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Abstract

Fully supervised deep models have shown promising performance for many medical seg-
mentation tasks. Still, the deployment of these tools in clinics is limited by the very time-
consuming collection of manually expert-annotated data. Moreover, most of the state-of-
the-art models have been trained and validated on moderately homogeneous datasets. It is
known that deep learning methods are often greatly degraded by domain or label shifts and
are yet to be built in such a way as to be robust to unseen data or label distributions. In
the clinical setting, this problematic is particularly relevant as the deployment institutions
may have different scanners or acquisition protocols than those from which the data has
been collected to train the model. In this work, we propose to address these two challenges
on the detection of clinically significant prostate cancer (csPCa) from bi-parametric MRI.
We evaluate the method proposed by (Kervadec et al., 2018), which introduces a size con-
staint loss to produce fine semantic cancer lesions segmentations from weak circle scribbles
annotations. Performance of the model is based on two public (PI-CAI and Prostate158)
and one private databases. First, we show that the model achieves on-par performance
with strong fully supervised baseline models, both on in-distribution validation data and
unseen test images. Second, we observe a performance decrease for both fully supervised
and weakly supervised models when tested on unseen data domains. This confirms the
crucial need for efficient domain adaptation methods if deep learning models are aimed to
be deployed in a clinical environment. Finally, we show that ensemble predictions from
multiple trainings increase generalization performance.

Keywords: Prostate cancer detection, Weakly supervised learning, Domain generaliza-
tion, Multiparametric MRI, Deep learning

1. Introduction

Over the last years, deep learning models have become state-of-the-art methods in almost all
medical imaging applications, including segmentation and detection. Among data-oriented
methods, fully supervised models remain the most common and best performing ones.
However, gathering numerous expert-annotated data to train such models is a very time
and ressources consuming process, restraining the current use of such models in the medical
field. For this reason, other promising paradigms have also been explored such as semi-,
weakly- or unsupervised learning (Bosma et al., 2023; Baur et al., 2021). They aimed to
mitigate the need of annotated data to train deep learning models.
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Another known drawback of deep learning methods is the limited generalization capacity
to unknown data distribution. It has been shown that when tested on out-of-distribution
data, deep learning models can significantly underperform compared to in-distribution eval-
uation (Boone et al., 2023). Yet, the robustness of models to unseen domains is an absolute
necessary condition for their use in clinical settings given the inherent heterogeneity among
scanners and acquisition protocols between and within clinical institutions.

In this work, we propose to tackle these two problems in the challenging task of detect-
ing and localizing clinically significant (ISUP grade group ≥ 2) prostate cancer (csPCa)
lesions in multi-parametric MRI. This is a task of primary clinical interest, as shown by
the recent success in the urology community of the PI-CAI (The Prostate Imaging: Cancer
IA)1 challenge. Many recent works have tried to improve the automatisation of cancerous
prostate lesions detection (Bhattacharya, 2022). Most proposed deep learning strategies
focus on supervised models, with architectures such as nnUNet ranging among the top
performing on the PI-CAI challenge dataset. A few recent works have proposed self- or
weakly supervised approaches (Tardy and Mateus, 2021; Bateson et al., 2021), leveraging
bounding boxes (Baumgartner et al., 2021), scribbles or patient-level annotations (El Jurdi
et al., 2021; Yang et al., 2021), partially lowering the gap with supervised approaches.

Our contributions in this work are threefold:

• We evaluate the method proposed by (Kervadec et al., 2018) for the challenging task
of segmenting csPCa lesions in multiparametric MRI and achieve performances close
to strong fully supervised baselines using only circle scribbles and image-level priors.

• We evaluate how the scribble annotation process impacts performance of weakly super-
vised model and show that the model is robust to various weak annotation strategies.

• We evaluate the models both on in-distribution validation data and unseen test images
to evaluate the drop in performance in the generalization configuration, and show that
our weakly supervised model is less prone to such effect.

• We quantify to what extent ensemble predictions from multiple trainings improve
generalization of deep learning models.

2. Material and Method

2.1. A weak segmentation model based on object size constraint loss function

In (Kervadec et al., 2018), the authors proposed a loss function for partially annotated data
that aims to impose a size constraint on the predicted segmentations of a model. The partial
cross-entropy H, computed only on the annotated pixels Ωa, is combined with a constraint
loss C that adds a quadratic penalty to the model on the total sum of its predictions for
class c if it is outside a defined range [a, b]. More specifically, let Vc =

∑
p∈Ω Sp,c be the sum

of the probabilities Sp,c for class c of every pixel p in the image domain Ω. The constraint
loss is given by :

C(Vc) =


(Vc − a)2 if Vs < a

(Vc − b)2 if VS > b

0 otherwise

(1)

1. The PI-CAI grand challenge : https://pi-cai.grand-challenge.org/PI-CAI/
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The total cost function is then defined as

H(S) + λC(VS) (2)

where λ is a positive constant weighting the two terms, VS =
∑

p∈Ω Sp with Sp the softmax
probability at pixel p in the image domain Ω.

The size constraint loss term was initially used in a binary segmentation problem to im-
prove prostate gland segmentation in multiparametric partially labeled MRI in (Kervadec
et al., 2018). (Duran et al., 2022) extended the binary formulation to a multi-class output
with C classes and evaluated it on a prostate cancer detection task. They used this con-
straint at the image level with image tag priors, following the definition in Kervadec et al.
(Kervadec et al., 2018), that is enforcing the presence of the target class by setting a = 1
and b = |Ω| (the image domain) or the absence of the target with parameters a = b = 0.
This implementation achieved promising performance for segmentation and grading of PCa
lesions in a weakly supervised setting on the Prostatex-2 challenge and a private datasets.

We extend the work of (Duran et al., 2022) on prostate cancer detection by leveraging the
constraint term referred to as common bounds introduced by (Kervadec et al., 2018), whose
principle is to introduce more precise lower and upper bounds a and b depending on the size
of the lesions in the ground truth. These bounds are a way to introduce prior knowledge
on the objects to detect to compensate for the partially labeled data. We implement this
method by imposing a common bounds constraint both on the prostate class and the CS
lesion class.

2.2. Data description

The experiments are conducted on three datasets, described hereunder :
• PI-CAI challenge public training dataset. It contains 1500 multi-parametric MRI
(T2w, DWI and ADC) exams from 3 Dutch centers acquired on 7 different scanners,
5 from Siemens Healthineers and 2 from Philips Medical Systems. It includes 328 cases
from the Prostate-X challenge (Armato III et al., 2018). Of all the exams available,
we only use the 1295 that are manually annotated by expert clinicians, and do not
leverage the 205 exams with AI-derived lesion segmentations.

• The Prostate158 (Adams et al., 2022) train and validation datasets. It consists of 139
annotated biparametric MRI (T2w, DWI) acquired at a German university hospital
on 3T Magneton Vida and Skyra scanners from Siemens Healthineers.

• A private dataset, containing 219 multi-parametric MRI (T2w, DWI and ADC) ex-
ams acquired in clinical practice in two French hospitals on three different scanners :
26 exams were carried out on a 3T Ingenia scanner (Philips Medical Systems), 67 on
a 1.5T Symphony scanner (Siemens Healthineers) and 126 on a 3T Discovery scanner
(GE Heathcare). It was declared to the appropriate national administrative author-
ities (CPP L 09-04 and CNIL 08-06) and patients gave written informed consent for
researchers to use their MR imaging data. All patients underwent a radical prosta-
tectomy and prostate focal lesions manually outlined by expert radiologists on the
different imaging sequences were validated against the prostatectomy gold standard
ground truth.

Both T2-weigthed (T2w) and apparent diffusion coefficient (ADC) MR maps were used
as input channels. The latter modality was registered to the former, all images were resam-
pled to a 1× 1× 3 mm3 pixel size and cropped to 96× 96× 20 volumes. Images intensities
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were linearly normalized into the range [0, 1] for each patient and each modality. More
details about these datasets can be found on Appendices A and B, including lesion volume
distributions and histograms of intensities for T2-weighted imaging and ADC maps.

2.3. Weak annotations

The aim of weak annotations is to mimic what could be an easier and faster way for clinicians
to provide annotations on real images. For this purpose, we replace full segmentations by
circles of maximum radius of 3 mm inside each individual lesion. The centers of the circles
are drawn randomly and independently on each axial slices. If the lesion is too small to fit
a circle of this size, the radius is reduced until a circle can fit inside the lesion. The prostate
gland is also annotated is such way, with only one circle per slice. In total, weak annotations
only represent 14% of the full masks of CS lesions, considerably reducing the amount and
complexity of annotations and thus the time needed for experts to make these annotations.
Illustrative circle annotations are depicted on Figure 3. Appendix F evaluates how the best
weakly supervised model performs when other annotation strategies are adopted.

2.4. Experiments

We compare several weakly supervised methods and fully supervised baseline models. For
our proposed scribble based weak model, we consider two main configurations : one with
partial cross-entropy (CE) and the image tag (IT) and one with partial CE, image tag and
common bounds (CB) constraint loss terms. We compare them to a simpler weak model
with partial cross-entropy and negative cross-entropy (denoted Partial CE) as well as to
fully supervised baselines trained with cross-entropy and generalized DICE loss on the full
available annotations. We use 2D and 3D MONAI’s DynUNet (Cardoso et al., 2022) as
backbone architectures for the proposed weak and fully supervised models. As for compar-
ison to other weakly supervised models, we train nnDetection (Baumgartner et al., 2021)
with ground truth segmentations masks being 3D rectangular cuboids framing full lesion
annotations (nnDetection full) or weak scribble annotations (nnDetection weak). Note the
comparison between these models and the ones with size constraints is not straightforward
as they do not use the same kind of weak annotations.

All models are trained in 5-fold cross-validation on the PI-CAI dataset. They are first
evaluated in the in-distribution setup, meaning we report the mean performance on the 5
validation folds of the PI-CAI dataset. Then, we appraise the models in the generalization
setup by testing them on data from two unseen domains, namely Prostate158 and our
private database. Moreover, for each method, we combine the best models of each training
fold into a single ensemble model, for which the lesion probability maps are computed as
the average of the probability maps of the 5 aggregated models. These ensemble models
are only tested on the two unseen data domains.

2.5. Evaluation metrics

The models are evaluated both at lesion and patient levels. Following PI-CAI guidelines,
a detection map is made of non-overlapping and non connected clusters, representing pre-
dicted csPCa lesions. Each lesion is assigned a unique probability score, chosen as the
average of the probabilities of the cluster’s voxels. At a lesion level, we report metrics de-
rived from the free-response receiver operating characteristics (FROC) curve which shows
sensitivity as a function of the number of false positive detections per patient. In continuity
of previous works done on this csPCa detection task (Bosma et al., 2023; Saha et al., 2021),
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we consider a predicted lesion as a true positive if it intersects a ground truth lesion with
an intersection-over-union (IoU) ratio of at least 0.1. Since there is no consensus metric
to summarize a FROC curve, we choose to report the sensitivity at 1 false positive per
patient. Another complementary indicator of the performances of detection models is the
average precision (AP), defined as the area under the precision-recall curve. Finally, for the
patient-level diagnosis performance, the area under the ROC curve (AUROC) is reported.
The patient’s overall likelihood of harboring csPCa is defined as the maximum score of the
predicted lesion clusters.

2.6. Implementation details and hyperparameters

All hyperparameters were determined with grid search on the first fold of the PI-CAI train-
ing/validation splits (see Appendix C for more details). The lower and upper bounds
associated with the CS lesions class were set to 5 and 500 voxels for 2D models and to 30
and 4 000 voxels for 3D models. For the prostate class, they were set to 100 and 2 500 in the
2D case and 10 000 and 40 000 in the 3D case. The fully supervised baselines were trained
with cross-entropy and generalized DICE loss. All models were trained during 200 epochs
with Adam optimizer, a learning rate of 10−3 and a weight decay of 10−4. To compensate
for the low amount of lesions in the PI-CAI dataset (see Table 1), sampling was weighted
such that 2D transverse slices for 2D models – or 3D volumes for 3D models – with and
without lesions have the same probability of being drawn in a batch. For post-processing,
predicted lesions of size inferior than 15 voxels are discarded.

3. Results

3.1. Classification and detection performances

Figure 1 shows performance of all considered models for the three metrics of interest, namely
sensitivity at 1 FP, AP and AUROC. Figure 3 provides examples of visual results of lesion
detection maps for some 3D models. Extended visual results, including of 2D and ensemble
models, are showcased in Appendix E.

First of all, it is important to note that the best performing model, namely the 3D
supervised DynUNet, achieves a mean AUROC of 0.82 and mean AP of 0.42 thus producing
a mean aggregated score of 0.62. This performance compares well against the best achievable
reported metric on the PI-CAI challenge leader-board. We thus consider it a reliable baseline
for our comparison. Surprisingly, the 3D supervised DynUNet is still outperformed by 2D
models in term of sensitivity at 1 FP, including by models trained with weak labels.

The two weak models with size constraints (CE+IT, CE+IT+CB) clearly outperform
the model trained only with partial and negative cross entropies (Partial CE), showing the
interest of the additional size constraint cost functions. Between the image tag (IT) and the
common bounds (CB) losses, the latter achieves a higher score in 22 of the 30 configurations.
We use the term configuration to refer to a pairwise comparison between models with the
same spatial dimension input (2D or 3D) and type of model (ensemble or not) evaluated
on a given dataset and for a given metric. For instance, AUROC comparison between 2D
CE+IT and 2D CE+IT+CB on Prostate158 accounts for one configuration. Remarkably,
the models that have been trained with weak labels can outperform fully supervised models.
They also perform favorably compared to nnDetection in most cases. The weakly supervised
CE+IT+CB model achieves better scores than its supervised counterpart in almost all 2D
configurations, but only 2 times out of 30 in 3D.
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Figure 1: Classification and detection performances of all models. Reference designates
fully supervised 3D DynUNet trained and tested on the Prostate158 or private dataset in
5-fold cross-validation setup. See Appendix D for detailed numerical values.

For almost all models, metrics and datasets, model ensembling improves the generaliza-
tion performances, with a mean improvement of 20% among all models and metrics. We
can note that for sensitivity at 1FP and AUROC, some models, especially with ensemble
predictions, equal or surpass the reference metrics, which is the mean performance over 5
folds of the 3D fully supervised DynUNet trained and tested on the Prostate158 or private
datasets, respectively. However, these reference models remain better in terms of AP.
Finally, the comparison study provided in Appendix F shows that the weakly supervised
models are robust to several scribble annotation strategies and that the one we chose does
not bias the model towards an overestimation of its performance.

3.2. Generalization to unseen data domains

Figure 2 shows the relative performance of the models on the two test datasets, that is
Prostate158 and our private database, compared to the performance of the same model
evaluated on the in-distribution validation dataset. We did not report the results for the
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Figure 2: Relative change in performances on out-of-distribution test datasets. The reported
values are the ratio between a model’s performance on a test dataset (Prostate158 or our
private dataset) and its cross-validation performance on PI-CAI.

cases where the models are trained with partial and negative cross entropies as their absolute
performances are much lower than the others.

For most of the metrics and models, there is, as one could have expected, a notable drop
in performances when the models are evaluated on a test set that has been acquired in a
different setup from that of the training dataset. The average performance decrease ratio is
of 28% among all models and metrics. This can reach values as low as -61% for supervised
models. Quite surprisingly, the Average-Precision score is even or better – sometimes by a
large amount – on the test datasets than on the validation datasets for many models.

Compared to fully supervised models, the weak models trained with CB constraint
loss has a more favorable relative change in 19 configurations out of 24 (6 configurations
correspond to the PI-CAI dataset and are thus not considered here). This advantage is also
found when compared to the models trained with the IT loss. Ensemble predictions, with
a rule as simple as averaging the output probability maps of models obtained from several
trainings, almost always help reducing the performance gap in generalization.
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Figure 3: Example prediction maps of several 3D models. More visual results can be found
in Appendix E. Blue color is for prostate and red for clinically significant lesions.

4. Discussion and conclusion
Our proposed weakly supervised method achieves competitive results compared to fully
supervised baselines, while requiring only 14% of annotation voxels of clinically significant
lesions. It consistently outperforms 2D supervised DynUNet trained with cross-entropy and
generalized DICE loss. In the 3D configuration, the model trained with full segmentation
annotations remains better overall. The addition of the more precise common bounds (CB)
size constraint gives better results compared to the image tag (IT) model that was proposed
in (Duran et al., 2022).

Among all compared methods, the weak model with CB loss is the most robust to unseen
data domains. As seen on Figure 2, it indeed suffers the least from a performance drop
when tested on data that do not belong to the training distribution.

Our study confirms, for the task of csPCa lesion detection and segmentation, that
heterogeneity between training and test databases noticeably impacts performance of deep
learning models and is thus an issue of first interest if such models are aimed to be used
in a clinical environment. We show that one simple way to mitigate this issue is to make
ensemble predictions from multiple trainings, as this allows decreasing the performance
drop in almost all the configurations we have tested. Finally, it is important to note that
the best models trained on PI-CAI reach performances on unseen domains that can be on
par with fully supervised models trained on these datasets. This is an encouraging result
that supports the current trend of building models on a given large training dataset, in a
weakly or fully supervised setup, and deploying it on other institutions that have less or no
annotated data. Further work includes refining the hyperparameters of the scribble based
weak models as well as designing task-specific and few shot domain adaptation methods to
better handle dataset heterogeneities.
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Appendix A. Lesion characteristics for each database

Table 1: Summary of positive cases and total number of lesions for each dataset.

Database # of positive cases / total patients # of CS lesions

PI-CAI 220 / 1295 (17%) 301
Private dataset 183 / 219 (84%) 408
Prostate158 82 / 139 (59%) 236
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Figure 4: Histograms (blue) and cumulative histograms (orange) of lesion sizes in 3D for
the three datasets. The unit of lesion sizes is the number of voxels for a volume with a
spatial spacing of 1×1×3 mm3. The two vertical red lines show the values of the bounds a
and b used for the CB loss (set by grid search), which are equal to 10 and 4000 respectively.

11



Trombetta Rouvière Lartizien

400 800 1200 1600 2000 2400 2800
Lesion size

0

10

20

30

40

50

Co
un

t

PI-CAI

0

200

400

600

800

1000

1200

1400

1600

Cu
m

ul
at

iv
e 

co
un

t

400 800 1200 1600 2000 2400 2800 3200
Lesion size

0

10

20

30

40

50

60

70

Co
un

t

Private database

250

500

750

1000

1250

1500

1750

2000

Cu
m

ul
at

iv
e 

co
un

t

300 600 900 1200 1500 1800 2100 2400 2700
Lesion size

0

5

10

15

20

25

30

Co
un

t

Prostate158

100

200

300

400

500

600

700

800

900

Cu
m

ul
at

iv
e 

co
un

t

Figure 5: Histograms (blue) and cumulative histograms (orange) of slicewise lesion sizes
(i.e. in 2D) for the three datasets. The unit of lesion sizes is the number of voxels for a
volume with a spatial spacing of 1× 1 mm2. The two vertical red lines show the values of
the bounds a and b used for the CB loss (set by grid search), which are equal to 10 and 600
respectively.

Appendix B. Characteristics of MRI modalities for each database
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Figure 6: T2w voxel intensity distributions for each database.
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Figure 7: ADC voxel intensity distributions for each database.

Appendix C. More details about the models

Architecture details

The 2D DynUNet is composed of four stages with a respective number of filters of 32,
64, 128 and 256. The kernel sizes are set to 3 and the stride is of 1 for the shallowest
and 2 for the others. With an input size of [2, 96, 96], the deepest layers have a shape of
[256, 12, 12]. We use Instance Normalisation layers and a dropout of ratio 0.1. The network
has a total of 3.8 million (learnable) parameters.

The 3D DynUNet is composed of four stages with a respective number of filters of 32,
64, 128 and 256. The kernel sizes are set to 3 and the stride is of 1 for the shallowest and
the deepest blocks and 2 for the others. With an input size of [2, 20, 96, 96], the deepest
layers have a shape of [256, 5, 24, 24]. We use Instance Normalisation layers and a dropout
of ratio 0.1. The network has a total of 10.7 million (learnable) parameters.

Details about the grid search

We did the grid search on the hyperparameters of the models as follows : for the weak
constrained models, we first found the best combination of parameters for the learning
rate, the weight decay and constraint weight λ on the model with image tag. Once these
parameters were set for the IT model, we reused them for the model with common bounds
constraint and did the grid search for the parameters a and b. For the supervised model and
Partial CE model, we only did the grid search on the learning rate and the weight decay.
The values that we tried for the hyperparameters are detailed hereunder :

• Learning rate : between 1e−4 and 1e−2 with a linear step of 0.5 in the logarithmic
scale.

• Weight decay : between 1e−5 and 1e−2 with a linear step of 1 in the logarithmic
scale.

• λ : between 1e−5 and 1e−2 with a linear step of 1 in the logarithmic scale in the two-
dimensional case and between 1e−5 and 1e−9 with a linear step of 1 in the logarithmic
scale in the three-dimensional case. It optimal value was found to be 10−5 and 10−8

for 2D and 3D models respectively.
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• a and b : {5, 10} for a and {100, 200, 300, 400, 500, 600} for b in the two-dimensional
case and {10, 30, 50, 70, 100} for a and {1500, 2000, 2500, 3000, 3500, 4000, 5000, 6000}
for b in the three-dimensional case. The grid search in the 2D case is smaller because
an optimization of the hyperparameters had already been done in (Duran et al., 2022).

• the class weights wc were set to 0.14 for the prostate and 0.22 for the lesion based on
empirical values reported in (Duran et al., 2022).
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Appendix D. Full numerical results associated to Figure 1

Table 2: Full results of the models on PI-CAI dataset. For each metric, the best model is
in bold and the second best is underlined. † is used when a model does not reach 1 FP per
patient; in such case, we report the maximum sensitivity.

Model Sensi at 1 FP Average Precision AUROC

2D Supervised 0.676± 0.026 0.150± 0.031 0.748± 0.031
2D Partial CE 0.446± 0.091 0.068± 0.027 0.581± 0.041
2D CE + IT 0.746± 0.028 0.256± 0.042 0.776± 0.019
2D CE + IT + CB 0.733± 0.072 0.258± 0.061 0.790± 0.019
3D Supervised 0.705± 0.058† 0.412± 0.047 0.825± 0.013
3D Partial CE 0.060± 0.058† 0.011± 0.009 0.551± 0.085
3D CE + IT 0.332± 0.081† 0.349± 0.071 0.635± 0.028
3D CE + IT + CB 0.545± 0.252† 0.278± 0.121 0.733± 0.091
nnDetection full 0.332± 0.081 0.349± 0.071 0.635± 0.028
nnDetection weak 0.545± 0.252 0.278± 0.121 0.733± 0.091

Model Maximum sensitivity Avg. FP per patient

2D Supervised 0.803± 0.075 3.21± 0.52
2D Partial CE 0.339± 0.071 10.69± 2.53
2D CE + IT 0.516± 0.083 3.67± 1.06
2D CE + IT + CB 0.756± 0.096 1.55± 0.52
3D Supervised 0.705± 0.058 0.69± 0.15
3D Partial CE 0.126± 0.049 5.02± 2.54
3D CE + IT 0.332± 0.081 0.12± 0.04
3D CE + IT + CB 0.715± 0.075 1.42± 0.85

Table 3: Full results of the models on our private dataset. The results after ensembling is
shown between brackets. For each metric, the best model is in bold and the second best
is underlined (excluding the reference model). † is used when a model does not reach 1 FP
per patient; in such case, we report the maximum sensitivity.

Model Sensi at 1 FP Average Precision AUROC

2D Supervised 0.303± 0.054 (0.392) 0.150± 0.034 (0.0.300) 0.571± 0.023 (0.653)
2D Partial CE 0.143± 0.037 (0.267) 0.056± 0.019 (0.120) 0.508± 0.037 (0.551)
2D CE + IT 0.405± 0.036 (0.504) 0.270± 0.034 (0.369) 0.574± 0.042 (0.606)
2D CE + IT + CB 0.376± 0.056 (0.401) 0.280± 0.047 (0.399) 0.641± 0.031 (0.661)
3D Supervised 0.305± 0.045† (0.272) 0.337± 0.030 (0.432) 0.627± 0.037 (0.626)
3D Partial CE 0.007± 0.003† (0.017) 0.005± 0.002 (0.009) 0.557± 0.059 (0.552)
3D CE + IT 0.077± 0.032† (0.056) 0.221± 0.072 (0.262) 0.498± 0.038 (0.495)
3D CE + IT + CB 0.249± 0.117† (0.332) 0.236± 0.089 (0.383) 0.558± 0.029 (0.604)
nnDetection full 0.332± 0.081 0.349± 0.071 0.635± 0.028
nnDetection weak 0.545± 0.252 0.278± 0.121 0.733± 0.091
Reference 0.651 0.542 0.639
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Model Maximum sensitivity Avg. FP per patient

2D Supervised 0.407± 0.060 (0.397) 3.84± 0.78 (1.47)
2D Partial CE 0.335± 0.051 (0.371) 11.00± 2.76 (8.23)
2D CE + IT 0.512± 0.046 (0.522) 3.71± 0.89 (1.84)
2D CE + IT + CB 0.391± 0.073 (0.401) 1.55± 0.32 (0.61)
3D Supervised 0.306± 0.045 (0.272) 0.73± 0.25 (0.22)
3D Partial CE 0.039± 0.013 (0.034) 4.99± 2.65 (3.86)
3D CE + IT 0.077± 0.032 (0.056) 0.13± 0.055 (0.06)
3D CE + IT + CB 0.331± 0.042 (0.332) 1.78± 0.92 (0.52)
Reference 0.655± 0.063 1.40± 0.20

Table 4: Full results of the models on Prostate158. The results after ensembling is shown
between brackets. For each metric, the best model is in bold and the second best is
underlined (excluding the reference model). † is used when a model does not reach 1 FP
per patient; in such case, we report the maximum sensitivity.

Model Sensi at 1 FP Average Precision AUROC

2D Supervised 0.433± 0.056 (0.552) 0.221± 0.061 (0.412) 0.666± 0.025 (0.740)
2D Partial CE 0.181± 0.026 (0.271) 0.048± 0.015 (0.121) 0.510± 0.029 (0.605)
2D CE + IT 0.569± 0.037 (0.656) 0.355± 0.027 (0.459) 0.728± 0.027 (0.757)
2D CE + IT + CB 0.542± 0.059 (0.635) 0.388± 0.041 (0.421) 0.726± 0.028 (0.781)
3D Supervised 0.438± 0.071† (0.438) 0.366± 0.031 (0.484) 0.733± 0.019 (0.780)
3D Partial CE 0.027± 0.018† (0.031) 0.010± 0.004 (0.011) 0.459± 0.030 (0.402)
3D CE + IT 0.160± 0.044† (0.135) 0.322± 0.044 (0.373) 0.583± 0.030 (0.623)
3D CE + IT + CB 0.375± 0.176† (0.490) 0.286± 0.115 (0.456) 0.697± 0.046 (0.733)
nnDetection full 0.332± 0.081 0.349± 0.071 0.635± 0.028
nnDetection weak 0.545± 0.252 0.278± 0.121 0.733± 0.091
Reference 0.643 0.619 0.708

Model Maximum sensitivity Avg. FP per patient

2D Supervised 0.594± 0.055 (0.552) 4.47± 0.90 (1.73)
2D Partial CE 0.290± 0.051 (0.323) 8.72± 1.86 (6.03)
2D CE + IT 0.710± 0.029 (0.698) 5.40± 0.92 (3.10)
2D CE + IT + CB 0.602± 0.074 (0.635) 2.47± 0.79 (1.05)
3D Supervised 0.452± 0.082 (0.438) 0.94± 0.24 (0.25)
3D Partial CE 0.087± 0.036 (0.094) 5.02± 2.60 (3.78)
3D CE + IT 0.160± 0.044 (0.135) 0.15± 0.07 (0.07)
3D CE + IT + CB 0.496± 0.043 (0.490) 2.07± 1.00 (0.68)
Reference 0.643 1.05

16



Weakly supervised prostate cancer detection and generalization on unseen domains

Appendix E. Supplementary visual results
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Figure 8: Examples prediction maps of several 2D models, ensemble of 2D models and
ensemble of 3D models. Blue color is for prostate and red for clinically significant lesions.
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Appendix F. Study on the method for generating weak annotations
Modeling the process of obtaining the weak scribble annotations is crucial for correctly
evaluating the relevance of the weakly supervised models, as an unrealistic modeling could
lead to under- or over-estimated performance of the model. In order to assess the robustness
of the weakly supervised models to such annotation process, we provide here comparison
between several annotation methods that we consider to be realistic ways of producing
scribble annotations. Note that these annotation methods apply only to the lesion class; for
the prostate class the method described described in section 2.3 and referred to as random
valid is systematically used. The methods are as follows :

• Random valid denotes the method described in section 2.3.

• Center distance map. For each lesion, we compute the Euclidean distance between
each non-zero pixel in lesion mask and the nearest zero pixel. The center of the lesion
is the maximum value of this map and the circular annotation that is drawn is the
largest circle of radius inferior or equal to 3mm that can fit in the CS lesion mask.
The amount of annotated pixels with this method is similar to the one of random
valid (14%).

• Random distance map. From the distance map obtained as described above, we ran-
domly draw a center for the circular scribble with a probability density proportional
to the distance map, to biase selection of the scribble center towards the center of the
lesion. In this case we draw a circle which always has a radius of 3mm, resulting in
an amount of annotated pixels superior to the two previous methods (16.5 %).

• Erosions. For each lesion, we iteratively trim its mask to reduce its size until we
obtain a surface below a certain value. We then threshold surface is equivalent to
a circle of radius 3mm, it results in an amount of annotated pixels below the other
methods (10%). Hence, for better comparison, we also perform such procedure with
a higher threshold to get the same amount of CS lesion annotations (14%).

Table 5: Results of 2D CE + IT + CB on PI-CAI dataset for several weak annotations
methods. For each metric, the best model is in bold and the second best is underlined.

Model Sensi at 1 FP Average Precision AUROC

Random valid 0.542± 0.059 0.388± 0.041 0.726± 0.028
Center distance map 0.734± 0.080 0.250± 0.037 0.788± 0.040
Random distance map 0.689± 0.066 0.296± 0.031 0.643± 0.032
Erosions (10%) 0.681± 0.045 0.185± 0.016 0.759± 0.019
Erosions (14%) 0.746± 0.062 0.253± 0.059 0.773± 0.022

Table 6: Results of 2D CE + IT + CB on our private dataset for several weak annotations
methods. The results after ensembling is shown between brackets. For each metric, the
best model is in bold and the second best is underlined.

Model Sensi at 1 FP Average Precision AUROC

Random valid 0.376± 0.056 (0.401) 0.280± 0.047 (0.399) 0.641± 0.031 (0.661)
Center distance map 0.422± 0.025 (0.453) 0.296± 0.031 (0.415) 0.643± 0.032 (0.685)
Random distance map 0.347± 0.040 (0.371) 0.247± 0.066 (0.379) 0.557± 0.038 (0.627)
Erosions (10%) 0.366± 0.030 (0.431) 0.251± 0.023 (0.370) 0.622± 0.026 (0.682)
Erosions (14%) 0.411± 0.047 (0.426) 0.288± 0.042 (0.402) 0.611± 0.064 (0.663)
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Table 7: Results of 2D CE + IT + CB on Prostate158 for several weak annotations methods.
The results after ensembling is shown between brackets. For each metric, the best model is
in bold and the second best is underlined.

Model Sensi at 1 FP Average Precision AUROC

Random valid 0.542± 0.059 (0.635) 0.388± 0.041 (0.421) 0.726± 0.028 (0.781)
Center distance map 0.564± 0.032 (0.615) 0.355± 0.028 (0.490) 0.760± 0.035 (0.788)
Random distance map 0.485± 0.044 (0.615) 0.268± 0.052 (0.502) 0.684± 0.037 (0.735)
Erosions (10%) 0.550± 0.026 (0.625) 0.346± 0.023 (0.504) 0.735± 0.054 (0.773)
Erosions (14%) 0.519± 0.030 (0.614) 0.317± 0.047 (0.483) 0.731± 0.025 (0.808)

Appendix G. Model results for prostate segmentation
Although not within the scope of this work, we provide hereunder a similar visualization
than Figure 1 for the prostate segmentation Dice score. As suggested by the examples
predictions maps shown in Figures 3 and 8, the regularization induced by the common
bounds loss greatly improves the segmentation in the weakly supervised setup compared to
models with partial cross-entropy (CE) or cross-entropy and image tag (CE+IT). Note that
the bounds a and b were set roughly for the prostate class : in the 2D case, we used the
ones that were set in (Duran et al., 2022), and in 3D case, we empirically set them based
on the analysis of the distribution of prostate sizes.

PI-CAI Clara-P Prostate 158
0.0

0.2

0.4

0.6

0.8

1.0
Dice Prostate

2D Supervised
2D Partial CE
2D Partial CE + IT
2D CE + IT + CB
Ensemble model

3D Supervised
3D Partial CE
3D CE + IT
3D CE + IT + CB
Reference

Figure 9: DICE prostate segmentation score for all models. Weak labels only represent
about 2% of the total annotated voxels for the prostate class. Reference designates fully
supervised 3D DynUNet trained and tested on the Prostate158 or private dataset in 5-fold
cross-validation setup.
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