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ABSTRACT

In the realm of advanced driver-assistance systems (ADAS) and autonomous driv-
ing, the accurate classification of driver emotions, behaviors and contextual envi-
ronments is critical for enhancing vehicle safety and user experience. This study
investigates the performance of various neural network architectures across four
distinct classification tasks: Emotion Recognition, Driver Behavior Recognition,
Scene-Centric Context Recognition and Vehicle-Based Context Recognition, all
of which incorporate visual information captured through cameras. By utilizing
camera-based data, we aim to evaluate how different neural architectures han-
dle visual inputs in these diverse contexts, thereby exploring the robustness and
generalization of each model to different real-world scenarios. We compare the
performance of several state-of-the-art models and introduce a novel contribution
that significantly improve classification accuracies in all areas. Our results demon-
strate that the proposed Liquid Dino architecture achieves an overall average ac-
curacy of 83.79%, outperforming other models in recognizing driver emotions,
behaviors and contextual scenarios. These enhancements underscore the potential
of our proposed methods in contributing to the development of more reliable and
responsive ADAS.

1 INTRODUCTION

With the rapid advancement of intelligent transportation systems, the necessity for highly sophisti-
cated driver monitoring systems has become increasingly paramount. Accurate detection and clas-
sification of driver emotions (Naqvi et al. (2020); Zepf et al. (2020)), behaviors (Chatziloizos et al.
(2024); Shahverdy et al. (2020)) and surrounding and vehicle contexts (Worrall et al. (2012)) are
essential for the development of robust Advanced Driver-Assistance Systems (ADAS) and fully au-
tonomous vehicles. These systems not only play a critical role in enhancing road safety but also
contribute significantly to improving the overall driving experience by preemptively identifying and
mitigating potential hazards.

However, the intricate nature of human emotions and behaviors, combined with the ever-changing
dynamics of driving environments, presents substantial challenges for conventional machine learn-
ing models. Traditional approaches, such as ResNet (He et al., 2015), VGG (Simonyan & Zisserman,
2015) and MobileNet (Howard et al., 2017a), often struggle to capture these nuanced variations with
the precision required for real-world applications. This limitation underscores the need for more ad-
vanced neural network architectures capable of addressing the complex demands of modern driver
monitoring systems.

In this study, we aim to overcome these challenges by introducing Liquid Dino and evaluating the
performance of several state-of-the-art neural networks across four critical classification tasks: Emo-
tion Recognition, Driver Behavior Recognition, Scene-Centric Context Recognition and Vehicle-
Based Context Recognition. We used the AIDE dataset (Yang et al., 2023), from which we used the
frames from each video sequence in order to classify simultaneously all the previous tasks. Also,
we benchmark these tasks using both established models and our novel contributions, which in-
clude a combination of CNN with Closed-form Continuous-time Neural Networks (CFC) (Hasani
et al., 2022), DINOv2 (Oquab et al., 2023) and a specialized CNN configuration applied in driver’s
behaviour identification before (Chatziloizos et al., 2024). These models incorporate cutting-edge
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techniques designed to enhance feature extraction and classification accuracy, particularly in the
context of multi-task learning.

The experimental results underscore the effectiveness of our proposed models, particularly the Liq-
uid Dino architecture. Liquid Dino achieved the highest average accuracy of 83.79% surpassing by
at least 5% previous literature and outperforming traditional models in all four tasks. Specifically, it
excelled in Traffic Context Recognition with an accuracy of 95.03% and Vehicle Condition Recog-
nition at 84.76%, setting a new benchmark in the field. This significant performance gain highlights
the ability of our models to leverage advanced neural network methodologies, offering improved
accuracy and efficiency in comparison to conventional approaches.

In the subsequent sections, first we present the related work and then we provide a detailed overview
of the dataset, methodologies and neural network architectures employed in this study. We also
present a comprehensive analysis of the results, emphasizing the substantial improvements delivered
by our contributions and discussing their implications for future research in the domain of intelligent
driver monitoring systems.

2 RELATED WORK

In earlier efforts to develop driver monitoring systems, traditional methods relied heavily on hand-
crafted features and rule-based algorithms to detect driver behaviors. These systems often utilized
basic computer vision techniques such as edge detection, skin tone analysis, or head pose estimation
to identify potential distractions (O’Mahony et al., 2020; Dalal & Triggs, 2005; Murphy-Chutorian
et al., 2007; Veeraraghavan et al., 2007). For example, detecting eye movements and blink rates was
a common approach for determining driver fatigue (Jiao et al., 2014). However, these rule-based
methods struggled to generalize across diverse environments, lighting conditions and driver behav-
iors. Additionally, they lacked the adaptability and accuracy needed for complex driving scenar-
ios, leading to the emergence of deep learning approaches, which have since become the dominant
framework for addressing these challenges.

In the context of driver monitoring systems, network architectures are typically designed with the
practical constraints of deployment in on-road vehicles. Leveraging advances in deep learning,
many approaches have adopted classical models that are well-established in the field. These include
widely accepted architectures such as the AlexNet (Krizhevsky et al., 2012), GoogleNet (Szegedy
et al., 2014), PP-Res18 (Zhou et al., 2017), VGG and ResNet families. In parallel, the need for
resource-efficient solutions has led to the adoption of lightweight models like MobileNet V1/V2
(Howard et al., 2017b; Sandler et al., 2018) and ShuffleNet V1/V2 (Zhang et al., 2018; Ma et al.,
2018), which are particularly advantageous for real-time applications in vehicles. For tasks involv-
ing video-based data, 3D-CNN models such as C3D (Tran et al., 2015), I3D (Carreira & Zisserman,
2017), SlowFast (Feichtenhofer et al., 2019), TimeSFormer (Bertasius et al., 2021) and 3D-ResNet
(Hara et al., 2018) have been implemented to capture spatio-temporal features effectively.Also in
previous methodologies, the ST-GCN (Yan et al., 2018) was employed to deal with the skeleton
sequences via multi-level spatio-temporal graphs. Additionally, specialized network structures have
been developed to address the unique patterns in driving-related data. In our work, we extensively
utilize a combination of classical, lightweight and state-of-the-art (SOTA) baseline models to con-
duct a comprehensive set of experiments across various learning paradigms. This diverse array
of models and input streams provides critical insights into selecting the most appropriate network
structures for driving-aware systems.

To accommodate the complex requirements of multi-stream and multi-modal inputs in driving per-
ception tasks, various fusion strategies have been developed. These strategies are generally catego-
rized into data-level, feature-level and decision-level fusion. For instance, data-level fusion methods,
such as those proposed by Ortega et al. (2020), merge infrared and depth frames through pixel-
wise correlation, resulting in enhanced perception performance compared to unimodal approaches.
Feature-level fusion commonly involves techniques like feature summation or concatenation to inte-
grate diverse data streams. Furthermore, decision-level fusion approaches, such as those by Kopuklu
et al. (2021), involve training separate models for each driver view and then combining the outputs
based on similarity scores. In our research, we introduce the fusion of interior and exterior cameras
in a form of mosaic, thereby improving the overall performance of the driving perception system.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 DATASET

3.1 DATASET DESCRIPTION

The AssIstive Driving pErception (AIDE) dataset (Yang et al., 2023) is a novel and comprehensive
resource designed to enhance the capabilities of vision-driven driver monitoring systems (DMS).
The dataset was meticulously collected under real-world driving conditions, ensuring the authentic-
ity and diversity of the data. While most datasets, either offer only the interior view of the cabin
or just the outer envirnment, AIDE stands out due to its multi-view, multi-modal and multi-task de-
sign, offering a rich dataset that captures both the internal state of the driver and the external driving
environment.

The dataset includes four distinct camera views to provide a wide range of visual information. Three
external cameras are mounted on the vehicle to capture the left view, right view and front view, thus
covering the traffic context. A fourth camera is installed inside the vehicle to monitor the driver’s
state. Each camera records video at a resolution of 1920x1080 pixels, with a frame rate of 15 frames
per second (fps) and a dynamic range of 120 dB. These cameras are synchronized to ensure temporal
alignment across all views, enabling a cohesive analysis of the driving scenario and driver behavior.

The dataset is extensively annotated, offering detailed labels for the driver’s face, body posture and
gestures, as well as the external traffic environment. Annotations span various categories which are
the four tasks that we are going to classify, including:

• Driver Emotions (DER) : Labels include states such as anxiety, peace and weariness.

• Driver Behaviors (DBR): Actions like smoking, talking and dozing off are annotated.

• Scene-Centric or Traffic Context (TCR): Situations such as traffic jams or smooth traffic
are documented.

• Vehicle Conditions (VCR): The state of the vehicle, such as parking and lane position, is
recorded.

This multi-task framework allows for a holistic analysis of the driving experience, integrating data
on the driver’s behavior and emotional state with external traffic conditions.

The data collection was conducted during naturalistic driving sessions, where participants were
unaware of the specific data collection objectives to capture authentic driving behavior. Data was
collected from multiple drivers with varied driving styles across different times and days, ensuring
the dataset encompasses a wide range of driving scenarios and conditions. Overall, the AIDE dataset
is a versatile and detailed dataset that can serve as a foundation for the next generation of driver
monitoring systems.

3.2 PRE-PROCESSING

In our preprocessing pipeline as shown in Figure 1, we began by handling the individual images
extracted from the videos of the AIDE dataset, carefully aligning and processing them for further
analysis. Specifically, we merged four of these images into a single composite image arranged in a
2x2 grid format. This merging process not only streamlined the data but also allowed us to main-
tain the spatial relationships and contextual integrity of the original images. After forming these
composite images, we resized them to smaller dimensions to facilitate faster processing and reduce
computational load, while ensuring that the essential visual information was preserved. This resizing
step was critical in balancing the trade-off between image clarity and the efficiency of subsequent
model training and analysis. The preprocessing steps we implemented significantly optimized the
dataset, making it more suitable for the demands of machine learning tasks, particularly those in-
volving complex vision-based driver monitoring systems.
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Figure 1: Data preperocessing from raw data to 2x2 re-scaled grid

4 METHODOLOGY

In this section, we will describe each of the methodologies used in order to develop our final model.
It is important to note that the first three subsections present approaches derived from existing re-
search, while the final subsection introduces our original Liquid Dino methodology.

Furthermore, the total loss for the classification tasks DER, DBR, TCR and VCR is calculated by
summing the individual cross-entropy losses:

Ltotal = LDER + LDBR + LTCR + LVCR

Where the cross-entropy loss Ltask for each task is given by:

Ltask = −
N∑
i=1

yi log(ŷi)

where N is the number of classes, yi is the true label for the i-th class (one-hot encoded) and ŷi is
the predicted probability for the i-th class.

Thus, the total loss is:

Ltotal = −

(
N∑
i=1

yDER
i log(ŷDER

i ) +

N∑
i=1

yDBR
i log(ŷDBR

i ) +

N∑
i=1

yTCR
i log(ŷTCR

i ) +

N∑
i=1

yVCR
i log(ŷVCR

i )

)

4.1 CNN

The Convolutional Neural Network (CNN) architecture presented in (Chatziloizos et al., 2024) was
initially designed for the classification of images into 10 distinct categories, identifying the be-
haviour of the driver. The network is constructed using a series of MixNet-inspired blocks (Tan
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& Le, 2019), each comprising convolutional layers, depthwise separable convolutions and residual
connections. The initial block applies a convolutional layer with 60 channels using a 5x5 kernel,
followed by batch normalization and a depthwise separable convolution with a 3x3 kernel, main-
taining the same padding. Additionally, this block incorporates a Squeeze-and-Excitation (SE) (Hu
et al., 2019) mechanism to bolster the network’s capacity for capturing detailed and intricate pat-
terns. This structure is iteratively refined in the subsequent blocks, where the depthwise convolutions
are progressively expanded to use 5x5 and 7x7 kernels. To optimize performance, the Swish (Ra-
machandran et al., 2017) activation function is employed, having shown superior results compared
to ReLU (Nair & Hinton, 2010) and GeLU (Hendrycks & Gimpel, 2023) in preliminary tests. The
network also includes dropout layers to mitigate the risk of overfitting during training. Following the
sequence of MixNet-style blocks, a final convolutional block is introduced, featuring convolutional
layers with Swish activation, batch normalization and max-pooling, which collectively contribute to
establishing the network’s spatial hierarchy. The output layer, equipped with a softmax activation
function, assigns probabilities to classify the input images into one of the specified classes. The
Adam optimizer (Kingma & Ba, 2017) is utilized to fine-tune the model’s parameters, aiming to
maximize classification accuracy while keeping the model’s complexity and parameter count to a
minimum.

4.2 DINOV2

DINOv2 (Distillation with No Labels version 2) (Oquab et al., 2023) is an advanced self-supervised
learning method designed for computer vision tasks, particularly in scenarios where labeled data
is scarce or unavailable. Building on the success of its predecessor, DINOv2 leverages the power
of self-distillation and Vision Transformers (ViTs) (Dosovitskiy et al., 2014) to learn rich visual
representations from large-scale, unlabeled image datasets. The core innovation of DINOv2 lies in
its ability to distill knowledge from a teacher model to a student model without requiring manual
annotations, allowing the model to learn meaningful patterns and features directly from the data.
This approach not only enhances the robustness and generalization capabilities of the model but also
reduces the dependency on labeled datasets, making it highly versatile for a wide range of computer
vision applications, including image classification, object detection and segmentation. DINOv2 has
been shown to produce state-of-the-art results, demonstrating the effectiveness of self-supervised
learning in unlocking the potential of large-scale image data.

4.3 CLOSED-FORM CONTINUOUS-TIME LIQUID NEURAL NETWORKS (CFC)

The hidden state of a Liquid Time-Constant (LTC) network (Hasani et al., 2022; 2020) is given by
the following initial value problem (IVP), which models the system’s dynamics as:

dx

dt
= − (wτ + f(x, I, θ))x(t) +Af(x, I, θ) (1)

where x(t) represents the hidden states, I(t) is the input to the system, wτ is a time-constant param-
eter vector, A is a bias vector and f is a neural network parameterized by θ.

In the context of an LTC system determined by this IVP and constructed by a single cell receiving
a one-dimensional time-series input I(t) with no self-connections, the system’s behavior can be
approximated by the following closed-form solution:

x(t) = (x0 −A) e−[wτ+f(I(t),θ)]tf(−I(t), θ) +A (2)

Recent advancements in continuous-time neural networks have led to a significant breakthrough
with the development of such closed-form solutions, particularly within the framework of LTC net-
works. Traditionally, the expressive power of continuous-time models was limited by the reliance
on numerical differential equation solvers. This dependency not only constrained scalability but also
slowed progress in understanding complex natural phenomena, such as neural dynamics.

The introduction of tightly bounded approximations of previously unsolved integrals within the
liquid time-constant dynamics has enabled the derivation of closed-form solutions, thereby circum-
venting the need for complex numerical solvers. This innovation has dramatically accelerated both
training and inference processes by several orders of magnitude. Moreover, these advancements
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allow continuous-time and continuous-depth neural models to scale more efficiently than their dif-
ferential equation-based counterparts. From our experimental results, when the CFC module was
used after a backbone it improved each results by around 1%.

Consequently, these closed-form models, rooted in liquid networks, have demonstrated superior
performance in time-series modeling. They offer a robust alternative to advanced recurrent neu-
ral networks, marking a significant leap forward in the design of spatiotemporal decision-making
systems.

4.4 LIQUID DINO

The Liquid Dino methodology represents a novel and sophisticated integration of the most powerful
elements from CNNs, DINOv2 and closed-form continuous-time neural networks (CFC). This hy-
brid approach, depicted in Figure 2, is designed to leverage the unique strengths of each component
model, resulting in a highly efficient and versatile framework capable of tackling complex machine
learning challenges.

Figure 2: Liquid Dino Architecture

At its core, in the Liquid Dino methodology is DINOv2, an advanced self-supervised learning tech-
nique that excels in representation learning, especially in scenarios where labeled data is scarce or
unavailable. The integration of DINOv2 into the Liquid Dino framework enhances the model’s abil-
ity to discern complex patterns and structures within the data, further boosting its overall accuracy
and performance.

Furthermore, Liquid Dino capitalizes on the spatial hierarchical structure and pattern recognition
capabilities of Convolutional Neural Networks (CNNs). The CNN backbone is responsible for ex-
tracting rich, multi-scale features from the DINOv2 embeddings, which is particularly critical for
image classification tasks where spatial relationships and local patterns are paramount. By using the
CNN architecture, Liquid Dino ensures that the model captures essential low-level and high-level
features that are foundational for further processing.

The final and perhaps most innovative aspect of Liquid Dino is its incorporation of closed-form
continuous-time neural networks (CFC). These closed-form solutions allow Liquid Dino to process
data with speed and accuracy, thus improving the overall performance of the network.

By integrating these three methodologies, CNNs for spatial feature extraction, DINOv2 for robust
self-supervised representation learning and CFC, we obtain Liquid Dino, which achieves a harmo-
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nious balance between accuracy, generalization and computational efficiency. This synergy not only
leads to superior performance on individual tasks but also enables the model to scale effectively
across various domains, making it a powerful tool in the landscape of modern machine learning.

5 EXPERIMENTAL RESULTS

The results of our study demonstrate significant advancements in the field of autonomous driving
through the application of advanced neural network architectures for multi-task classification. We
trained our models on A6000 Nvidia GPUs and tested the inference time on Qualcomm SA8255P
platform which is specifically designed for automotive applications. Furthermore, we evaluated
several state-of-the-art models, including the CNN + CFC, DINOv2 and CNN configurations, across
four critical classification tasks: Emotion Recognition, Driver Behavior Recognition, Scene-Centric
Context Recognition and Vehicle-Based Context Recognition.

5.1 EMOTION RECOGNITION

As shown in Table 2, the DINOv2 and the Liquid Dino model achieved the highest accuracy in
recognizing driver emotions, averaging 82.93%. This model’s enhanced feature extraction capabil-
ities and robust classification framework contributed to its superior performance in distinguishing
between emotions such as Anxiety, Peace, Weariness, Happiness and Anger. As shown in Fig-
ure 3, in the Emotion Confusion Matrix, the best model shows high accuracy in predicting ”Peace”
with significant correct predictions but struggles with distinguishing ”Weariness” from ”Peace” and
”Anxiety.”

5.2 DRIVER BEHAVIOR RECOGNITION

In terms of identifying driver behaviors such as Smoking, Making Phone Calls and Normal Driving,
according to Table 2, the DINOv2 model demonstrated substantial improvement with an average
accuracy of 72.58%. This model’s architecture effectively captured subtle nuances in driver actions,
enhancing its ability to classify behaviors accurately. As demonstrated in Figure 3, the Driver Be-
havior matrix reveals that ”Normal Driving” and ”Looking Around” are well-identified, whereas
there is substantial confusion between ”Making Phone Call” and ”Normal Driving.”

5.3 SCENE-CENTRIC CONTEXT RECOGNITION

For recognizing contextual factors like Traffic Jam, Waiting and Smooth Traffic, as shown in Ta-
ble 2, the Liquid Dino configuration achieved an average accuracy of 95.06%. This configuration
leveraged its multi-channel approach to effectively parse complex scenes and accurately classify
driving contexts. As depicted in Figure 3, in the Scene-Centric Context matrix (TCR), ”Smooth
Traffic” is predominantly correctly classified, while ”Traffic Jam” and ”Waiting” exhibit some level
of misclassification, particularly confusing ”Waiting” with ”Traffic Jam.”

5.4 VEHICLE-BASED CONTEXT RECOGNITION

Across tasks involving vehicle actions such as Parking, Turning and Changing Lane, all mod-
els showed robust performance, underscoring their capability to handle diverse driving scenarios.
The Liquid Dino model, in particular, excelled with its comprehensive feature representation and
achieved competitive accuracy in this category. Lastly, in the Vehicle-Based Context matrix, ”For-
ward Moving” is highly accurate, but there is noticeable confusion between ”Changing Lane” and
”Forward Moving.”
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Table 1: Pattern and Backbone models used in the previous study with corresponding IDs. The
following abbreviations are used. Res: ResNet (He et al., 2015); MLP: multi-layer perception; SE:
spatial embedding; TE: temporal embedding; TransE: transformer encoder (Vaswani, 2017); PP:
pre-training on the Places365 dataset (Zhou et al., 2017); CG: coarse-grained.

Pattern ID Backbone
Face Body Gesture Posture Scene

2D

(1) Res18 Res34 MLP+SE MLP+SE PP-Res18
(2) Res18 Res34 MLP+SE MLP+SE Res34
(3) Res34 Res50 MLP+SE MLP+SE Res50
(4) VGG13 VGG16 MLP+SE MLP+SE VGG16
(5) VGG16 VGG19 MLP+SE MLP+SE VGG19

2D + Timing

(6) Res18+TransE Res34+TransE MLP+TE MLP+TE PP-Res18+TransE
(7) Res18+TransE Res34+TransE MLP+TE MLP+TE Res34+TransE
(8) Res34+TransE Res50+TransE MLP+TE MLP+TE Res50+TransE
(9) VGG13+TransE VGG16+TransE MLP+TE MLP+TE VGG16+TransE

(10) VGG16+TransE VGG19+TransE MLP+TE MLP+TE VGG19+TransE

3D

(11) MobileNet-V1 MobileNet-V1 ST-GCN ST-GCN MobileNet-V1
(12) MobileNet-V2 MobileNet-V2 ST-GCN ST-GCN MobileNet-V2
(13) ShuffleNet-V1 ShuffleNet-V1 ST-GCN ST-GCN ShuffleNet-V1
(14) ShuffleNet-V2 ShuffleNet-V2 ST-GCN ST-GCN ShuffleNet-V2
(15) 3D-Res18 3D-Res34 ST-GCN ST-GCN 3D-Res18
(16) 3D-Res34 3D-Res50 ST-GCN ST-GCN 3D-Res34
(17) C3D C3D ST-GCN ST-GCN C3D
(18) I3D I3D ST-GCN ST-GCN I3D
(19) SlowFast SlowFast ST-GCN ST-GCN SlowFast
(20) TimeSFormer TimeSFormer ST-GCN ST-GCN TimeSFormer

Table 2: Accuracies of Different Models for the 4 Classification Tasks
ID DER DBR TCR VCR Average Acc
(1) 69.05 63.87 88.01 78.16 74.27
(2) 71.26 65.35 83.74 77.12 74.37
(3) 69.68 59.77 80.13 71.26 70.21
(4) 70.72 63.65 82.77 77.94 73.77
(5) 69.31 62.34 83.58 75.13 72.09
(6) 70.83 67.32 90.54 79.97 77.67
(7) 72.65 67.08 86.63 78.46 76.71
(8) 70.24 63.54 82.57 73.69 72.51
(9) 71.12 67.15 85.13 78.58 75.99

(10) 69.46 65.48 85.74 77.91 74.15
(11) 72.23 64.20 88.34 77.83 75.65
(12) 68.47 61.74 86.54 78.66 73.35
(13) 72.41 68.97 90.64 80.79 78.70
(14) 70.94 64.04 89.33 78.98 75.82
(15) 70.11 66.52 88.51 81.12 76.57
(16) 69.13 63.05 87.82 79.31 74.83
(17) 63.05 63.95 85.41 77.01 72.86
(18) 70.94 66.17 87.68 79.81 76.65
(19) 72.38 61.58 86.86 78.33 74.29
(20) 74.87 65.18 92.12 78.81 77.25

CNN + CFC 0.8211 0.7258 0.9445 0.8376 0.8323
DINOv2 0.8293 0.7145 0.9464 0.8313 0.8304

CNN 0.8274 0.7176 0.9367 0.8148 0.8241
Liquid Dino 0.8293 0.7243 0.9503 0.8476 0.8379
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Table 3 presents the QC SA8255P NPU inference times (in milliseconds) for the four best perform-
ing models. As shown, the Liquid Dino model has the slowest inference time at 8.0 ms, followed
by DINOv2 at 7.7 ms, while CNN+CFC and CNN are significantly faster at 3.1 ms and 1.6 ms,
respectively.

Despite Liquid Dino being the slowest model in the comparison, it still operates well within the
limits required for real-time performance. A processing time of 8.0 ms per frame equates to a
potential frame rate of around 125 frames per second, which is more than sufficient for real-time
applications in edge devices or automotive systems. Given that real-time systems generally aim
for at least 30 frames per second, Liquid Dino’s performance comfortably meets the requirements,
making it a viable option for deployment in resource-constrained environments such as cars, where
both accuracy and response time are critical for monitoring driver behavior.

Table 3: NPU Inference Time for Different Models (in ms)
Model QC SA8255P NPU Time (ms)
CNN + CFC 3.1
DINOv2 7.7
CNN 1.6
Liquid Dino 8.0

The set of confusion matrices presented captures the performance of a multi-class classifica-
tion model across four distinct categories: Emotion, Driver Behavior, Scene-Centric Context and
Vehicle-Based Context. These matrices indicate areas of strength in the model’s predictive ca-
pability, while also highlighting where improvements are necessary, particularly in distinguishing
between certain similar classes.

Figure 3: Confusion Matrices for the 4 tasks of Liquid Dino

5.5 OVERALL IMPLICATIONS

Our findings highlight the efficacy of advanced neural network architectures in enhancing the ac-
curacy and reliability of multi-task classification in autonomous driving scenarios. By improving
the recognition of driver emotions, behaviors and contextual environments, these models contribute
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significantly to the development of safer and more efficient autonomous vehicles. Future research
can further explore hybrid architectures and real-time implementation strategies to advance the ca-
pabilities of autonomous driving systems. Our best model surpasses previous methodologies by at
least 5%.

The experimental results clearly demonstrate the superior performance of the Liquid Dino approach.
When benchmarked against models using individual methodologies, Liquid Dino achieved an av-
erage accuracy of 83.79%, which is higher than any of the other models tested. This significant
performance gain is evident across all four classification tasks, with Liquid Dino achieving the high-
est accuracy in Traffic Context Recognition (95.03%) and Vehicle Condition Recognition (84.76%).
This success can be attributed to the model’s ability to effectively integrate the strengths of CNNs,
DINOv2 and CFC, while mitigating their individual weaknesses. The combination of these method-
ologies allows Liquid Dino to excel in complex multi-task scenarios, offering enhanced accuracy
and robustness.

Lastly, Liquid Dino represents a substantial advancement in machine learning for autonomous driv-
ing tasks. By integrating the best aspects of CNNs, DINOv2 and CFC, this innovative methodology
sets a new benchmark for performance and efficiency, particularly in multi-task classification set-
tings. Liquid Dino’s ability to deliver superior results across multiple tasks, combined with its
reduced computational complexity and faster training times, makes it a compelling solution for real-
world applications where both efficiency and scalability are critical. These results underscore the
potential of Liquid Dino to drive significant progress in the application of continuous-time neural
networks in complex, real-world scenarios, particularly in the autonomous driving domain.

6 CONCLUSIONS

This study demonstrates significant advancements in the classification of driver emotions, behaviors
and contextual environments using state-of-the-art neural network architectures. The novel Liq-
uid Dino model, along with the DINOv2 and CNN configurations, show substantial improvements
over traditional models, achieving average accuracies that surpass previous bibliography at least by
5%. The Liquid Dino architecture achieved an overall average accuracy of 83.79%, marking a clear
improvement over the alternative models tested. Specifically, it excelled in Traffic Context Recog-
nition, with an accuracy of 95.03% and Vehicle Condition Recognition, achieving 84.76%. These
results emphasize the model’s ability to generalize well to complex, real-world scenarios and that the
combination of liquid networks, which are nonlinear state-space models (SSMs), with transformer
architectures like DINOv2 shows promising potential for future work.

A key finding from this research is that the Liquid Dino model, despite its marginally slower infer-
ence time compared to other configurations, operates well within the thresholds required for real-
time applications, making it a viable option for integration into resource-constrained systems, such
as those in autonomous vehicles. The model’s ability to maintain high accuracy without compro-
mising operational efficiency highlights its potential for real-world deployment in advanced driver-
assistance systems (ADAS). Additionally, the Liquid Dino model processes input frame by frame,
eliminating the need to wait for a sequence of frames before making a decision, as is the case with
some previous 3D-based methodologies. This capability not only reduces latency but also allows for
more immediate and continuous monitoring, which is crucial for applications like driver behavior
analysis and safety interventions in real-time systems.

Furthermore, the improvements achieved in classification accuracy are particularly impactful for
the development of intelligent driver monitoring systems. By improving the ability to accurately
recognize driver states, such as emotions and behaviors, as well as traffic and vehicle conditions,
this model contributes directly to the enhancement of road safety. These advancements are pivotal
in reducing driver distractions and ensuring timely interventions, ultimately creating a safer driving
environment.

In conclusion, this research demonstrates the superiority of the Liquid Dino architecture in address-
ing the challenges posed by multi-task learning in autonomous driving scenarios. The findings
suggest promising avenues for further research, particularly in refining hybrid architectures and
optimizing real-time implementation strategies, paving the way for more efficient and reliable au-
tonomous driving systems.
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