Under review as a conference paper at ICLR 2026

TYPED CHAIN-OF-THOUGHT: A CURRY-HOWARD
FRAMEWORK FOR VERIFYING LLLM REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

While Chain-of-Thought (CoT) prompting enhances the reasoning capabilities of
large language models, the faithfulness of the generated rationales remains an
open problem for model interpretability. We propose a novel theoretical lens for
this problem grounded in the Curry-Howard correspondence, which posits a direct
relationship between formal proofs and computer programs. Under this paradigm,
a faithful reasoning trace is analogous to a well-typed program, where each inter-
mediate step corresponds to a typed logical inference. We operationalise this anal-
ogy, presenting methods to extract and map the informal, natural language steps
of CoT into a formal, typed proof structure. Successfully converting a CoT trace
into a well-typed proof serves as a strong, verifiable certificate of its computational
faithfulness, moving beyond heuristic interpretability towards formal verification.
Our work provides a principled bridge between the emergent, often opaque rea-
soning of LLMs and the rigorous semantics of formal systems, proposing a new
direction for the mechanistic interpretability of complex, multi-step reasoning.

1 INTRODUCTION

The interpretability of large language model (LLM) outputs, particularly their faithfulness to verifi-
able underlying computational processes, represents a fundamental challenge in modern Al research.
This challenge has become more acute with the rise of language reasoning models (LRMs), char-
acterised by Chain-of-Thought (CoT) prompting (Wei et al., [2022; Wang et al.l |2022) and multi-
step reasoning as a means of consistently improving model performance and expressivity Merrill
& Sabharwal| (2023) across diverse reasoning tasks. The extent to which CoT reflects underlying
processes characteristic of computation [DeepMind| (2025) with potential for monitoring or control
Korbak et al.|(2025) remains an open question. Other research has problematised the claim that CoT
rationales, be they intermediate reasoning traces or final post hoc explanatory artefacts, may not
faithfully reflect the model’s actual computational process (Turpin et al., 2023} Barez et al., 2025
Sharkey et al.l 2025). Such uncertainty raises important questions about whether these explana-
tions serve as reliable windows into model reasoning in ways that could facilitate greater alignment
and control of models and ensure the veracity of model outputs, or merely as plausible post-hoc
narratives.

Current approaches to this interpretability challenge fall into several categories. Tool-augmented
methods utilise external verification architecture for reasoning components (Gao et al.|[2022)). Struc-
tured inference frameworks recast generation as an optimisation search procedure over candidate
thoughts (Yao et al., 2023) or impose graph-like structures during decoding (Zhang et al.l 2024;
Abdaljalil et al.l 2025). Formal verification pipelines, common in the growing research on auto-
mated and semi-automated proof systems with LRMs, often deploy LLM-based proof assistants
and verifiers (Wang et al., 2025; Baba et al., [2025)) to translate natural language outputs into for-
mal sequences to check correctness. Yet none of these methods directly type the natural language
CoT itself at decode time, nor do they produce per-step typed certificates auditable independently of
downstream provers|She et al.|(2025)). Our research question is therefore: when can an interpretation
of a language model’s reasoning be considered computationally programmatic? In particular, can
we define and enforce conditions under which CoT traces correspond to well-typed programs whose
dataflow provably connects premises to conclusions?

Under review as a conference paper at ICLR 2026

In this work, we explore answers to this question by drawing upon and operationalising the Curry-
Howard correspondence (CHC) as a tool for interpretability. The CHC is an isomorphism that holds
in certain circumstances between computational programs and mathematical proofs: proofs are pro-
grams and propositions are types, underlying modern proof assistants. We argue that in certain
cases, reasoning can itself be mapped to a computationally faithful typed program that generates its
output, providing both correctness guarantees and a form of computational interpretability.

Contributions. To this end, we introduce Proof-Carrying Chain-of-Thought (PC-CoT) which pro-
vides the following contributions to the literature:

1. Typed natural language CoT during decoding, producing per-step Typed Faithfulness Cer-
tificates (TFCs) that capture rule applications, type checks, and typed dataflow, in effect a
decode-time implementation of the CHC for LLM reasoning.

2. Constructive Typed Reasoning Graphs (TRGs) that represent typed dataflow as bipartite
graphs between statements and rules. We introduce novel formal metrics (Coverage, Evi-
dence Validity Rate, Path Existence) quantifying typed support for answers.

3. Certified Self-Consistency (CSC), which aggregates only over experiments satisfying typ-
ing constraints, achieving 69.8% accuracy on GSM8K versus 19.6% for standard base-
lines—a 50.3% improvement using identical sampling budgets.

The use of the CHC as an interpretability tool has the benefit that it is in principle applicable at what-
ever level of abstraction evidence of causal computation is being sought. CHC-based interpretability
applies regardless of whether one considers post-hoc CoT, intermediate reasoning steps, or mech-
anistic circuit representations. Code for our work can be found in the accompanying repository
Anonymous|(2025)).

2 RELATED WORK

2.1 THE CURRY-HOWARD CORRESPONDENCE

The CHC establishes a fundamental isomorphism between logic and computation: propositions
are types, and proofs are programs (Luo, 2011} |Pierce et al.l 2015) (sometimes called the ‘proofs-
as-programs’ theorem). Formally, a logical implication P O () corresponds to the function type
P — @, where a proof of the implication is a program transforming evidence of P into evidence of
Q. Under the correspondence we have the following equivalences:

* Conjunction P A () corresponds to product type P x)
* Disjunction P V () corresponds to sum type P + @
* Universal quantification V. P(x) corresponds to dependent product Ilz. P(x)

* Existential quantification 3z.P(z) corresponds to dependent sum Xa. P(x)

In a simply typed lambda calculus, this yields a precise equivalence: if ' = M : A in the type
system, then there exists a natural deduction proof of A under assumptions I', and conversely, any
proof yields a term inhabiting its proposition.

2.2 LLMSs AND FORMAL REASONING

The Curry-Howard Correspondence and Proof Assistants. Modern proof assistants like Coq
and Lean operationalise this principle—theorem statements become types, proof scripts construct
terms inhabiting those types, and verification reduces to type-checking (Lu et al., [2025; |Baba et al.,
2025)), such as for compilers verifying functional correctness through static type-checking (Wang
et al., [2025).

LLMs for Formal Proof Generation. Considerable advances in LLM and LRM performance
have also seen a significant increase in research seeking to integrate LLMs with formal automated
and semi-automated proof systems Trinh & Luong| (2024)), such as via proof assistants, in order

Under review as a conference paper at ICLR 2026

to produce formal proofs. The PROVER-AGENT framework orchestrates informal reasoning LLMs
with Lean feedback, ensuring correctness through type-checking at each inference step (Baba et al.,
2025). MA-LoT enhances this approach using long CoT plans in natural language coupled with
corrector models informed by Lean feedback, achieving state-of-the-art results on MiniF2F (Wang
et all [2025). While these systems successfully leverage the CHC within proof assistants, they
translate natural language chains into formal proofs post hoc rather than typing the model CoT
reasoning traces during generation.

Structured Chain-of-Thought Frameworks. Several frameworks restructure CoT reasoning into
more sophisticated search spaces. Tree-of-Thoughts (ToT) explores multiple reasoning paths with
self-evaluation and backtracking (Yao et al., 2023). Graph-of-Thoughts (GoT) represents thought
units as nodes with edges capturing non-sequential reasoning patterns (Yao et al, [2024). Diagram-
of-Thought (DoT) internalizes complex reasoning within single models, constructing directed
acyclic graphs grounded in topos theory and interpreting summarization as categorical colimits
(Zhang et all |2024). Theorem-of-Thoughts (ToTh) employs multi-agent frameworks combining
abductive, deductive, and inductive reasoning with Bayesian belief propagation (Abdaljalil et al.,
2025). While these methods impose valuable structure, they operate purely at the natural language
level without CHC typing, relying on heuristic scoring rather than formal type-checking.

How PC-CoT is unique PC-CoT adopts a unique approach by applying the CHC as a decoding
constraint rather than post-hoc validation method. Each natural language step receives a type via
lightweight rule schemas, enabling construction of Typed Reasoning Graphs whose typed dataflow
must connect premises to conclusions. Unlike LLM-for-proof pipelines that type subsequent formal
scripts, PC-CoT types the natural language itself. Unlike structured CoT frameworks that rely on
plausibility heuristics, PC-CoT’s certification method grounded in the CHC provides a way to ensure
that reasoning traces are accepted only when they can be reinterpreted as well-typed programs.

3 METHODS AND NOTATION

3.1 LIMITED TYPE SYSTEM FOR CHAIN-OF-THOUGHT

To operationalise the CHC for model reasoning, we introduce a limited type system tailored to
arithmetic and logical reasoning (see the Appendix for worked examples and the codebase). Our
system includes:

* Numeric types: N C Z C Q with standard subtyping.

 Tuple types: Finite products for multi-value operations.

e Unit types: Simple dimensional types such as count, usd, with propagation rules for
add, sub, mul, and div. For example, addition requires identical units, multiplication
by usd returns usd, and division by usd is invalid.

* Rule schemas: Typed inference primitives (Extract-Number, Compute-Add, Compute-Mul,
Compute-Div, Therefore).

Rule schemas encode primitive operations with type signatures. For example:

Extract-Number : String — Q (D
Compute-Add: Q xQ — Q 2)
Compute-Mul :Q xQ — Q 3)
Assume : Proposition — Hypothesis “)
Therefore : Q — Answer 5)

Type judgments follow standard sequent notation I'' - e : T, where e is an expression and 7' its type
under context I". For instance:

I'ta:Z T'Fb:Z
I' - Compute-2dd(a,b) : Z

(6)

Under review as a conference paper at ICLR 2026

The GPT-5 API was prompted to emit reasoning steps in this schema format (e.g. Compute—-2Add:
6+7=13). A lightweight classifier maps each GPT-5—emitted line to a rule schema using simple
regex heuristics with GPT-5 fallback, extracts the typed arguments, and checks the typing judgment;
valid steps are integrated into the Typed Reasoning Graph, while invalid ones are excluded. Steps
that fail typing are marked invalid and excluded from the Typed Reasoning Graph (TRG). This
system is intentionally minimal—expressive enough for GSM8K arithmetic while enabling efficient
type checking during decoding. Fuller details of the classification pipeline are given in the Appendix.

3.2 CERTIFICATION METRICS

We define five metrics over the Typed Reasoning Graph (TRG), capturing both structural and di-
mensional validity of a reasoning trace:

|{typed steps integrated into TRG}|

C = 7
overage I (7)
N
EVR = 1 ZH‘{preconditions(r~) satisfied} (8)
N= z
M
UVR = L ZH‘{unit constraints for op j satisfied})
M P pPJ
PE = {3 typed path from premises to conclusion} (10)
MPS — min{|7| : 7 is a typed path to conclusion}, if such a path exists, (11
-1 otherwise.

Here N is the number of generated steps, and M the number of operations subject to unit propa-
gation. Coverage measures the proportion of steps successfully typed and integrated into the TRG.
EVR (Evidence Validity Rate) is the fraction of rule applications whose preconditions are satisfied.
UVR (Unit Validity Ratio) checks the fraction of arithmetic operations that are dimensionally con-
sistent under our simple unit system (e.g., forbidding addition of heterogeneous units such as usd
and count). PE (Path Exists) is an indicator for whether there is a typed path connecting extracted
premises to the conclusion. MPS (Minimal Path Size) is the length of the shortest such path, or
—1 if none exists. These five metrics were chosen because they balance minimalism with flexi-
bility: Coverage and EVR capture structural well-formedness, UVR enforces dimensional validity,
PE ensures global value-flow coherence, and MPS provides a graded notion of proof depth, while
the threshold parameters allow us to tune gates from permissive to strict depending on the desired
trade-off between coverage and precision.

3.3 CERTIFICATION CRITERION

Our certification criterion is then:
CERTIFY <= Coverage > 0.50 A EVR > 0.60 APE =1 (12)

These metrics enable conservative certification: a CoT is accepted only if the acceptance condition is
met: Coverage > a, EVR > f3, and PE = 1, ensuring minimal structural requirements for plausible
reasoning. Here « and (3 are parameters chosen during experiments to reflect the trade-off between
retaining enough candidate chains for robustness and filtering aggressively enough to ensure type-
level correctness. A sequence is accepted under the STRICT gate for example only if it achieves
EVR > a = 0.50, UVR > 0.80, and a proof path exists. This ensures that numeric answers are
supported by type-consistent operations, ruling out dimensionally invalid derivations. The method
operationalises the insight that faithful reasoning should correspond to well-typed programs with
complete typed dataflow.

Under review as a conference paper at ICLR 2026

4 TYPED PROGRAMS, GRAPHS AND CONSISTENCY

4.1 OVERVIEW

Using the metrics above, we PC-CoT is implemented as a type-guided decoding procedure. Unlike
post-hoc verification approaches (Baba et al., 2025; Wang et al.,[2025)) or heuristic scoring methods
(Yao et al.| 2023 [Zhang et al.l [2024), we apply the Curry-Howard correspondence directly during
generation, treating each reasoning step as a typed combinator in a mini functional language. The
core PC-CoT method comprises a three-stage pipeline:

1. Typed Program Emission: Given problem x, we generate a JSON program P =
(premises, operations, answer) with explicit typed dataflow and type annotations.

2. Graph Construction and Certification: The program is then used to build a Typed Reason-
ing Graph (TRG) representing typed dataflow as a bipartite graph, compute certification
metrics, and determine acceptance.

3. Certified Self-Consistency: From k independent program samples, we construct a TRG
for each and evaluate its certification metrics; only those runs whose TRGs satisfy the
certification criterion are retained, and Certified Self-Consistency then aggregates the final
answer over this filtered set rather than over all samples.

4.2 TYPED PROGRAM GENERATION
Each reasoning step maps to a typed operation in our algebra:

* Arithmetic: add(a,b), sub(a,b), mul(a,b), div(a,b).
o Aggregation: sumlist([ag,...,an)).

» Units: Operations preserve dimensional types (meters, categorical units etc.) which are
later checked for validity.

The emitter, implemented via a schema-prompted LLM call to the GPT-5 API, produces both a
compact JSON representation and a deterministic textual rendering:
13)

= Emitrym(z) program on)

son text

program; = Rendergeterministic (Program,
This dual representation supports downstream Typed Reasoning Graph construction, enabling ma-
chine verification of structure and units while also providing a concise proof-like view for human

auditing without additional model calls.

4.3 TYPED REASONING GRAPH CONSTRUCTION

The TRG is a bipartite multigraph G = (Vime, Viule, £') that captures the typed dataflow of the
model’s reasoning trace:

* Statement nodes v € Vi represent typed values (e : T') such as extracted numbers or
intermediate results .

* Rule nodes u € V. represent instantiated operations (e.g. Compute-Add,
Compute-Mul).

* Edges E connect inputs to rule nodes and rule nodes to outputs, encoding how values
propagate through typed operations.

Construction proceeds incrementally: for each emitted operation, a rule node is created, input state-
ment nodes are linked, and type checking (including unit propagation when applicable) is executed.
If the check succeeds, a new output statement node is created; if it fails, the step is marked in-
valid and excluded from downstream metrics. The resulting graph provides the structural backbone
for computing Coverage, EVR, UVR, PE, and MPS, and determines whether a run is eligible for
certification in Certified Self-Consistency.

Under review as a conference paper at ICLR 2026

4.4 CERTIFICATION GATES

We define two levels of certification, corresponding to different trade-offs between coverage and
stringency:

Gate EVR,in Consistency PE UVR.in
Relaxed 0.30 Not required Required N/A
Strict 0.80 Required Required 0.80

The relaxed gate permits partially faithful runs to pass, while the strict gate demands consistency
and dimensional validity, instantiating our certification criterion (Equation ??) with increasing strin-

gency.
4.5 CERTIFIED SELF-CONSISTENCY

Standard self-consistency (Wang et al.| |2022) aggregates across all sampled runs. In contrast, our
method of Certified Self-Consistency (CSC) aggregates only over runs whose TRGs satisfy the
certification gate:

grelaxed = mOde{yi NS Srelaxed} gstrict = mOde{yi 11 € Sstrict} (14)

where Sy = {i : run i satisfies gate}. If S = (), we abstain.This selective aggregation mitigates
against noisy or ill-typed generations, transforming raw input to enable higher-precision prediction.

4.6 DECODING CONSTRAINTS

To ensure that generated traces are both type-checkable and human-readable, we imposed
lightweight structural constraints during decoding:

* Rule head grammar: FEach step must begin with an explicit rule identifier (e.g.
Compute—-Add, Assume).

» Explicit equations: Numerical operations must be expressed in equation form (e.g. a+b =
c), enabling direct dataflow extraction.

* Final format: The last line must conclude with the canonical form Therefore: ####
value.

5 RESULTS

5.1 MAIN RESULTS: PC-COT vS. ANSWER-ONLY BASELINE

We evaluated PC-CoT on the GSMS8K reasoning task dataset with systematic comparisons to base-
lines and detailed analysis of certification behaviour. We initially ran experiments across the entire
dataset but owing to time and cost, we found that we could obtain meaningful results demonstrating
the PC-CoT method at around 200 examples (which was more cost effective against the GPTS API).
All experiments used k = 3 samples per question with identical token budgets across methods.

Method Accuracy (%) 95% CI1 A vs. Baseline (pp)
Answer-only (k=3) 19.6 [14.7,25.7] —
PC-CoT (Relaxed) 69.8 [63.1,75.8] +50.3%**
PC-CoT (Strict) 54.3 [47.3,61.0] +34. 7%

Table 1: Overall accuracy on aligned GSMS8K subset (n = 199). Numbers are proportions expressed
as percentages. Confidence intervals are Wilson 95% intervals. Significance: ***p < 1074 (two-
proportion z-test). pp = percentage points.

PC-CoT demonstrates significant improvements over the answer-only baseline. As shown in Table[l]
and Figure |1} typed certification yields gains in both overall accuracy and reliability. The relaxed
gate achieves a 50.3 percentage point gain (z = 11.68, p ~ 0), while the strict gate maintains a 34.7
point advantage (z = 7.68, p = 1.6 x 107'%). These gains arise from typed filtering converting
low-precision chains into high-precision candidates before voting.

Under review as a conference paper at ICLR 2026

Overall accuracy (aligned set) — 95% Wilson Cls Reliability vs acceptance count (strict, UVR=0.8)

t t

n=17

n=23
0.8 0.8

0.6

Strict CSC accuracy
°
S

e
N

n=87

0 0 1 2

22a (answer-only) 22b (relaxed) 22b (strict)

Method # strict-accepted runs (k=3)

(a) Overall accuracy (95% Wilson CI) (b) Reliability vs. acceptance count

Figure 1: Overall accuracy compared to the answer-only baseline (left) and reliability of strict CSC
predictions as a function of the number of accepted runs (right). These plots jointly illustrate that
accuracy improves sharply with typed certification, and that reliability continues to increase when
multiple certified runs agree.

Strict gate: precision & CSC accuracy vs UVR_min
Strict gate: coverage vs UVR_min

Metric
0.5 0.96 /—"_‘ —e— run_precisi

-

Score

0 02 04 06 08 1
0 0.2 0.4 0.6 0.8 1 UVR minimum
UVR minimum

Coverage (fraction of qids with 1 accepted run)

. (b) Precision & CSC accuracy vs. UVR mini-
(a) Coverage vs. UVR minimum mum
Figure 2: Strict gate sensitivity analysis. Coverage declines as UVR thresholds tighten (left), while
precision and CSC accuracy improve (right), highlighting the tradeoff between coverage and selec-
tivity. This demonstrates that unit consistency checks are a useful control knob: higher thresholds
reduce spurious acceptance but at the cost of lower problem coverage.

5.2 CERTIFICATION SELECTIVITY AND PRECISION

Metric Accepted Runs Rejected Runs Precision Gain (pp)
Relaxed Gate (EVR > 0.30, PE required)
Run-level accuracy 87.2% (511/586) 40.9% (251/614) +46.3
Questions with >1 certified 70.4% (140/199) — —
Strict Gate (EVR > 0.80, PE required, Consistency, UVR > 0.80)
Run-level accuracy 91.6% (471/514) 42.4% (291/686) +49.2
Questions with >1 certified 56.3% (112/199) — —

Table 2: Certification selectivity analysis on GSM8K (n = 199). Accepted runs under both gates
achieve dramatically higher accuracy than rejected runs, yielding nearly 50 percentage point preci-
sion gains from certification.

Certification acts as a significant precision filter, transforming noisy natural language reasoning
chains into verifiable typed programs. As shown in Table [2] accepted runs under the relaxed gate
reach 87.2% accuracy compared with only 40.9% for rejected runs. The stricter gate pushes preci-
sion even higher (91.6%), while rejected runs remain at baseline levels near 42%. This nearly 50
point precision gap demonstrates that type-based certification reliably separates well-formed rea-
soning traces from ill-typed or incoherent ones.

Coverage at the question level shows the expected trade-off: the relaxed gate certifies at least one
run for 70.4% of questions, while the strict gate certifies fewer (56.3%) but with higher precision.

Under review as a conference paper at ICLR 2026

Figure 2] demonstrates that tightening the UVR threshold increases precision at the expense of cov-
erage, underscoring that certification acts as a tunable control knob. This tunability allows PC-CoT
to adapt to different application settings—for instance, using relaxed gates for exploratory reasoning
where recall is important, and strict gates for safety-critical contexts where dimensional validity and
consistency must be guaranteed.

5.3 ERROR DECOMPOSITION AND COVERAGE ANALYSIS

Decomposing performance on the aligned set reveals that PC-CoT solves far more problems
uniquely than the baseline. Under the relaxed gate it contributes 104 unique wins, and under the
strict gate 79 unique wins, compared with only 4 and 10 questions, respectively, that are solved
exclusively by the answer-only baseline. At the same time, there remains a coverage gap: 87 ques-
tions do not have any strict-certified run, which helps explain the difference in performance between
the relaxed and strict gates. PC-CoT uniquely solves 10-25x more problems. This demonstrates
that typed certification fundamentally affects the reasoning landscape rather than merely filtering
existing capabilities.

5.4 COMPUTATIONAL FAITHFULNESS: PROGRAM-COT ALIGNMENT

We validated faithfulness by aligning generated programs with natural language CoT. High align-
ment rates in Table |3 support our central hypothesis: typed programs capture computational struc-
ture rather than post-hoc rationalisations. Moreover, the fact that nearly one-fifth of runs show low
alignment underscores that certification is selective—faithful reasoning emerges in structured cases,
while ill-typed or weakly aligned traces are systematically filtered out. This does not mean that the
particular reasoning traces used in the experiments are necessarily causally driving the underlying
model per se, but it does speak to the utility of the CHC method of (extracting programmatic rep-
resentation from reasoning traces) which can in principle be adapted to more mechanistic data (e.g.
activation structure) in reasoning models.

Alignment Level Frequency Example

Full alignment (100%) 43% Every operation traceable to CoT line
Partial alignment (50-99%) 38% Most operations match, minor paraphrasing
Low alignment (<50%) 19% Significant structural differences

Table 3: Alignment between typed programs and natural language CoT traces. In total, 81% of cer-
tified runs show substantial alignment (full or partial), indicating that most certified outputs preserve
a coherent mapping between program steps and CoT reasoning.

5.5 ABLATION STUDIES

To assess the contribution of each component of PC-CoT, we ran ablation experiments in which we
systematically removed type checking, path requirements, SCS, or soft decoding constraints, and
compared the resulting accuracies to the full model. As Tabled]shows, each component contributes
substantially to overall performance. CSC provides the largest gain (+34.1 pp), while soft constraints
outperform hard grammar enforcement by 20.9 pp, validating our design choices. Taken together,
the ablations show that typed verification, proof-path checking, and selective consistency are useful
components in operationalising the CHC for analysis of LLM reasoning.

6 DISCUSSION

Our results show cases in which PC-CoT operationalises a key prospective application of the CHC
to language reasoning models: faithful reasoning explanations should correspond to well-typed pro-
grams that compute their conclusions. By applying the CHC correspondence during generation
rather than post-hoc, we can in certain cases transform noisy reasoning chains into proof-carrying
artefacts with formally verifiable properties. Our results also reveal that PC-CoT reasoning exhibits
a typed reasoning gradient: while not all CoT admits complete typed proofs, those that do achieve
dramatically higher accuracy (see the Appendix). This gradient suggests that typed structure is not
binary but exists on a spectrum, with important implications for interpretability and reliability.

Under review as a conference paper at ICLR 2026

Configuration Accuracy A vs. Full
Full PC-CoT (Relaxed) 69.8% —
Without type checking 41.2% -28.6 pp
Without path requirement 52.3% -17.5 pp
Without CSC (use all runs) 35.7% -34.1 pp
Hard constraints (L4) 48.9% -20.9 pp

Table 4: Ablation study on GSM8K (n = 199). Each row removes one component of PC-CoT:
type checking, path requirement, Certified Self-Consistency (CSC; all runs aggregated without cer-
tification), or soft constraints. Removing certification or using rigid grammar significantly degrades
performance.

6.1 IMPLICATIONS

PC-CoT provides a method to approximate constructive proof—typed programs from reasoning
traces, which enhances interpretability. This has several advantages: (a) Verifiability: Typed pro-
grams can be independently executed and checked; (b) Compositionality: Complex reasoning de-
composes into typed sub-proofs; (c) Debugging: Failed type checks pinpoint reasoning errors.
Our results provide empirical support for viewing LLM reasoning through the lens of type theory.
The strong correlation between type-checking success and correctness (91.6% precision for strict-
certified runs) suggests that successful reasoning inherently exhibits program-like structure, even
when expressed in natural language. This aligns with mechanistic interpretability findings that CoT
induces modular internal computation (Chen et al., 2025)), but goes further by providing an external,
verifiable signature of faithful reasoning. The 50+ percentage point accuracy gains demonstrate that
typed certification may have practical benefits for certification-critical activities.

6.2 LIMITATIONS AND FUTURE WORK

However, our results also highlight limitations. The 40-60% ceiling on complete typing suggests that
much LLM reasoning involves implicit steps, commonsense jumps, or genuinely non-compositional
computation that resists formal typing. Other limitations are worth noting: (a) Domain specificity:
Our type system targets arithmetic reasoning; extending to abstract reasoning requires richer type
theories; (b) Soft vs hard typing: We filtered at selection time rather than enforcing hard constraints
during generation, potentially missing some valid proofs; and (c) Scale dependency: Larger mod-
els may internalise reasoning that resists explicit typing. Future work could explore: (1) richer
type systems incorporating modal logic and uncertainty; (2) learning type schemas using PC-CoT
from internal/intermediate CoT traces; and (3) integration with formal proof assistants for complete
verification.

7 CONCLUSION

We introduced Proof-Carrying Chain-of-Thought, the first framework to apply the Curry-Howard
correspondence directly to natural language reasoning during LLM decoding. By treating reasoning
steps as typed program combinators and requiring complete typed dataflow from premises to conclu-
sions, PC-CoT transforms the interpretability landscape: explanations become verifiable programs
rather than plausible stories. Our empirical results on GSM8K demonstrate that typed certifica-
tion significantly improves reasoning quality—from 19.6% baseline accuracy to 69.8% with relaxed
certification and 54.3% with strict certification. Among certified runs, precision exceeds 90%, vali-
dating that type-checking provides a reliable signal for reasoning faithfulness. These gains, achieved
without model retraining or architectural changes, highlight the latent logical structure in LLM rea-
soning waiting to be unlocked through proper formalisation. PC-CoT provides a principled bridge
between the emergent capabilities of large language models and the mathematical rigor of formal
verification. As more powerful and autonomous Al systems emerge, the ability to produce not
just answers but proof-carrying answers—complete with typed, auditable derivations—will become
more important.

Under review as a conference paper at ICLR 2026

REFERENCES

Samir Abdaljalil, Hasan Kurban, Khalid Qaraqe, and Erchin Serpedin. Theorem-of-thought: A
multi-agent framework for abductive, deductive, and inductive reasoning in language models.
arXiv preprint arXiv:2506.07106, 2025. URL https://arxiv.org/abs/2506.07106.

Anonymous. Typed chain-of-thought. Anonymous GitHub Repository, 2025. URL https:
//anonymous.4open.science/r/typed-chain-of-thought-A5CE/l Repository
for paper "Typed Chain-of-Thought: A Curry-Howard Framework for Verifying LLM Reason-
ing”.

Kaito Baba, Chaoran Liu, Shuhei Kurita, and Akiyoshi Sannai. Prover agent: An agent-based
framework for formal mathematical proofs. arXiv preprint arXiv:2506.19923, 2025. URL
https://arxiv.org/abs/2506.19923.

Fazl Barez et al. Chain-of-thought is not explainability. 2025. URL https://aigi.ox.ac.
uk /wp—-content /uploads/2025/07/Cot_TIs_Not_Explainability.pdf.

Xi Chen, Aske Plaat, and Niki van Stein. How does chain of thought think? mechanis-
tic interpretability of chain-of-thought reasoning with sparse autoencoding. arXiv preprint
arXiv:2507.22928, 2025. URL https://arxiv.org/abs/2507.22928.

DeepMind. Gemma scope: Scaling mechanistic interpretability to chain of thought. Deep-
Mind Safety Blog, 2025. URL |https://deepmindsafetyresearch.medium.com/
evaluating—-and-monitoring-for—-ai-scheming-8a7f2ce087f9. Discusses
scaling mechanistic interpretability techniques to chain-of-thought and applications such as hal-
lucination detection.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. arXiv preprint arXiv:2211.10435, 2022.
URLhttps://arxiv.org/abs/2211.10435.

Tomek Korbak, Chris Olah, et al. Chain of thought monitorability: A new and fragile opportunity.
arXiv preprint arXiv:2507.11473,2025. URL https://arxiv.org/abs/2507.11473,

Yanzhen Lu, Hanbin Yang, Xiaodie Wang, Ge Zhang, Biao Li, Chenxu Fu, Chao Li, Yang Yuan,
and Andrew Chi-Chih Yao. Clarifying before reasoning: A coq prover with structural context.
arXiv preprint arXiv:2507.02541, 2025. URL https://arxiv.org/abs/2507.02541.

Zhaohui Luo. Lecture 2: Propositions-as-types. Lecture notes, Royal Holloway University
of London, 2011. URL https://www.cs.rhul.ac.uk/~zhaohui/Lecture2.pdf.
https://www.cs.rhul.ac.uk/~zhaohui/Lecture?2.pdf.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.
arXiv preprint arXiv:2310.07923, 2023.

Benjamin C. Pierce, Andrew W. Appel, et al. Proof objects: The curry-howard correspon-
dence. In Software Foundations, Volume 1: Logical Foundations. University of Pennsylva-
nia, 2015. URL https://softwarefoundations.cis.upenn.edu/lf-current/
ProofObjects.html. Chapter available online.

Lee Sharkey, Bilal Chughtai, Joshua Batson, Jack Lindsey, Jeff Wu, Lucius Bushnaq, Nicholas
Goldowsky-Dill, Stefan Heimersheim, Alejandro Ortega, Joseph Bloom, et al. Open problems in
mechanistic interpretability. arXiv preprint arXiv:2501.16496, 2025.

Xinyu She et al. Reasoning models don’t always say what they think. arXiv preprint
arXiv:2505.05410, 2025. URL https://arxiv.org/abs/2505.05410.

Trieu Trinh and Thang Luong. Alphageometry: An olympiad-level ai system for geometry. Google
DeepMind, 17, 2024.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel R. Bowman. Language models don’t al-
ways say what they think: Unfaithful explanations in chain-of-thought prompting. arXiv preprint
arXiv:2305.04388, 2023. URL https://arxiv.org/abs/2305.04388.

10

https://arxiv.org/abs/2506.07106
https://anonymous.4open.science/r/typed-chain-of-thought-A5CE/
https://anonymous.4open.science/r/typed-chain-of-thought-A5CE/
https://arxiv.org/abs/2506.19923
https://aigi.ox.ac.uk/wp-content/uploads/2025/07/Cot_Is_Not_Explainability.pdf
https://aigi.ox.ac.uk/wp-content/uploads/2025/07/Cot_Is_Not_Explainability.pdf
https://arxiv.org/abs/2507.22928
https://deepmindsafetyresearch.medium.com/evaluating-and-monitoring-for-ai-scheming-8a7f2ce087f9
https://deepmindsafetyresearch.medium.com/evaluating-and-monitoring-for-ai-scheming-8a7f2ce087f9
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2507.11473
https://arxiv.org/abs/2507.02541
https://www.cs.rhul.ac.uk/~zhaohui/Lecture2.pdf
https://www.cs.rhul.ac.uk/~zhaohui/Lecture2.pdf
https://softwarefoundations.cis.upenn.edu/lf-current/ProofObjects.html
https://softwarefoundations.cis.upenn.edu/lf-current/ProofObjects.html
https://arxiv.org/abs/2505.05410
https://arxiv.org/abs/2305.04388

Under review as a conference paper at ICLR 2026

Ruida Wang, Rui Pan, Yuxin Li, Jipeng Zhang, Yizhen Jia, Shizhe Diao, Renjie Pi, Junjie Hu, and
Tong Zhang. Ma-lot: Multi-agent lean-based long chain-of-thought reasoning enhances formal
theorem proving. arXiv preprint arXiv:2503.03205,2025. URL https://arxiv.org/abs/
2503.03205.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171,2022. URL https://arxiv.org/abs/2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
arXiv preprint arXiv:2201.11903,2022. URL https://arxiv.org/abs/2201.11903.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Graham Neubig, and Shixi-
ang Shane Cao. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023. URL https://arxiv.org/abs/2305.10601,

Yao Yao, Zuchao Li, and Hai Zhao. Beyond chain-of-thought: Effective graph-of-thought reasoning
in language models. arXiv preprint arXiv:2305.16582, 2024. URL https://arxiv.org/
abs/2305.16582.

Yilun Zhang, Mohit Bansal, Hao Cheng, et al. On the diagram of thought. arXiv preprint
arXiv:2409.10038, 2024. URL https://arxiv.org/abs/2409.10038.

11

https://arxiv.org/abs/2503.03205
https://arxiv.org/abs/2503.03205
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.16582
https://arxiv.org/abs/2305.16582
https://arxiv.org/abs/2409.10038

	Introduction
	Related Work
	The Curry-Howard Correspondence
	LLMs and Formal Reasoning

	Methods and Notation
	Limited Type System for Chain-of-Thought
	Certification Metrics
	Certification Criterion

	Typed Programs, Graphs and Consistency
	Overview
	Typed Program Generation
	Typed Reasoning Graph Construction
	Certification Gates
	Certified Self-Consistency
	Decoding Constraints

	Results
	Main Results: PC-CoT vs. Answer-Only Baseline
	Certification Selectivity and Precision
	Error Decomposition and Coverage Analysis
	Computational Faithfulness: Program-CoT Alignment
	Ablation Studies

	Discussion
	Implications
	Limitations and Future Work

	Conclusion
	Use of LLMs
	Example: Certification Metrics
	Appendix: Codebase Sequencing and Implementation Notes
	Cell-by-Cell Sequencing
	Challenges and Variations During Development

	Typed Reasoning Gradient
	Practical Deployment Considerations

