LoDAdaC: a unified local training-based decentralized framework with Adam-type updates and compressed communication

Anonymous authors
Paper under double-blind review

Abstract

In the decentralized distributed learning, achieving fast convergence and low communication cost is essential for scalability and high efficiency. Despite extensive research, existing decentralized methods can either have fast convergence or enjoy low communication cost but cannot achieve both goals simultaneously. This disadvantage causes significant inefficiency (either in computation or communication) in solving large-scale decentralized learning problems, e.g., in large language model training. To address this limitation, we propose Lo-DAdaC, a unified multiple Local Training (MLT) Decentralized framework with Adam-type updates and Compressed communication (CC). LoDAdaC accommodates a broad class of optimizers for its local adaptive updates, including AMSGrad, Adam, and AdaGrad; it is compatible with standard (possibly biased) compressors such as low-bit quantization and sparsification. MLT and CC enable LoDAdaC to achieve multiplied reduction of communication cost, while the technique of adaptive updates enables fast convergence. We rigorously prove the combined advantage through complexity analysis. In addition, experiments on image classification and large language model training validate our theoretical findings and show that LoDAdaC significantly outperforms existing decentralized algorithms in terms of convergence speed and communication efficiency.

1 Introduction

In decentralized learning, multiple agents collaboratively train a model without a central server, by exchanging information exclusively with immediate (a.k.a. one-hop) neighbors. Compared to centralized distributed learning, decentralized learning has better robustness and scalability. However, communication cost can become a bottleneck in decentralized learning, especially when low-bandwidth or wireless communication is performed. This motivates the design of communication-efficient decentralized algorithms.

Two widely adopted strategies to reduce the communication burden in distributed learning are Compressed Communication (CC) and Multiple Local Training (MLT). By CC, the agents transmit compressed information rather than full-precision one, significantly reducing per-round communication cost. Examples include low-bit quantization (Sun et al., 2020; Wang et al., 2018; Bernstein et al., 2018; Alistarh et al., 2017) and sparsification (Koloskova et al., 2019; Stich et al., 2018). CC also provides implicit privacy protection: by transmitting the compressed message, agents inherently obscure precise local data information, thus mitigating potential privacy risks (Kairouz et al., 2021). On the other hand, MLT, which involves performing several local updates per communication round, has gained popularity in various distributed learning settings. Prominent examples include local SGD (Haddadpour et al., 2019), SGD averaging (Zhang et al., 2015), and, notably, Federated Averaging (FedAvg) (McMahan et al., 2017), a widely employed method in federated learning (FL). Empirically, MLT significantly reduces the number of communication rounds required to achieve a target convergence threshold. Moreover, from a privacy perspective, MLT further enhances security by reducing the frequency and amount of sensitive information exchanged among agents, thus limiting potential data leakage (Li et al., 2020; Kairouz et al., 2021).

Both CC and MLT have been explored in vanilla and momentum SGD (Singh et al., 2021; Sun et al., 2022), and it is shown in (Singh et al., 2021) that multiplied reduction of communication can be achieved. However, adaptive (i.e., Adam-type) stochastic methods (Kingma & Ba, 2014) exhibit significantly faster convergence than vanilla or momentum SGD on training deep learning models and are now the workhorse for training large language models (LLMs). Hence, it is natural to ask the following question:

1.1 Contributions

This work provides an affirmative answer to the question (Q). We propose LoDAdaC, a **Lo**cal training-based **D**ecentralized framework with **Ada**ptive gradient updates and **C**ompressed communication. Our local update scheme includes both the vector and matrix variants of AdaGrad (Duchi et al., 2011), Adam (Kingma & Ba, 2014), AMSGrad (Reddi et al., 2016), and the recently proposed Adam-Mini (Zhang et al., 2024). The integration of CC and MLT enables a multiplied reduction of communication cost while adaptive gradient updates further yield fast convergence.

A central technical contribution of our work lies in resolving the core analytical challenge introduced by the interaction of MLT, CC, adaptive gradient updates, and decentralized communication: their coupling makes it difficult to derive a unified upper bound on the consensus error and stationarity violation. In particular, local adaptive gradient updates introduce nonlinearity and dynamically varying gradient scaling, which complicate the analysis even in centralized settings (Wang et al., 2022b). When combined with decentralized model aggregation, these properties pose significant technical obstacles to convergence analysis. Our analysis carefully disentangles the coupling, leading to tight convergence guarantees under mild conditions and offering the first such results for this challenging setting. By performing K local updates per communication round and utilizing a compression operator that compresses one unit of message to $1 - \eta$ unit with $\eta \in (0, 1)$, our algorithm needs a total communication cost of $O(\frac{1-\eta}{K\epsilon^4})$ to produce an ϵ -stationary solution, thus yielding multiplied reduction of communication cost. Notably, the result applies uniformly across different choices of compressors and adaptive updates.

In addition, we conduct numerical experiments on two representative tasks, i.e., image classification and language model training, to validate the effectiveness of LoDAdaC. Though our complexity result has the same order dependence on ϵ as achieved by existing non-adaptive stochastic methods such as SQuARM-SGD, our numerical results demonstrate that LoDAdaC achieves significant speed up by adaptive gradient updates and significant communication reduction from combining MLT and CC. Specifically, our experiments illustrate that: (i) LoDAdaC equipped with adaptive gradient updates significantly outperform the baseline decentralized algorithm SQuARM-SGD (that employs momentum gradient update) in terms of convergence speed; (ii) The joint use of MLT and CC reduces the total communication cost dramatically, achieving reductions of over 99% in some scenarios (e.g., see the results yielded by LoDAdaC with K=50 and Top-k=30% in Figures 1e and 1f), with nearly no sacrifice of accuracy. These empirical findings align closely with our theoretical results.

1.2 Problem formulation and technical assumptions

We consider decentralized nonconvex stochastic optimization in the form of

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x}), \text{ with } f_i(\mathbf{x}) = \mathbb{E}_{\xi_i \sim \mathcal{D}_i} \left[F_i(\mathbf{x}, \xi_i) \right]. \tag{1}$$

Here, n agents, connected via a communication graph \mathcal{G} , collectively minimize the objective function f as the average of local functions $\{f_i\}$, each of which is defined as an expectation over a data distribution \mathcal{D}_i . Each agent $i \in \{1, 2, ..., n\}$ exclusively accesses its local function f_i and stochastic gradients $\nabla F_i(\mathbf{x}, \xi_i)$, and collaboration occurs through communication with immediate neighbors.

To perform decentralized computation, each agent $i \in \{1, 2, ..., n\}$ maintains a local copy \mathbf{x}_i of the decision variable \mathbf{x} . Let $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n] \in \mathbb{R}^{d \times n}$. The problem (1) can be equivalently reformulated as

$$\min_{\mathbf{X} \in \mathbb{R}^{d \times n}} \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x}_i), \text{ s.t. } \mathbf{X} = \mathbf{XW},$$
 (2)

where W is a mixing (a.k.a. gossip) matrix that governs how agents aggregate local information.

Throughout the paper, we make the following standard assumptions.

Assumption 1 For each $i \in \{1, 2, ..., n\}$, the function f_i is L-smooth, i.e., $\|\nabla f_i(\mathbf{x}) - \nabla f_i(\mathbf{y})\| \le L \|\mathbf{x} - \mathbf{y}\|$, for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$, and f is lower bounded, i.e., $f^* := \min_{\mathbf{x}} f(\mathbf{x}) > -\infty$.

Assumption 2 For the mixing matrix \mathbf{W} , it holds (i) \mathbf{W} is doubly stochastic, i.e., $\mathbf{W} \geq \mathbf{0}$, $\mathbf{W}\mathbf{1} = \mathbf{1}$ and $\mathbf{1}^{\mathsf{T}}\mathbf{W} = \mathbf{1}^{\mathsf{T}}$; (ii) $W_{ij} = 0$ if i and j are not neighbors to each other; (iii) $\mathrm{Null}(\mathbf{W} - \mathbf{I}) = \mathrm{span}\{\mathbf{1}\}$ and $\rho := \|\mathbf{W} - \mathbf{J}\|_2 < 1$, where $\mathbf{1}$ is an all-one vector, \mathbf{I} is the identity matrix, and $\mathbf{J} = \frac{\mathbf{1}\mathbf{1}^{\mathsf{T}}}{n}$.

In Assumption 2, the condition $\rho < 1$ is critical to achieving convergence, as it ensures that information propagates effectively across the network. The choice of **W** depends on the underlying communication graph \mathcal{G} , and several well-established constructions exist (Koloskova et al., 2019; Mancino-Ball et al., 2023; Nedić et al., 2018). In particular, it is shown in (Xiao & Boyd, 2004) that an optimal mixing matrix can be designed to minimize ρ while satisfying the constraints in Assumption 2.

1.3 Notations and definitions

We define $[T] = \{0, 1, ..., T-1\}$ and use $\|\cdot\|$ to denote the Euclidean norm for vectors and the Frobenius norm for matrices. The spectral norm of a matrix \mathbf{A} is denoted by $\|\mathbf{A}\|_2$. For two vectors \mathbf{a} and \mathbf{b} of the same dimension, $\frac{\mathbf{a}}{b}$ and $\mathbf{a} \circ \mathbf{b}$ denote componentwise division and multiplication, respectively, while $\sqrt{\mathbf{c}}$ applies the square-root operation elementwise to a nonnegative vector \mathbf{c} . $\mathbf{X}_{\perp} = \mathbf{X}(\mathbf{I} - \mathbf{J})$ denotes the consensus error matrix and $\overline{\mathbf{x}} = \frac{1}{n}\mathbf{X}\mathbf{1}$ for the average of all local decision variables. \mathbb{E}_t takes the expectation over the random samples $\{\xi_i^t\}_{i\in\{1,2,...,n\}}$ conditional on the t-th iterate, while \mathbb{E} takes the full expectation.

Definition 1.1 We call Q an η -compression operator, if it holds $\mathbb{E}_{Q}[\|\mathbf{x} - Q[\mathbf{x}]\|^{2}] \leq \eta^{2} \|\mathbf{x}\|^{2}$ for some $\eta \in [0,1)$ and all $\mathbf{x} \in \mathbb{R}^{d}$.

Examples of η -compression operators include Random-k (Stich et al., 2018), Top-k (Aji & Heafield, 2017), and the rescaled quantizations (Chen et al., 2023a); see more examples in (Chen et al., 2023a; Koloskova et al., 2019). When $\eta = 0$, Q simplifies to the identity operator.

Definition 1.2 We say that **X** is an ϵ -stationary point, in expectation, of the decentralized problem (2) if $\mathbb{E}\left[\|\nabla f(\overline{\boldsymbol{x}})\|^2\right] + \mathbb{E}\left[\frac{1}{n}\|\mathbf{X}_{\perp}\|^2\right] \leq \epsilon^2$.

2 Related work

In this section, we review existing works on distributed stochastic gradient methods (SGMs) in either a centralized or a decentralized setting for solving nonconvex problems. Additionally, we review methods developed for distributed learning with MLT and CC.

2.1 Centralized or decentralized (stochastic) adaptive gradient methods

Adaptive SGMs are among the most popular stochastic algorithms for training nonconvex deep learning models. In practice, adaptive SGMs such as AdaGrad (Duchi et al., 2011), Adam (Kingma & Ba, 2014), and AMSGrad (Reddi et al., 2016) are more effective compared to a nonadaptive SGM.

Efforts have been made to integrate adaptive gradient updates into distributed optimization. Hou et al. (2018) propose a distributed Adam for convex problems, while (Chen et al., 2020; Zhao et al., 2022) introduce

locally adaptive algorithms for centralized distributed training. The compressed centralized distributed Adam variants are explored in (Chen et al., 2021; 2023a). A centralized distributed AMSGrad is studied in (Li et al., 2022), and a compressed version is presented in (Wang et al., 2022a). The decentralized Adam variant, DADAM, was introduced in (Nazari et al., 2022), providing convergence results for both convex and nonconvex problems. However, subsequent analysis by (Chen et al., 2023b) reveals that DADAM may not converge to a stationary point in nonconvex settings. To address this limitation, (Chen et al., 2023b; Wang et al., 2025) propose some other decentralized adaptive gradient methods.

Despite these advancements, distributed learning with multiple local adaptive gradient updates has been explored only in a centralized setting. Xie et al. (2019) propose AdaAlter, which employs local adaptive updates on the client side. Similarly, Reddi et al. (2020) extend FedAvg by incorporating three types of local adaptive gradient updates to improve optimization performance. More recently, FedLADA (Sun et al., 2023) introduces momentum-corrected adaptive updates, and FedAMS, along with its corrected variant FedCAMS (Wang et al., 2022b), stabilizes local AMSGrad updates to ensure convergence. However, decentralized distributed learning with multiple local adaptive gradient updates remains unexplored. Though Gao & Huang (2020) attempt to study a decentralized distributed method with multiple local Adam updates, they conduct analysis only to the case without first-order momentum. In addition, their convergence rate results in Corollary 1 and Corollary 2 are obtained by implicitly assuming $\beta_2 = 0$, i.e., no second-order momentum either.

2.2 MLT in distributed learning

MLT is a simple yet remarkably effective communication-saving strategy in distributed learning, where clients perform several local updates—rather than a single one—between successive communication rounds. A foundational method that employs MLT in centralized distributed learning is FedAvg, with numerous extensions including FedAvg with local momentum (Hsu et al., 2019), server momentum (Sun et al., 2024), and adaptive FedAvg (Reddi et al., 2020). Recent theoretical advancements have clarified why MLT effectively reduces communication complexity in centralized distributed learning (Kairouz et al., 2021; Li et al., 2020). These results have been rigorously established across a wide range of local update strategies, including standard SGD (Haddadpour et al., 2019; Spiridonoff et al., 2021; Stich, 2018; Yu et al., 2019), momentum-based methods (Karimireddy et al., 2020; Sun et al., 2024), and adaptive gradient methods (Reddi et al., 2020; Xie et al., 2019).

In decentralized distributed learning, early work has primarily focused on algorithms using simple local SGD updates. For example, Xing et al. (2020) propose a decentralized federated learning framework for medical applications, operating without a central server in a dynamic peer-to-peer network. Similarly, Lalitha et al. (2019) explore decentralized learning using a Bayesian-inspired belief update mechanism over connected networks. Further analyses in (Koloskova et al., 2020; Sun et al., 2022; Wu et al., 2025; Li et al., 2019) have demonstrated that incorporating MLT with multiple local SGD updates can also reduce communication complexity in a decentralized distributed setting.

2.3 MLT+CC in distributed learning

Combining MLT and CC, while simultaneously retaining their respective benefits, is notably challenging. In a centralized distributed setting, several recent algorithms successfully integrate these strategies, including CompressedScaffnew (Condat et al., 2022), LoCoDL (Condat et al., 2025), FedCOM (Haddadpour et al., 2021), FedPAQ (Reisizadeh et al., 2020), and Qsparse-Local-SGD (Basu et al., 2019). They leverage the advantage of both MLT and CC, achieving a multiplied reduction of communication complexity.

Despite these developments, few algorithms leveraging MLT+CC have been proposed in the context of decentralized distributed learning. Extending theoretical guarantees to the decentralized setting introduces substantial challenges due to the absence of a central coordinator. Complications arise from network topology constraints, the need for peer-to-peer communication, and heterogeneity in local data and model states. These factors make the convergence analysis significantly more intricate and have historically limited the rigorous understanding of MLT+CC in decentralized settings.

MLT Methods	\mathbf{CC}	\mathbf{AG}	#Iter	CommCost	MLTsave	CCsave
PD-SGD (Ge & Chang, 2023)	X	X	$\frac{1}{n\epsilon^4}$	$\frac{1}{nK\epsilon^4}$	✓	_
LSGT (Li et al., 2019)	X	X	$\frac{1}{n\epsilon^4}$	$\frac{1}{nK\epsilon^4}$	✓	_
DFedAvgM (Sun et al., 2022)	1	X	$\max\{\frac{K}{\epsilon^4}, \frac{K\epsilon^4}{s^2}\}^*$	$\max\{\frac{1-s}{\epsilon^4}, \frac{(1-s)\epsilon^4}{s^2}\}^*$	Х	1
SQuARM-SGD (Singh et al., 2021)	1	X	$\frac{1}{n\epsilon^4}$	$rac{1-\eta}{nK\epsilon^4}$	✓	✓
LM-DFL (Chen et al., 2024)	1	X	$\max\{\frac{1}{K^3\epsilon^4}, \frac{K^3s^4}{\epsilon^4}\}^*$	$\max\{\frac{1-s}{K^4\epsilon^4}, \frac{(1-s)K^2s^4}{\epsilon^4}\}^*$	Х	X
LoDAdaC (this paper)	1	1	$\frac{1}{n\epsilon^4}$	$rac{1-\eta}{nK\epsilon^4}$	✓	1

Table 1: Comparison between the proposed method and selected approaches that use MLT for nonconvex decentralized distributed learning. "CC" indicates whether compressed communication is employed; "AG" denotes the use of adaptive gradient updates; "#Iter" specifies the number of total iterations (per agent) to obtain an ϵ -stationary point of problem (2), see Definition 1.2; "CommCost" refers to the total communication cost, where each communication round incurs a unit cost in the absence of compression; "MLTsave" indicates whether the number of communication rounds can be theoretically reduced by employing MLT; and "CCsave" reflects whether the total communication cost can be effectively reduced by compression. Here, the $O(\cdot)$ notation is omitted in the table, ϵ is assumed to be sufficiently small, and the number of local steps K is at most $O(\epsilon^{-1})$. *s refers to the compression error given in (Sun et al., 2022), satisfying $\mathbb{E}_{\mathcal{Q}}\left[\|\mathbf{x}-\mathcal{Q}[\mathbf{x}]\|^2\right] \leq s^2 d$.

DFedAvgM from (Sun et al., 2022), SQuARM-SGD from (Singh et al., 2021), and LM-DFL from (Chen et al., 2024) are closely related to our method. DFedAvgM extends decentralized FedAvg by incorporating momentum-based local updates and CC. However, DFedAvgM is unable to reduce the order of total communication rounds through MLT and can only mitigate the effect from local variance of stochastic gradients when no momentum is applied. In addition, using CC will hurt the complexity result of DFedAvgM to obtain an ϵ -stationary point unless the compression error is controlled in $O(\epsilon^4)$, which is a too-restrictive assumption. Without relying on such restrictive assumptions, a general convergence result is established to LM-DFL that incorporates both MLT and CC. However, LM-DFL is also unable to reduce the order of total communication rounds through MLT. It is proved in (Singh et al., 2021) that using MLT can reduce the order of total communication rounds by SQuARM-SGD. However, its analysis relies on the additional assumption that the mixing matrix W is symmetric. In addition, SQuARM-SGD uses momentum gradient updates, yielding significantly slower convergence than LoDAdaC that adopt adaptive gradient updates, as we demonstrate in Section 4. Moreover, our work provides a unified framework that encompasses a broader class of decentralized methods, including (compressed) local SGD, local momentum methods, and local adaptive gradient methods such as Adam, AdaGrad, and AMSGrad. Our analysis holds under mild assumptions, thus significantly broadening the applicability of MLT+CC-based decentralized learning to practical, largescale problems. Detailed comparisons are summarized in Table 1. We notice that the complexity result of our method is in the same order as that of SQuARM-SGD. However, with adaptive gradient updates, our method is able to achieve significantly faster empirical convergence, in particular for training large language model.

3 Decentralized adaptive methods with MLT and CC

In this section, we introduce a unified decentralized framework that integrates multiple local adaptive gradient updates with compressed communication. It is named LoDAdaC. Also, we provide convergence guarantees for the proposed algorithm under general nonconvex settings.

3.1 A unified algorithmic framework

We present the pseudocode of our framework in Algorithm 1. For simplicity, we take a single randomly sampled data point ξ_i^t at each iteration. All our theoretical results remain valid by taking a mini-batch of samples.

In addition to Assumptions 1–2, we make the following assumption, which is standard in the analysis of both distributed and non-distributed adaptive SGMs (Chen et al., 2019; 2023b; Kingma & Ba, 2014; Reddi et al., 2018; Xu et al., 2023).

Assumption 3 The random samples $\{\xi_i^t\}_{i,t\geq 0}$ are independent. For each t and $i \in \{1,2,\ldots,n\}$, it holds $\mathbb{E}_t[\boldsymbol{g}_i^t] = \nabla f_i(\boldsymbol{x}_i^t)$. In addition, there are constants B and B_{∞} such that $\|\boldsymbol{g}_i^t\| \leq B$, $\|\boldsymbol{g}_i^t\|_{\infty} \leq B_{\infty}$ for any $i \in \{1,2,\ldots,n\}$ and any t, and $\|\nabla f_i(\boldsymbol{x})\| \leq B$, $\|\nabla f_i(\boldsymbol{x})\|_{\infty} \leq B_{\infty}$ for all \boldsymbol{x} .

The unbiasedness condition $\mathbb{E}_t[\boldsymbol{g}_i^t] = \nabla f_i(\boldsymbol{x}_i^t)$ is standard in the literature of stochastic methods (Lan, 2020). Compared to a gradient-variance-boundedness assumption (i.e., there is $\sigma > 0$ such that $\mathbb{E}[\|\boldsymbol{g}_i^t - \nabla f_i(\boldsymbol{x}_i^t)\|^2] \leq \sigma^2$) made for analyzing a non-adaptive stochastic gradient method, the gradient-boundedness condition in Assumption 3 is stronger. Nevertheless, such an assumption is standard for Adam-type methods (Chen et al., 2023b).

Algorithm 1: A Local training-based Decentralized framework with Adaptive gradient updates and Compressed communication (LoDAdaC)

```
1 Input: \alpha > 0, \ 0 \le \beta_1 < 1, \ \delta > 0, \ 0 \le \gamma \le 1, a maximum number T of communication rounds, a
         number K of local training steps per communication round, a \eta-compression operator \mathcal{Q}, d-dimension
vector-value functions \{r_t\}, and a mixing matrix \mathbf{W};

2 Let \mathbf{x}_1^0 = \mathbf{x}_2^0 = \cdots = \mathbf{x}_n^0 = \underline{\mathbf{x}}_1^0 = \underline{\mathbf{x}}_2^0 = \cdots = \underline{\mathbf{x}}_n^0 = \mathbf{x}^0, and set \mathbf{m}_i^{-1}, and \mathbf{u}_i^{-1} to \mathbf{0} for each i.

3 for t = 0, 1, \dots, TK - 1 do
              for all agents i \in \{1, 2, ..., n\} in parallel do
                       Obtain one random sample \xi_i^t and compute a stochastic gradient \mathbf{g}_i^t \leftarrow \nabla F_i(\mathbf{x}_i^t, \xi_i^t);
 5
                     Let \boldsymbol{m}_{i}^{t} = \beta_{1} \boldsymbol{m}_{i}^{t-1} + (1 - \beta_{1}) \boldsymbol{g}_{i}^{t};

Let \boldsymbol{u}_{i}^{t} = r_{t}(\boldsymbol{g}_{i}^{0}, \boldsymbol{g}_{i}^{1}, \dots, \boldsymbol{g}_{i}^{t});

Update \boldsymbol{x}_{i}^{t+\frac{1}{2}} = \boldsymbol{x}_{i}^{t} - \alpha \frac{\boldsymbol{m}_{i}^{t}}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}};
  6
                       if mod(t+1, K) = 0, then
 9
                             Set \underline{x}_i^{t+1} = \underline{x}_i^t + \mathcal{Q}[x_i^{t+\frac{1}{2}} - \underline{x}_i^t] and x_i^{t+1} = x_i^{t+\frac{1}{2}} + \gamma(\sum_{j=1}^n \mathbf{W}_{ji}\underline{x}_j^{t+1} - \underline{x}_i^{t+1}).
10
                       else
11
                               Update x_{i}^{t+1} = x_{i}^{t+\frac{1}{2}}, and x_{i}^{t+1} = x_{i}^{t}.
12
```

The condition in line 9 of Algorithm 1 indicates that neighbor communication happens every K iterations, namely, K local updates are performed per communication round. In addition, we only need to communicate the compressed vectors to obtain $\sum_{j=1}^{n} \mathbf{W}_{ji}\underline{x}_{j}^{t+1}$, as explained below. For each $i=1,2,\ldots,n$, let agent i maintain a vector \mathbf{y}_{i} and initialize it as $\mathbf{y}_{i}^{0} = \underline{x}_{i}^{0}$. Then, for all $t \geq 0$, let $\mathbf{y}_{i}^{t+1} = \mathbf{y}_{i}^{t}$, if $\text{mod}(t+1,K) \neq 0$, and $\mathbf{y}_{i}^{t+1} = \mathbf{y}_{i}^{t} + \sum_{j=1}^{n} \mathbf{W}_{ji} \mathcal{Q}\left[\mathbf{x}_{j}^{t+\frac{1}{2}} - \underline{\mathbf{x}}_{j}^{t}\right]$ otherwise. This way, we have $\mathbf{x}_{i}^{t+1} = \mathbf{x}_{i}^{t+\frac{1}{2}} + \gamma\left(\mathbf{y}_{i}^{t+1} - \underline{\mathbf{x}}_{i}^{t+1}\right)$ and thus enable the reduction of communication cost by only communicating compressed message.

With appropriate parameter β_1 and vector function r_t , the local update of LoDAdaC in line 8 of Algorithm 1 encompasses several well known optimizers as special cases. As we demonstrate in Section 3.2, our theoretical results apply to all optimizers listed in Table 2.

3.2 Convergence analysis

In this subsection, we establish the convergence rate results of Algorithm 1. We first derive a consensus error bound in Lemma 3.1. This bound is essential because it explicitly characterizes the relationship between the consensus error and key algorithmic parameters, including the step size α , MLT steps K, compression error η of \mathcal{Q} , and the spectral gap ρ of the communication graph. Such a characterization allows us to rigorously analyze how MLT and compression impact the convergence speed. Then we establish a bound in Theorem 3.1 on the objective gradient at averaged points. This bound enables us to show the final convergence rate results of our algorithm with several specific choices of popular adaptive updates. All proofs are given in the appendix.

Optimizer	Description
Vanilla SGD	$\beta_1 = 0$ and $r_t \equiv 0$, i.e., $\boldsymbol{u}_i^t = 0$ for all i and t
Momentum (Heavy-ball) SGD	$\beta_1 \in (0,1)$ and $r_t \equiv 0$, i.e., $\boldsymbol{u}_i^t = 0$ for all i and t
AMSGrad	$ \begin{vmatrix} \widehat{\boldsymbol{u}}_i^t = \beta_2 \widehat{\boldsymbol{u}}_i^{t-1} + (1 - \beta_2) \boldsymbol{g}_i^t \circ \boldsymbol{g}_i^t, & \boldsymbol{u}_i^t = \max\{\boldsymbol{u}_i^{t-1}, \widehat{\boldsymbol{u}}_i^t\}, \\ \widehat{\boldsymbol{u}}_i^{-1} = \boldsymbol{0}, \text{ and } \beta_2 \in (0, 1) \end{vmatrix} $
Adam	$\boldsymbol{u}_i^t = \beta_2 \boldsymbol{u}_i^{t-1} + (1 - \beta_2) \boldsymbol{g}_i^t \circ \boldsymbol{g}_i^t$, with $\beta_2 \in \left[\frac{\sqrt{TK}}{\sqrt{TK} + 1}, 1\right)$
Adam-mini	$oxed{u_i^t = eta_2 oldsymbol{u}_i^{t-1} + (1 - eta_2) ext{mean}(oldsymbol{g}_i^t \circ oldsymbol{g}_i^t), ext{ with } eta_2 \in \left[rac{\sqrt{TK}}{\sqrt{TK} + 1}, 1 ight)}$
AdaGrad	$oldsymbol{u}_i^t = rac{1}{t+1} \sum_{s=0}^t oldsymbol{g}_i^s \circ oldsymbol{g}_i^s$

Table 2: Representative optimizers of Algorithm 1 with specific selections of β_1 and r_t

Lemma 3.1 Under Assumptions 1-3, let $0 < \gamma \le \frac{(1-\rho)(1-\eta^2)}{100}$. Then the sequence $\{x^t\}_{t=0}^{TK-1}$ generated by Algorithm 1 satisfies

$$\frac{1}{TK} \sum_{t=0}^{TK-1} \mathbb{E}\left[\left\|\mathbf{X}_{\perp}^{t}\right\|^{2}\right] \leq \alpha^{2} n K^{2} \overline{C}, \text{ where } \overline{C} := \frac{56}{\gamma(1-\rho)} \left(\frac{80}{\gamma(1-\rho)} + \frac{15}{1-\eta^{2}}\right) B^{2} \delta^{-1}. \tag{3}$$

Theorem 3.1 Suppose that Assumptions 1–3 hold and $\|\mathbf{u}_i^t\|_{\infty} \leq B_u$ for all $t \geq 0$ and $i \in \{1, 2, ..., n\}$, for some $B_u > 0$. Let \overline{C} denote the constant defined in (3) and $\alpha, \gamma > 0$ satisfy

$$\alpha \le \frac{\delta}{48L\sqrt{B_u + \delta}}, \quad \gamma \le \frac{(1 - \rho)(1 - \eta^2)}{100}.$$
 (4)

Then the sequence $\{x^t\}_{t=0}^{TK-1}$ generated by Algorithm 1 satisfies

$$\frac{\alpha}{4\sqrt{B_u + \delta}} \sum_{t=0}^{TK-1} \mathbb{E}\left[\|\nabla f\left(\overline{\boldsymbol{x}}^t\right)\|^2\right] \leq \mathbb{E}\left[f\left(\boldsymbol{x}^0\right) - f^*\right] + \frac{\alpha TK}{8\sqrt{B_u + \delta}} \frac{\alpha^2 L^2 \beta_1^2 B^2}{\delta(1 - \beta_1)^2} \\
+ \frac{\alpha\beta_1^2 B_{\infty}^2}{(1 - \beta_1)^2} \left(4\sqrt{B_u + \delta} + \alpha L\right) \mathbb{E}\left[\sum_{t=0}^{TK-1} \frac{1}{n} \sum_{i=1}^n \left\|\frac{1}{\sqrt{\boldsymbol{u}_i^{t-2} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_i^{t-1} + \delta}}\right\|^2\right] \\
+ \alpha^2 L \left(\frac{24}{n\delta} TKB^2 + \frac{6L^2}{n\delta} \alpha^2 TnK^3 \overline{C}\right) \\
+ \frac{\alpha L^2}{n} \left(\frac{\sqrt{B_u + \delta}}{\delta} + \frac{1}{2\sqrt{\delta}}\right) \alpha^2 TnK^3 \overline{C} + \sum_{t=0}^{TK-1} \frac{\alpha^3 \beta_1^2 L^2 B^2}{\delta(1 - \beta_1)^2} \left(\frac{\sqrt{B_u + \delta}}{\delta} + \frac{1}{2\sqrt{\delta}}\right).$$
(5)

For each optimizer listed in Table 2, we are able to show the condition $\|\boldsymbol{u}_i^t\|_{\infty} \leq B_u, \forall t, \forall i$ for some constant B_u and that $\mathbb{E}\left[\sum_{t=0}^{TK-1}\frac{1}{n}\sum_{i=1}^n\left\|\frac{1}{\sqrt{\boldsymbol{u}_i^{t-2}+\delta}}-\frac{1}{\sqrt{\boldsymbol{u}_i^{t-1}+\delta}}\right\|^2\right]$ is bounded; see Lemma A.7. Thus by Theorem 3.1, we specify the choice of α and obtain the convergence rate of Algorithm 1 by different ways of defining the second momentum term \boldsymbol{u}_i^t in line 7 of Algorithm 1.

Theorem 3.2 Under Assumptions 1–3, let $\delta = O(1)$ be a universal positive constant and \overline{C} be the constant defined in (3). Choose T and K such that α and $\gamma > 0$ satisfy

$$\alpha = \frac{4\theta\sqrt{n(B_{\infty}^2 + \delta)}}{\sqrt{TK}} \le \min\left\{\frac{\delta}{48L\sqrt{B_{\infty}^2 + \delta}}, 1\right\}, \quad \gamma \le \frac{(1 - \rho)(1 - \eta^2)}{100},\tag{6}$$

where $\theta = O(1)$ is a constant. Then for the sequence $\{x^t\}_{t=0}^{TK-1}$ generated by Algorithm 1 with any optimizer in Table 2, we have

$$\frac{1}{TK} \sum_{t=0}^{TK-1} \mathbb{E}\left[\|\nabla f(\overline{\boldsymbol{x}}^t)\|^2 + \frac{1}{n} \|\mathbf{X}_{\perp}^t\|^2 \right] = O\left(\frac{f(\boldsymbol{x}^0) - f^* + 1}{\sqrt{nTK}} + \frac{n}{TK} + \frac{nK\overline{C}}{T} \right). \tag{7}$$

3.3 Linear speed up, topology independence, and communication reduction

Based on the convergence rate results in Theorem 3.2, we discuss how the number n of agents, the number K of local updates, and compression ratio $1 - \eta$ affect the iteration complexity and communication complexity of our algorithm to produce an ϵ -stationary point in expectation.

Linear speed up and topology-independent step size. By (7) and the definition of \overline{C} in (3), if

$$T = \Omega\left(\frac{n^3 K^3}{(1-\rho)^8 (1-\eta^2)^4}\right),\tag{8}$$

then $\frac{nK\overline{C}}{T} = O(\frac{1}{\sqrt{nTK}})$, $\frac{n}{TK} = O(\frac{1}{\sqrt{nTK}})$, and we obtain

$$\frac{1}{TK} \sum_{t=0}^{TK-1} \mathbb{E}\left[\|\nabla f\left(\overline{\boldsymbol{x}}^{t}\right)\|^{2} + \frac{1}{n} \|\mathbf{X}_{\perp}^{t}\|^{2} \right] = O\left(\frac{1}{\sqrt{nTK}}\right). \tag{9}$$

Letting τ be selected from $\{0,\ldots,TK-1\}$ uniformly at random, we have from (9) that $\mathbb{E}\left[\|\nabla f(\overline{\boldsymbol{x}}^{\tau})\|^2 + \frac{1}{n}\|\mathbf{X}_{\perp}^{\tau}\|^2\right] = O\left(\frac{1}{\sqrt{nTK}}\right)$. Hence, to obtain an ϵ -stationary point in expectation, the total number of local iterations per agent is $TK = \Theta\left(\frac{1}{n\epsilon^4}\right)$.

Given K, we have $T = \Theta\left(\frac{1}{nK\epsilon^4}\right)$; when $\epsilon = O\left(\frac{(1-\rho)^2(1-\eta^2)}{nK}\right)$, the chosen T will satisfy (8) and the first inequality in (6) holds. Thus in this case, we obtain a linear speed up with respect to n, and the step size $\alpha = \Theta(n\epsilon^2)$ and is independent of ρ and η .

Multiplied reduction of communication cost. For a small enough $\epsilon > 0$, we can further reduce the order of communication rounds by picking K. Suppose $\epsilon = O\left(\left(\frac{(1-\rho)^2(1-\eta^2)}{n}\right)^{\frac{1}{\nu}}\right)$ for some $\nu \in (0,1)$. Then we can choose $K = \Theta\left(\epsilon^{-1+\nu}\right)$ and $T = \Theta\left(\frac{\epsilon^{-3-\nu}}{n}\right)$, which satisfies (8). This way, compared to performing a single local update, i.e., K = 1, we reduce the number of communication rounds by an order of $\epsilon^{-1+\nu}$. In addition, by using an η -compression operator, our algorithm only needs $1 - \eta$ of communication amount as compared to using no compression. Therefore, the total communication volume required by our algorithm is $\Theta\left(\frac{1-\eta}{n\epsilon^{3+\nu}}\right)$, achieving multiplied reduction of the total communication cost.

4 Numerical experiments

In this section, we demonstrate the efficacy of the proposed framework over a set of numerical experiments. We consider three standard benchmarks, including training a convolutional neural network LeNet5 (LeCun et al., 1998) on the FashionMNIST dataset (Xiao et al., 2017), a resnet architecture Fixup-ResNet-20 (Zhang et al., 2019) on the CIFAR-10 dataset (Krizhevsky et al., 2009), and a small-scale 10.7M parameter GPT model, from nanoGPT (Andrej, 2022), on the tiny-shakespeare dataset. We will show the performance of LoDAdaC equipped with the following adaptive gradient updates: AdaGrad, Adam, and AMSGrad on homogeneously distributed training data. We will compare LoDAdaC against SQuARM-SGD (Singh et al., 2021), which incorporates compressed communication and local training with a momentum-based SGD. Our methods improve over SQuARM-SGD with the addition of an adaptive update. We provide an additional comparison against DADAM Nazari et al. (2022), which represents methods with decentralized and compressed communication but always with a single local update per communication round.

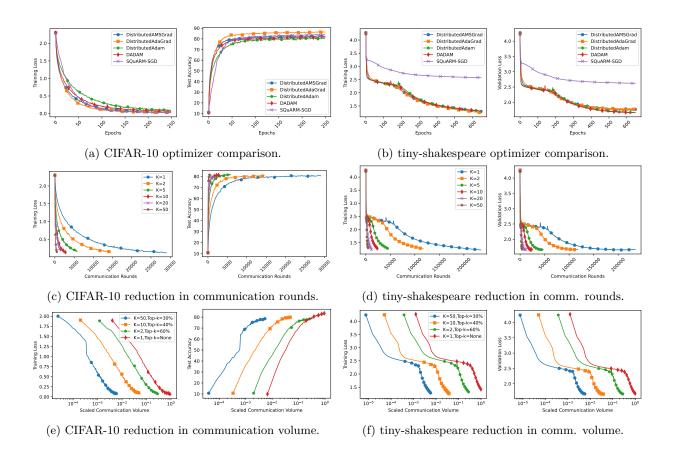


Figure 1: Convergence performance: Plotted above are the training loss and test accuracy of CIFAR-10 (left) and training loss and validation loss on tiny-shakespeare (right). The top row compares optimizer performance. The middle row demonstrates the reduction in communication rounds based on the number of local updates. The bottom row compares the total communication volume scaled relative to the uncompressed baseline with a single local update per communication round.

We implement all of these methods in PyTorch. For FashionMNIST and CIFAR-10, we run our experiments on a CPU server. This server has two-way 64-core (256 threads) AMD EPYC 7742 CPUs at 2.25GHz and 2TB DDR4 memory. For tiny-shakespeare on nanoGPT, we run the experiments on a separate server with 4 NVIDIA A100 GPUs. Both test systems have Python 3.12.3 and PyTorch 2.7.0+cu126 installed, running on top of Ubuntu 24.04.2 LTS.

We will compare training loss and test accuracy as well as validation loss for the GPT model. We will compare these values relative to the number of communication rounds and the communication volume. We ran a significant parametric study, evaluating possible parameters within: local updates K = [1, 2, 5, 10, 20, 50], optimizers = [AdaGrad, Adam, AMSGrad, DADAM, SQuARM-SGD], Top-k compression = [30%, 40%, 50%, 60%, None]. We use a ring topology with 4 agents for communication. We will show a representative selection of these results below on CIFAR-10 and tiny-shakespeare, with FashionMNIST and the rest of the results appearing in the appendix. We use a batch size of 64 for the CIFAR-10 and FashionMNIST datasets and a batch size of 128 for training the GPT model. We initialize the learning rate to 0.001 for AdaGrad, Adam, and AMSGrad on CIFAR-10 and FashionMNIST and use β values of $\beta_1 = 0.9, \beta_2 = 0.999$ for Adam and AMSGrad. We use a learning rate of 0.0001 on tiny-shakespeare. We tune the learning rate to 0.01 for SQuARM-SGD on CIFAR-10 and FashionMNIST and 0.005 on tiny-shakespeare — higher learning rates, such as the recommended learning rates of 0.1 and 0.2 from (Singh et al., 2021), did not converge with a number of tests when using our Top-k compression operator.

4.1 Optimizer Comparison

We first compare the performance of different optimizers with n=4 agents with a fixed local updates per communication of K=20 and Top-k compression of 40% and 50% for CIFAR-10 and tiny-shakespeare, respectively. We display these results in Figures 1a and 1b. We compare against SQuARM-SGD and DADAM as our baselines for this set of experiments.

We observe that SQuARM-SGD is slightly slower to converge on CIFAR-10 with the given hyperparameters, but it achieves a similar test accuracy. Its performance in terms of validation loss is significantly worse on the GPT model, a known issue of training language models with non-adaptive momentum SGD methods (Zhao et al., 2025). We note that across these experiments, AdaGrad and Adam are generally most performant overall, though the performance of all methods contained within our framework is relatively similar. As such, we will focus on Adam in subsequent results.

4.2 Number of Local Updates

Our next set of experiments analyzes the effect of the number of local updates per communication on training performance. Figures 1c and 1d give results with Adam training on CIFAR-10 and tiny-shakespeare using Top-k compression of 40% and 50%, respectively. We plot training loss and test accuracy/validation loss against the total number of communication rounds for K=1 to K=50. We run all experiments to the same number of epochs, which gives a reduction in communication rounds proportional to K. For CIFAR-10, we note only a 1% loss in maximum test accuracy with K=50 local updates per communication compared to the baseline K=1 instance. On tiny-shakespeare, we likewise observe less than a 1% degradation of minimum validation loss when comparing K=50 to K=1 local updates per communication. We observed similar results with the same experiments on FashionMNIST in Figure 3 in the appendix.

4.3 Communication Volume

We continue our experiments by giving the relative proportion of communication volume used by our framework with a selection of K and Top-k values, as compared to a K=1 baseline without compressed communication. Figures 1e and 1f give such a comparison using Adam on CIFAR-10 and tiny-shakespeare. We overall observe a significant reduction in communication volume at a relatively low cost to optimization quality. On CIFAR-10, we observe no loss in quality between K=2 with Top-k=60% to K=50 with Top-k=30%, despite a reduction in communication volume of $50\times$. Comparing K=50 with Top-k=30% to the baseline with no compression or local updates, we note that we use only about 0.6% of the communication volume. The maximum test accuracies across all experiments are within a few percent of the baseline. We observe similar results on tiny-shakespeare when considering validation loss instead of test accuracy.

4.4 Larger Agent Counts and Differing Topology

We demonstrate the linear scaling of our method by running experiments with 4, 9 and 16 agents in a ring and a 2D grid communication topology. Given in Figure 2 are plots of training loss and test accuracy for CIFAR-10 when using Adam, AdaGrad, and AMSGrad optimization. We set K=20 for all tests with Top-k=40% compression. We plot results for training loss and test accuracy and using a ring topology in the left two columns and the 2D grid topology in the right two columns. The 2D grid topology is defined as 3×3 for 9 agents and 4×4 for 16 agents. Note that the ring and grid topologies are equivalent for 4 agents. We observe relatively consistent results across all optimizers, with near-linear scaling in most cases. Minimum achieved training loss and maximum test accuracy are also relatively close, similar to as we previously observed in Figure 1 across varying K values.

5 Conclusion

We propose a local training based decentralized algorithmic framework with adaptive local update and compressed communication. Convergence guarantees are established under mild conditions. The local update

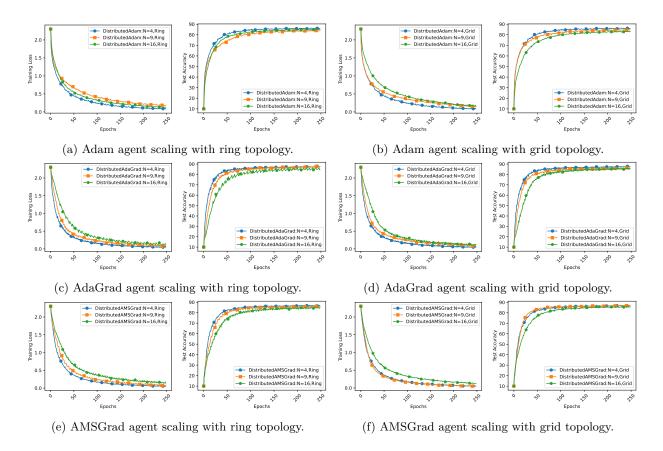


Figure 2: Convergence performance: Plotted above are the training loss and test accuracy of CIFAR-10 when scaling to 4, 9, and 16 agents using ring topology (left two columns) and 2D grid topology (right two columns). All experiments were run with K = 20 local updates per communication round.

of our framework encompasses several well-known optimizers as special cases, including vanilla SGD, momentum SGD, Adam, AMSGrad, AdaGrad, and Adamini, and the established convergence results apply to all these optimizers. To the best of our knowledge, this is the first work to provide theoretical convergence guarantees for Adam-type algorithms in MLT-based decentralized nonconvex optimization. Our empirical experiments further highlight the compounded benefits of integrating MLT with CC, demonstrating significant reductions in communication overhead without compromising convergence speed or accuracy.

References

- A. F. Aji and K. Heafield. Sparse communication for distributed gradient descent. In EMNLP 2017: Conference on Empirical Methods in Natural Language Processing, pp. 440–445. Association for Computational Linguistics (ACL), 2017.
- D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. Qsgd: Communication-efficient sgd via gradient quantization and encoding. *Advances in neural information processing systems*, 30, 2017.
- K. Andrej. NanoGPT. https://github.com/karpathy/nanoGPT, 2022. Last Accessed March 2025.
- D. Basu, D. Data, C. Karakus, and S. Diggavi. Qsparse-local-sgd: Distributed sgd with quantization, sparsification and local computations. *Advances in Neural Information Processing Systems*, 32, 2019.
- J. Bernstein, Y. Wang, K. Azizzadenesheli, and A. Anandkumar. signsgd: Compressed optimisation for non-convex problems. In *International Conference on Machine Learning*, pp. 560–569. PMLR, 2018.

- C. Chen, Shen, H. Huang, and W. Liu. Quantized adam with error feedback. *ACM Transactions on Intelligent Systems and Technology (TIST)*, 12(5):1–26, 2021.
- Congliang Chen, Li Shen, Wei Liu, and Zhi-Quan Luo. Efficient-adam: Communication-efficient distributed adam. *IEEE Transactions on Signal Processing*, 2023a.
- L. Chen, W. Liu, Y. Chen, and W. Wang. Communication-efficient design for quantized decentralized federated learning. *IEEE Transactions on Signal Processing*, 72:1175–1188, 2024.
- X Chen, M Hong, S Liu, and R Sun. On the convergence of a class of adam-type algorithms for non-convex optimization. In 7th International Conference on Learning Representations, ICLR 2019, 2019.
- X. Chen, X. Li, and P. Li. Toward communication efficient adaptive gradient method. In *Proceedings of the* 2020 ACM-IMS on Foundations of Data Science Conference, pp. 119–128, 2020.
- Xiangyi Chen, Belhal Karimi, Weijie Zhao, and Ping Li. On the convergence of decentralized adaptive gradient methods. In *Asian Conference on Machine Learning*, pp. 217–232. PMLR, 2023b.
- L. Condat, I. Agarskỳ, and P. Richtárik. Provably doubly accelerated federated learning: The first theoretically successful combination of local training and communication compression. *Preprint*, arXiv:2210.13277, 2022.
- L. Condat, A. Maranjyan, and P. Richtárik. LoCoDL: Communication-efficient distributed learning with local training and compression. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=PpYy0dR3Qw.
- J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. *Journal of machine learning research*, 12(7), 2011.
- Hongchang Gao and Heng Huang. Adaptive serverless learning. arXiv preprint arXiv:2008.10422, 2020.
- S. Ge and T.-H. Chang. Gradient tracking with multiple local sgd for decentralized non-convex learning. In 2023 62nd IEEE Conference on Decision and Control (CDC), pp. 133–138. IEEE, 2023.
- F. Haddadpour, M. M. Kamani, M. Mahdavi, and V. Cadambe. Local sgd with periodic averaging: Tighter analysis and adaptive synchronization. *Advances in Neural Information Processing Systems*, 32, 2019.
- F. Haddadpour, M. M. Kamani, A. Mokhtari, and M. Mahdavi. Federated learning with compression: Unified analysis and sharp guarantees. In *International Conference on Artificial Intelligence and Statistics*, pp. 2350–2358. PMLR, 2021.
- L. Hou, R. Zhang, and J. T. Kwok. Analysis of quantized models. In *International Conference on Learning Representations*, 2018.
- T. H. Hsu, H. Qi, and M. Brown. Measuring the effects of non-identical data distribution for federated visual classification. *Preprint*, arXiv:1909.06335, 2019.
- Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances and open problems in federated learning. Foundations and trends® in machine learning, 14(1–2):1–210, 2021.
- S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh. Scaffold: Stochastic controlled averaging for federated learning. In *International conference on machine learning*, pp. 5132–5143. PMLR, 2020.
- D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. Preprint, arXiv:1412.6980, 2014.
- A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, and S. Stich. A unified theory of decentralized sgd with changing topology and local updates. In *International conference on machine learning*, pp. 5381–5393. PMLR, 2020.

- Anastasia Koloskova, Sebastian Stich, and Martin Jaggi. Decentralized stochastic optimization and gossip algorithms with compressed communication. In *International Conference on Machine Learning*, pp. 3478–3487. PMLR, 2019.
- Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
- A. Lalitha, O. C. Kilinc, T. Javidi, and F. Koushanfar. Peer-to-peer federated learning on graphs. Preprint, arXiv:1901.11173, 2019.
- Guanghui Lan. First-order and stochastic optimization methods for machine learning, volume 1. Springer, 2020.
- Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.
- L. Li, Y. Fan, M. Tse, and K. Lin. A review of applications in federated learning. *Computers & Industrial Engineering*, 149:106854, 2020.
- X. Li, W. Yang, S. Wang, and Z. Zhang. Communication efficient decentralized training with multiple local updates. *stat*, 1050:21, 2019.
- X. Li, B. Karimi, and P. Li. On distributed adaptive optimization with gradient compression. In *International Conference on Learning Representations*, 2022.
- Gabriel Mancino-Ball, Yangyang Xu, and Jie Chen. A decentralized primal-dual framework for non-convex smooth consensus optimization. *IEEE Transactions on Signal Processing*, 71:525–538, 2023.
- B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence and statistics*, pp. 1273–1282. PMLR, 2017.
- P. Nazari, D. A. Tarzanagh, and G. Michailidis. Dadam: A consensus-based distributed adaptive gradient method for online optimization. *IEEE Transactions on Signal Processing*, 70:6065–6079, 2022.
- A. Nedić, A. Olshevsky, and M. G. Rabbat. Network topology and communication-computation tradeoffs in decentralized optimization. *Proceedings of the IEEE*, 106(5):953–976, 2018.
- S. Reddi, S. Kale, and S. Kumar. On the convergence of adam and beyond. In *International Conference on Learning Representations*, 2018.
- S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečný, S. Kumar, and H. B. McMahan. Adaptive federated optimization. In *International Conference on Learning Representations*, 2020.
- Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic variance reduction for non-convex optimization. In *International conference on machine learning*, pp. 314–323. PMLR, 2016.
- A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani. Fedpaq: A communication-efficient federated learning method with periodic averaging and quantization. In *International conference on artificial intelligence and statistics*, pp. 2021–2031. PMLR, 2020.
- N. Singh, D. Data, J. George, and S. Diggavi. Squarm-sgd: Communication-efficient momentum sgd for decentralized optimization. IEEE Journal on Selected Areas in Information Theory, 2(3):954–969, 2021.
- A. Spiridonoff, A. Olshevsky, and Y. Paschalidis. Communication-efficient sgd: From local sgd to one-shot averaging. *Advances in Neural Information Processing Systems*, 34:24313–24326, 2021.
- S. U. Stich. Local sgd converges fast and communicates little. Preprint, arXiv:1805.09767, 2018.
- S. U. Stich, J.-B. Cordonnier, and M. Jaggi. Sparsified sgd with memory. *Advances in neural information processing systems*, 31, 2018.

- J. Sun, X. Wu, H. Huang, and A. Zhang. On the role of server momentum in federated learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 15164–15172, 2024.
- T. Sun, D. Li, and B. Wang. Decentralized federated averaging. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(4):4289–4301, 2022.
- X. Sun, N. Wang, C. Chen, J. Ni, A. Agrawal, X. Cui, S. Venkataramani, K. El Maghraoui, V. V. Srinivasan, and K. Gopalakrishnan. Ultra-low precision 4-bit training of deep neural networks. Advances in Neural Information Processing Systems, 33:1796–1807, 2020.
- Y. Sun, L. Shen, H. Sun, L. Ding, and D. Tao. Efficient federated learning via local adaptive amended optimizer with linear speedup. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(12): 14453–14464, 2023.
- N. Wang, J. Choi, D. Brand, C Chen, and K. Gopalakrishnan. Training deep neural networks with 8-bit floating point numbers. *Advances in neural information processing systems*, 31, 2018.
- Y. Wang, L. Lin, and J. Chen. Communication-compressed adaptive gradient method for distributed non-convex optimization. In *International Conference on Artificial Intelligence and Statistics*, pp. 6292–6320. PMLR, 2022a.
- Y. Wang, L. Lin, and J. Chen. Communication-efficient adaptive federated learning. In *International conference on machine learning*, pp. 22802–22838. PMLR, 2022b.
- Z. Wang, J. Zhang, X. Wu, and M. Johansson. From promise to practice: Realizing high-performance decentralized training. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=lo3nlFHOft.
- T. Wu, Z. Li, and Y. Sun. The effectiveness of local updates for decentralized learning under data heterogeneity. *IEEE Transactions on Signal Processing*, 2025.
- Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. *Preprint, arXiv:1708.07747*, 2017.
- Lin Xiao and Stephen Boyd. Fast linear iterations for distributed averaging. Systems & Control Letters, 53 (1):65–78, 2004.
- C. Xie, O. Koyejo, I. Gupta, and H. Lin. Local adaalter: Communication-efficient stochastic gradient descent with adaptive learning rates. *Preprint*, arXiv:1911.09030, 2019.
- H. Xing, O. Simeone, and S. Bi. Decentralized federated learning via sgd over wireless d2d networks. In 2020 IEEE 21st international workshop on signal processing advances in wireless communications (SPAWC), pp. 1–5. IEEE, 2020.
- Yangyang Xu, Yibo Xu, Yonggui Yan, Colin Sutcher-Shepard, Leopold Grinberg, and Jie Chen. Parallel and distributed asynchronous adaptive stochastic gradient methods. *Mathematical Programming Computation*, 15(3):471–508, 2023.
- H. Yu, S. Yang, and S. Zhu. Parallel restarted sgd with faster convergence and less communication: Demystifying why model averaging works for deep learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 33, pp. 5693–5700, 2019.
- Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual learning without normalization. In *International Conference on Learning Representations*, 2019.
- S. Zhang, A. E. Choromanska, and Y. LeCun. Deep learning with elastic averaging sgd. Advances in neural information processing systems, 28, 2015.
- Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Diederik P Kingma, Yinyu Ye, Zhi-Quan Luo, and Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. *Preprint*, arXiv:2406.16793, 2024.

Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham M Kakade. Deconstructing what makes a good optimizer for autoregressive language models. In *The Thirteenth International Conference on Learning Representations*, 2025.

W. Zhao, X. Jiao, M. Hu, X. Li, X. Zhang, and P. Li. Paddlebox: Communication-efficient terabyte-scale model training framework for online advertising. In 2022 IEEE International Conference on Big Data (Big Data), pp. 1401–1408. IEEE, 2022.

A Convergence analysis of compressed decentralized algorithms with multiple local adaptive gradient updates under nonconvex settings

In this section, we give a complete analysis of our decentralized algorithmic framework. We write the updates of Algorithm 1 in the more compact matrix form for all $t \in [TK]$,

$$\mathbf{M}^t = \beta_1 \mathbf{M}^{t-1} + (1 - \beta_1) \mathbf{G}^t, \tag{10}$$

Update
$$\mathbf{U}^t \ge 0$$
, (11)

$$\mathbf{Y}^t = \frac{\mathbf{M}^t}{\sqrt{\mathbf{U}^{t-1} + \delta}},\tag{12}$$

$$\mathbf{X}^{t+\frac{1}{2}} = \mathbf{X}^t - \alpha \mathbf{Y}^t,\tag{13}$$

if
$$\operatorname{mod}(t+1,K) = 0$$
, then $\underline{\mathbf{X}}^{t+1} = \underline{\mathbf{X}}^t + \mathcal{Q}\left[\mathbf{X}^{t+\frac{1}{2}} - \underline{\mathbf{X}}^t\right]$, (14)

$$\mathbf{X}^{t+1} = \mathbf{X}^{t+\frac{1}{2}} + \gamma \underline{\mathbf{X}}^{t+1} (\mathbf{W} - \mathbf{I}), \tag{15}$$

else,
$$\mathbf{X}^{t+1} = \mathbf{X}^{t+\frac{1}{2}}, \ \underline{\mathbf{X}}^{t+1} = \underline{\mathbf{X}}^t,$$
 (16)

where

$$\begin{aligned} \mathbf{G}^t &= \left[\boldsymbol{g}_1^t, \boldsymbol{g}_2^t, \dots, \boldsymbol{g}_n^t \right], \ \mathbf{M}^t = \left[\boldsymbol{m}_1^t, \boldsymbol{m}_2^t, \dots, \boldsymbol{m}_n^t \right], \ \underline{\mathbf{X}} = \left[\underline{\boldsymbol{x}}_1, \underline{\boldsymbol{x}}_2, \dots, \underline{\boldsymbol{x}}_n \right], \\ \mathcal{Q}\left[\mathbf{X} \right] &= \left[\mathcal{Q}[\boldsymbol{x}_1], \mathcal{Q}[\boldsymbol{x}_2], \dots, \mathcal{Q}[\boldsymbol{x}_n] \right]. \end{aligned}$$

We let

$$\overline{\mathbf{x}} = \frac{1}{n} \mathbf{X} \mathbf{1}, \ \overline{\mathbf{X}} = \mathbf{X} \mathbf{J} = \overline{\mathbf{x}} \mathbf{1}^{\top}, \ \overline{\mathbf{m}}^t = \frac{1}{n} \mathbf{M}^t \mathbf{1}, \ \overline{\mathbf{y}}^t = \frac{1}{n} \mathbf{Y}^t \mathbf{1}, \ \overline{\mathbf{Y}}^t = \mathbf{Y} \mathbf{J}.$$

First we establish bounds on the sequence $\{\mathbf{M}^t\}$, $\{\mathbf{U}^t\}$ and $\{\mathbf{Y}^t\}$.

Lemma A.1 Under Assumption 3, it holds that for any $t \in [TK]$,

$$\|\mathbf{M}^t\| \le (1 - \beta_1^{t+1}) \sqrt{n}B \le \sqrt{n}B, \quad \|\mathbf{Y}^t\| \le \sqrt{n}B\delta^{-\frac{1}{2}}, \quad \|\mathbf{Y}_{\perp}^t\| \le \sqrt{n}B\delta^{-\frac{1}{2}},$$
 (17)

$$\|\boldsymbol{m}_{i}^{t}\| \le B, \quad \|\overline{\boldsymbol{m}}^{t}\| \le B, \quad \|\boldsymbol{m}_{i}^{t}\|_{\infty} \le B_{\infty}, \, \forall \, i \in \{1, 2, \dots, n\}.$$
 (18)

Proof. From the update of \boldsymbol{m} , i.e., $\boldsymbol{m}_i^t = \beta_1 \boldsymbol{m}_i^{t-1} + (1 - \beta_1) \boldsymbol{g}_i^t$, we have that for any $t \geq 0$ and each $i \in \{1, 2, \dots, n\}$,

$$\|\boldsymbol{m}_{i}^{t}\| = \|\beta_{1}\boldsymbol{m}_{i}^{t-1} + (1-\beta_{1})\boldsymbol{g}_{i}^{t}\| \le \beta_{1}\|\boldsymbol{m}_{i}^{t-1}\| + (1-\beta_{1})\|\boldsymbol{g}_{i}^{t}\| \le \beta_{1}\|\boldsymbol{m}_{i}^{t-1}\|_{\infty} + (1-\beta_{1})B,$$

where the second inequality holds from $\|g_i^t\| \le B$ by Assumption 3. Recursively applying the inequality above and noticing $m_i^{-1} = \mathbf{0}$, we obtain

$$\|\boldsymbol{m}_{i}^{t}\| \le (1 + \beta_{1} + \beta_{1}^{2} + \ldots + \beta_{1}^{t})(1 - \beta_{1})B = (1 - \beta_{1}^{t+1})B \le B.$$

Hence, it holds $\|\overline{\boldsymbol{m}}^t\| \le B$ and $\|\mathbf{M}^t\| \le (1 - \beta_1^{t+1}) \sqrt{n}B$. Now by $\mathbf{U}^t \ge \mathbf{0}$, we immediately have $\|\mathbf{Y}^t\| = \left\|\frac{\mathbf{M}^t}{\sqrt{\mathbf{U}^{t-1} + \delta}}\right\| \le \sqrt{n}B\delta^{-\frac{1}{2}}$, and $\|\mathbf{Y}_{\perp}^t\|^2 = \left\|\mathbf{Y}^t - \overline{\mathbf{Y}}^t\right\|^2 = \left\|\mathbf{Y}^t\right\|^2 - \left\|\overline{\mathbf{Y}}^t\right\|^2 \le \frac{nB^2}{\delta}$.

In addition, we have that for any $t \ge 0$ and each $i \in \{1, 2, ..., n\}$,

$$\|\boldsymbol{m}_{i}^{t}\|_{\infty} = \|\beta_{1}\boldsymbol{m}_{i}^{t-1} + (1-\beta_{1})\boldsymbol{g}_{i}^{t}\|_{\infty} \leq \beta_{1}\|\boldsymbol{m}_{i}^{t-1}\|_{\infty} + (1-\beta_{1})\|\boldsymbol{g}_{i}^{t}\|_{\infty} \leq \beta_{1}\|\boldsymbol{m}_{i}^{t-1}\|_{\infty} + (1-\beta_{1})B_{\infty},$$

where the second inequality follows from $\|g_i^t\|_{\infty} \le B_{\infty}$ by Assumption 3. Recursively applying the inequality above and noticing $m_i^{-1} = \mathbf{0}$, we obtain

$$\|\boldsymbol{m}_{i}^{t}\|_{\infty} \le (1 + \beta_{1} + \beta_{1}^{2} + \dots + \beta_{1}^{t}) (1 - \beta_{1}) B_{\infty} = (1 - \beta_{1}^{t+1}) B_{\infty} \le B_{\infty}.$$

The proof is then completed.

The next lemma shows the bound of the consensus error of X.

Lemma A.2 Under Assumptions 1–3, let $\hat{\rho} = 1 - \rho$, $0 < \gamma \le \frac{(1-\rho)(1-\eta^2)}{100}$, and Q be an η -compression operator with $\eta \ge 0$. Then, the following statements hold:

(i) For any $r \in [T]$, it holds

$$\mathbb{E}\left[\left\|\mathbf{X}_{\perp}^{(r+1)K}\right\|^{2}\right] \leq \left(1 + \frac{\gamma\widehat{\rho}}{16}\right) \left(1 - \frac{\gamma\widehat{\rho}}{2}\right)^{2} \mathbb{E}\left[\left\|\mathbf{X}_{\perp}^{rK}\right\|^{2}\right] + 4\left(1 + \frac{\gamma\widehat{\rho}}{16}\right) \gamma \left(1 + \frac{2}{\widehat{\rho}}\right) \mathbb{E}\left[\left\|\mathbf{X}^{rK} - \underline{\mathbf{X}}^{(r+1)K}\right\|^{2}\right] + 2\left(1 + \frac{16}{\gamma\widehat{\rho}}\right) \alpha^{2}K^{2}nB^{2}\delta^{-1}.$$
(19)

(ii) For any $r \in [T]$, it holds

$$\mathbb{E}\left[\left\|\mathbf{X}^{(r+1)K} - \underline{\mathbf{X}}^{(r+2)K}\right\|^{2}\right] \leq 4\gamma^{2} \left(1 + \frac{\gamma\widehat{\rho}}{16}\right) \frac{4}{1 - \eta^{2}} \mathbb{E}\left[\left\|\mathbf{X}_{\perp}^{rK}\right\|^{2}\right] \\
+ \frac{3 + \eta^{2}}{4} \left(1 + 8\gamma\right) \left(1 + \frac{\gamma\widehat{\rho}}{16}\right) \mathbb{E}\left[\left\|\mathbf{X}^{rK} - \underline{\mathbf{X}}^{(r+1)K}\right\|^{2}\right] \\
+ \left(3\left(1 + \frac{16}{\gamma\widehat{\rho}}\right) + 2\left(1 + \frac{4}{1 - \eta^{2}}\right)\right) \alpha^{2} K^{2} n B^{2} \delta^{-1}.$$
(20)

(iii) It holds

$$\frac{1}{TK} \sum_{t=0}^{TK-1} \mathbb{E}\left[\left\| \mathbf{X}_{\perp}^{t} \right\|^{2} \right] \leq \alpha^{2} n K^{2} \overline{C}, \text{ where } \overline{C} := \frac{56}{\gamma \widehat{\rho}} \left(\frac{80}{\gamma \widehat{\rho}} + \frac{15}{1 - \eta^{2}} \right) B^{2} \delta^{-1}. \tag{21}$$

If in addition $\gamma = \Theta((1-\rho)(1-\eta^2))$, we have $\overline{C} := \Theta\left(\frac{B^2}{(1-\rho)^4(1-\eta^2)^2}\right)$.

Proof. (i) From the update rules (13)–(16), we have, for all $s \in [K-1]$,

$$\mathbf{X}^{rK+s+1} = \mathbf{X}^{rK+s} - \alpha \mathbf{Y}^{rK+s},$$

and for the final step in the block of size K, we conduct the compressed communication step.

First, using (18) and the inequality $(a+b)^2 \le (1+\eta_1)a^2 + (1+\eta_1^{-1})b^2$ for any $\eta_1 > 0$, we have

$$\|\mathbf{X}_{\perp}^{rK+s+1}\|^{2} = \|\mathbf{X}_{\perp}^{rK} - \alpha \sum_{i=0}^{s} \mathbf{Y}_{\perp}^{rK+i}\|^{2}$$

$$\leq (1+\eta_{1})\|\mathbf{X}_{\perp}^{rK}\|^{2} + (1+\eta_{1}^{-1})\alpha^{2} \left\|\sum_{i=0}^{s} \mathbf{Y}_{\perp}^{rK+i}\right\|^{2},$$

$$\leq (1+\eta_{1})\|\mathbf{X}_{\perp}^{rK}\|^{2} + (1+\eta_{1}^{-1})K^{2}\alpha^{2}nB^{2}\delta^{-1}, \quad \forall s \in [K-1].$$
(22)

Next, we analyze the case of s = K - 1. By (15), it holds that

$$\mathbf{X}_{\perp}^{(r+1)K} = \mathbf{X}^{(r+1)K - \frac{1}{2}} - \mathbf{X}^{(r+1)K}\mathbf{J} + \gamma \underline{\mathbf{X}}^{(r+1)K}(\mathbf{W} - \mathbf{I}).$$

Noticing $\mathbf{X}^{(r+1)K}\mathbf{J} = \mathbf{X}^{(r+1)K-\frac{1}{2}}\mathbf{J}$ from (14)–(15), and $\mathbf{J}(\mathbf{W} - \mathbf{I}) = \mathbf{0}$, we have

$$\mathbf{X}_{\perp}^{(r+1)K} = \mathbf{X}^{(r+1)K-\frac{1}{2}} - \mathbf{X}^{(r+1)K-\frac{1}{2}}\mathbf{J} + \gamma(\underline{\mathbf{X}}^{(r+1)K} - \mathbf{X}^{(r+1)K-\frac{1}{2}}\mathbf{J})(\mathbf{W} - \mathbf{I})$$

$$= \mathbf{X}^{(r+1)K-\frac{1}{2}}(\mathbf{I} - \mathbf{J})((1 - \gamma)\mathbf{I} + \gamma\mathbf{W}) + \gamma(\underline{\mathbf{X}}^{(r+1)K} - \mathbf{X}^{(r+1)K-\frac{1}{2}})(\mathbf{W} - \mathbf{I}). \tag{23}$$

Denote $\widehat{\mathbf{W}} = (1 - \gamma)\mathbf{I} + \gamma \mathbf{W}$. For any $\eta_2 > 0$, it then holds

$$\left\| \mathbf{X}_{\perp}^{(r+1)K} \right\|^{2}$$

$$\leq (1+\eta_{2}) \left\| \mathbf{X}^{(r+1)K-\frac{1}{2}} (\mathbf{I} - \mathbf{J}) \widehat{\mathbf{W}} \right\|^{2} + \left(1+\eta_{2}^{-1}\right) \left\| \gamma \left(\underline{\mathbf{X}}^{(r+1)K} - \mathbf{X}^{(r+1)K-\frac{1}{2}} \right) (\mathbf{W} - \mathbf{I}) \right\|^{2}$$

$$\leq (1+\eta_{2}) \left\| \mathbf{X}^{(r+1)K-\frac{1}{2}} (\mathbf{I} - \mathbf{J}) \widehat{\mathbf{W}} \right\|^{2} + 4 \left(1+\eta_{2}^{-1}\right) \gamma^{2} \left\| \left(\underline{\mathbf{X}}^{(r+1)K} - \mathbf{X}^{(r+1)K-\frac{1}{2}} \right) \right\|^{2}, \tag{24}$$

where the second inequality follows from $\|\mathbf{W} - \mathbf{I}\|_2 \le 2$.

Recalling $\hat{\rho} = 1 - \rho$ and by $(\mathbf{I} - \mathbf{J})\mathbf{J} = \mathbf{0}$, we have

$$\begin{aligned} & \left\| \mathbf{X}^{(r+1)K-\frac{1}{2}} (\mathbf{I} - \mathbf{J}) \widehat{\mathbf{W}} \right\| \\ & \leq (1 - \gamma) \left\| \mathbf{X}^{(r+1)K-\frac{1}{2}} (\mathbf{I} - \mathbf{J}) \right\| + \gamma \left\| \mathbf{X}^{(r+1)K-\frac{1}{2}} (\mathbf{I} - \mathbf{J}) \mathbf{W} \right\| \\ & = (1 - \gamma) \left\| \mathbf{X}^{(r+1)K-\frac{1}{2}} (\mathbf{I} - \mathbf{J}) \right\| + \gamma \left\| \mathbf{X}^{(r+1)K-\frac{1}{2}} (\mathbf{I} - \mathbf{J}) (\mathbf{W} - \mathbf{J}) \right\| \\ & \leq (1 - \gamma) \left\| \mathbf{X}^{(r+1)K-\frac{1}{2}} (\mathbf{I} - \mathbf{J}) \right\| + \gamma \rho \left\| \mathbf{X}^{(r+1)K-\frac{1}{2}} (\mathbf{I} - \mathbf{J}) \right\| \\ & = (1 - \gamma \widehat{\rho}) \left\| \mathbf{X}^{(r+1)K-\frac{1}{2}} (\mathbf{I} - \mathbf{J}) \right\|. \end{aligned}$$

$$(25)$$

Substituting (25) into (24), we obtain

$$\|\mathbf{X}_{\perp}^{(r+1)K}\|^{2} \le (1+\eta_{2})(1-\gamma\widehat{\rho})^{2} \|\mathbf{X}^{(r+1)K-\frac{1}{2}}(\mathbf{I}-\mathbf{J})\|^{2} + 4(1+\eta_{2}^{-1})\gamma^{2} \|\underline{\mathbf{X}}^{(r+1)K} - \mathbf{X}^{(r+1)K-\frac{1}{2}}\|^{2}.$$
 (26)

For the first term in the RHS of (26), using the bound $\|\mathbf{Y}_{\perp}^t\| \leq \sqrt{nB\delta^{-\frac{1}{2}}}$, we have

$$\left\| \mathbf{X}^{(r+1)K - \frac{1}{2}} (\mathbf{I} - \mathbf{J}) \right\|^{2} = \left\| \left(\mathbf{X}^{(r+1)K - 1} - \alpha \mathbf{Y}^{(r+1)K - 1} \right) (\mathbf{I} - \mathbf{J}) \right\|^{2}
= \left\| \mathbf{X}_{\perp}^{(r+1)K - 1} - \alpha \mathbf{Y}_{\perp}^{(r+1)K - 1} \right\|^{2}
\stackrel{(22)}{\leq} (1 + \eta_{1}) \left\| \mathbf{X}_{\perp}^{rK} \right\|^{2} + (1 + \eta_{1}^{-1}) \alpha^{2} K^{2} n B^{2} \delta^{-1}.$$
(27)

For the second term in the RHS of (26), using the bound $\|\mathbf{Y}^t\| \leq \sqrt{nB\delta^{-\frac{1}{2}}}$, we have

$$\left\| \underline{\mathbf{X}}^{(r+1)K} - \mathbf{X}^{(r+1)K - \frac{1}{2}} \right\|^{2} = \left\| \underline{\mathbf{X}}^{(r+1)K} - \mathbf{X}^{rK} + \alpha \sum_{i=0}^{K-1} \mathbf{Y}^{rK+i} \right\|^{2}$$

$$\leq (1 + \eta_{1}) \left\| \underline{\mathbf{X}}^{(r+1)K} - \mathbf{X}^{rK} \right\|^{2} + (1 + \eta_{1}^{-1}) \alpha^{2} \left\| \sum_{i=0}^{K-1} \mathbf{Y}^{rK+i} \right\|^{2}$$

$$\leq (1 + \eta_{1}) \left\| \underline{\mathbf{X}}^{(r+1)K} - \mathbf{X}^{rK} \right\|^{2} + (1 + \eta_{1}^{-1}) \alpha^{2} K^{2} n B^{2} \delta^{-1}.$$
(28)

Plugging (27)–(28) back into (26), we arrive at

$$\|\mathbf{X}_{\perp}^{(r+1)K}\|^{2} \leq (1+\eta_{2})(1-\gamma\widehat{\rho})^{2} (1+\eta_{1}) \|\mathbf{X}_{\perp}^{rK}\|^{2} + 4 (1+\eta_{2}^{-1}) \gamma^{2} (1+\eta_{1}) \|\underline{\mathbf{X}}^{(r+1)K} - \mathbf{X}^{rK}\|^{2} + ((1+\eta_{2})(1-\gamma\widehat{\rho})^{2} + 4 (1+\eta_{2}^{-1}) \gamma^{2}) (1+\eta_{1}^{-1}) \alpha^{2} K^{2} n B^{2} \delta^{-1}.$$
(29)

Let $\eta_1 = \frac{\gamma \widehat{\rho}}{16}$ and $\eta_2 = \frac{\gamma \widehat{\rho}}{2}$. By the definition of γ , $0 < \gamma \widehat{\rho} < 1$, we then have

$$(1+\eta_2)(1-\gamma\widehat{\rho})^2 (1+\eta_1) \le \left(1+\frac{\gamma\widehat{\rho}}{16}\right) \left(1-\frac{\gamma\widehat{\rho}}{2}\right)^2, \tag{30}$$

$$4\left(1+\eta_2^{-1}\right)\gamma^2(1+\eta_1) \le 4\left(1+\frac{\gamma\widehat{\rho}}{16}\right)\gamma\left(1+\frac{2}{\widehat{\rho}}\right),\tag{31}$$

$$((1+\eta_2)(1-\gamma\widehat{\rho})^2 + 4(1+\eta_2^{-1})\gamma^2)(1+\eta_1^{-1}) \le 2\left(1+\frac{16}{\gamma\widehat{\rho}}\right). \tag{32}$$

We then complete the proof of (19) by using the inequalities (30)-(32) in (29).

(ii) From (14) and Definition 1.1, for any $\eta_3 > 0$, it holds that

$$\mathbb{E} \left\| \underline{\mathbf{X}}^{(r+2)K} - \mathbf{X}^{(r+1)K} \right\|^{2} = \mathbb{E} \left\| \underline{\mathbf{X}}^{(r+2)K-1} + \mathcal{Q} \left[\mathbf{X}^{(r+2)K-\frac{1}{2}} - \underline{\mathbf{X}}^{(r+2)K-1} \right] - \mathbf{X}^{(r+1)K} \right\|^{2} \\
= \mathbb{E} \left\| \underline{\mathbf{X}}^{(r+2)K-1} - \mathbf{X}^{(r+2)K-\frac{1}{2}} + \mathbf{X}^{(r+2)K-\frac{1}{2}} - \mathbf{X}^{(r+1)K} + \mathcal{Q} \left[\mathbf{X}^{(r+2)K-\frac{1}{2}} - \underline{\mathbf{X}}^{(r+2)K-1} \right] \right\|^{2} \\
\leq (1 + \eta_{3}) \mathbb{E} \left\| \mathbf{X}^{(r+2)K-\frac{1}{2}} - \underline{\mathbf{X}}^{(r+2)K-1} - \mathcal{Q} \left[\mathbf{X}^{(r+2)K-\frac{1}{2}} - \underline{\mathbf{X}}^{(r+2)K-1} \right] \right\|^{2} \\
+ (1 + \eta_{3}^{-1}) \mathbb{E} \left\| \mathbf{X}^{(r+2)K-\frac{1}{2}} - \mathbf{X}^{(r+1)K} \right\|^{2} \\
\leq (1 + \eta_{3}) \eta^{2} \mathbb{E} \left\| \mathbf{X}^{(r+2)K-\frac{1}{2}} - \underline{\mathbf{X}}^{(r+2)K-1} \right\|^{2} + (1 + \eta_{3}^{-1}) \mathbb{E} \left\| \mathbf{X}^{(r+2)K-\frac{1}{2}} - \mathbf{X}^{(r+1)K} \right\|^{2}. \tag{33}$$

For the second term in the RHS of (33), using the bound $\|\mathbf{Y}^t\| \leq \sqrt{n}B\delta^{-\frac{1}{2}}$, we obtain

$$\left\| \mathbf{X}^{(r+2)K - \frac{1}{2}} - \mathbf{X}^{(r+1)K} \right\|^2 = \alpha^2 \left\| \sum_{i=0}^{K-1} \mathbf{Y}^{(r+1)K+i} \right\|^2 \le \alpha^2 K^2 n B^2 \delta^{-1}.$$
 (34)

For the first term in the RHS of (33), by $\underline{\mathbf{X}}^{(r+2)K-1} = \underline{\mathbf{X}}^{(r+1)K}$ and $\|\mathbf{Y}^t\| \leq \sqrt{n}B\delta^{-\frac{1}{2}}$, for any $\eta_4 > 0$, we have

$$\mathbb{E} \left\| \mathbf{X}^{(r+2)K - \frac{1}{2}} - \underline{\mathbf{X}}^{(r+2)K - 1} \right\|^{2} = \mathbb{E} \left\| \mathbf{X}^{(r+1)K} - \alpha \sum_{i=0}^{K-1} \mathbf{Y}^{(r+1)K + i} - \underline{\mathbf{X}}^{(r+1)K} \right\|^{2} \\
\leq (1 + \eta_{4}) \mathbb{E} \left\| \mathbf{X}^{(r+1)K} - \underline{\mathbf{X}}^{(r+1)K} \right\|^{2} + (1 + \eta_{4}^{-1}) \mathbb{E} \left\| \alpha \sum_{i=0}^{K-1} \mathbf{Y}^{(r+1)K + i} \right\|^{2} \\
\leq (1 + \eta_{4}) \mathbb{E} \left\| \mathbf{X}^{(r+1)K} - \underline{\mathbf{X}}^{(r+1)K} \right\|^{2} + (1 + \eta_{4}^{-1}) \alpha^{2} K^{2} n B^{2} \delta^{-1}.$$
(35)

Substituting (34)–(35) into (33), we have

$$\mathbb{E} \left\| \underline{\mathbf{X}}^{(r+2)K} - \mathbf{X}^{(r+1)K} \right\|^{2} \\
\leq (1 + \eta_{3})\eta^{2} \left((1 + \eta_{4}) \mathbb{E} \left\| \mathbf{X}^{(r+1)K} - \underline{\mathbf{X}}^{(r+1)K} \right\|^{2} + (1 + \eta_{4}^{-1})\alpha^{2}K^{2}nB^{2}\delta^{-1} \right) \\
+ (1 + \eta_{3}^{-1})\alpha^{2}K^{2}nB^{2}\delta^{-1}. \tag{36}$$

We now bound $\|\mathbf{X}^{(r+1)K} - \underline{\mathbf{X}}^{(r+1)K}\|^2$. By (23), we have that for any $\eta_5 > 0$,

$$\mathbb{E}\left[\left\|\mathbf{X}^{(r+1)K} - \underline{\mathbf{X}}^{(r+1)K}\right\|^{2}\right] \\
= \mathbb{E}\left[\left\|\left(\underline{\mathbf{X}}^{(r+1)K} - \mathbf{X}^{(r+1)K-\frac{1}{2}}\right) \left(\gamma(\mathbf{W} - \mathbf{I}) - \mathbf{I}\right) + \gamma \mathbf{X}^{(r+1)K-\frac{1}{2}} (\mathbf{I} - \mathbf{J}) (\mathbf{W} - \mathbf{I})\right\|^{2}\right] \\
\leq \left(1 + \eta_{5}\right) \left(1 + 2\gamma\right)^{2} \mathbb{E}\left[\left\|\underline{\mathbf{X}}^{(r+1)K} - \mathbf{X}^{(r+1)K-\frac{1}{2}}\right\|^{2}\right] + \left(1 + \eta_{5}^{-1}\right) 4\gamma^{2} \mathbb{E}\left[\left\|\mathbf{X}_{\perp}^{(r+1)K-\frac{1}{2}}\right\|^{2}\right], \tag{37}$$

where we have used $\mathbf{J}\mathbf{W} = \mathbf{J}$ in the equality and $\|\gamma(\mathbf{W} - \mathbf{I}) - \mathbf{I}\|_2 \le \gamma \|\mathbf{W} - \mathbf{I}\|_2 + \|\mathbf{I}\|_2 \le 1 + 2\gamma$ and $\|\mathbf{W} - \mathbf{I}\|_2 \le 2$ in the inequality.

For the first term in the RHS of (37), we know from (28) that for any $\eta_1 > 0$,

$$\left\| \underline{\mathbf{X}}^{(r+1)K} - \mathbf{X}^{(r+1)K - \frac{1}{2}} \right\|^{2} \le (1 + \eta_{1}) \left\| \underline{\mathbf{X}}^{(r+1)K} - \mathbf{X}^{rK} \right\|^{2} + (1 + \eta_{1}^{-1}) \alpha^{2} K^{2} n B^{2} \delta^{-1}.$$
 (38)

For the second term in the RHS of (37), we know from (27) that

$$\left\| \mathbf{X}_{\perp}^{(r+1)K - \frac{1}{2}} \right\|^{2} = \left\| \mathbf{X}^{(r+1)K - \frac{1}{2}} (\mathbf{I} - \mathbf{J}) \right\|^{2} \le (1 + \eta_{1}) \left\| \mathbf{X}_{\perp}^{rK} \right\|^{2} + \left(1 + \eta_{1}^{-1}\right) \alpha^{2} K^{2} n B^{2} \delta^{-1}.$$
(39)

Plugging (38) and (39) into (37), we have

$$\mathbb{E}\left[\left\|\mathbf{X}^{(r+1)K} - \underline{\mathbf{X}}^{(r+1)K}\right\|^{2}\right] \\
\leq \left(1 + \eta_{5}^{-1}\right) 4\gamma^{2} \left((1 + \eta_{1}) \left\|\mathbf{X}_{\perp}^{rK}\right\|^{2} + \left(1 + \eta_{1}^{-1}\right) \alpha^{2} K^{2} n B^{2} \delta^{-1}\right) \\
+ \left(1 + \eta_{5}\right) \left(1 + 2\gamma\right)^{2} \left((1 + \eta_{1}) \left\|\underline{\mathbf{X}}^{(r+1)K} - \mathbf{X}^{rK}\right\|^{2} + \left(1 + \eta_{1}^{-1}\right) \alpha^{2} K^{2} n B^{2} \delta^{-1}\right). \tag{40}$$

Combining (40) and (36), we arrive at

$$\mathbb{E} \left\| \underline{\mathbf{X}}^{(r+2)K} - \mathbf{X}^{(r+1)K} \right\|^{2} \\
\leq (1+\eta_{3})\eta^{2}(1+\eta_{4}) \left(1+\eta_{5}^{-1}\right) 4\gamma^{2} \left(1+\eta_{1}\right) \left\| \mathbf{X}_{\perp}^{rK} \right\|^{2} \\
+ \left(1+\eta_{3}\right)\eta^{2} (1+\eta_{4}) \left(1+\eta_{5}\right) \left(1+2\gamma\right)^{2} \left(1+\eta_{1}\right) \left\| \underline{\mathbf{X}}^{(r+1)K} - \mathbf{X}^{rK} \right\|^{2} \\
+ \left(1+\eta_{3}\right)\eta^{2} (1+\eta_{4}) \left(1+\eta_{5}^{-1}\right) 4\gamma^{2} \left(1+\eta_{1}^{-1}\right) \alpha^{2} K^{2} n B^{2} \delta^{-1} \\
+ \left(1+\eta_{3}\right)\eta^{2} (1+\eta_{4}) \left(1+\eta_{5}\right) \left(1+2\gamma\right)^{2} \left(1+\eta_{1}^{-1}\right) \alpha^{2} K^{2} n B^{2} \delta^{-1} \\
+ \left(1+\eta_{3}\right)\eta^{2} (1+\eta_{4}^{-1}) \alpha^{2} K^{2} n B^{2} \delta^{-1} + \left(1+\eta_{3}^{-1}\right) \alpha^{2} K^{2} n B^{2} \delta^{-1}.$$
(41)

Let $\eta_3 = \eta_4 = \eta_5 = \frac{1-\eta^2}{4}$, and $\eta_1 = \frac{\gamma \widehat{\rho}}{16}$. By $\gamma \leq \frac{(1-\rho)(1-\eta^2)}{100}$ and $0 < \eta, \widehat{\rho} < 1$, we have

$$(1+\eta_3)\eta^2(1+\eta_4)(1+\eta_5)(1+2\gamma)^2(1+\eta_1) \le \frac{3+\eta^2}{4}(1+8\gamma)\left(1+\frac{\gamma\widehat{\rho}}{16}\right),\tag{42}$$

$$(1+\eta_3)\eta^2(1+\eta_4)\left(1+\eta_5^{-1}\right)4\gamma^2(1+\eta_1) \le 4\gamma^2\left(1+\frac{\gamma\widehat{\rho}}{16}\right)\frac{4}{1-\eta^2},\tag{43}$$

$$(1+\eta_3)\eta^2(1+\eta_4)\left(1+\eta_5^{-1}\right)4\gamma^2\left(1+\eta_1^{-1}\right) \le 1+\frac{16}{\gamma\widehat{\rho}},\tag{44}$$

$$(1+\eta_3)\eta^2(1+\eta_4)(1+\eta_5)(1+2\gamma)^2(1+\eta_1^{-1}) \le 2\left(1+\frac{16}{\gamma\widehat{\rho}}\right),\tag{45}$$

$$(1+\eta_3)\eta^2(1+\eta_4^{-1}) + (1+\eta_3^{-1}) \le 2\left(1+\frac{4}{1-\eta^2}\right). \tag{46}$$

We complete the proof of (20) by using the inequalities (42)-(46) in (41).

(iii) Denote $\Omega^r = \mathbb{E}\left[\left\|\mathbf{X}_{\perp}^{rK}\right\|^2\right] + \mathbb{E}\left[\left\|\mathbf{X}^{rK} - \underline{\mathbf{X}}^{(r+1)K}\right\|^2\right]$. Then, since $0 < \eta < 1$, the two inequalities in (19) and (20) imply

$$\Omega^{k+1} \le A_0 \Omega^k + A_1,\tag{47}$$

where

$$A_0 = \left(1 + \frac{\gamma \widehat{\rho}}{16}\right) \max \left\{ \left(1 - \frac{\gamma \widehat{\rho}}{2}\right)^2 + 4\gamma^2 \frac{4}{1 - \eta^2}, 4\gamma \left(1 + \frac{2}{\widehat{\rho}}\right) + \frac{3 + \eta^2}{4} \left(1 + 8\gamma\right) \right\}$$
(48)

$$A_1 = \left(\frac{80}{\gamma \hat{\rho}} + \frac{15}{1 - \eta^2}\right) \alpha^2 K^2 n B^2 \delta^{-1}. \tag{49}$$

By $\widehat{\rho} = 1 - \rho$, it holds that

$$\gamma \le \frac{(1-\rho)(1-\eta^2)}{100} \le \min\left\{\frac{2\widehat{\rho}(1-\eta^2)}{\widehat{\rho}^2 + 32\widehat{\rho} + 64 + 48\widehat{\rho} + 16\widehat{\rho}\eta^2}, \frac{7\widehat{\rho}(1-\eta^2)}{128 + 2\widehat{\rho}^2(1-\eta^2)}\right\}. \tag{50}$$

Notice that $\gamma \leq \frac{7\widehat{\rho}(1-\eta^2)}{128+2\widehat{\rho}^2(1-\eta^2)}$ yields $\left(1-\frac{\gamma\widehat{\rho}}{2}\right)^2+4\gamma^2\frac{4}{1-\eta^2}\leq 1-\frac{\widehat{\rho}\gamma}{8}$, and $\gamma \leq \frac{2\widehat{\rho}(1-\eta^2)}{\widehat{\rho}^2+32\widehat{\rho}+64+48\widehat{\rho}+16\widehat{\rho}\eta^2}$ implies $4\gamma\left(1+\frac{2}{\widehat{\rho}}\right)+\frac{3+\eta^2}{4}\left(1+8\gamma\right)\leq 1-\frac{\widehat{\rho}\gamma}{8}$. Thus

$$A_0 \le \left(1 + \frac{\gamma \widehat{\rho}}{16}\right) \left(1 - \frac{\widehat{\rho}\gamma}{8}\right) \le 1 - \frac{\gamma \widehat{\rho}}{16} < 1.$$

From $\mathbf{x}_i^0 = \overline{\mathbf{x}}^0 = \underline{\mathbf{x}}_i^0$, $\forall i \in \{1, 2, \dots, n\}$, we have $\|\mathbf{X}_{\perp}^0\|^2 = 0$ and $\underline{\mathbf{X}}^0 = \mathbf{0}$. By (36) with r = -1 and (46), we have

$$\mathbb{E}\left[\left\|\mathbf{X}^{0} - \underline{\mathbf{X}}^{K}\right\|^{2}\right] \leq 2\left(1 + \frac{4}{1 - \eta^{2}}\right)\alpha^{2}K^{2}nB^{2}\delta^{-1} \leq \frac{2}{\gamma\widehat{\rho}}A_{1}.$$

Thus, multiplying both sides of (47) by A_0^{r-k} and summing it over $k=0,1,\ldots,r-1$ gives

$$\Omega^{r} \leq A_{0}^{r+1} \Omega^{0} + \sum_{k=0}^{r-1} A_{0}^{r-k} A_{1} \leq \Omega^{0} + \frac{16}{\gamma \widehat{\rho}} A_{1}
= \frac{16}{\gamma \widehat{\rho}} A_{1} + \mathbb{E} \left[\left\| \mathbf{X}^{0} - \underline{\mathbf{X}}^{K} \right\|^{2} \right]
\leq \frac{16}{\gamma \widehat{\rho}} A_{1} + 2 \left(1 + \frac{4}{1 - n^{2}} \right) \alpha^{2} K^{2} n B^{2} \delta^{-1} \leq \frac{18}{\gamma \widehat{\rho}} A_{1}.$$
(51)

Summing up the above inequality for all r = 0, 1, ..., T - 1, we obtain

$$\frac{1}{T} \sum_{r=0}^{T-1} \mathbb{E}\left[\left\| \mathbf{X}_{\perp}^{rK} \right\|^2 \right] \le \frac{18}{\gamma \widehat{\rho}} A_1. \tag{53}$$

Summing (22) with $\eta_1 = 1$ over $s \in \{0, 1, \dots, K-2\}$, we derive that, for all $r \in [T+1]$,

$$\frac{1}{K} \sum_{s=1}^{K-1} \|\mathbf{X}_{\perp}^{rK+s}\|^2 \le 2\|\mathbf{X}_{\perp}^{rK}\|^2 + 2K^2\alpha^2 nB^2\delta^{-1}.$$

This implies

$$\frac{1}{K} \sum_{s=0}^{K-1} \|\mathbf{X}_{\perp}^{rK+s}\|^2 \le 3\|\mathbf{X}_{\perp}^{rK}\|^2 + 2K^2\alpha^2 nB^2\delta^{-1}.$$

Thus, we have

$$\frac{1}{TK} \sum_{t=0}^{TK-1} \mathbb{E} \|\mathbf{X}_{\perp}^{t}\|^{2} = \frac{1}{T} \sum_{r=0}^{T-1} \frac{1}{K} \sum_{s=0}^{K-1} \mathbb{E} \|\mathbf{X}_{\perp}^{rK+s}\|^{2} \leq \frac{1}{T} \sum_{r=0}^{T-1} \left(3\mathbb{E} \|\mathbf{X}_{\perp}^{rK}\|^{2} + 2K^{2}\alpha^{2}nB^{2}\delta^{-1}\right) \leq \frac{56}{\gamma \widehat{\rho}} A_{1}.$$

This completes the proof.

To prove the convergence of our algorithm, we define an auxiliary sequence as follows

$$\boldsymbol{z}^{t} = \overline{\boldsymbol{x}}^{t} + \frac{\beta_{1}}{1 - \beta_{1}} \left(\overline{\boldsymbol{x}}^{t} - \overline{\boldsymbol{x}}^{t-1} \right), \forall t \in [TK], \tag{54}$$

with $\overline{x}^{-1} = \overline{x}^0$. The lemma below shows the difference of two consecutive *z*-points.

Lemma A.3 Let $\{z^t\}$ be defined in (54). It holds that for all $t \in [TK]$,

$$\boldsymbol{z}^{t+1} - \boldsymbol{z}^{t} = \frac{\beta_{1}}{1 - \beta_{1}} \frac{\alpha}{n} \sum_{i=1}^{n} \boldsymbol{m}_{i}^{t-1} \circ \left(\frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}} \right) - \frac{\alpha}{n} \sum_{i=1}^{n} \frac{\boldsymbol{g}_{i}^{t}}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}}, \tag{55}$$

where $u_i^{-2} = \mathbf{0}$

Proof. By (12)–(16) and $(\mathbf{W} - \mathbf{I})\mathbf{J} = \mathbf{0}$, we have

$$\overline{\boldsymbol{x}}^{t+1} = \overline{\boldsymbol{x}}^t - \frac{\alpha}{n} \sum_{i=1}^n \frac{\boldsymbol{m}_i^t}{\sqrt{\boldsymbol{u}_i^{t-1} + \delta}}.$$
 (56)

Thus by (54), we have

$$\begin{split} \boldsymbol{z}^{t+1} - \boldsymbol{z}^t &= \overline{\boldsymbol{x}}^{t+1} - \overline{\boldsymbol{x}}^t + \frac{\beta_1}{1 - \beta_1} \left(\overline{\boldsymbol{x}}^{t+1} - \overline{\boldsymbol{x}}^t \right) - \frac{\beta_1}{1 - \beta_1} \left(\overline{\boldsymbol{x}}^t - \overline{\boldsymbol{x}}^{t-1} \right) \\ &= \frac{1}{1 - \beta_1} \left(\overline{\boldsymbol{x}}^{t+1} - \overline{\boldsymbol{x}}^t \right) - \frac{\beta_1}{1 - \beta_1} \left(\overline{\boldsymbol{x}}^t - \overline{\boldsymbol{x}}^{t-1} \right) \\ &= \frac{1}{1 - \beta_1} \left(-\frac{\alpha}{n} \sum_{i=1}^n \frac{\boldsymbol{m}_i^t}{\sqrt{\boldsymbol{u}_i^{t-1} + \delta}} \right) - \frac{\beta_1}{1 - \beta_1} \left(-\frac{\alpha}{n} \sum_{i=1}^n \frac{\boldsymbol{m}_i^{t-1}}{\sqrt{\boldsymbol{u}_i^{t-2} + \delta}} \right) \\ &= \frac{1}{1 - \beta_1} \left(-\frac{\alpha}{n} \sum_{i=1}^n \frac{\beta_1 \boldsymbol{m}_i^{t-1} + (1 - \beta_1) \boldsymbol{g}_i^t}{\sqrt{\boldsymbol{u}_i^{t-1} + \delta}} \right) - \frac{\beta_1}{1 - \beta_1} \left(-\frac{\alpha}{n} \sum_{i=1}^n \frac{\boldsymbol{m}_i^{t-1}}{\sqrt{\boldsymbol{u}_i^{t-2} + \delta}} \right) \\ &= \frac{\beta_1}{1 - \beta_1} \frac{\alpha}{n} \sum_{i=1}^n \boldsymbol{m}_i^{t-1} \circ \left(\frac{1}{\sqrt{\boldsymbol{u}_i^{t-2} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_i^{t-1} + \delta}} \right) - \frac{\alpha}{n} \sum_{i=1}^n \frac{\boldsymbol{g}_i^t}{\sqrt{\boldsymbol{u}_i^{t-1} + \delta}}, \end{split}$$

which is the desired result.

Lemma A.4 Under Assumptions 1 and 3, it holds that for all $t \in [TK]$,

$$\frac{1}{n} \sum_{i=1}^{n} \left\| \left(\nabla f_i \left(\boldsymbol{x}_i^t \right) - \nabla f_i \left(\overline{\boldsymbol{x}}^t \right) \right) \right\|^2 \le \frac{L^2}{n} \| \mathbf{X}_{\perp}^t \|^2, \tag{57}$$

and

$$\|\nabla f\left(\boldsymbol{z}^{t}\right) - \nabla f(\overline{\boldsymbol{x}}^{t})\|^{2} \leq \frac{\alpha^{2} L^{2} \beta_{1}^{2} B^{2}}{\delta(1 - \beta_{1})^{2}}.$$
(58)

Proof. First, by the L-smoothness of f_i for each $i \in \{1, 2, ..., n\}$ and Young's inequality, we have

$$\frac{1}{n} \sum_{i=1}^{n} \left\| \left(\nabla f_i \left(\boldsymbol{x}_i^t \right) - \nabla f_i \left(\overline{\boldsymbol{x}}^t \right) \right) \right\|^2 \le \frac{L^2}{n} \sum_{i=1}^{n} \| \boldsymbol{x}_i^t - \overline{\boldsymbol{x}}^t \|^2,$$

which indicates (57) by the definition of \mathbf{X}_{\perp}^{t} . Also, by the L-smoothness of f, it follows

$$\begin{split} \|\nabla f\left(\boldsymbol{z}^{t}\right) - \nabla f(\overline{\boldsymbol{x}}^{t})\|^{2} &\leq L^{2} \|\boldsymbol{z}^{t} - \overline{\boldsymbol{x}}^{t}\|^{2} \stackrel{(54)}{=} \frac{L^{2}\beta_{1}^{2}}{(1-\beta_{1})^{2}} \|\overline{\boldsymbol{x}}^{t} - \overline{\boldsymbol{x}}^{t-1}\|^{2} \\ &\stackrel{(56)}{=} \frac{L^{2}\beta_{1}^{2}}{(1-\beta_{1})^{2}} \left\|\frac{\alpha}{n} \sum_{i=1}^{n} \frac{\boldsymbol{m}_{i}^{t-1}}{\sqrt{\boldsymbol{u}_{i}^{t-2} + \delta}}\right\|^{2} &\leq \frac{L^{2}\beta_{1}^{2}}{(1-\beta_{1})^{2}} \frac{\alpha^{2}}{n} \sum_{i=1}^{n} \left\|\frac{\boldsymbol{m}_{i}^{t-1}}{\sqrt{\boldsymbol{u}_{i}^{t-2} + \delta}}\right\|^{2} &\leq \frac{\alpha^{2}L^{2}\beta_{1}^{2}B^{2}}{\delta(1-\beta_{1})^{2}}, \end{split}$$

where the last inequality holds by $\|\boldsymbol{m}_i^{t-1}\| \leq B$ from (18). This completes the proof.

Lemma A.5 Under Assumptions 1–3, it holds that

$$\sum_{t=0}^{TK-1} \mathbb{E}\left[\left\|\boldsymbol{z}^{t+1} - \boldsymbol{z}^{t}\right\|^{2}\right] \\
\leq \frac{2\beta_{1}^{2}\alpha^{2}B_{\infty}^{2}}{(1-\beta_{1})^{2}} \mathbb{E}\left[\sum_{t=0}^{TK-1} \frac{1}{n} \sum_{i=1}^{n} \left\|\frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}}\right\|^{2}\right] \\
+ 2\alpha^{2} \left(\frac{24}{n\delta}TKB^{2} + \frac{6L^{2}}{n\delta}\mathbb{E}\left[\sum_{t=0}^{TK-1} \left\|\mathbf{X}_{\perp}^{t}\right\|^{2}\right] + \frac{6}{\delta}\mathbb{E}\left[\sum_{t=0}^{TK-1} \left\|\nabla f(\overline{\boldsymbol{x}}^{t})\right\|^{2}\right]\right). \tag{59}$$

Proof. By (55) and Young's inequality, we have

$$\sum_{t=0}^{TK-1} \mathbb{E}\left[\left\|\boldsymbol{z}^{t+1} - \boldsymbol{z}^{t}\right\|^{2}\right]$$

$$\leq \mathbb{E}\left[2\sum_{t=0}^{TK-1} \left\|\frac{\beta_{1}}{1-\beta_{1}}\frac{\alpha}{n}\sum_{i=1}^{n}\boldsymbol{m}_{i}^{t-1} \circ \left(\frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}}\right)\right\|^{2}\right]$$

$$+ \mathbb{E}\left[2\sum_{t=0}^{TK-1} \left\|\frac{\alpha}{n}\sum_{i=1}^{n}\frac{\boldsymbol{g}_{i}^{t}}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}}\right\|^{2}\right].$$
(60)

To bound the first term in the RHS of (60), we obtain from (18) that

$$\sum_{t=0}^{TK-1} \left\| \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{m}_{i}^{t-1} \circ \left(\frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}} \right) \right\|^{2} \\
\leq \sum_{t=0}^{TK-1} \frac{1}{n} \sum_{i=1}^{n} \left\| \boldsymbol{m}_{i}^{t-1} \circ \left(\frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}} \right) \right\|^{2} \\
\leq B_{\infty}^{2} \sum_{t=0}^{TK-1} \frac{1}{n} \sum_{i=1}^{n} \left\| \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}} \right\|^{2}.$$
(61)

To bound the second term in RHS of (60), we have

$$2\mathbb{E}\left[\sum_{t=0}^{TK-1} \left\| \frac{1}{n} \sum_{i=1}^{n} \frac{g_{i}^{t}}{\sqrt{u_{i}^{t-1} + \delta}} \right\|^{2}\right]$$

$$\leq 2\mathbb{E}\left[\sum_{t=0}^{TK-1} \left\| \frac{1}{n} \sum_{i=1}^{n} \frac{(g_{i}^{t} - \nabla f_{i}(x_{i}^{t}) + \nabla f_{i}(x_{i}^{t}) - \nabla f(\overline{x}^{t}) + \nabla f(\overline{x}^{t}))}{\sqrt{u_{i}^{t-1} + \delta}} \right\|^{2}\right]$$

$$\leq 6\mathbb{E}\left[\sum_{t=0}^{TK-1} \left\| \frac{1}{n} \sum_{i=1}^{n} \frac{(g_{i}^{t} - \nabla f_{i}(x_{i}^{t}))}{\sqrt{u_{i}^{t-1} + \delta}} \right\|^{2} + \sum_{t=0}^{TK-1} \left\| \frac{1}{n} \sum_{i=1}^{n} \frac{(\nabla f_{i}(x_{i}^{t}) - \nabla f_{i}(\overline{x}^{t}))}{\sqrt{u_{i}^{t-1} + \delta}} \right\|^{2}\right]$$

$$\leq 6\mathbb{E}\left[\sum_{t=0}^{TK-1} \left\| \frac{1}{n} \sum_{i=1}^{n} \frac{(g_{i}^{t} - \nabla f_{i}(x_{i}^{t}))}{\sqrt{u_{i}^{t-1} + \delta}} \right\|^{2} + \sum_{t=0}^{TK-1} \frac{1}{n} \sum_{i=1}^{n} \left\| \frac{(\nabla f_{i}(x_{i}^{t}) - \nabla f_{i}(\overline{x}^{t}))}{\sqrt{u_{i}^{t-1} + \delta}} \right\|^{2}\right]$$

$$+ \sum_{t=0}^{TK-1} \frac{1}{n} \sum_{i=1}^{n} \left\| \frac{\nabla f(\overline{x}^{t})}{\sqrt{u_{i}^{t-1} + \delta}} \right\|^{2}\right]$$

$$= \frac{6}{n^{2}} \mathbb{E}\left[\sum_{t=0}^{TK-1} \sum_{i=1}^{n} \left\| \frac{g_{i}^{t} - \nabla f_{i}(x_{i}^{t})}{\sqrt{u_{i}^{t-1} + \delta}} \right\|^{2}\right] + 6\mathbb{E}\left[\sum_{t=0}^{TK-1} \frac{1}{n} \sum_{i=1}^{n} \left\| \frac{(\nabla f_{i}(x_{i}^{t}) - \nabla f_{i}(\overline{x}^{t}))}{\sqrt{u_{i}^{t-1} + \delta}} \right\|^{2}\right]$$

$$\leq \frac{6}{n^{2}\delta} \mathbb{E}\left[\sum_{t=0}^{TK-1} \sum_{i=1}^{n} \left\| g_{i}^{t} - \nabla f_{i}(x_{i}^{t}) \right\|^{2}\right] + \frac{6}{\delta} \mathbb{E}\left[\sum_{t=0}^{TK-1} \frac{1}{n} \sum_{i=1}^{n} \left\| (\nabla f_{i}(x_{i}^{t}) - \nabla f_{i}(\overline{x}^{t})) \right\|^{2}\right]$$

$$\leq \frac{6}{n^{2}\delta} \mathbb{E}\left[\sum_{t=0}^{TK-1} \sum_{i=1}^{n} \left\| g_{i}^{t} - \nabla f_{i}(x_{i}^{t}) \right\|^{2}\right] + \frac{6}{\delta} \mathbb{E}\left[\sum_{t=0}^{TK-1} \frac{1}{n} \sum_{i=1}^{n} \left\| (\nabla f_{i}(x_{i}^{t}) - \nabla f_{i}(\overline{x}^{t})) \right\|^{2}\right]$$

$$\leq \frac{6}{n^{2}\delta} 4nTKB^{2} + \frac{6L^{2}}{n\delta} \mathbb{E}\left[\sum_{t=0}^{TK-1} \left\| X_{\perp}^{t} \right\|^{2}\right] + \frac{6}{\delta} \mathbb{E}\left[\sum_{t=0}^{TK-1} \left\| \nabla f(\overline{x}^{t}) \right\|^{2}\right], \tag{62}$$

where in the last inequality, we have used (57), and the equality holds because

$$\mathbb{E}_{t} \left\langle \frac{(\boldsymbol{g}_{i}^{t} - \nabla f_{i}(\boldsymbol{x}_{i}^{t}))}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}}, \frac{(\boldsymbol{g}_{j}^{t} - \nabla f_{j}(\boldsymbol{x}_{j}^{t}))}{\sqrt{\boldsymbol{u}_{j}^{t-1} + \delta}} \right\rangle$$

$$= \left\langle \frac{\mathbb{E}_{t}[\boldsymbol{g}_{i}^{t} - \nabla f_{i}(\boldsymbol{x}_{i}^{t})]}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}}, \frac{\mathbb{E}_{t}[\boldsymbol{g}_{j}^{t} - \nabla f_{j}(\boldsymbol{x}_{j}^{t})]}{\sqrt{\boldsymbol{u}_{j}^{t-1} + \delta}} \right\rangle = 0, \ \forall i \neq j,$$

from the fact that $g_1^t, g_2^t, \dots, g_n^t$ are conditionally independent of each other. Plugging (61) and (62) into (60), we complete the proof.

Lemma A.6 Suppose Assumptions 1 and 3 hold, and $\|\mathbf{u}_i^t\|_{\infty} \leq B_u$ for all $t \geq 0$ and $i \in \{1, 2, ..., n\}$. It holds

$$\mathbb{E}_{t}\left[\left\langle \nabla f\left(\boldsymbol{z}^{t}\right), \frac{1}{n} \sum_{i=1}^{n} \frac{\boldsymbol{g}_{i}^{t}}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}}\right\rangle\right] \\
\geq \frac{1}{2\sqrt{B_{u} + \delta}} \|\nabla f\left(\overline{\boldsymbol{x}}^{t}\right)\|^{2} - \frac{L^{2}}{n} \left(\frac{\sqrt{B_{u} + \delta}}{\delta} + \frac{1}{2\sqrt{\delta}}\right) \|\mathbf{X}_{\perp}^{t}\|^{2} - \frac{\alpha^{2} \beta_{1}^{2} L^{2} B^{2}}{\delta (1 - \beta_{1})^{2}} \left(\frac{\sqrt{B_{u} + \delta}}{\delta} + \frac{1}{2\sqrt{\delta}}\right). \tag{63}$$

Proof. By Assumption 3, it holds that

$$\mathbb{E}_{t} \left[\left\langle \nabla f \left(\boldsymbol{z}^{t} \right), \frac{1}{n} \sum_{i=1}^{n} \frac{\boldsymbol{g}_{i}^{t}}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}} \right\rangle \right] = \left\langle \nabla f \left(\boldsymbol{z}^{t} \right), \frac{1}{n} \sum_{i=1}^{n} \frac{\nabla f_{i}(\boldsymbol{x}_{i}^{t})}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}} \right\rangle \\
= \left\langle \nabla f \left(\boldsymbol{z}^{t} \right) - \nabla f(\overline{\boldsymbol{x}}^{t}), \frac{1}{n} \sum_{i=1}^{n} \frac{\left(\nabla f_{i}(\boldsymbol{x}_{i}^{t}) - \nabla f(\overline{\boldsymbol{x}}^{t}) \right)}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}} \right\rangle \\
+ \left\langle \nabla f \left(\boldsymbol{z}^{t} \right) - \nabla f(\overline{\boldsymbol{x}}^{t}), \frac{1}{n} \sum_{i=1}^{n} \frac{\nabla f(\overline{\boldsymbol{x}}^{t})}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}} \right\rangle \\
+ \left\langle \nabla f(\overline{\boldsymbol{x}}^{t}), \frac{1}{n} \sum_{i=1}^{n} \frac{\left(\nabla f_{i}(\boldsymbol{x}_{i}^{t}) - \nabla f(\overline{\boldsymbol{x}}^{t}) \right)}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}} \right\rangle + \left\langle \nabla f(\overline{\boldsymbol{x}}^{t}), \frac{1}{n} \sum_{i=1}^{n} \frac{\nabla f(\overline{\boldsymbol{x}}^{t})}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}} \right\rangle. \tag{64}$$

Next we bound each of the four terms in the RHS of (64). For the first term in the RHS of (64), we use Young's inequality and (58) to have

$$\left\langle \nabla f\left(\boldsymbol{z}^{t}\right) - \nabla f(\overline{\boldsymbol{x}}^{t}), \frac{1}{n} \sum_{i=1}^{n} \frac{\left(\nabla f_{i}(\boldsymbol{x}_{i}^{t}) - \nabla f(\overline{\boldsymbol{x}}^{t})\right)}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}} \right\rangle$$

$$\geq -\frac{1}{2n\sqrt{\delta}} \sum_{i=1}^{n} \left(\left\| \nabla f\left(\boldsymbol{z}^{t}\right) - \nabla f(\overline{\boldsymbol{x}}^{t}) \right\|^{2} + \left\| \nabla f_{i}\left(\boldsymbol{x}_{i}^{t}\right) - \nabla f_{i}\left(\overline{\boldsymbol{x}}^{t}\right) \right\|^{2} \right)$$

$$\geq -\frac{1}{2n\sqrt{\delta}} \sum_{i=1}^{n} \left(\left\| \nabla f\left(\boldsymbol{z}^{t}\right) - \nabla f(\overline{\boldsymbol{x}}^{t}) \right\|^{2} + L^{2} \left\| \boldsymbol{x}_{i}^{t} - \overline{\boldsymbol{x}}^{t} \right\|^{2} \right)$$

$$\geq -\frac{1}{2n\sqrt{\delta}} \left(\frac{\alpha^{2}\beta_{1}^{2}L^{2}B^{2}}{\delta(1-\beta_{1})^{2}} + \frac{L^{2}}{n} \left\| \boldsymbol{X}_{\perp}^{t} \right\|^{2} \right), \tag{65}$$

where we have used $u_i^{t-1} \geq 0$ in the first inequality. For the second term in the RHS of (64), we have

$$\left\langle \nabla f\left(\boldsymbol{z}^{t}\right) - \nabla f(\overline{\boldsymbol{x}}^{t}), \frac{1}{n} \sum_{i=1}^{n} \frac{\nabla f(\overline{\boldsymbol{x}}^{t})}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}} \right\rangle$$

$$\geq -\frac{\left\|\nabla f\left(\overline{\boldsymbol{x}}^{t}\right)\right\|^{2}}{4\sqrt{B_{u} + \delta}} - \frac{\sqrt{B_{u} + \delta}}{\delta} \left\|\nabla f\left(\boldsymbol{z}^{t}\right) - \nabla f(\overline{\boldsymbol{x}}^{t})\right\|^{2}$$

$$\stackrel{(58)}{\geq} -\frac{\left\|\nabla f\left(\overline{\boldsymbol{x}}^{t}\right)\right\|^{2}}{4\sqrt{B_{u} + \delta}} - \frac{\alpha^{2}\beta_{1}^{2}L^{2}B^{2}\sqrt{B_{u} + \delta}}{\delta^{2}(1 - \beta_{1})^{2}},$$

$$(67)$$

where the first inequality follows from Young's inequality and $u_i^{t-1} \geq \mathbf{0}$. For the third term in the RHS of (64), we have from Young's inequality that

$$\left\langle \nabla f(\overline{\boldsymbol{x}}^{t}), \frac{1}{n} \sum_{i=1}^{n} \frac{\left(\nabla f_{i}(\boldsymbol{x}_{i}^{t}) - \nabla f(\overline{\boldsymbol{x}}^{t})\right)}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}} \right\rangle$$

$$\geq \frac{1}{n} \sum_{i=1}^{n} \left(-\frac{\left\|\nabla f\left(\overline{\boldsymbol{x}}^{t}\right)\right\|^{2}}{4\sqrt{B_{u} + \delta}} - \frac{\sqrt{B_{u} + \delta}}{\delta} \left\|\nabla f_{i}\left(\boldsymbol{x}_{i}^{t}\right) - \nabla f_{i}\left(\overline{\boldsymbol{x}}^{t}\right)\right\|^{2} \right)$$

$$\geq \frac{1}{n} \sum_{i=1}^{n} \left(-\frac{\left\|\nabla f\left(\overline{\boldsymbol{x}}^{t}\right)\right\|^{2}}{4\sqrt{B_{u} + \delta}} - \frac{L^{2}\sqrt{B_{u} + \delta}}{\delta} \left\|\boldsymbol{x}_{i}^{t} - \overline{\boldsymbol{x}}^{t}\right\|^{2} \right)$$

$$= -\frac{\left\|\nabla f\left(\overline{\boldsymbol{x}}^{t}\right)\right\|^{2}}{4\sqrt{B_{u} + \delta}} - \frac{L^{2}\sqrt{B_{u} + \delta}}{n\delta} \left\|\boldsymbol{X}_{\perp}^{t}\right\|^{2}.$$
(68)

Since $\|\boldsymbol{u}_i^t\|_{\infty} \leq B_u$ for all $t \geq 0$ and $i \in \{1, 2, \dots, n\}$, the last term in the RHS of (64) can be bounded as

$$\left\langle \nabla f\left(\overline{\boldsymbol{x}}^{t}\right), \frac{1}{n} \sum_{i=1}^{n} \frac{\nabla f\left(\overline{\boldsymbol{x}}^{t}\right)}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}} \right\rangle \ge \frac{1}{\sqrt{B_{u} + \delta}} \|\nabla f\left(\overline{\boldsymbol{x}}^{t}\right)\|^{2}. \tag{69}$$

Substituting (65)– (69) into (64) and rearranging terms yields the desired result.

Now we are ready to show the main convergence result.

Theorem A.1 Suppose that Assumptions 1–3 hold, Q is an η -compression operator, and $\|\mathbf{u}_i^t\|_{\infty} \leq B_u$ for all $t \geq 0$ and $i \in \{1, 2, ..., n\}$. Let \overline{C} denote the constant defined in (21), $\alpha, \gamma > 0$ satisfy

$$\alpha \le \frac{\delta}{48L\sqrt{B_u + \delta}}, \quad \gamma \le \frac{(1 - \rho)(1 - \eta^2)}{100}. \tag{70}$$

Then, it holds

$$\frac{\alpha}{4\sqrt{B_{u}+\delta}} \sum_{t=0}^{TK-1} \mathbb{E}\left[\|\nabla f\left(\overline{\boldsymbol{x}}^{t}\right)\|^{2}\right] \leq \mathbb{E}\left[f\left(\boldsymbol{x}^{0}\right) - f^{*}\right] + \frac{\alpha TK}{8\sqrt{B_{u}+\delta}} \frac{\alpha^{2}L^{2}\beta_{1}^{2}B^{2}}{\delta(1-\beta_{1})^{2}} \\
+ \frac{\alpha\beta_{1}^{2}B_{\infty}^{2}}{(1-\beta_{1})^{2}} \left(4\sqrt{B_{u}+\delta} + \alpha L\right) \mathbb{E}\left[\sum_{t=0}^{TK-1} \frac{1}{n} \sum_{i=1}^{n} \left\|\frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-2}+\delta}} - \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-1}+\delta}}\right\|^{2}\right] \\
+ \alpha^{2}L \left(\frac{24}{n\delta}TKB^{2} + \frac{6L^{2}}{n\delta}\alpha^{2}TnK^{3}\overline{C}\right) \\
+ \frac{\alpha L^{2}}{n} \left(\frac{\sqrt{B_{u}+\delta}}{\delta} + \frac{1}{2\sqrt{\delta}}\right)\alpha^{2}TnK^{3}\overline{C} + \sum_{t=0}^{TK-1} \frac{\alpha^{3}\beta_{1}^{2}L^{2}B^{2}}{\delta(1-\beta_{1})^{2}} \left(\frac{\sqrt{B_{u}+\delta}}{\delta} + \frac{1}{2\sqrt{\delta}}\right).$$
(71)

Proof. By the L-smoothness of f, we have

$$f\left(\boldsymbol{z}^{t+1}
ight) \leq f\left(\boldsymbol{z}^{t}
ight) + \left\langle
abla f\left(\boldsymbol{z}^{t}
ight), \boldsymbol{z}^{t+1} - \boldsymbol{z}^{t}
ight
angle + rac{L}{2}\left\|\boldsymbol{z}^{t+1} - \boldsymbol{z}^{t}
ight\|^{2},$$

which together with (55) gives

$$f\left(\boldsymbol{z}^{t+1}\right) \leq f\left(\boldsymbol{z}^{t}\right) - \alpha \left\langle \nabla f\left(\boldsymbol{z}^{t}\right), \frac{1}{n} \sum_{i=1}^{n} \frac{\boldsymbol{g}_{i}^{t}}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}} \right\rangle + \frac{L}{2} \left\|\boldsymbol{z}^{t+1} - \boldsymbol{z}^{t}\right\|^{2}$$
$$+ \frac{\beta_{1}}{1 - \beta_{1}} \left\langle \nabla f\left(\boldsymbol{z}^{t}\right), \frac{\alpha}{n} \sum_{i=1}^{n} \boldsymbol{m}_{i}^{t-1} \circ \left(\frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}}\right) \right\rangle.$$

Take expectation, sum up over t, and rearrange terms of the above inequality. Noticing $z^0 = x^0$, we have

$$\alpha \sum_{t=0}^{TK-1} \mathbb{E}\left[\left\langle \nabla f\left(\boldsymbol{z}^{t}\right), \frac{1}{n} \sum_{i=1}^{n} \frac{\boldsymbol{g}_{i}^{t}}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}} \right\rangle\right] \leq \mathbb{E}\left[f\left(\boldsymbol{x}^{0}\right) - f\left(\boldsymbol{z}^{TK}\right)\right] + \frac{L}{2} \mathbb{E}\sum_{t=0}^{TK-1} \left[\left\|\boldsymbol{z}^{t+1} - \boldsymbol{z}^{t}\right\|^{2}\right] + \frac{\alpha\beta_{1}}{1 - \beta_{1}} \sum_{t=0}^{TK-1} \mathbb{E}\left[\left\langle \nabla f\left(\boldsymbol{z}^{t}\right), \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{m}_{i}^{t-1} \circ \left(\frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}}\right)\right\rangle\right].$$

$$(72)$$

Below we bound the inner-product terms on the RHS of (72). First,

$$\frac{\beta_{1}}{1-\beta_{1}} \sum_{t=0}^{TK-1} \mathbb{E}\left[\left\langle \nabla f\left(\boldsymbol{z}^{t}\right), \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{m}_{i}^{t-1} \circ \left(\frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}}\right)\right\rangle\right]$$

$$= \frac{\beta_{1}}{1-\beta_{1}} \sum_{t=0}^{TK-1} \mathbb{E}\left[\left\langle \nabla f\left(\overline{\boldsymbol{x}}^{t}\right), \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{m}_{i}^{t-1} \circ \left(\frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}}\right)\right\rangle\right]$$

$$+ \frac{\beta_{1}}{1-\beta_{1}} \sum_{t=0}^{TK-1} \mathbb{E}\left[\left\langle \nabla f\left(\boldsymbol{z}^{t}\right) - \nabla f\left(\overline{\boldsymbol{x}}^{t}\right), \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{m}_{i}^{t-1} \circ \left(\frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}}\right)\right\rangle\right]. \tag{73}$$

For the first term in the RHS of (73), we use Young's inequality to have

$$\frac{\beta_{1}}{1-\beta_{1}} \sum_{t=0}^{TK-1} \mathbb{E}\left[\left\langle \nabla f\left(\overline{\boldsymbol{x}}^{t}\right), \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{m}_{i}^{t-1} \circ \left(\frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}}\right)\right\rangle\right]$$

$$\leq \sum_{t=0}^{TK-1} \frac{1}{8\sqrt{B_{u} + \delta}} \mathbb{E}\left[\left\|\nabla f\left(\overline{\boldsymbol{x}}^{t}\right)\right\|^{2}\right]$$

$$+ \sum_{t=0}^{TK-1} \frac{2\beta_{1}^{2}\sqrt{B_{u} + \delta}}{(1-\beta_{1})^{2}} \mathbb{E}\left[\left\|\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{m}_{i}^{t-1} \circ \left(\frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}}\right)\right\|^{2}\right]$$

$$\leq \frac{1}{8\sqrt{B_{u} + \delta}} \sum_{t=0}^{TK-1} \mathbb{E}\left[\left\|\nabla f\left(\overline{\boldsymbol{x}}^{t}\right)\right\|^{2}\right]$$

$$+ \sum_{t=0}^{TK-1} \frac{2\beta_{1}^{2} B_{\infty}^{2} \sqrt{B_{u} + \delta}}{(1-\beta_{1})^{2}} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\left\|\frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}}\right\|^{2}\right], \tag{74}$$

where in the last inequality, we have used $\|\boldsymbol{m}_i^{t-1}\|_{\infty} \leq B_{\infty}$ by Lemma A.1. For the second term in the RHS of (73), it holds

$$\frac{\beta_{1}}{1-\beta_{1}} \sum_{t=0}^{TK-1} \mathbb{E}\left[\left\langle \nabla f\left(\boldsymbol{z}^{t}\right) - \nabla f\left(\overline{\boldsymbol{x}}^{t}\right), \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{m}_{i}^{t-1} \circ \left(\frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}}\right)\right\rangle\right] \\
\leq \sum_{t=0}^{TK-1} \frac{1}{8\sqrt{B_{u} + \delta}} \mathbb{E}\left[\left\|\nabla f\left(\boldsymbol{z}^{t}\right) - \nabla f\left(\overline{\boldsymbol{x}}^{t}\right)\right\|^{2}\right] \\
+ \sum_{t=0}^{TK-1} \frac{2\beta_{1}^{2}\sqrt{B_{u} + \delta}}{(1-\beta_{1})^{2}} \mathbb{E}\left[\left\|\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{m}_{i}^{t-1} \circ \left(\frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}}\right)\right\|^{2}\right] \\
\leq \frac{TK}{8\sqrt{B_{u} + \delta}} \frac{\alpha^{2}L^{2}\beta_{1}^{2}B^{2}}{\delta(1-\beta_{1})^{2}} + \sum_{t=0}^{TK-1} \frac{2\beta_{1}^{2}B_{\infty}^{2}\sqrt{B_{u} + \delta}}{(1-\beta_{1})^{2}} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\left\|\frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}}\right\|^{2}\right], \quad (75)$$

where in the last inequality, we have used (58) and $\|\boldsymbol{m}_{i}^{t-1}\|_{\infty} \leq B_{\infty}$ by Lemma A.1. Plugging (74) and (75) into (73), we obtain

$$\frac{\alpha\beta_{1}}{1-\beta_{1}} \sum_{t=0}^{TK-1} \mathbb{E}\left[\left\langle \nabla f\left(\boldsymbol{z}^{t}\right), \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{m}_{i}^{t-1} \circ \left(\frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}}\right)\right\rangle\right]$$

$$\leq \frac{\alpha}{8\sqrt{B_{u} + \delta}} \sum_{t=0}^{TK-1} \mathbb{E}\left[\left\|\nabla f\left(\overline{\boldsymbol{x}}^{t}\right)\right\|^{2}\right] + \frac{\alpha TK}{8\sqrt{B_{u} + \delta}} \frac{\alpha^{2}L^{2}\beta_{1}^{2}B^{2}}{\delta(1-\beta_{1})^{2}}$$

$$+ \frac{4\alpha\beta_{1}^{2}B_{\infty}^{2}\sqrt{B_{u} + \delta}}{(1-\beta_{1})^{2}} \sum_{t=0}^{TK-1} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\left\|\frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}}\right\|^{2}\right].$$
(76)

Now plugging (59), (76) and (63) after taking full expectation into (72) and rearranging terms gives

$$\left(\frac{3\alpha}{8\sqrt{B_u+\delta}} - \frac{6L\alpha^2}{\delta}\right) \sum_{t=0}^{TK-1} \mathbb{E}[\|\nabla f\left(\overline{\boldsymbol{x}}^t\right)\|^2] \leq \mathbb{E}\left[f\left(\boldsymbol{x}^0\right) - f\left(\boldsymbol{z}^{TK}\right)\right] + \frac{\alpha TK}{8\sqrt{B_u+\delta}} \frac{\alpha^2 L^2 \beta_1^2 B^2}{\delta(1-\beta_1)^2} + \frac{\alpha \beta_1^2 B_{\infty}^2}{(1-\beta_1)^2} \left(4\sqrt{B_u+\delta} + \alpha L\right) \mathbb{E}\left[\sum_{t=0}^{TK-1} \frac{1}{n} \sum_{i=1}^n \left\|\frac{1}{\sqrt{\boldsymbol{u}_i^{t-2}+\delta}} - \frac{1}{\sqrt{\boldsymbol{u}_i^{t-1}+\delta}}\right\|^2\right] + \alpha^2 L \left(\frac{24}{n\delta} TKB^2 + \frac{6L^2}{n\delta} \mathbb{E}\left[\sum_{t=0}^{TK-1} \|\mathbf{X}_{\perp}^t\|^2\right]\right) + \alpha^2 \sum_{t=0}^{TK-1} \left(\frac{L^2}{n} \left(\frac{\sqrt{B_u+\delta}}{\delta} + \frac{1}{2\sqrt{\delta}}\right) \mathbb{E}[\|\mathbf{X}_{\perp}^t\|^2] + \frac{\alpha^2 \beta_1^2 L^2 B^2}{\delta(1-\beta_1)^2} \left(\frac{\sqrt{B_u+\delta}}{\delta} + \frac{1}{2\sqrt{\delta}}\right)\right).$$

Plug (21) into the inequality above, notice $\frac{3\alpha}{8\sqrt{B_u+\delta}} - \frac{6L\alpha^2}{\delta} \ge \frac{\alpha}{4\sqrt{B_u+\delta}}$, and rearrange terms. We obtain the desired result and complete the proof.

To prove Theorem 3.2, we only need to consider the following three settings of $\{\mathbf{U}^t\}$

AMSGrad:
$$\widehat{\mathbf{U}}^t = \beta_2 \widehat{\mathbf{U}}^{t-1} + (1 - \beta_2) \mathbf{G}^t \circ \mathbf{G}^t \text{ with } \widehat{\mathbf{U}}^{-1} = \mathbf{0}, \ \mathbf{U}^t = \max \left\{ \widehat{\mathbf{U}}^t, \mathbf{U}^{t-1} \right\};$$
 (77)

Adam:
$$\mathbf{U}^t = \beta_2 \mathbf{U}^{t-1} + (1 - \beta_2) \mathbf{G}^t \circ \mathbf{G}^t; \tag{78}$$

AdaGrad:
$$\mathbf{U}^t = \frac{1}{t+1} \sum_{s=0}^t \mathbf{G}^s \circ \mathbf{G}^s;$$
, (79)

where

$$\widehat{\mathbf{U}}^t = \left[\widehat{\boldsymbol{u}}_1^t, \widehat{\boldsymbol{u}}_2^t, \dots, \widehat{\boldsymbol{u}}_n^t\right], \ \mathbf{U}^t = \left[\boldsymbol{u}_1^t, \boldsymbol{u}_2^t, \dots, \boldsymbol{u}_n^t\right]. \tag{80}$$

Notice that when $\beta_1 = 0$ and $\beta_2 = 1$, AMSGrad reduces to the vanilla SGD, and when $\beta_1 \in (0,1)$ and $\beta_2 = 1$, it reduces to the momentum SGD. Consequently, our theoretical guarantees on AMSGrad naturally extend to these two special cases as well. Adam-Mini (Zhang et al., 2024) can be regarded as a special case of Adam by using a constant scalar (instead of a vector) for each block of variables as the second momentum. Therefore, the results on Adam also hold for Adam-Mini.

Below we bound $\|\boldsymbol{u}_i^t\|$ and the summation of the difference between the consecutive terms in the sequence $\left\{\frac{1}{\sqrt{\mathbf{U}^t + \delta}}\right\}_{t=0}^{TK-1}$ for the three optimizers in (77)-(79).

Lemma A.7 Let $\mathbf{u}_i^{-2} = \mathbf{0}$ for all i = 1, 2, ..., n. Under Assumption 3, for all $t \geq 0$ and $i \in \{1, 2, ..., n\}$, the following statements hold.

(i) For AMSGrad in (77), it holds $\|\mathbf{u}_i^t\|_{\infty} \leq B_{\infty}^2$, and

$$\sum_{t=0}^{TK-1} \frac{1}{n} \sum_{i=1}^{n} \left\| \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}} \right\|^{2} \le \frac{d}{\delta}.$$
 (81)

(ii) For Adam in (78), it holds $\|\boldsymbol{u}_i^t\|_{\infty} \leq B_{\infty}^2$, and

$$\sum_{t=0}^{TK-1} \frac{1}{n} \sum_{i=1}^{n} \left\| \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}} \right\|^{2} \le \frac{TKd(1 - \beta_{2})^{2} B_{\infty}^{4}}{\delta^{3}}.$$
 (82)

(iii) For Adagrad in (79), it holds $\|\mathbf{u}_i^t\|_{\infty} \leq B_{\infty}^2$, and

$$\sum_{t=0}^{TK-1} \frac{1}{n} \sum_{i=1}^{n} \left\| \frac{1}{\sqrt{u_i^{t-2} + \delta}} - \frac{1}{\sqrt{u_i^{t-1} + \delta}} \right\|^2 \le \frac{2dB_{\infty}^4}{\delta^3}.$$
 (83)

Proof. (i) Noticing $\widehat{\boldsymbol{u}}_i^{-1} = \mathbf{0}$ and $\|\boldsymbol{g}_i^t \circ \boldsymbol{g}_i^t\|_{\infty} \leq B_{\infty}^2$, we have $\|\widehat{\boldsymbol{u}}_i^t\|_{\infty} \leq \left(1 - \beta_2^{t+1}\right) B_{\infty}^2$ for each $i \in \{1, 2, \dots, n\}$ and $t \geq 0$. By $\boldsymbol{u}_i^t = \max\{\widehat{\boldsymbol{u}}_i^t, \boldsymbol{u}_i^{t-1}\}$, it holds

$$\begin{aligned} \|\boldsymbol{u}_{i}^{t}\|_{\infty} &\leq \max\{\|\widehat{\boldsymbol{u}}_{i}^{t}\|_{\infty}, \|\boldsymbol{u}_{i}^{t-1}\|_{\infty}\} \leq \max\{\|\widehat{\boldsymbol{u}}_{i}^{t}\|_{\infty}, \|\widehat{\boldsymbol{u}}_{i}^{t-1}\|_{\infty}, \|\boldsymbol{u}_{i}^{t-2}\|_{\infty}\} \\ &\leq \max\left\{\|\widehat{\boldsymbol{u}}_{i}^{t}\|_{\infty}, \|\widehat{\boldsymbol{u}}_{i}^{t-1}\|_{\infty}, \dots, \|\widehat{\boldsymbol{u}}_{i}^{0}\|_{\infty}, \|\boldsymbol{u}_{i}^{-1}\|_{\infty}\right\}, \\ &\leq \max\left\{(1 - \beta_{2}^{t+1}) B_{\infty}^{2}, (1 - \beta_{2}^{t}) B_{\infty}^{2}, \dots, (1 - \beta_{2}) B_{\infty}^{2}, \|\boldsymbol{u}_{i}^{-1}\|_{\infty}\right\} = (1 - \beta_{2}^{t+1}) B_{\infty}^{2}, \end{aligned}$$

where the equality holds because $\beta_2 \in (0,1]$ and $\boldsymbol{u}_i^{-1} = \boldsymbol{0}$.

In addition, we have

$$\sum_{t=0}^{TK-1} \frac{1}{n} \sum_{i=1}^{n} \left\| \frac{1}{\sqrt{u_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{u_{i}^{t-1} + \delta}} \right\|^{2} \\
\leq \sum_{t=0}^{TK-1} \frac{1}{n} \sum_{i=1}^{n} \left\| \frac{1}{\sqrt{u_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{u_{i}^{t-1} + \delta}} \right\|_{1} \left\| \frac{1}{\sqrt{u_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{u_{i}^{t-1} + \delta}} \right\|_{\infty} \\
\leq \sum_{t=0}^{TK-1} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{\delta}} \left\| \frac{1}{\sqrt{u_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{u_{i}^{t-1} + \delta}} \right\|_{1} \\
\leq \sum_{t=0}^{TK-1} \frac{1}{n\sqrt{\delta}} \sum_{i=1}^{n} \left(\left\| \frac{1}{\sqrt{u_{i}^{t-2} + \delta}} \right\|_{1} - \left\| \frac{1}{\sqrt{u_{i}^{t-1} + \delta}} \right\|_{1} \right) \\
= \frac{1}{n\sqrt{\delta}} \sum_{i=1}^{n} \sum_{t=0}^{TK-1} \left(\left\| \frac{1}{\sqrt{u_{i}^{t-2} + \delta}} \right\|_{1} - \left\| \frac{1}{\sqrt{u_{i}^{t-1} + \delta}} \right\|_{1} \right) \\
\leq \frac{1}{n\sqrt{\delta}} \sum_{i=1}^{n} \left\| \frac{1}{\sqrt{u_{i}^{-2} + \delta}} \right\|_{1} = \frac{d}{\delta}, \tag{84}$$

where $\left\| \frac{1}{\sqrt{u_i^{t-2} + \delta}} - \frac{1}{\sqrt{u_i^{t-1} + \delta}} \right\|_{\infty} \le \frac{1}{\sqrt{\delta}}$ holds because $u_i^{t-2} \ge \mathbf{0}$ and $u_i^{t-1} \ge \mathbf{0}$, and the equality holds because u_i^{t-1} is nondecreasing with t for each $i \in \{1, 2, \dots, n\}$.

(ii) Noticing $\boldsymbol{u}_i^{-1} = \boldsymbol{0}$ and $\|\boldsymbol{g}_i^t \circ \boldsymbol{g}_i^t\|_{\infty} \leq B_{\infty}^2$, we have $\|\boldsymbol{u}_i^t\|_{\infty} \leq \left(1 - \beta_2^{t+1}\right) B_{\infty}^2$ For all $t \geq -1$, it holds

$$\left\| \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}} \right\|^{2} = \sum_{j=1}^{d} \left| \frac{1}{\sqrt{[\beta_{2}\boldsymbol{u}_{i}^{t-1} + (1-\beta_{2})\mathbf{g}_{i}^{t} \circ \mathbf{g}_{i}^{t}]_{j} + \delta}} - \frac{1}{\sqrt{[\boldsymbol{u}_{i}^{t-1} + \delta]_{j}}} \right|^{2}$$

$$= \sum_{j=1}^{d} \left| \frac{(1-\beta_{2})\left([\boldsymbol{u}_{i}^{t-1} - \mathbf{g}_{i}^{t} \circ \mathbf{g}_{i}^{t}]_{j}\right)}{\sqrt{[\beta_{2}\boldsymbol{u}_{i}^{t-1} + (1-\beta_{2})\mathbf{g}_{i}^{t} \circ \mathbf{g}_{i}^{t}]_{j} + \delta}} \sqrt{[\boldsymbol{u}_{i}^{t-1} + \delta]_{j}} (\sqrt{[\beta_{2}\boldsymbol{u}_{i}^{t-1} + (1-\beta_{2})\mathbf{g}_{i}^{t} \circ \mathbf{g}_{i}^{t}]_{j} + \delta} + \sqrt{[\boldsymbol{u}_{i}^{t-1} + \delta]_{j}}} \right|^{2}$$

$$\leq \frac{d(1-\beta_{2})^{2}B_{\infty}^{4}}{\delta^{3}},$$

where the last inequality follows from $0 \le [\boldsymbol{u}_i^{t-1}]_j \le B_{\infty}^2$ and $0 \le [\boldsymbol{g}_i^t \circ \boldsymbol{g}_i^t]_j \le B_{\infty}^2$. Then the desired inequality holds

(iii) By $\boldsymbol{u}_i^t = \frac{1}{t+1} \sum_{s=0}^t \boldsymbol{g}_i^s \circ \boldsymbol{g}_i^s$ and $\|\boldsymbol{g}_i^t \circ \boldsymbol{g}_i^t\|_{\infty} \leq B_{\infty}^2$, it holds $\|\boldsymbol{u}_i^t\|_{\infty} \leq B_{\infty}^2$. For all $t \geq 1$, it holds

$$\begin{split} & \left\| \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-2} + \delta}} \right\|^{2} = \sum_{j=1}^{d} \left| \frac{1}{\sqrt{[\frac{t-1}{t}\boldsymbol{u}_{i}^{t-2} + \frac{1}{t}\mathbf{g}_{i}^{t-1} \circ \mathbf{g}_{i}^{t-1}]_{j} + \delta}} - \frac{1}{\sqrt{[\boldsymbol{u}_{i}^{t-2}]_{j} + \delta}} \right|^{2} \\ & = \sum_{j=1}^{d} \left| \frac{\frac{1}{t} \left([\boldsymbol{u}_{i}^{t-2} - \mathbf{g}_{i}^{t-1} \circ \mathbf{g}_{i}^{t-1}]_{j} \right)}{\sqrt{[\frac{t-1}{t}\boldsymbol{u}_{i}^{t-2} + \frac{1}{t}\mathbf{g}_{i}^{t-1} \circ \mathbf{g}_{i}^{t-1}]_{j} + \delta}} \right|^{2} \\ & \leq \frac{dB_{\infty}^{4}}{t^{2}\delta^{3}}, \end{split}$$

where the last inequality follows from $0 \le [\boldsymbol{u}_i^{t-2}]_j \le B_{\infty}^2$ and $0 \le [\mathbf{g}_i^{t-1} \circ \mathbf{g}_i^{t-1}]_j \le B_{\infty}^2$. Then

$$\begin{split} & \sum_{t=0}^{TK-1} \frac{1}{n} \sum_{i=1}^{n} \left\| \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}} \right\|^{2} = \sum_{t=1}^{TK-1} \frac{1}{n} \sum_{i=1}^{n} \left\| \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}} \right\|^{2} \\ \leq & \frac{2dB_{\infty}^{4}}{\delta^{3}}. \end{split}$$

The proof is then completed.

Now, we prove Theorem 3.2, with its complete statement given as follows.

Theorem A.2 Suppose that Assumptions 1–3 hold, and Q is an η -compression operator. Let $\delta = O(1)$ be a universal positive constant, \overline{C} be the constant defined in (21), and $\alpha, \gamma > 0$ satisfy

$$\alpha = \frac{4\theta\sqrt{n(B_{\infty}^2 + \delta)}}{\sqrt{TK}} \le \min\left\{\frac{\delta}{48L\sqrt{B_{\infty}^2 + \delta}}, 1\right\}, \gamma \le \frac{(1 - \rho)(1 - \eta^2)}{100},\tag{85}$$

where $\theta = O(1)$. Then, the following statements hold.

(i) For AMSGrad in (77), it holds

$$\frac{1}{TK} \sum_{t=0}^{TK-1} \mathbb{E} \left[\|\nabla f(\overline{x}^t)\|^2 + \frac{1}{n} \|\mathbf{X}_{\perp}^t\|^2 \right]
= O\left(\frac{1}{\sqrt{nTK}} \left(f(x^0) - f^* + LB^2 B_{\infty}^2 + LB^2 \right) + \frac{1}{TK} dB_{\infty}^3 \left(B_{\infty} + L + 1 \right) \right)
+ \frac{nK\overline{C}}{T} L^2 B_{\infty}^3 (1 + L + B_{\infty}) + \frac{n}{TK} L^2 B^2 (1 + B_{\infty}^4) + \frac{nK\overline{C}}{T} (1 + B_{\infty}^2) \right).$$
(86)

(ii) For Adam in (78) with $\beta_2 \in \left[\frac{\sqrt{TK}}{\sqrt{TK}+1}, 1\right]$, it holds

$$\frac{1}{TK} \sum_{t=0}^{TK-1} \mathbb{E} \left[\|\nabla f(\overline{x}^t)\|^2 + \frac{1}{n} \|\mathbf{X}_{\perp}^t\|^2 \right]
= O\left(\frac{1}{\sqrt{nTK}} \left(f(x^0) - f^* + LB^2 B_{\infty}^2 + LB^2 \right) + \frac{1}{TK} dB_{\infty}^7 \left(B_{\infty} + L + 1 \right) \right)
+ \frac{nK\overline{C}}{T} L^2 B_{\infty}^3 (1 + L + B_{\infty}) + \frac{n}{TK} L^2 B^2 (1 + B_{\infty}^4) + \frac{nK\overline{C}}{T} (1 + B_{\infty}^2) \right).$$
(87)

(iii) For AdaGrad in (79), the relation (87) holds as well.

Proof. From Lemma A.7, it holds that $\|\boldsymbol{u}_i^t\|_{\infty} \leq B_u, \forall t, \forall i \text{ with } B_u = B_{\infty}^2$ for all the three optimizers in (77)-(79).

Dividing both sides of (71) by $\frac{\alpha TK}{4\sqrt{B_{\infty}^2+\delta}}=\theta\sqrt{nTK}$ and rearranging terms, we have

$$\begin{split} &\frac{1}{TK} \sum_{t=0}^{TK-1} \mathbb{E} \left[\| \nabla f \left(\overline{\boldsymbol{x}}^t \right) \|^2 \right] \leq \frac{1}{\theta \sqrt{nTK}} \left(f(\boldsymbol{x}^0) - f^* \right) + \frac{\alpha^2 L^2 \beta_1^2 B^2}{2\delta (1 - \beta_1)^2} \\ &+ \frac{4\beta_1^2 B_\infty^2 \sqrt{B_\infty^2 + \delta}}{TK (1 - \beta_1)^2} \left(4\sqrt{B_\infty^2 + \delta} + \alpha L \right) \mathbb{E} \left[\sum_{t=0}^{TK-1} \frac{1}{n} \sum_{i=1}^n \left\| \frac{1}{\sqrt{\boldsymbol{u}_i^{t-2} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_i^{t-1} + \delta}} \right\|^2 \right] \\ &+ 4\alpha L \sqrt{B_\infty^2 + \delta} \frac{24}{n\delta} B^2 + 4\sqrt{B_\infty^2 + \delta} \frac{\alpha^2 L^2 n K^2 \overline{C}}{n} \left(\frac{\sqrt{B_\infty^2 + \delta}}{\delta} + \frac{1}{2\sqrt{\delta}} + \frac{6\alpha L}{\delta} \right) \\ &+ 4\sqrt{B_\infty^2 + \delta} \left(\frac{\alpha^2 \beta_1^2 L^2 B^2}{\delta (1 - \beta_1)^2} \left(\frac{\sqrt{B_\infty^2 + \delta}}{\delta} + \frac{1}{2\sqrt{\delta}} \right) \right). \end{split}$$

Adding (21) to the above inequality and replacing α by $\frac{4\theta\sqrt{n}\sqrt{B_{\infty}^2+\delta}}{\sqrt{TK}} \leq 1$ in the resulting inequality, we obtain

$$\frac{1}{TK} \sum_{t=0}^{TK-1} \mathbb{E} \left[\|\nabla f\left(\overline{x}^{t}\right)\|^{2} + \frac{1}{n} \|\mathbf{X}_{\perp}^{t}\|^{2} \right] \leq \frac{1}{\theta\sqrt{nTK}} \left(f(x^{0}) - f^{*} \right) + \frac{16\theta^{2}nL^{2}\beta_{1}^{2}B^{2}(B_{\infty}^{2} + \delta)}{2TK\delta(1 - \beta_{1})^{2}} \\
+ \frac{4\beta_{1}^{2}B_{\infty}^{2}\sqrt{B_{\infty}^{2} + \delta}}{TK(1 - \beta_{1})^{2}} \left(4\sqrt{B_{\infty}^{2} + \delta} + L \right) \mathbb{E} \left[\sum_{t=0}^{TK-1} \frac{1}{n} \sum_{i=1}^{n} \left\| \frac{1}{\sqrt{u_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{u_{i}^{t-1} + \delta}} \right\|^{2} \right] \\
+ \frac{16\theta}{\sqrt{nTK}} L(B_{\infty}^{2} + \delta) \frac{24}{\delta} B^{2} + \frac{64L^{2}nK^{2}\overline{C}\theta^{2}(B_{\infty}^{2} + \delta)^{\frac{3}{2}}}{TK} \left(\frac{\sqrt{B_{\infty}^{2} + \delta}}{\delta} + \frac{1}{2\sqrt{\delta}} + \frac{6L}{\delta} \right) \\
+ \frac{64n\theta^{2}(B_{\infty}^{2} + \delta)^{\frac{3}{2}}}{TK} \left(\frac{\beta_{1}^{2}L^{2}B^{2}}{\delta(1 - \beta_{1})^{2}} \left(\frac{\sqrt{B_{\infty}^{2} + \delta}}{\delta} + \frac{1}{2\sqrt{\delta}} \right) \right) + \frac{16nK^{2}\overline{C}\theta^{2}(B_{\infty}^{2} + \delta)}{TK}. \tag{88}$$

We now substitute the results in Lemma A.7 to the above inequality.

(i) For AMSGrad, we have

$$\mathbb{E}\left[\sum_{t=0}^{TK-1} \frac{1}{n} \sum_{i=1}^{n} \left\| \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}} \right\|^{2} \right] \leq \frac{d}{\delta} = O(d).$$

(ii) For Adam, we know from $\beta_2 \in \left[\frac{\sqrt{TK}}{\sqrt{TK}+1}, 1\right]$ that

$$\mathbb{E}\left[\sum_{t=0}^{TK-1} \frac{1}{n} \sum_{i=1}^{n} \left\| \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}} \right\|^{2} \right] \leq \frac{TKd(1-\beta_{2})^{2} B_{\infty}^{4}}{\delta^{3}} = O(dB_{\infty}^{4}).$$

(iii) For Adagrad, we have

$$\sum_{t=0}^{TK-1} \frac{1}{n} \sum_{i=1}^{n} \left\| \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-2} + \delta}} - \frac{1}{\sqrt{\boldsymbol{u}_{i}^{t-1} + \delta}} \right\|^{2} \leq \frac{2dB_{\infty}^{4}}{\delta^{3}} = O(dB_{\infty}^{4}).$$

Therefore, we obtain the desired results.

B The matrix-form adaptive gradient updates

It should be noted that our theoretical results extend to matrix-form adaptive gradient updates, where the d-dimension real-valued functions $\{r_t\}$ are replace by some $d \times d$ dimension real-valued functions $\{r_t\}$. Under this formulation, we update the second-momentum matrices \mathbf{U}_i as $\mathbf{U}_i^t = \mathbf{r}_t(\mathbf{g}_i^0, \mathbf{g}_i^1, \dots, \mathbf{g}_i^t)$ and the model parameter by $\mathbf{x}_i^{t+\frac{1}{2}} = \mathbf{x}_i^t - \alpha \left(\mathbf{U}_i^{t-1} + \delta\right)^{-\frac{1}{2}} \mathbf{m}_i^t$.

Our theoretical results apply to the matrix-form adaptive gradient method, provided that $\max_{r,s} \|[\mathbf{U}_i^t]_{rs}\|$ is uniformly bounded for all $i \in \{1,2,\ldots,n\}$ and $t \geq 0$, and that the summation $\sum_{t=0}^{TK-1} \frac{1}{n} \sum_{i=1}^{n} \left\| (\mathbf{U}_i^{t-2} + \delta)^{-\frac{1}{2}} - (\mathbf{U}_i^{t-1} + \delta)^{-\frac{1}{2}} \right\|^2$ remains bounded.

A notable example of this framework is the matrix-form AdaGrad method, where \mathbf{U}_i^t is updated as

$$\mathbf{U}_i^t = \frac{1}{t+1} \sum_{s=0}^t \boldsymbol{g}_i \boldsymbol{g}_i^{\top}, \text{ for each agent } i=1,\ldots,n.$$

For this choice of $\{\mathbf{U}_i^t\}$, it is not difficult to show that $|[\mathbf{U}_i^t]_{rs}| \leq B_{\infty}^2$ for all $r \in \{1, 2, ..., d\}$ and $s \in \{1, 2, ..., d\}$, and

$$\sum_{t=0}^{TK-1} \frac{1}{n} \sum_{i=1}^{n} \left\| (\mathbf{U}_{i}^{t-2} + \delta)^{-\frac{1}{2}} - (\mathbf{U}_{i}^{t-1} + \delta)^{-\frac{1}{2}} \right\|^{2} \le \frac{2d^{2}B_{\infty}^{4}}{\delta^{3}}.$$
 (89)

Therefore, our theoretical results extend naturally to the matrix-form AdaGrad method.

C Examples of η -compression operators

In this section, we provide a few concrete examples of compression operators that are η -compression operators. More examples can be found in (Chen et al., 2023a; Koloskova et al., 2019).

Example C.1 QSGD (Alistarh et al., 2017) compresses $\mathbf{x} \in \mathbb{R}^d$ by $\mathcal{Q}_{sgd}(\mathbf{x}) = \frac{\operatorname{sign}(\mathbf{x})\|\mathbf{x}\|}{s} \left[s \frac{|\mathbf{x}|}{\|\mathbf{x}\|} + \xi \right]$ where ξ is uniformly distributed on $[0,1]^d$, s is a parameter about compression level. Then $\mathcal{Q}(\mathbf{x}) := \frac{1}{\tau} \mathcal{Q}_{ssgd}(\mathbf{x})$ with $\tau = \left(1 + \min \left\{ d/s^2, \sqrt{d}/s \right\} \right)$ is an η -compression operator with $\eta = 1 - \frac{1}{\tau}$.

Example C.2 $Q_{sparse}(\mathbf{x})$ (Stich et al., 2018) randomly selects k out of d coordinates from \mathbf{x} , or the k coordinates with the largest values in magnitude from \mathbf{x} . Then $Q_{sparse}(\mathbf{x})$ is an η -compression operator with $\eta = \frac{d-k}{d}$.

Example C.3 $\mathcal{Q}_{gossip}(\mathbf{x})$ (Koloskova et al., 2019) sets $\mathcal{Q}_{gossip}(\mathbf{x}) = \mathbf{x}$ with probability $p \in [0,1]$ and $\mathcal{Q}_{gossip}(\mathbf{x}) = 0$ with probability 1 - p. Then $\mathcal{Q}_{gossip}(\mathbf{x})$ is an η -compression operator with $\eta = 1 - p$.

D Additional Numerical Experiments

We include a suite of additional numerical results in this section. These results were omitted from the primary paper for space considerations. We expand on the results demonstrated in Figure 1 in several key ways. Figure 3 includes all omitted FashionMNIST results using the same experiment setup as shown in Figure 1.

We also include expanded parameter settings using otherwise the same setup as in Figure 1 again with 4 agents. Figure 4 repeats the optimizer comparisons demonstrated in Figure 1 with a wider variety of local update counts. Figure 5 repeats the experiments comparing the effect of local update counts on communication rounds shown in Figure 1 with Adam's update, while comparing AdaGrad's and AMSGrad's adaptive updates as well. Figure 6 compares varying values of Top-k compression for all three optimizer variants. We do not show training loss with these figures for space and clarity, while noting that the training loss plots would otherwise be consistent with those shown in Figures 1 and 3.

D.1 FashionNMIST Results

In Figure 3, we plot the results for the same experiments on FashionNMIST as performed and displayed for CIFAR-10 and tiny-shakespeare in Figure 1 in the main body of the paper. For these results, Top-k compression of 30% is used. The primary observations in this figure are consistent as with Figure 1. We generally observe little to no degradation of accuracy and loss performance, even when including local updates and Top-k compression. In particular, FashionMNIST suffers less in terms of quality impacts when including compression and minimizing communication than the two other benchmarks.

D.2 Additional Optimizer Comparisons

In the main body of the paper, Figures 1a and 1b compare optimizer performance for a fixed value of K=20. Figure 4 repeats these experiments with additional values of K=2,5,10,50, using 4 agents. Shown are test accuracy/validation loss with compression values of 30%, 40%, and 50% for FashionMNIST, CIFAR-10, and tiny-shakespeare, respectively. We overall again observe consistent results as with Figure 1, where Adam outperforms other optimizers on FashionMNIST and tiny-shakespeare and AdaGrad outperforms other optimizers on CIFAR-10. Likewise, SQuARM-SGD consistently lacks in generalization performance on the GPT language model with the tiny-shakespeare dataset.

D.3 Additional Number of Local Updates Comparisons

In Figure 5, the experiments using Adam in Figures 1c, 1d, and 3b are repeated with the AdaGrad and AMSGrad adaptive updates. For each optimizer and benchmark dataset, we plot the accuracy or validation loss that results with local updates of K = 1, 2, 5, 10, 20, 50. Again, we use Top-k compression values of 30%, 40%, and 50% for FashionMNIST, CIFAR-10, and tiny-shakespeare. Likewise, we note that accuracy performance is minimally affected by the number of local updates used in these tests.

D.4 Additional Top-k Compression Comparisons

We fixed Top-k compression values for each dataset for the bulk of the experiments demonstrated thus far, to avoid a parametric explosion in the number of results presented. Figure 6 demonstrates that a different choice of Top-k compression in the same order of what was used has minimal impact on the overall optimizer performance and resultant appearance in plots. In Figure 6, we fix K=20 and vary Top-k to 30%, 40%, 50%, and 60% for each optimizer (Adam, AdaGrad, AMSGrad) and dataset (FashionMNIST, CIFAR-10, tiny-shakespeare). We observe a reduction in total used communication volume scaling linearly with Top-k percentages, as expected, while accuracy and validation loss are relatively consistent across all tests.

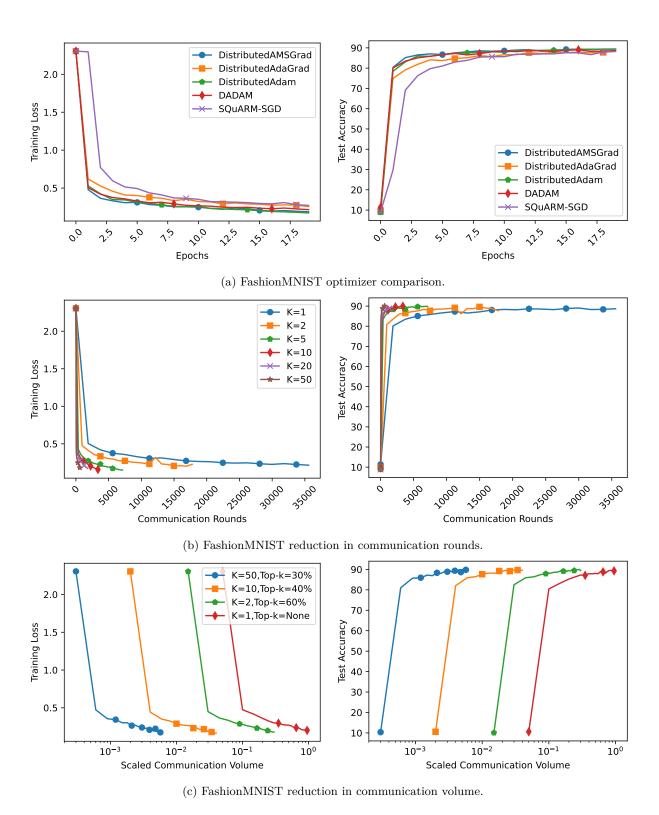


Figure 3: Convergence performance for FashionMNIST: Plotted above are the training loss and test accuracy of FashionMNIST. The top row compares optimizer performance with Top-k 30% compression and a local update count of K=20. The middle row demonstrates the reduction in communication rounds based on the number of local updates with Top-k compression of 30%. The bottom row compares the total communication volume scaled relative to the uncompressed baseline with no local updates.

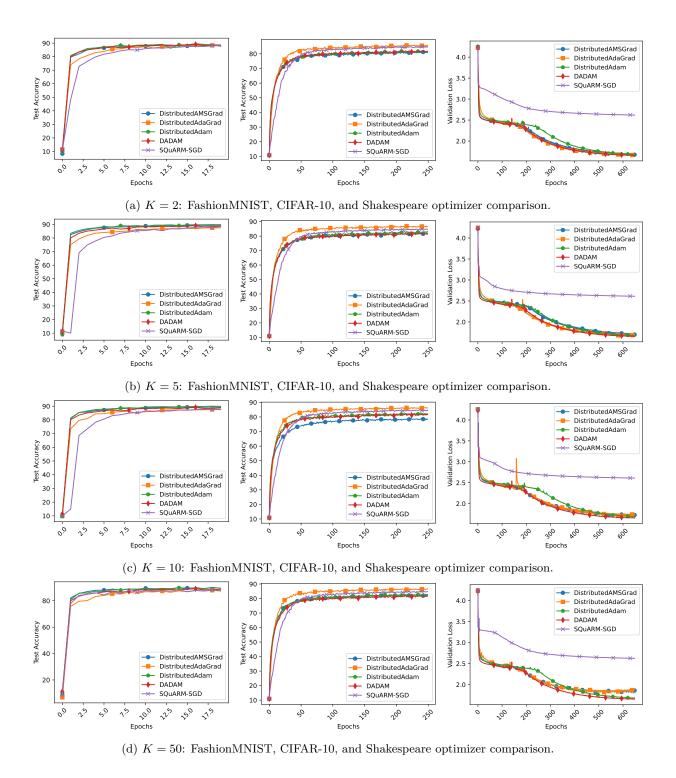
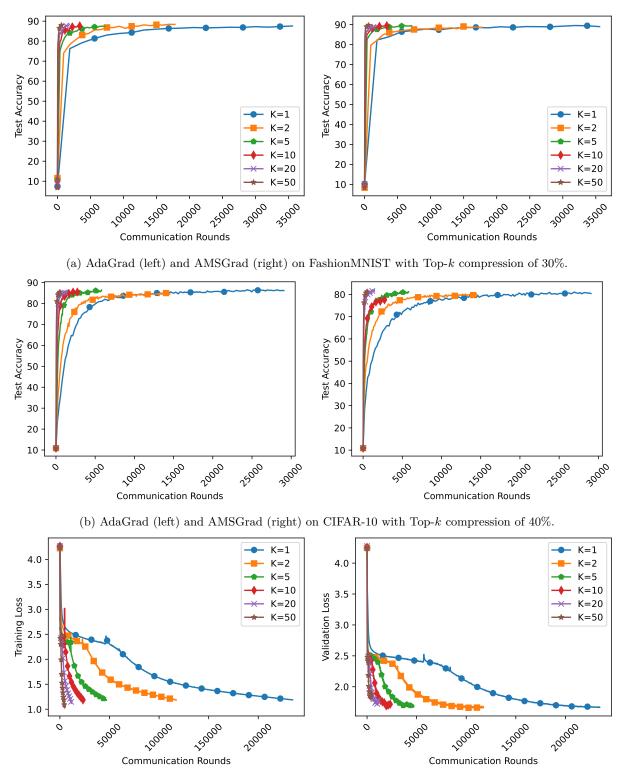
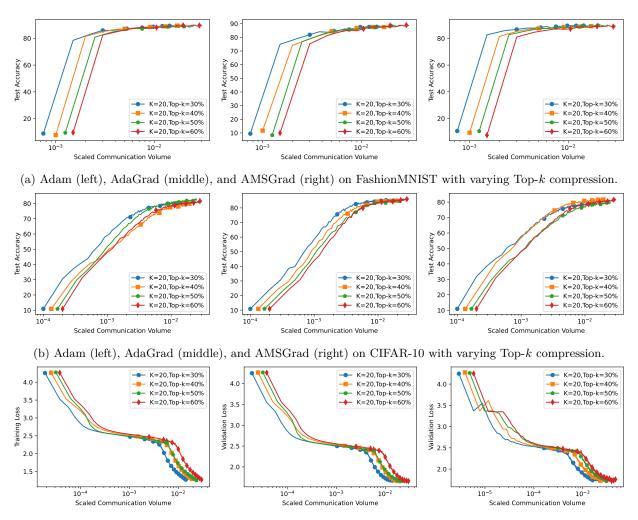


Figure 4: Additional optimizer comparisons: Plotted above are accuracy (for FashionMNIST and CIFAR-10) and validation loss (for tiny-shakespeare) for the tested optimizers across a range of local update counts K. For each subplot, FashionMNIST is on the right, CIFAR-10 is in the middle, and tiny-shakespeare is on the right.



(c) AdaGrad (left) and AMSGrad (right) on tiny-shakespeare with Top-k compression of 50%.

Figure 5: Additional number of local updates comparisons: Plotted above are accuracy (for FashionMNIST and CIFAR-10) and validation loss (for tiny-shakespeare) using AdaGrad (left) and AMSGrad (right), comparing across a range of local update values K.



(c) Adam (left), AdaGrad (middle), and AMSGrad (right) on tiny-shakespeare with varying Top-k compression.

Figure 6: Additional Top-k compression comparisons: Plotted above are accuracy (for FashionM-NIST and CIFAR-10) and validation loss (for tiny-shakespeare) using Adam (left), AdaGrad (middle), and AMSGrad (right), comparing across a range of Top-k compression values.