that builds upon and extends the state-of-the-art method, BLoB Wang et al. (2024). The
central innovation of Me-LoRA lies in the introduction of a low-dimensional matrix C, coupled
with variance estimation applied to this matrix. Specifically, we introduce this low-dimensional
matrix C between the low-rank matrices A and B, allowing for Bayesian modeling over the full
parameter matrix, as illustrated in Figure 1. Similar to BLoB, we train the low-rank matrices A and
B, along with the mean M and variance Ω of the low-dimensional matrix C, sampling from the
mean and variance of C for inference.

3.1 VARIATIONAL DISTRIBUTION OF THE FULL-WEIGHT MATRIX IN ME-LORA

With the pre-trained weight matrix W0 ∈ Rm×n, the low-rank weight update matrix A ∈ Rr×n

and B ∈ Rm×r, we suppose that the variational distribution of the other low-rank update matrix
C ∈ Rr×r is Gaussian with mean M and standard deviation Ω, denoted as q(C) ∼ N (M ,Ω),
where M ∈ Rr×r and Ω ∈ Rr×r. We then have q(Q) ∼ N (MA,Ω|A|), where Q = CA. The
equivalent variational distribution defined on the full weight matrix W = W0 +BCA as fallow,

q(W ) = N (W ;µq,Σq), (4)

where µq = vec(W0 +BMA) and Σq = [I ⊗B] · [diag(vec(Ω|A|)2)] · [I ⊗B⊤].

In Equation 9 (See more details in Appendix A), our LoRA Bayesianization employs a Gaussian
variational distribution for W with a flexible covariance matrix Σq , to approximate the posterior
distribution of the full parameter W . The covariance matrix Σq is strictly singular and high-
dimensional. Sampling from such a high-dimensional matrix, however, requires efficient sampling
algorithms that scale with the parameter space. To ensure parameter efficiency, Blob Wang et al.
(2024) introduces variance estimation in module A. By leveraging the multiplicative properties of
matrices, this effectively estimates the entire full parameter matrix. Compared to standard LoRA Hu
et al. (2021), this approach necessitates the introduction of a parameter matrix of the same size as
module A, which increases the training parameters by 50%. To reduce the training parameters, we
introduce a low-dimensional matrix C between matrices A and B and apply variance estimation
to the newly introduced matrix C. This modification results in nearly a 30% reduction in training
parameters compared to BLoB.

3.2 EFFICIENT COMPUTATION OF FULL-WEIGHT KL DIVERGENCE

Direct computation of the KL Divergence between the prior and posterior distributions of W is non-
trivial. Direct computation of the KL Divergence between the prior and posterior distributions of W
is non-trivial. To alleviate this, we assume the prior P (W ) follows a low-rank Gaussian distribution,
with a mean given by the pre-trained weights W0, and a covariance matrix parameterized by a rank-
rr matrix R ∈ R(mn)×(rr). The posterior is then given by:

P (W ) = N (W ;µp,Σp), (5)

where µp = vec(W0) and Σp = RR⊤.

Assuming that R = [σpI⊗B] and RR⊤ = BB⊤, we can simplify the KL divergence computation
by focusing on the full-weight covariance of W , reducing the dimensionality and parameter count.
We then have:

DKL(q(W )∥P (W )) = DKL(q(Q)∥P (Q)). (6)
Concretely, we assume that the prior distribution P (Q) adheres to a low-rank structure, with each
parameter in both the prior and variational distributions q(Q) ∼ N (MA,Ω|A|) being mutually
independent. We then minimize the KL divergence term for the low-rank component, C and A,
utilizing its analytical solution as presented in Equation 3 and 6:

minDKL[q(Q)∥P (Q)] =
1

2σ2
p

(∥MA∥22 + ∥Ω|A|∥22)−
∑
ij

log Ωij , (7)

the detailed derivation of Equation 7 can be found in BLoB Wang et al. (2024). In the parameteriza-
tion of the Gaussian variational distribution q(Q), we adopt a strategy analogous to BLoB, where the
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Table 1: Theoretical memory required to store trained LoRA, BLoB and ours weights for LlaMA2-
7B and LlaMA2-13B models. We applie LoRA on query and key layers of each transformer block.

Llama2-7B Llama2-13B
Rank Method # Params Required Bytes # Params Required Bytes

8
LoRA 4.19M 15.98MB 6.55M 24.99MB
BLoB 6.29M 23.99MB 9.84M 37.54MB
Ours 4.20M 16.02MB 6.56M 25.02MB

64
LoRA 33.55M 127.79MB 52.43M 200.00MB
BLoB 50.33M 191.99MB 78.97M 301.25MB
Ours 34.08M 130.00MB 53.08M 202.48MB

mean matrix M |A| of q(Q) is directly parameterized as the output of a neural network. To ensure
that each entry of the diagonal covariance matrix Ω (i.e., the standard deviation) of q(Q) remains
non-negative, we employ an element-wise parameterization, Ωij = H2

ij , where H = [Hij ] ∈ Rr×r

is a real parameter matrix determining the standard deviation Ω.

3.3 DESIGNING PRIORS IN BAYESIAN MODELS

In Bayesian neural networks, designing an appropriate prior is crucial for mitigating overfitting and
improving generalization Wilson & Izmailov (2020). In BLoB, the authors adopt a relatively simple
prior structure, setting all prior variances to the same value, σp. However, with our proposed method,
using such a simplistic prior variance can still lead to overfitting. To address this, we introduce a
noise term ε, where ε ∼ U(0, 1), into the prior variance σp, resulting in σp + ε. The closed-form
solution for the KL divergence in our approach is given as:

minDKL[q(Q)∥P (Q)] =
1

2(σp + ε)2
(
∥MA∥22 + ∥Ω|A|∥22

)
−

∑
ij

log Ωij . (8)

3.4 PARAMETER COUNT

We denote the number of fine-tuned layers as Ltuned and the dimension of these layers as dmodel.
In Me-LoRA, the number of trainable parameters is governed by |Θ| = Ltuned × (2 × dmodel +
r) × r, whereas in the state-of-the-art method BLoB, it is given by |Θ| = 3 × Ltuned × dmodel ×
r. Specifically, for the lowest rank (i.e., r = 8), Me-LoRA requires nearly 30% fewer trainable
parameters than BLoB. Furthermore, as the rank and model size increase, the parameter count in Me-
LoRA increments by 3Ltuneddmodel, leading to significant savings compared to LoRA’s 3Ltuneddmodel
parameter scaling. This efficiency becomes crucial in intense models, such as GPT-3 Brown (2020),
which has 96 attention layers.

Based on this efficiency, the advantage of Me-LoRA is its reduction in memory usage for storing the
weight adjustments post-training while maintaining the uncertainty estimation benefits of BLoB. A
comparison of memory efficiency between Me-LoRA, LoRA, and BLoB is presented in Table 1.

4 RESULTS

We implemented Me-LoRA using the PEFT library Mangrulkar et al. (2022) and fine-tuned
LlaMA2-7B and LlaMA2-13B models on six common-sense reasoning tasks. We applied the LoRA
to the queries and values of all attention layers. For hyperparameters, we strictly adhered to the
default settings in both the PEFT library and the original LoRA paper Mangrulkar et al. (2022); Hu
et al. (2021) to ensure reproducibility. We used a batch size of 4 and saved model checkpoints every
100 steps, training for a total of 5000 steps. For common-sense reasoning tasks, we optimized the
model to predict the most probable next token corresponding to the correct answer in each dataset.
We followed the dataset split strategy as in Laplace LoRA for training and validation sets during
training and validating. However, for the BoolQ dataset, which lacks an official test set, we divided
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Table 2: Performance of different methods applied to LoRA on Llama2-13B pre-trained weights.
The evaluation is done across six common-sense reasoning tasks with a shared hyper-parameter
setting after 5,000 training steps. ”↑” and ”↓” indicate that higher and lower values are preferred,
respectively. Bold: the best. Underline: the second best.

Metric Method WG-S ARC-C ARC-E WG-M OBQA BoolQ

ACC ↑

MAP 72.350.75 72.780.46 88.060.67 79.310.26 83.931.16 83.850.63
MCD 69.510.04 71.720.07 87.910.02 77.640.03 83.760.14 84.180.07

ENS 70.010.91 72.211.01 88.060.44 78.990.56 84.130.41 83.870.84
LAP 72.640.16 71.530.10 88.100.07 76.450.09 83.260.18 83.730.07
BLoB 67.810.05 71.610.02 87.810.07 75.020.09 82.810.22 82.790.14
Ours 68.670.07 72.820.08 88.560.03 79.380.03 85.170.03 83.740.05

ECE ↓

MAP 21.992.26 17.661.66 9.700.26 15.160.61 10.960.88 4.470.27
MCD 14.380.04 7.290.09 7.700.04 12.850.05 4.050.35 2.620.19
ENS 10.990.97 6.131.39 7.090.74 6.842.05 10.070.82 2.720.88
LAP 18.480.26 4.180.18 2.410.07 2.070.13 7.810.40 2.110.22
BLoB 5.590.08 5.460.13 4.580.04 8.730.16 6.230.51 1.050.19

Ours 9.250.06 7.600.16 2.600.05 4.940.03 5.380.06 3.360.06

NLL ↓

MAP 1.140.13 1.010.09 0.690.06 0.730.04 0.660.03 0.390.01
MCD 0.750.00 0.720.00 0.490.00 0.630.00 0.460.00 0.390.00
ENS 0.640.02 0.710.00 0.450.04 0.500.03 0.570.05 0.380.02
LAP 2.751.30 2.131.00 1.080.51 1.480.70 1.620.76 1.140.54
BLoB 0.610.00 0.730.01 0.390.00 0.550.00 0.490.00 0.390.00
Ours 0.640.00 0.720.00 0.350.00 0.460.00 0.440.00 0.370.00

the validation set into two parts with a 1:2 ratio for validation and testing. The checkpoint that
performed best on the validation set was used for testing to obtain the final results.

We evaluated the effectiveness of Me-LoRA by measuring the accuracy (ACC) and negative log-
likelihood (NLL). We expected calibration error (ECE) during the fine-tuning of LlaMA2-7B and
LlaMA2-13B on commonsense reasoning tasks. We compared Me-LoRA with SOTA uncertainty
estimation methods applied to the LoRA adapters of LLMs, including Maximum A Posteriori
(MAP) with a weight decay rate of 1e2, Monte Carlo Dropout (MCD) with an ensemble size of
3 (using a dropout rate of 0.1 during fine-tuning) Gal & Ghahramani (2016), Deep Ensemble (ENS)
Lakshminarayanan et al. (2017); Balabanov & Linander (2024); Wang et al. (2023) with three LoRA
fine-tuned LLMs, Laplace-LoRA (LAP) Yang et al. (2023), and the latest BLoB Wang et al. (2024).

We re-implemented LAP and applied it to the MAP checkpoints. For BLoB, since no open-source
code was available, we replicated the approach based on the description in the paper. To ensure a
fair comparison, we made appropriate parameter adjustments. BLoB was only sampled once during
each training, validation, and testing stage. The Flipout sampling technique and KL regularization
from the original BLoB paper were not used in our replication, as they did not perform well. Instead,
we applied the KL regularization method from Me-LoRA.

4.1 PERFORMANCE ON IN-DISTRIBUTION DATASETS

We evaluated with in-distribution fine-tuning Llama2-13B on six common sense reasoning tasks:
Winogrande-small (WG-S) Sakaguchi et al. (2021), Winogrande-medium (WG-M) Sakaguchi et al.
(2021), ARC-Challenge (ARC-C) Clark et al. (2018), ARC-Easy (ARC-E) Clark et al. (2018),
Open-BookQA (OBQA) Mihaylov et al. (2018), and BoolQ Clark et al. (2019). We use the same
pre-trained LLM backbone and datasets for all baseline methods, with additional validation sets used
to select the final test checkpoint (Detailed settings can be found in the appendix B.2).

Table 2 shows the performance comparison of Me-LoRA and state-of-the-art models on the ACC,
ECE, and NLL metrics on the test set with the pre-trained Llama2-13B model. MAP, MCD, ENS,
and LAP exhibited specific overconfidence issues during the fine-tuning process. Compared to other
models facing the challenge of uncertainty estimation during LLM fine-tuning, BLoB provides bet-
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Table 3: Performance on in-distribution and out-of-distribution datasets. All the uncertainty estima-
tion methods are applied to the LoRA adapter added upon the pre-trained Llama2-13B weights.

Metric Method In-Dist. Smaller Dist. Shift Larger Dist. Shift
OBQA ARC-C ARC-E Chem. Phy. Math.

ACC ↑

MAP 83.801.14 75.790.84 82.390.50 38.333.09 45.142.60 35.760.49
MCD 83.810.31 72.450.05 81.020.04 39.010.25 37.490.27 35.970.37
ENS 83.330.34 74.460.90 83.390.49 42.713.07 33.670.47 35.075.53
LAP 82.560.27 72.080.08 82.130.07 41.490.69 32.241.15 39.760.22

BLoB 82.400.13 72.270.06 83.240.14 42.660.10 37.140.30 32.760.41
Ours 84.890.08 73.800.13 82.580.05 42.750.08 34.770.42 33.650.42

ECE ↓

MAP 10.880.78 15.111.65 10.960.43 30.003.69 27.655.10 30.791.31
MCD 3.820.05 5.560.06 1.900.19 20.090.74 14.240.37 16.870.88
ENS 10.560.68 13.840.48 8.210.34 26.003.86 29.762.56 26.474.85
LAP 7.900.13 10.390.12 4.810.16 20.800.35 23.191.48 16.951.18
BLoB 6.000.14 9.730.09 3.760.19 17.760.29 18.670.25 19.850.89
Ours 5.530.27 6.920.09 3.100.09 15.480.56 18.640.70 15.880.45

NLL ↓

MAP 0.680.05 0.900.05 0.690.04 1.900.19 1.680.12 1.910.08
MCD 0.460.00 0.700.00 0.490.00 1.260.00 1.360.00 1.480.00

ENS 0.600.02 0.840.01 0.560.01 1.590.07 1.830.08 1.720.09
LAP 1.660.78 2.281.07 1.510.71 4.101.92 4.612.17 4.532.14
BLoB 0.490.00 0.760.01 0.470.00 1.310.02 1.520.01 1.530.01
Ours 0.440.00 0.680.00 0.490.00 1.260.00 1.410.00 1.480.00

ter uncertainty estimation performance and mitigates overconfidence. However, with an improved
ability to quantify uncertainty, the model parameters also increase significantly compared to LoRA.

Me-LoRA achieves better or comparable performance across all datasets. With a single sampling,
Me-LoRA provides superior uncertainty estimation performance and significantly mitigates over-
confidence while maintaining comparable or better ACC, NLL, and ECE. Surprisingly, using only
the same number of parameters as LoRA, Me-LoRA achieves significantly higher ACC than other
baselines on most datasets (ARC-C, ARC-E, WG-M, OBQA) without a substantial loss in uncer-
tainty estimation quality. This observation confirms that jointly learning the mean and covariance of
low-rank matrices during fine-tuning can mutually improve their quality.

In addition, we also conducted tests on Llama2-7B, with detailed results in the appendix B.3. Our
method maintains similar or even better performance than the state-of-the-art models on different
datasets, demonstrating its generalization.

4.2 PERFORMANCE ON OUT-OF-DISTRIBUTION DATASETS

We fine-tune models on the OBQA dataset Mihaylov et al. (2018), which consists of multiple-choice
elementary-level science questions, to assess the generalization ability of various methods under
distributional shifts. We categorize shifts between datasets into two types: smaller and larger. The
ARC dataset Clark et al. (2018), also composed of multiple-choice science questions, represents
a smaller distributional shift. In contrast, the college-level chemistry, physics, and mathematics
subsets from MMLU Hendrycks et al. (2020a;b) serve as examples of larger distributional shifts.

Table 3 highlights Me-LoRA’s comparable out-of-distribution (OOD) generalization ability com-
pared to other methods on datasets with varying distributions. Me-LoRA exhibits comparable ACC
on out-of-distribution datasets, especially achieving the highest accuracy on the chemistry subset.
By incorporating uncertainty through sampling, Me-LoRA enhances the generalization capability.
Regarding uncertainty estimation, Me-LoRA demonstrates either the best or second-best perfor-
mance under smaller and larger distribution shifts.
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5 RELATED WORKS

The rapid development of LLMs has intensified research on efficient fine-tuning for specific tasks.
Traditional full-parameter fine-tuning is computationally expensive and presents challenges related
to storage and deployment. Consequently, PEFT methods have been investigated to minimize com-
putational and storage resource requirements while preserving model performance. LoRA (Hu et al.,
2021) is a prominent PEFT method that injects trainable low-rank matrices at each layer of Trans-
former architecture to approximate weight changes, effectively reducing the number of trainable pa-
rameters and enhancing training efficiency without increasing inference latency. Additionally, sev-
eral other PEFT methods have been developed, including adapter-based fine-tuning (Rücklé et al.,
2020; Pfeiffer et al., 2020), prompt-based fine-tuning (Lester et al., 2021; Vu et al., 2021; Asai et al.,
2022), and partial fine-tuning (Ansell et al., 2021; Zaken et al., 2021). These approaches aim to
minimize parameter count while maintaining or improving model performance.

Overconfidence in LLM predictions can lead to risks, highlighting the importance of uncertainty es-
timation for enhancing model reliability and trustworthiness. However, existing LLMs often exhibit
overconfidence after fine-tuning, making it challenging to estimate predictive uncertainty accurately.
To address this issue, various uncertainty estimation techniques have been introduced in LLMs, in-
cluding Monte Carlo dropout (Gal & Ghahramani, 2016), deep ensemble (Lakshminarayanan et al.,
2017; Wang et al., 2023; Zhai et al., 2023), and Laplace approximation(Antorán et al., 2022; Yang
et al., 2023). These methods enhance the model’s uncertainty estimation capabilities by incorporat-
ing randomness during training or establishing probability distributions over model parameters. A
notable approach is BLoB (Wang et al., 2024), which integrates Bayesian inference with LoRA to
capture model uncertainty through the distribution of low-rank adaptation parameters. In contrast to
the post-hoc method Laplace-LoRA (Yang et al., 2023), BLoB updates both the means and covari-
ances of LLM parameters during fine-tuning, facilitating more accurate uncertainty estimation.

Table 4: Performance of ablation methods on Llama2-13B pre-trained weights. The evaluation is
done across six common-sense reasoning tasks with a shared hyper-parameter setting after 5,000
training steps. w/o noise: do not add noise ε to the prior variance σp

Metric Method WG-S ARC-C ARC-E WG-M OBQA BoolQ

ACC ↑
w/o noise 69.830.08 70.890.05 87.010.05 74.080.15 83.830.11 82.660.19

Ours 68.670.07 71.590.11 87.110.06 75.660.09 82.060.27 82.550.03

ECE ↓
w/o noise 8.410.09 10.720.07 3.940.06 1.720.09 5.020.40 1.630.47

Ours 9.250.06 5.060.08 4.290.06 4.230.18 2.780.23 2.280.10

NLL ↓
w/o noise 0.620.00 0.800.00 0.410.00 0.520.00 0.480.01 0.390.00

Ours 0.640.06 0.710.08 0.420.00 0.510.00 0.470.00 0.400.00

Table 5: Performance of ablation methods on in-distribution and out-of-distribution datasets.

Metric Method In-Dist. Smaller Dist. Shift Larger Dist. Shift
OBQA ARC-C ARC-E Chem. Phy. Math.

ACC ↑
w/o noise 83.170.22 72.870.15 83.570.15 40.940.20 32.920.61 37.131.29
Ours 82.350.13 71.450.16 82.950.06 41.590.62 33.450.51 39.300.47

ECE ↓
w/o noise 5.210.21 8.240.20 2.980.11 17.340.18 20.701.07 15.290.94
Ours 6.170.29 9.370.13 3.780.22 15.780.89 18.250.65 14.400.57

NLL ↓
w/o noise 0.480.00 0.740.00 0.460.00 1.320.01 1.490.02 1.510.01
Ours 0.490.01 0.750.00 0.480.00 1.290.01 1.430.01 1.460.01

6 ABLATION STUDY

In this section, we conduct an ablation study to examine the impact of introducing noise ε into
the prior variance. All subsequent experiments focus on both in-distribution and out-of-distribution
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datasets using the Llama2-13B model. We maintain the same hyperparameters as in previous exper-
iments, the only modification being whether noise is added to the prior variance.

Table 4 and Table 5 show that the method without added noise performs better than ours on WG-
S, OBQA, and BoolQ. However, our approach significantly outperforms the noise-free method on
out-of-distribution tasks, particularly in college mathematics, physics, and chemistry. This prob-
lem indicates that adding noise helps mitigate overfitting and enhances generalization capabilities.
The ablation study further demonstrates that while both methods maintain similar generalization
performance, the noise-augmented method consistently achieves higher accuracy, underscoring the
benefits of incorporating noise.

7 CONCLUSION

We propose Me-LoRA, a novel parameter-efficient Bayesian fine-tuning method for LLMs in this
work. Our method shows that a full-weight variational distribution can be efficiently optimized
by a low-dimensional square matrix incorporating a variance estimate positioned between the two
low-rank matrices in LoRA. In our experiments, we observed enhanced generalization and uncer-
tainty estimation performance compared with several baseline methods. Our approach highlights
that jointly learning the mean and covariance of variational distributions with a small number of
parameters during fine-tuning can improve each other, greatly enhancing the efficiency of Bayesian
methods.
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A VARIATIONAL DISTRIBUTION OF THE FULL-WEIGHT MATRIX

With the pre-trained weight matrix W0 ∈ Rm×n, the low-rank weight update matrix A ∈ Rr×n

and B ∈ Rm×r, we suppose that the variational distribution of the other low-rank update matrix
C ∈ Rr×r is Gaussian with mean M and standard deviation Ω, denoted as q(C) ∼ N (M ,Ω),
where M ∈ Rr×r and Ω ∈ Rr×r. We then have q(Q) ∼ N (MA,Ω|A|), where Q = CA. The
equivalent variational distribution defined on the full weight matrix W = W0 +BCA as fallow,

q(W ) = N (W ;µq,Σq), (9)

where µq = vec(W0 +BMA) and Σq = [I ⊗B] · [diag(vec(Ω|A|)2)] · [I ⊗B⊤]

We begin by calculating the mean value of q(W ),

µq = vec(E[W0 +BCA])

= vec(W0 +BE[C]A)

= vec(W0 +BMA).

(10)

We then calculate the covariance matrix Σq as

Σq = E
[
(vec(W )− E[vec(W )]) · (vec(W )− E[vec(W )])

⊤
]

= E
[
vec(B(C −M)A) · vec(B(C −M)A)⊤

]
= E

[
[I ⊗B] · vec (CA−MA) · vec (CA−MA)

⊤ · [I ⊗B]⊤
]

= [I ⊗B]E
[
vec (CA−MA) · vec (CA−MA)

⊤
]
[I ⊗B]⊤

= [I ⊗B] · [diag(vec(Ω|A|)2)] · [I ⊗B]⊤

(11)

Table 6: Comparison of running time and memory cost of BLoB finetuning for Llama2-7B and
Llama2-13B. The evaluation is based on fine-tuning for 5,000 steps.

Model Metric Method Datasets
WG-S WG-M ARC-C ARC-E OBQA BoolQ

Llama2-7B

Time (Seconds) ↓
LoRA 1731 2824 2590 1718 2151 11070
BLoB 2475 4395 3601 2479 3095 15267
Me-LoRA 2699 4214 3972 2697 3297 16840

Memory (GB) ↓
LoRA 4.80 8.16 8.38 4.93 6.73 7.30
BLoB 4.82 8.17 8.40 4.94 6.75 7.27
Me-LoRA 4.80 8.19 8.39 4.94 6.74 7.28

Llama2-13B

Time (Seconds) ↓
LoRA 2230 3626 3312 2231 2667 14038
BLoB 3401 5396 4908 3423 4044 15244
Me-LoRA 3256 5470 4314 3258 4098 21255

Memory (GB) ↓
LoRA 8.80 13.99 14.28 8.94 11.78 12.66
BLoB 8.86 14.04 14.37 9.01 11.84 12.71
Me-LoRA 8.82 13.96 14.29 8.96 11.80 12.67

B SUPPLEMENTARY EXPERIMENTAL RESULTS

This section presents supplementary experimental results that were excluded from the main text due
to space constraints. In Appendix B.1, we first report the memory and training time requirements
of Me-LoRA. Appendix B.2 provides a detailed analysis of the memory and training time require-
ments. Finally, in Appendix B.3, we subsequently perform an ablation study focused on the noise
component in the prior of Me-LoRA.
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B.1 MEMORY AND TRAINING TIME REQUIREMENTS

By introducing an additional standard deviation matrix Ω, which has the same dimensions as the
LoRA A matrix, the number of trainable parameters in BLoB increases by approximately 50%
compared to LoRA. In contrast, the number of trainable parameters in Me-LoRA only increases by
less than 0.2%. However, the computation of the KL divergence, along with the inclusion of the
additional standard deviation matrix in the likelihood loss, results in extra time required for both
forward and backward passes. We conducted experiments using an NVIDIA RTX 3090 GPU to
train the Llama2-7B model, and an NVIDIA RTX A40 GPU to train the Llama2-13B model, to
evaluate the differences in GPU memory consumption and training time across BLoB, Me-LoRA,
and standard LoRA fine-tuning. The results are shown in Table 6.

Using LoRA as a baseline, on Llama2-7B, BLoB increased memory consumption by approximately
0.12% and training time by about 40%, while Me-LoRA increased memory consumption by approx-
imately 0.09% and training time by about 50%. For Llama2-13B, BLoB increased memory usage
by approximately 0.54% and training time by around 30%, whereas Me-LoRA increased memory
consumption by about 0.07% and training time by around 48%. Although our method outperforms
BLoB in terms of memory efficiency, it lags behind in terms of training time. We hypothesize that
this is due to the time complexity of the matrix multiplication between A and C, which takes longer
than the element-wise addition of matrix A and its variance in BLoB.

B.2 HYPERPARAMETERS

Table 7: Hyperparameters of LoRA and Me-LoRA-Specific Hyperparameters.

Hyperparameter Llama2-7B Llama2-13B
Optimizer AdamW
LR Scheduler Linear
Warmup Ratio 0.02
Learning Rate 1× 10−4

Dropout Probability 0.1
Batch Size 4
Max Seq. Len. 300
LoRA α 16
LoRA r 8

Optimizer of KL SGD
LR of KL 1× 10−4

σp 0.2

B.3 PERFORMANCE ON LLAMA2-7B

We also conducted tests on Llama2-7B model. The results on in-distribution and out-of-distribution
datasets are shown in Tables 8 and 9, respectively. we obtained comparable results on the in-
distribution datasets, even some of which are the best or the second best. However, we did not
achieve satisfactory results on the out-of-distribution datasets, and slight overfitting was observed.
We hypothesize that this may be due to limitations in the model’s ability to generalize beyond the
training data. Specifically, the current normalization and regularization techniques may not be suffi-
ciently robust to handle the variations present in unseen data, suggesting that improvements in these
areas could enhance the model’s performance on out-of-distribution tasks. Future work will focus
on refining these mechanisms to mitigate overfitting and improve generalization.
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Table 8: Performance of different methods applied to LoRA on Llama2-7B pre-trained weights. The
evaluation is done across six common-sense reasoning tasks with a shared hyper-parameter setting
after 5,000 training steps.

Metric Method WG-S ARC-C ARC-E WG-M OBQA BoolQ

ACC ↑

MAP 67.180.88 66.721.01 84.650.32 73.720.40 81.730.18 80.630.28
MCD 65.890.03 64.310.06 84.810.04 73.580.03 79.820.09 81.770.11

ENS 66.060.09 63.080.92 84.680.41 72.900.49 80.930.52 80.311.06
LAP 64.610.25 65.260.06 84.000.09 71.550.08 80.520.08 80.510.03
BLoB 66.710.17 65.060.06 84.840.12 72.360.29 76.940.24 77.340.12
Ours 66.150.04 65.620.05 84.930.03 72.100.01 81.780.03 81.610.04

ECE ↓

MAP 29.391.28 22.402.33 10.770.51 17.622.09 7.922.09 6.381.54
MCD 17.970.03 6.450.09 9.810.04 8.700.04 11.890.21 2.340.11
ENS 14.205.24 6.123.12 8.950.65 9.602.05 4.481.10 5.921.04
LAP 5.250.09 15.830.08 11.240.08 9.030.17 5.400.70 1.540.11

BLoB 7.640.15 8.090.09 6.440.15 11.040.24 6.240.15 2.350.15
Ours 9.130.09 8.690.16 7.080.14 6.450.07 4.870.06 5.050.06

NLL ↓

MAP 1.990.36 1.360.18 0.670.04 0.900.15 0.550.04 0.450.01
MCD 0.810.00 0.890.00 0.620.00 0.590.00 0.690.01 0.410.00

ENS 0.750.09 0.950.04 0.580.03 0.620.05 0.530.01 0.460.02
LAP 1.900.90 3.041.44 2.211.05 1.810.85 1.770.83 1.290.61
BLoB 0.640.00 0.910.00 0.520.01 0.650.01 0.640.01 0.480.00
Ours 0.660.07 0.890.00 0.550.00 0.590.00 0.510.00 0.420.00

Table 9: Performance on in-distribution and out-of-distribution datasets. All the uncertainty estima-
tion methods are applied to the LoRA adapter added upon the pre-trained Llama2-7B weights.

Metric Method In-Dist. Smaller Dist. Shift Larger Dist. Shift
OBQA ARC-C ARC-E Chem. Phy. Math.

ACC ↑

MAP 81.730.19 66.520.56 76.960.04 39.582.55 26.001.63 36.460.85
MCD 78.750.14 65.210.15 72.520.03 37.860.71 28.770.29 36.710.33
ENS 79.531.70 65.531.09 75.420.69 35.762.73 25.001.41 36.460.85
LAP 80.640.22 65.610.10 76.870.11 38.030.52 24.600.33 39.570.19

BLoB 77.050.25 60.810.11 74.310.10 30.840.35 23.620.37 38.010.54
Ours 81.800.05 65.570.03 76.590.04 33.400.14 24.740.33 34.500.15

ECE ↓

MAP 7.922.09 14.972.59 9.362.38 21.421.60 31.824.20 25.695.11
MCD 3.830.33 7.360.28 3.960.03 10.870.81 19.970.19 16.290.64
ENS 7.693.78 9.561.44 5.531.22 16.731.26 27.352.15 14.492.24

LAP 5.330.60 14.510.09 9.100.07 17.570.48 32.560.28 15.520.90
BLoB 7.110.26 17.080.08 9.290.09 29.730.42 32.600.39 18.360.21
Ours 4.820.07 11.710.02 6.780.04 20.560.44 29.730.37 18.580.44

NLL ↓

MAP 0.550.04 0.960.06 0.680.04 1.400.02 1.700.12 1.560.11
MCD 0.580.00 0.880.00 0.630.00 1.300.01 1.480.01 1.390.00

ENS 0.590.07 0.890.03 0.670.03 1.340.03 1.540.06 1.450.04
LAP 1.740.83 2.971.40 2.060.97 4.171.96 4.812.26 4.382.07
BLoB 0.630.01 1.090.00 0.720.00 1.640.02 1.770.01 1.540.03
Ours 0.510.00 0.910.00 0.640.00 1.370.00 1.680.00 1.450.00
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