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Abstract

Existing benchmark corpora of task-oriented001
dialogue are collected either using a “machines002
talking to machines” approach or by giving003
template-based goal descriptions to crowdwork-004
ers. These methods, however, often produce005
utterances that are markedly different from nat-006
ural human conversations in which people of-007
ten convey their preferences in indirect ways,008
such as through small talk. We term such ut-009
terances as Indirect User Requests (IURs). Un-010
derstanding such IURs demands considerable011
world knowledge and reasoning capabilities on012
the listener’s part. Our study introduces a large013
language model (LLM)-based pipeline to auto-014
matically generate realistic, high-quality IURs015
for a given domain, with the ultimate goal of016
supporting research in Natural Language Un-017
derstanding (NLU) and Dialogue State Track-018
ing (DST) for task-oriented dialogue systems.019
Our findings show that while large LLMs such020
as GPT-3.5 and GPT-4 generate high-quality021
IURs, achieving similar quality with smaller022
models is more challenging. We release IN-023
DIRECTREQUESTS, a dataset of IURs that ad-024
vances beyond the initial Schema Guided Dia-025
log (SGD) dataset in that it provides a challeng-026
ing testbed for testing the “in the wild” perfor-027
mance of NLU and DST models.028

1 Introduction029

Task-oriented dialogue assistants (Balaraman et al.,030

2021) help people carry out tasks such as mak-031

ing hotel reservations, setting alarms, looking up032

train schedules, and so on through natural language033

conversations (Budzianowski et al., 2018; Mosig034

et al., 2020; Byrne et al., 2019; Asri et al., 2017).035

One of the most challenging aspects of developing036

a dialogue assistant is developing the natural lan-037

guage understanding model (Mehri et al., 2020).038

With the proliferation of powerful LLMs (Brown039

et al., 2020), great strides have been made in model040

performance on a handful of benchmark datasets041

(Budzianowski et al., 2018; Rastogi et al., 2020;042

Figure 1: Two settings are illustrated for IURs:
restaurant-reservation and home-automation.

Asri et al., 2017) that are widely regarded as prox- 043

ies for the general task. However, despite these 044

advances, many models suffer from errors when 045

presented with utterances that differ in particular 046

ways from those present in their training datasets 047

(Cho et al., 2021, 2022). As a result, users end 048

up feeling frustrated when using talking to these 049

virtual assistants freely as they would with other 050

humans (Mavrina et al., 2022). 051

There are several failure modes of NLU and DST 052

models, one of them being the lack of model ca- 053

pability to understand indirect requests that do not 054

directly mention the target slot value as expected 055

by the system (Cohen, 2019). For example, while 056

reserving a hotel room, rather than saying the pre- 057

sumably more natural utterance, “it’s gonna be me, 058

my wife, and our twins”,1 a user might instead re- 059

sort to more direct terms (for example, “I want to 060

book a room for four people”) to ensure that the 061

intent of the utterance is understood by the virtual 062

assistant on the first attempt. Figure 1 shows two 063

notional instances of IURs in the context of a restau- 064

rant reservation and an intelligent home-assistant 065

dialogue respectively. 066

From a machine learning standpoint, the chal- 067

lenge DST models encounter in understanding 068

1This is presumably a natural thing to say during a friendly
chat with a human receptionist.
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IURs stems from the lack of labeled examples in069

mainstream benchmark datasets used for develop-070

ing task-oriented dialogue agents (Cho et al., 2021).071

Furthermore, the main reason for this discrepancy072

in distribution between benchmark datasets and “in-073

the-wild” utterances can be attributed to the con-074

trolled environment of laboratory settings where075

datasets are crowdsourced (Zarcone et al., 2021).076

Existing benchmark datasets of task-oriented di-077

alogue such as MultiWOZ (Budzianowski et al.,078

2018), Schema Guided Dialog (SGD) (Rastogi079

et al., 2020), and FRAMES (Asri et al., 2017) all080

suffer from this distributional mismatch. For ex-081

ample, we found that only around 500 out of over082

10,000 user utterances in the SGD dataset do not083

contain an explicit mention of the target slot value.084

To bridge this distributional gap, we present an085

LLM-based data generation pipeline to scalably086

generate IURs for a new task-oriented dialogue087

domain. Our work contributes the following:088

1. We suggest linguistic criteria to formalize the089

concept of what constitutes an indirect IUR.090

Specifically, we develop a set of linguistic091

criteria to systematically evaluate questions092

such as “What counts as an indirect user re-093

quest?” and “How indirectly is this user re-094

quest phrased with respect to a given domain095

schema?” in task-oriented dialogue contexts.096

2. We develop a pipeline to collect gold-labelled097

IURs, using an LLM to generate a noisy, seed098

IUR dataset, followed by crowd-sourced fil-099

tering and correction to increase quality.100

3. We publicly release INDIRECTREQUESTS, a101

dataset of IURs collected through the pro-102

cess above, using the schefmas from the SGD103

dataset. We aim for it to serve as a testbed for104

both researchers and practitioners interested105

in evaluating model robustness.106

4. To circumvent the need for collecting expen-107

sive human labels for a new domain, we re-108

port results over various “proxy” models for109

automatically evaluating the quality of IURs110

according to our linguistic criteria.111

5. Finally, we empirically demonstrate the in-112

creased difficulty of the IURs by showing113

that the performance of a state-of-the-art DST114

model significantly degrades when applied on115

INDIRECTREQUESTS utterances as compared116

to their counterparts from SGD.117

Figure 2: The five-stage IUR generation pipeline.

Before outlining the linguistic criteria, however, 118

we first describe the paradigm of “schema-guided 119

dialogue” since it serves as the basis for the criteria. 120

2 Schema-Guided Dialogue 121

A long-standing goal in task-oriented dialogue re- 122

search has been zero-shot transfer of critical mod- 123

ules such as the NLU and DST to previously unseen 124

domains and backend APIs (Mehri et al., 2022). To 125

achieve this goal, we need a way to represent new 126

domains and APIs in a format that can be fed to 127

a machine learning model. In addition, it helps if 128

the representation is made as succinct to achieve 129

both conceptual simplicity and human readability. 130

A “dialogue schema” is any structured format that 131

performs this role of describing a domain that a 132

dialogue system will operate in. 133

To facilitate shared tasks, Rastogi et al. (2020) 134

formally introduce the paradigm of “schema- 135

guided dialogue” alongside a benchmark corpus: 136

the SGD dataset. Their schemas (shown in Figure 137

3) factor each task-oriented dialogue domain into 138

its constituent intents and slots. 139

Consider a Movie domain consisting of two in- 140

tents: RentMovie and BuyTickets. To sat- 141

isfy each intent, the user needs to fill a set of 142

slots. Slots can be considered analogous to query 143

fields for an API call. For example, to fulfill the 144

BuyTickets intent, the schema can demand that 145

the NumPeople, MovieName, and Date slots 146

be filled. A crucial aspect of SGD’s schemas is 147

their use of one-line natural language descriptions 148

to describe the domain, intents, and slots. This de- 149

sign allows language models to make effective use 150

of the schemas. 151
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Figure 3: We illustrate a dialogue schema in the mu-
sic service domain, with an intent to play music and a
slot for selecting a playback device (e.g., TV, kitchen
speaker, bedroom speaker). Our approach generates an
indirect utterance based on a specified slot value, such
as ’TV.’

3 Linguistic Criteria152

We propose evaluating indirectness using three lin-153

guistic criteria: APPROPRIATENESS, UNAMBIGU-154

ITY, and WORLD-UNDERSTANDING. For each155

criterion, Table 1 shows examples of utterances156

that fall on the extreme ends of the rating scales.157

Note that each of the three labels carries a more158

precise meaning as compared to their freer usage159

in everyday language.160

APPROPRIATENESS. The APPROPRIATENESS161

criterion seeks to ensure that an IUR does not sound162

out of place in the real-world context it is being163

uttered in. For instance, the utterance “I’d like to164

order a sandwich” would be completely irrelevant165

in a setting where the user is trying to book bus166

tickets. In contrast, the utterance “I want to go167

somewhere” would be relevant.168

UNAMBIGUITY. The UNAMBIGUITY criterion169

is designed to ensure that a generated IUR entails170

the target slot value, not any of the remaining can-171

didate slot values. For instance, a flight-booking172

scenario includes a “seating class” slot with values173

such as “Economy,” “Premium Economy,” “Busi-174

ness,” and “First Class.” Thus, the utterance “I’m175

looking to book a luxurious seat on the flight” is176

ambiguous, since the user could arguably be refer-177

ring to any of these values.178

WORLD-UNDERSTANDING. The WORLD-179

UNDERSTANDING criterion is intended to be a180

measure of the degree of world understanding181

required by the listener to draw the connection 182

between an IUR and the user’s intended tar- 183

get slot value. For example, when filling the 184

destination-country slot in a trip-booking scenario, 185

the utterance “I’m looking to book a ticket to 186

an African country” can refer to values such as 187

“Nigeria” or “Egypt” but not “India.” 188

4 The INDIRECTREQUESTS Dataset 189

Given a linguistic framework for evaluating the 190

quality of text samples (such as ours), there are two 191

broad approaches to crowdsource a dataset. 192

1. present real-world scenarios to the crowd- 193

workers and ask them to compose correspond- 194

ing IURs in an open-ended way, or 195

2. provide crowdworkers with pre-generated 196

IURs and ask them to rate the quality of each 197

IUR on a numerical scale that reflects our de- 198

sired linguistic criteria. 199

The first approach, where crowdworkers are given 200

our linguistic framework and asked to come up with 201

IURs based on it, demands creativity and proficient 202

writing skills, making it expensive. In contrast, 203

the second approach involves workers evaluating 204

existing utterances, which is simpler. Therefore, 205

we generate a large number of (potentially noisy) 206

IURs using a combination of GPT-3.52 (Brown 207

et al., 2020) and GPT-43 models from OpenAI, and 208

then ask crowdworkers to rate their quality based 209

on our linguistic criteria. 210

4.1 Prompting Strategies for Generating Seed 211

Dataset 212

In order to prompt an LLM for a task, we need 213

a prompting strategy (operationalized using what 214

is commonly referred to as a “prompt template”). 215

While prompt engineering is an open-ended pro- 216

cess, we follow guiding principles such as mak- 217

ing instructions specific and detailed, including 218

high-quality in-context examples, and exploiting 219

strategies like Chain-of-Thought (CoT) (Wei et al., 220

2022) to improve output quality. We experiment 221

with three prompting strategies for generating our 222

seed dataset: 223

1. Zero-Shot Prompt (Instruction-Only): 224

Prompting the LLM with only a natural 225

2For the rest of this paper, when we say GPT-3.5, we mean
gpt-3.5-turbo.

3Similarly, when we say GPT-4, we mean
gpt-4-0125-preview.
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Linguistic Criterion High-Scoring Utterance Low-Scoring Utterance Justification

APPROPRIATENESS I’m looking for tickets that I
can exchange or refund in
case of a change in plan.

I’d like to order a sandwich. The low-scoring example is
nonsensical in the context of
buying a bus ticket.

UNAMBIGUITY I’m looking for tickets that I
can exchange or refund in
case of a change in plan.

I’m looking for tickets that
give me additional benefits.

The term “additional benefits”
is ambiguous as it can refer to
either Flexible or Economy
Extra.

WORLD-
UNDERSTANDING

Do you know of any Michelin
star restaurants in the area
that offer a unique dining
experience?

I’m looking to treat myself to a
luxurious meal with the
highest quality ingredients, so
I’d like to find a restaurant like
that

“Michelin star” demonstrates
more in-depth world
knowledge as opposed to
“luxurious meal.”

Table 1: Criteria to Evaluate IURs are provided with two accompanying example utterances: one that is high-scoring
on that criterion, and another that is low-scoring.

language instruction containing a description226

of the linguistic framework.227

2. Few-Shot Prompt (Instruction + In-228

Context Examples): In addition to 1 above,229

we experiment with adding a few “in-context”230

examples that correspond to human-labelled231

gold-standard samples.232

3. Few-Shot Prompt with CoT: Using CoT233

prompting (Wei et al., 2022), a technique that234

breaks down a problem into intermediate steps.235

For our task, we first generated a set of “inter-236

esting facts” about the target slot value in the237

given situation context, and then generated the238

final IURs conditioned on those facts.239

Two of the authors of this paper sampled a240

handful of IURs generated from all three prompt-241

ing strategies and determined that the Few-Shot242

Prompt with CoT strategy resulted in IURs that243

were the most realistic looking. Hence, we scale244

up this strategy to generate a seed dataset of 453245

IURs.246

4.2 Crowdsourcing Human Labels247

Manual inspection of the IURs in the seed dataset248

reveals considerable variation in quality, suggest-249

ing a need for refinement before utilizing them as250

gold-labeled data for evaluation. To address this,251

we set up a crowdsourcing pipeline using Amazon252

Mechanical Turk (M-Turk) to have crowdworkers253

rate the quality of the candidate IURs in accordance254

with our linguistic criteria.255

There are two key considerations for develop-256

ing the crowdsourcing interface: 1) to optimize257

annotator efficiency (reducing the time and effort 258

required per evaluated sample) and 2) to maximize 259

inter-annotator agreement. We observe that the 260

variation in the unannotated seed dataset is pre- 261

dominantly along the criteria of UNAMBIGUITY 262

and WORLD-UNDERSTANDING. Only a negligible 263

number of instances were deemed irrelevant based 264

on the APPROPRIATENESS criteria. Consequently, 265

we streamline the interface to include two primary 266

components, one each for evaluating UNAMBIGU- 267

ITY and WORLD-UNDERSTANDING. 268

UNAMBIGUITY Annotation. To collect labels 269

for the UNAMBIGUITY criterion, we instruct the 270

annotators to select all the slot values (zero or more) 271

that they think are entailed by the utterance using a 272

multiple choice checkbox (the annotator can check 273

one or more boxes). We design this form element 274

as a binary yes/no question to avoid posing the 275

question in a leading way. Multiple selections by 276

an annotator imply the utterance fails to meet the 277

UNAMBIGUITY criterion. 278

WORLD-UNDERSTANDING Annotation. For 279

the WORLD-UNDERSTANDING criterion, we ask 280

annotators to engage in a thought experiment where 281

they adopt the perspective of a six-year-old child. 282

This approach aims to assess whether a connec- 283

tion between the utterance and selected slot values 284

would be discernible to a child of that age. We ar- 285

rived at this unique framing after several iterations 286

of refining the question. Initially, we asked anno- 287

tators directly to rate the “complexity” involved in 288

making the connection. However, we recognized 289

that the concept of “complexity” is highly subjec- 290

tive and can vary significantly among individuals. 291
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Figure 4: The M-Turk crowdsourcing interface for collecting human annotations over the seed dataset contains
two form elements. The first assesses the UNAMBIGUITY in the generated utterance, ensuring that it entails only
the target slot value. The second assesses the WORLD-UNDERSTANDING criterion, leveraging a slider to rate the
likelihood that an average six-year-old could correctly infer the target slot value. The latter is an intuitive proxy to
measure the complexity of world understanding required to interpret the utterance.

To standardize the perception of complexity and292

reduce variability among annotators, we anchor293

our assessment to a child’s level of understand-294

ing. This approach aims to provide a consistent295

benchmark, despite the diverse cognitive abilities296

typically present at that age range.297

4.3 Dataset Splits298

Based on the crowdsourced labels for both UN-299

AMBIGUITY and WORLD-UNDERSTANDING, we300

curate the INDIRECTREQUESTS dataset and re-301

lease it for public use.4 In going from the “raw”302

crowdsourced samples to the dataset, we split303

the dataset and systematically create labels for304

each sample for both UNAMBIGUITY and WORLD-305

UNDERSTANDING criteria. While splitting INDI-306

RECTREQUESTS into train, validation, and test sets,307

we split our samples based on same lines on which308

the services are split across the SGD dataset. To309

split INDIRECTREQUESTS into train, validation,310

and test sets, we divide the samples based on the311

same lines on which the services are split across312

the SGD dataset. This alignment with the SGD313

dataset splits is intended to aid future work that314

might need to compare our results with previous315

work reporting on SGD.316

5 Proxy Evaluation of Linguistic Criteria317

We automate a proxy evaluation for IURs genera-318

tions due to the impracticality of manual evaluation319

of numerous samples and models. This section320

defines the proxy evaluation task formulations and321

presents baseline results using zero-shot and few-322

shot prompting strategies. We define two proxy323

4URL hidden for peer review.

evaluation tasks, corresponding to UNAMBIGUITY 324

and WORLD-UNDERSTANDING respectively. 325

UNAMBIGUITY. We frame proxy evaluation of 326

UNAMBIGUITY as a multi-class classification prob- 327

lem with Ni + 1 classes, where Ni is the number 328

of possible slot values for the given slot i. We 329

add an extra class corresponding to the case where 330

the ground truth (from the crowdsourcing step) is 331

ambiguous. For model comparison, we report the 332

accuracy over all samples in the test split. 333

WORLD-UNDERSTANDING. We define the 334

proxy evaluation of WORLD-UNDERSTANDING as 335

predicting the level of world knowledge required 336

to infer the intended slot value from an utterance as 337

a continuous value ranging from 1 to 10. This 338

approach aligns with the methodology used in 339

our crowdsourcing stage, where judgments about 340

knowledge depth were made using a 1-100 scale 341

slider. Performance is quantified by calculating the 342

sum of squared errors between predicted and actual 343

values (after normalizing both sets of values). 344

5.1 Proxy Evaluation Results 345

We split the proxy evaluation models into three cat- 346

egories: small language models (fewer than 1B pa- 347

rameters), proprietary large language models from 348

OpenAI (gpt-3.5-turbo and gpt-4-0125-preview), 349

and open-source Llama 2 language models (7B, 350

13B, and 70B). Table 2 shows the performance of 351

the proxy evaluators on the test split against the 352

ground truth obtained through crowdsourcing. 353
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Criterion
Model

Small
LM (<1B)

GPT (3-shot) Llama 2 (3-shot)
GPT-3.5 GPT-4 7B 13B 70B

UNAMBIGUITY

(Accuracy)
0.35∗

(nli-deberta)
0.73 0.84† 0.5 0.69‡ 0.22

WORLD-UNDERSTANDING

(Pearson correlation)
0.22∗

(ms-marco)
0.15 0.34† 0.16 0.19‡ 0.18

Table 2: Evaluation results are computed from a single run with proxy evaluators against crowdworker annotations
on the test split of INDIRECTREQUESTS, which contains 388 samples. Performance symbols indicate the best-
performing models within specific categories. ⋆ denotes the best performance in the zero-shot (small LM) category,
† marks the best performance in the proprietary OpenAI LLM category, and ‡ signifies the top performer among the
Llama 2 models (Touvron et al., 2023).

5.1.1 Small LMs354

For the small LM category, we employ BERT-based355

models in a zero-shot setup. For the UNAMBIGU-356

ITY criterion, we frame the evaluation as k Natural357

Language Inference (NLI) problems, where k is358

the number of possible slot values. Each problem359

considers the candidate IUR as the premise and360

a possible slot value as the hypothesis. We use361

a BERT-based NLI model5 to obtain entailment362

scores and return the argmax score. If the maxi-363

mum score is below 0.3, we deem the IUR ambigu-364

ous for that slot. For WORLD-UNDERSTANDING,365

we use ms-marco-MiniLM-L-6-v26, fine-tuned on366

MS MARCO for passage ranking. We concate-367

nate the IUR with the knowledge context, score the368

sequence using the model, and consider the IUR369

knowledgeable if the score exceeds 0.5.370

5.1.2 Proprietary LLMs371

For the proprietary LLMs from OpenAI, we use372

the models in a few-shot setup, providing a few373

examples of IURs labeled as either ambiguous374

or unambiguous (for UNAMBIGUITY), or knowl-375

edgeable or not knowledgeable (for WORLD-376

UNDERSTANDING). We then query the model with377

the test IUR and knowledge context (if applicable)378

and take the model’s output as the prediction.379

5.1.3 Open-Source LLMs380

For the open-source Llama 2 models, we use a381

similar few-shot setup as the proprietary LLMs.382

However, we also experiment with prompting the383

model with additional context, such as providing384

explicit instructions or examples tailored to the spe-385

cific evaluation criterion. The results, shown in386

Table 2, highlight the trade-offs between model387

5nli-deberta-v3-small
6https://huggingface.co/microsoft/ms-marco-MiniLM-L-

6-v2

size, performance, and the ability to leverage addi- 388

tional context or prompting. 389

The prompts used for proprietary and open- 390

source LLM based proxy evaluators is given in 391

Appendix B. 392

6 Automated IUR Generation 393

Under ideal conditions, we would use as small an 394

LLM as possible to generate high-quality IURs. 395

We report the quality of the generated IURs gener- 396

ated using smaller, open-source LLMs (Llama 2) 397

in Table 5. The prompt used to generate the IURs 398

is given in Appendix C. 399

6.1 Indirection Strategies 400

Along with reporting quantitative metrics from our 401

proxy evaluators, we also perform a bottom-up con- 402

tent analysis to develop a richer understanding of 403

the specific “indirection strategies” that the LLMs 404

employ to transform the slot schema into IURs. 405

During analysis, one of the authors excluded those 406

samples for which the IUR either very evidently 407

does not entail the target slot value or the slot value 408

is mentioned verbatim, violating the UNAMBIGU- 409

ITY criterion. 410

We identify five main indirection strategies from 411

our content analysis (see Table 3). Simple Elabo- 412

ration performs a simple replacement of the slot 413

value with a longer phrase meaning the same thing. 414

Simple Elaborations do not leverage non-trivial 415

world knowledge. Justification offers a real-world 416

reason for choosing a particular slot value. A Hy- 417

ponym Swap involves replacing the slot value with 418

its hyponym (the replacement is a more specific in- 419

stance or subtype of the original term). Similarly, 420

a Synonym Swap replaces the slot value with a 421

synonym. The final strategy, Small Talk, involves 422

padding the utterance with information that is not 423

6



Indirection
Strategy

Intent-Slot-Value Sample IUR

Simple Elaboration RentMovie
(subtitles = None)

“I prefer watching films in their native language without any language
barriers.”

Justification GetRide
(shared_ride = True)

“I usually like sharing the ride with someone else to reduce carbon
footprint...”

Hyponym Swap SearchEvents
(type = Music)

“Is there a festival happening around with pop, country or hip-hop
artists performing?”

Synonym Swap RentMovie
(subtitles = Mandarin)

“I’ve got a bunch of friends coming over who are more comfortable with
Simplified Chinese. Can you find me movies...”

Small Talk FindApartment
(pets_allowed = True)

“I’m looking for a place where my dog is allowed to come along. He’s
so cute and he doesn’t shed as much as you think!”

Table 3: From the generated IURs, we identify five main indirection strategies (Simple Elaboration, Justification,
Hyponym Swap, Synonym Swap, and Small Talk).

strictly informational to the task. While this is not424

strictly an indirection strategy, it can serve to com-425

plement another indirection strategy by making it426

sounds more realistic.427

7 Extrinsic Evaluation428

In addition to carrying out automated, intrinsic eval-429

uations, we also extrinsically evaluate the perfor-430

mance of a widely-used DST model over INDIREC-431

TREQUESTS by measuring its drop in performance432

as compared to its performance on the SGD dataset.433

Since the DST model we use is trained on context434

window lengths of 3, the dialogue contexts in all435

samples are also set to 3. Table 4 shows a com-436

parison between the model performance over the437

original samples and the samples using the gener-438

ated IURs based on a total of 375 samples.439

To fairly compare the results of any NLU model440

over SGD and INDIRECTREQUESTS during extrin-441

sic evaluation, we only use a subset of SGD that442

satisfies the following conditions:443

1. user request must be about a categorical slot444

2. speaker of the latest utterance in the dialogue445

context must be the user and not the system446

3. dialogue act of the latest utterance should be447

“inform” (as opposed to “request” utterances,448

which is out of scope for our work)449

4. user utterance includes only a single slot-value450

pair (since our IUR generation method does451

not accommodate more than one slot-value452

pair per IUR)453

8 Related Work454

Brittleness of DST Models. The initiative to de-455

velop the IUR generation task springs from a need456

SGD INDIRECTREQUESTS
DST acc. 0.512 0.133

Table 4: Slot accuracies are computed for a T5-based
state-of-the-art dialogue state tracking model on sam-
ples from both the original SGD dataset and the IN-
DIRECTREQUESTS. The DST model performance on
INDIRECTREQUESTS shows a significant degradation.

to reduce the brittleness of DST models. Cho 457

et al. (2022) empirically demonstrate the brittle- 458

ness of commonly used DST models by show- 459

ing that their performance degrades in the face of 460

various types of perturbations involving linguis- 461

tic variations, coreferences, named entity refer- 462

ences, paraphrases, and speech disfluencies. More 463

generally, Zarcone et al. (2021) critique the aca- 464

demic community’s prevailing focus on incremen- 465

tal advancements on synthetic benchmarks for tasks 466

such as DST, referred to as “playing the SNIPS 467

game,” which often overlooks deeper issues regard- 468

ing dataset realism. 469

Relationship of IUR Generation to Other NLP 470

Tasks. The process of generating IURs bears re- 471

semblance to paraphrase generation (Zhou and 472

Bhat, 2021) in the aspect of semantically pre- 473

serving text transformation. IUR generation also 474

shares an inverse conceptual similarity with the 475

NLI task of inferring entailment from a premise 476

and a hypothesis. In contrast, IUR generation can 477

be thought of as generating an NLI premise given 478

a hypothesis and a positive entailment class. Al- 479

though Shen et al. (2018) explore this very task 480

formulation, their work differs significantly from 481

ours as it is not situated in a dialogue context. 482

Text Generation using Small LLMs. Our re- 483

search also investigates the impact of model size 484

on the quality of the generated IURs. Eldan and 485
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Figure 5: We report the qualities of the IURs generated using smaller, open-source Llama 2 models of three different
sizes (7B, 13B, 70B). All the evaluation results are obtained using the best-performing GPT-4 proxy evaluation
model (as described in Section 5).

Li (2023) dispute the notion that smaller Language486

Models (LMs) inherently lack the capacity for in-487

tricate text generation tasks like storytelling. They488

attribute shortcomings to the prevalence of irrele-489

vant information rather than model constraints. By490

assembling a targeted dataset of children’s stories,491

they show that smaller LMs can produce narra-492

tives comparable to those by larger counterparts493

like GPT-3.5 and GPT-4. Our work is aligned with494

this broader spirit, aiming to match the output of a495

larger LLMs through fine-tuning a smaller model.496

9 Discussion497

The emergence of powerful LLMs in recent years498

(Brown et al., 2020) has led to near-perfect perfor-499

mances on several longstanding NLP benchmark500

datasets. As a result, the field of NLP has seen a501

shift from focusing solely on reporting quantita-502

tive performance metrics on benchmark datasets to503

conducting deeper qualitative analyses. Our work504

carries forward this trend by isolating the concept505

of indirectness in task-oriented dialogue utterances506

in the form of a dedicated benchmark dataset.507

10 Limitations and Future Work508

Our proposed notion of IUR applies only to cate-509

gorical slots with a small, fixed number of possible510

values (< 5), but not to those slots that can take on511

a large number of values. Future work can investi-512

gate the IUR generation task for such challenging513

dialogue schemas. We have also limited ourselves514

to supervised fine-tuning of LLMs. However, there515

is a rich literature on the use of reinforcement learn-516

ing to guide language models towards specific text517

styles and content types, especially for abstract 518

concepts of the likes of indirectness, which can be 519

explored as future work (Kaufmann et al., 2023). 520

As Bowman and Dahl (2021) suggest, the ultimate 521

evaluation measure for any NLP task should be 522

grounded in in carefully annotated real user data. 523

While modeling specific phenomena such as indi- 524

rectness is helpful, the community needs to evolve 525

novel evaluation paradigms in the long run. Until 526

then, works such as ours will continue to inform 527

gaps in existing models. 528

11 Conclusion 529

As the research and development of task-oriented 530

dialogue systems advances, there is a pressing need 531

to bridge the gap between benchmark corpora and 532

utterances “in the wild.” In our study, we concen- 533

trate on the phenomenon of “indirectness.” This 534

occurs when a user conveys their desired outcome 535

in a manner that requires the listener to utilize their 536

general knowledge to deduce the intended value. 537

We develop a multi-stage LLM-based pipeline to 538

generate INDIRECTREQUESTS, a dataset of IURs 539

based on the schemas borrowed from the SGD 540

dataset. INDIRECTREQUESTS supplements exist- 541

ing benchmarks to evaluate NLU and DST models 542

on realistic, indirect user requests lacking explicit 543

slot values. Experiments with a state-of-the-art 544

DST model validate the challenging nature of IN- 545

DIRECTREQUESTS. More broadly, our benchmark 546

dataset can support future efforts for tasks such 547

as API prediction, DST, NLU, which can lead to 548

an overall improvement in the usability of virtual 549

assistants for end users. 550
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how to fill in these fields (see Figure 4) as shown660

below.661

To get a feel for the task, please go through these662

examples.663

In all the examples below, the customer is try-664

ing to search for restaurants and indicating their665

preference for “Italian cuisine.”666

1. Check all entailing slot values: For the first667

question, you will need to check all the values668

that can be implied by the customer’s utter-669

ance. This could mean selecting zero, one, or670

more checkboxes. [examples]671

2. Use the slider to indicate the difficulty of672

the utterance. [examples]673

B Prompts for Proxy Evaluators674

Below, we list the LLM prompts used for675

proxy evaluation of UNAMBIGUITY and WORLD-676

UNDERSTANDING criteria.677

B.1 UNAMBIGUITY678

You are an expert at679

↪→ evaluating which slot680

↪→ value(s) could be681

↪→ implied by an utterance682

↪→ among a set of683

↪→ candidate values in a684

↪→ task-oriented dialogue.685

↪→ If no values can be686

↪→ eliminated, list all687

↪→ possible values688

↪→ separated by commas.689

Examples:690

Situation: User wants to make691

↪→ a trip692

Slot: Destination country693

Possible Values: India,694

↪→ Namibia, Nigeria695

Utterance: I’m looking to696

↪→ book a ticket to an697

↪→ African country698

Slot Values Implied: Namibia,699

↪→ Nigeria700

701

<more in-context examples>702

B.2 WORLD-UNDERSTANDING703

On a scale of 1-10, how 704

↪→ likely is it that an 705

↪→ average six-year-old 706

↪→ would be able to link 707

↪→ the user utterance to 708

↪→ the target slot value? 709

Examples: 710

Situation: User wants to find 711

↪→ concerts and games 712

↪→ happening in your area 713

Slot: Destination country 714

Possible Values: India, 715

↪→ Namibia, Nigeria 716

Utterance: I’m looking to 717

↪→ book a ticket to an 718

↪→ African country 719

World Knowledge Level: 10 720

721

<more in-context examples> 722

C Prompt for Generating IURs 723

Below is the prompt used to generate IURs. 724

Generate a customer utterance 725

↪→ containing an indirect and 726

↪→ unique reason for wanting 727

↪→ to choose a target slot 728

↪→ value. Make sure that 1) 729

↪→ the utterance entails ONLY 730

↪→ the target slot value and 731

↪→ that it DOES NOT mention 732

↪→ the target slot value. 733

734

Situation: User wants to 735

↪→ transfer money from one 736

↪→ bank account to another 737

↪→ user’s account 738

Slot Description: The account 739

↪→ type of the recipient whom 740

↪→ the user is transfering 741

↪→ money to 742

Possible Slot Values: checking, 743

↪→ savings 744

Target Slot Value: checking 745

Do Not Mention: checking 746

Indirect User Request Keywords 747

↪→ In: I need to transfer 748

↪→ some money to my friend’s 749

↪→ account. He usually uses 750

↪→ it for his direct deposits. 751

752
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Situation: User wants to find a753

↪→ restaurant of a particular754

↪→ cuisine in a city755

Slot Description: Price range756

↪→ for the restaurant757

Possible Slot Values:758

↪→ inexpensive, moderate,759

↪→ expensive760

Target Slot Value: moderate761

Do Not Mention Keywords In:762

↪→ moderate763

Indirect User Request: Looking764

↪→ to have a decent meal765

↪→ without burning a hole in766

↪→ my pocket767

768

Now, generate ONE indirect user769

↪→ request for this input770

↪→ based on the above771

↪→ examples.772

Situation: {situation}773

Slot Description:774

↪→ {slot_description}775

Possible Slot Values:776

↪→ {possible_slot_values}777

Target Slot Value:778

↪→ {target_slot_value}779

Do Not Mention Keywords In:780

↪→ {target_slot_value}781

D Generation Parameters782

OpenAI Models. We use the default settings783

from the OpenAI for our experiments with GPT-3.5784

and GPT-4 models.785

Llama 2 Models. For all generation experiments786

with Llama 2, we use the following parameters.787

Top-k: 50788

Top-p: 0.9789

Temperature: 0.5790

Max New Tokens: 128791

Min New Tokens: -1792

Stop Sequences: \n793
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