Under review as submission to TMLR

LoDAdaC: a unified local training-based decentralized
framework with Adam-type updates and compressed com-
munication

Anonymous authors
Paper under double-blind review

Abstract

In the decentralized distributed learning, achieving fast convergence and low communica-
tion cost is essential for scalability and high efficiency. Despite extensive research, existing
decentralized methods can either have fast convergence or enjoy low communication cost
but cannot achieve both goals simultaneously. This disadvantage causes significant ineffi-
ciency (either in computation or communication) in solving large-scale decentralized learning
problems, e.g., in large language model training. To address this limitation, we propose Lo-
DAdaC, a unified multiple Local Training (MLT) Decentralized framework with Adam-type
updates and Compressed communication (CC). LoDAdaC accommodates a broad class of
optimizers for its local adaptive updates, including AMSGrad, Adam, and AdaGrad; it is
compatible with standard (possibly biased) compressors such as low-bit quantization and
sparsification. MLT and CC enable LoDAdaC to achieve multiplied reduction of communica-
tion cost, while the technique of adaptive updates enables fast convergence. We rigorously
prove the combined advantage through complexity analysis. In addition, experiments on
image classification and large language model training validate our theoretical findings and
show that LoDAdaC significantly outperforms existing decentralized algorithms in terms of
convergence speed and communication efficiency.

1 Introduction

In decentralized learning, multiple agents collaboratively train a model without a central server, by exchang-
ing information exclusively with immediate (a.k.a. one-hop) neighbors. Compared to centralized distributed
learning, decentralized learning has better robustness and scalability. However, communication cost can
become a bottleneck in decentralized learning, especially when low-bandwidth or wireless communication is
performed. This motivates the design of communication-efficient decentralized algorithms.

Two widely adopted strategies to reduce the communication burden in distributed learning are Compressed
Communication (CC) and Multiple Local Training (MLT). By CC, the agents transmit compressed informa-
tion rather than full-precision one, significantly reducing per-round communication cost. Examples include
low-bit quantization (Sun et al., |2020; Wang et al.| |2018; |[Bernstein et al., |2018; |Alistarh et al., 2017) and
sparsification (Koloskova et al. [2019; |Stich et al, |2018). CC also provides implicit privacy protection: by
transmitting the compressed message, agents inherently obscure precise local data information, thus miti-
gating potential privacy risks (Kairouz et al.l |2021). On the other hand, MLT, which involves performing
several local updates per communication round, has gained popularity in various distributed learning set-
tings. Prominent examples include local SGD (Haddadpour et all [2019), SGD averaging (Zhang et al.,
2015), and, notably, Federated Averaging (FedAvg) (McMahan et all 2017), a widely employed method
in federated learning (FL). Empirically, MLT significantly reduces the number of communication rounds
required to achieve a target convergence threshold. Moreover, from a privacy perspective, MLT further
enhances security by reducing the frequency and amount of sensitive information exchanged among agents,
thus limiting potential data leakage (Li et al. 2020; Kairouz et al.l 2021]).

Under review as submission to TMLR

Both CC and MLT have been explored in vanilla and momentum SGD (Singh et al., 2021} |Sun et al., 2022,
and it is shown in (Singh et al.| [2021]) that multiplied reduction of communication can be achieved. However,
adaptive (i.e., Adam-type) stochastic methods (Kingma & Bay, 2014)) exhibit significantly faster convergence
than vanilla or momentum SGD on training deep learning models and are now the workhorse for training
large language models (LLMs). Hence, it is natural to ask the following question:

Can CC and MLT be applied in decentralized Adam-type methods to simultaneously
achieve multiplied reduction of communication and fast convergence?

Q)

1.1 Contributions

This work provides an affirmative answer to the question . We propose LoDAdaC, a Local training-
based Decentralized framework with Adaptive gradient updates and Compressed communication. Our
local update scheme includes both the vector and matrix variants of AdaGrad (Duchi et all |2011)), Adam
(Kingma & Bay, 2014), AMSGrad (Reddi et al.| |2016)), and the recently proposed Adam-Mini (Zhang et al.|
2024). The integration of CC and MLT enables a multiplied reduction of communication cost while adaptive
gradient updates further yield fast convergence.

A central technical contribution of our work lies in resolving the core analytical challenge introduced by the
interaction of MLT, CC, adaptive gradient updates, and decentralized communication: their coupling makes
it difficult to derive a unified upper bound on the consensus error and stationarity violation. In particular,
local adaptive gradient updates introduce nonlinearity and dynamically varying gradient scaling, which
complicate the analysis even in centralized settings (Wang et al. |2022b). When combined with decentralized
model aggregation, these properties pose significant technical obstacles to convergence analysis. Our analysis
carefully disentangles the coupling, leading to tight convergence guarantees under mild conditions and offering
the first such results for this challenging setting. By performing K local updates per communication round
and utilizing a compression operator that compresses one unit of message to 1 — n unit with n € (0, 1), our
algorithm needs a total communication cost of O(}(_EZ) to produce an e-stationary solution, thus yielding
multiplied reduction of communication cost. Notably, the result applies uniformly across different choices of
compressors and adaptive updates.

In addition, we conduct numerical experiments on two representative tasks, i.e., image classification and
language model training, to validate the effectiveness of LoDAdaC. Though our complexity result has the
same order dependence on € as achieved by existing non-adaptive stochastic methods such as SQuARM-
SGD, our numerical results demonstrate that LoDAdaC achieves significant speed up by adaptive gradient
updates and significant communication reduction from combining MLT and CC. Specifically, our experiments
illustrate that: (i) LoDAdaC equipped with adaptive gradient updates significantly outperform the baseline
decentralized algorithm SQUARM-SGD (that employs momentum gradient update) in terms of convergence
speed; (ii) The joint use of MLT and CC reduces the total communication cost dramatically, achieving
reductions of over 99% in some scenarios (e.g., see the results yielded by LoDAdaC with K = 50 and Top-
k=30% in Figures and , with nearly no sacrifice of accuracy. These empirical findings align closely
with our theoretical results.

1.2 Problem formulation and technical assumptions

We consider decentralized nonconvex stochastic optimization in the form of

n

1

min f(x):= — i(x), with f;(x) = E¢, wp, | F; (X,&)]. 1

i, 1) = 1 30) with £i) = B, [F (&) 1)

Here, n agents, connected via a communication graph G, collectively minimize the objective function f as

the average of local functions {f;}, each of which is defined as an expectation over a data distribution D;.

Each agent i € {1,2,...,n} exclusively accesses its local function f; and stochastic gradients VF;(x,&;), and
collaboration occurs through communication with immediate neighbors.

Under review as submission to TMLR

To perform decentralized computation, each agent ¢ € {1,2,...,n} maintains a local copy x; of the decision
variable x. Let X = [x1,Xa,...,X,] € R¥*". The problem can be equivalently reformulated as

n

> filxi), st X =XW, (2)

i=1

. 1
min —
XcRdxn N,

where W is a mixing (a.k.a. gossip) matrix that governs how agents aggregate local information.

Throughout the paper, we make the following standard assumptions.

Assumption 1 For eachi € {1,2,...,n}, the function f; is L-smooth, i.e., |V f;(x)— Vfi(y)|I< L||x -y,
for any x,y € R, and f is lower bounded, i.e., f* := min, f(x) > —oc.

Assumption 2 For the mizing matric W, it holds (i) W is doubly stochastic, i.e., W > 0, W1 =1 and
1"W = 17; (ii)) W;; = 0 if i and j are not neighbors to each other; (i) Null(W — I) = span{1} and
p = ||W —=J||2< 1, where 1 is an all-one vector, 1 is the identity matriz, and J = %

In Assumption [2] the condition p < 1 is critical to achieving convergence, as it ensures that information
propagates effectively across the network. The choice of W depends on the underlying communication graph
G, and several well-established constructions exist (Koloskova et al., [2019; [Mancino-Ball et al., |2023; Nedi¢
et al.}2018). In particular, it is shown in (Xiao & Boyd}|2004) that an optimal mixing matrix can be designed
to minimize p while satisfying the constraints in Assumption [2]

1.3 Notations and definitions

We define [T] = {0,1,...,T — 1} and use ||| to denote the Euclidean norm for vectors and the Frobenius
norm for matrices. The spectral norm of a matrix A is denoted by ||Al|2. For two vectors a and b of the same
dimension, ¢ and a o b denote componentwise division and multiplication, respectively, while \/c applies
the square-root operation elementwise to a nonnegative vector ¢. X; = X(I — J) denotes the consensus
error matrix and = %Xl for the average of all local decision variables. E; takes the expectation over the

random samples {&/ };c(1,2,....n} conditional on the ¢-th iterate, while E takes the full expectation.

Definition 1.1 We call Q an n-compression operator, if it holds Eo [||x — Q[x]||?] < n?||x||? for some
n €[0,1) and all x € RY,

Examples of n-compression operators include Random-k (Stich et al., [2018)), Top-k (Aji & Heafield} [2017)),
and the rescaled quantizations (Chen et al., 2023a); see more examples in (Chen et al.l [2023a; [Koloskoval
et al.l |2019). When n = 0, Q simplifies to the identity operator.

Definition 1.2 We say that X is an e-stationary point, in expectation, of the decentralized problem (@ if
E[IVf@)*] +E [IXL]?] <€

2 Related work

In this section, we review existing works on distributed stochastic gradient methods (SGMs) in either a
centralized or a decentralized setting for solving nonconvex problems. Additionally, we review methods
developed for distributed learning with MLT and CC.

2.1 Centralized or decentralized (stochastic) adaptive gradient methods

Adaptive SGMs are among the most popular stochastic algorithms for training nonconvex deep learning
models. In practice, adaptive SGMs such as AdaGrad (Duchi et al., [2011)), Adam (Kingma & Bal [2014),
and AMSGrad (Reddi et al., 2016) are more effective compared to a nonadaptive SGM.

Efforts have been made to integrate adaptive gradient updates into distributed optimization.|Hou et al.| (2018))
propose a distributed Adam for convex problems, while (Chen et all) 2020; |Zhao et al., |2022)) introduce

Under review as submission to TMLR

locally adaptive algorithms for centralized distributed training. The compressed centralized distributed
Adam variants are explored in (Chen et all [2021} [2023a)). A centralized distributed AMSGrad is studied in
2022), and a compressed version is presented in (Wang et al) [2022a). The decentralized Adam
variant, DADAM, was introduced in (Nazari et al.,[2022)), providing convergence results for both convex and
nonconvex problems. However, subsequent analysis by (Chen et all, 2023b) reveals that DADAM may not
converge to a stationary point in nonconvex settings. To address this limitation, (Chen et al., 2023bj; [Wang|
propose some other decentralized adaptive gradient methods.

Despite these advancements, distributed learning with multiple local adaptive gradient updates has been
explored only in a centralized setting. [Xie et al.| (2019) propose AdaAlter, which employs local adaptive
updates on the client side. Similarly, [Reddi et al.| (2020)) extend FedAvg by incorporating three types of
local adaptive gradient updates to improve optimization performance. More recently, FedLADA
introduces momentum-corrected adaptive updates, and FedAMS, along with its corrected variant
FedCAMS (Wang et al., [2022b]), stabilizes local AMSGrad updates to ensure convergence. However, decen-
tralized distributed learning with multiple local adaptive gradient updates remains unexplored. Though [Gao|
attempt to study a decentralized distributed method with multiple local Adam updates,
they conduct analysis only to the case without first-order momentum. In addition, their convergence rate
results in Corollary 1 and Corollary 2 are obtained by implicitly assuming B2 = 0, i.e., no second-order
momentum either.

2.2 MLT in distributed learning

MLT is a simple yet remarkably effective communication-saving strategy in distributed learning, where
clients perform several local updates—rather than a single one—between successive communication rounds.
A foundational method that employs MLT in centralized distributed learning is FedAvg, with numerous ex-
tensions including FedAvg with local momentum , server momentum , and
adaptive FedAvg (Reddi et al. [2020)). Recent theoretical advancements have clarified why MLT effectively
reduces communication complexity in centralized distributed learning (Kairouz et al. 2021} |Li et al., |2020)).
These results have been rigorously established across a wide range of local update strategies, including stan-
dard SGD (Haddadpour et al.l 2019; Spiridonoff et al., 2021; |Stich, |2018} |Yu et al.,2019), momentum-based
methods (Karimireddy et al., 2020; |Sun et al.| |2024), and adaptive gradient methods (Reddi et al., [2020;

et al} 2019).

In decentralized distributed learning, early work has primarily focused on algorithms using simple local SGD
updates. For example, Xing et al.| (2020) propose a decentralized federated learning framework for medical
applications, operating without a central server in a dynamic peer-to-peer network. Similarly,
explore decentralized learning using a Bayesian-inspired belief update mechanism over connected
networks. Further analyses in (Koloskova et al., {2020} |Sun et al.| 2022 Wu et al., 2025} |Li et al., [2019)) have
demonstrated that incorporating MLT with multiple local SGD updates can also reduce communication
complexity in a decentralized distributed setting.

2.3 MLT+CC in distributed learning

Combining MLT and CC, while simultaneously retaining their respective benefits, is notably challenging. In
a centralized distributed setting, several recent algorithms successfully integrate these strategies, including
CompressedScaffnew (Condat et al., [2022)), LoCoDL (Condat et al., 2025), FedCOM (Haddadpour et al.,
2021), FedPAQ (Reisizadeh et al., 2020, and Qsparse-Local-SGD (Basu et all [2019). They leverage the
advantage of both MLT and CC, achieving a multiplied reduction of communication complexity.

Despite these developments, few algorithms leveraging MLT+CC have been proposed in the context of
decentralized distributed learning. Extending theoretical guarantees to the decentralized setting introduces
substantial challenges due to the absence of a central coordinator. Complications arise from network topology
constraints, the need for peer-to-peer communication, and heterogeneity in local data and model states.
These factors make the convergence analysis significantly more intricate and have historically limited the
rigorous understanding of MLT+CC in decentralized settings.

Under review as submission to TMLR

MLT Methods CC AG #Iter CommCost MLTsave CCsave
" PD-SCD (Ge & Chang, 2023) x «x 1 i 7 -
© LSCT (Li et al} 2019) X X o . ~
m (Sun et al., |2022) v X max{§7 1254 3 max{ 1;457 (1—5‘;)64 3 X v
m (Singh et al.; 2021) v X 4 nl%ll v/ v/
WFL(Chen et al.:2024) v X max{ir, Kj?ji " max{ i, (1_32K2S4 1 X X
"~ LoDAdaC (this paI;er) v / 4 L 4 v/

Table 1: Comparison between the proposed method and selected approaches that use MLT for nonconvex
decentralized distributed learning. “CC” indicates whether compressed communication is employed; “AG”
denotes the use of adaptive gradient updates; “#Iter” specifies the number of total iterations (per agent) to
obtain an e-stationary point of problem , see Deﬁnition “CommCost” refers to the total communication
cost, where each communication round incurs a unit cost in the absence of compression; “MLTsave” indicates
whether the number of communication rounds can be theoretically reduced by employing MLT; and “CCsave”
reflects whether the total communication cost can be effectively reduced by compression. Here, the O(-)
notation is omitted in the table, € is assumed to be sufficiently small, and the number of local steps K is at
most O(e~1). *s refers to the compression error given in (Sun et al.,[2022), satisfying Eg [[|x — Q[x]||*] < s?d.

DFedAvgM from (Sun et al., 2022), SQuARM-SGD from (Singh et al. [2021), and LM-DFL from (Chen
et al., [2024) are closely related to our method. DFedAvgM extends decentralized FedAvg by incorporating
momentum-based local updates and CC. However, DFedAvgM is unable to reduce the order of total com-
munication rounds through MLT and can only mitigate the effect from local variance of stochastic gradients
when no momentum is applied. In addition, using CC will hurt the complexity result of DFedAvgM to
obtain an e-stationary point unless the compression error is controlled in O(e?), which is a too-restrictive
assumption. Without relying on such restrictive assumptions, a general convergence result is established
to LM-DFL that incorporates both MLT and CC. However, LM-DFL is also unable to reduce the order of
total communication rounds through MLT. It is proved in (Singh et al., |2021)) that using MLT can reduce
the order of total communication rounds by SQuARM-SGD. However, its analysis relies on the additional
assumption that the mixing matrix W is symmetric. In addition, SQUARM-SGD uses momentum gradient
updates, yielding siginificantly slower convergence than LoDAdaC that adopt adaptive gradient updates, as
we demonstrate in Section [d] Moreover, our work provides a unified framework that encompasses a broader
class of decentralized methods, including (compressed) local SGD, local momentum methods, and local adap-
tive gradient methods such as Adam, AdaGrad, and AMSGrad. Our analysis holds under mild assumptions,
thus significantly broadening the applicability of MLT+CC-based decentralized learning to practical, large-
scale problems. Detailed comparisons are summarized in Table [II We notice that the complexity result of
our method is in the same order as that of SQUARM-SGD. However, with adaptive gradient updates, our
method is able to achieve significantly faster empirical convergence, in particular for training large language
model.

3 Decentralized adaptive methods with MLT and CC

In this section, we introduce a unified decentralized framework that integrates multiple local adaptive gradient
updates with compressed communication. It is named LoDAdaC. Also, we provide convergence guarantees
for the proposed algorithm under general nonconvex settings.

3.1 A unified algorithmic framework

We present the pseudocode of our framework in Algorithm For simplicity, we take a single randomly
sampled data point & at each iteration. All our theoretical results remain valid by taking a mini-batch of
samples.

B << SNV R

o]

10

11

12

Under review as submission to TMLR

In addition to Assumptions we make the following assumption, which is standard in the analysis of
both distributed and non-distributed adaptive SGMs (Chen et al.l |2019; |2023b; |Kingma & Bal, 2014; Reddi
et al.l 2018} [Xu et al., [2023).

Assumption 3 The random samples {{!}i +>0 are independent. For each t and i € {1,2,...,n}, it holds
E:[g!] = Vfi(xl). In addition, there are constants B and Be, such that ||gt|| < B, ||g}|l,, < Beo for any
i€{1,2,...,n} and any t, and |V fi(x)|| < B, [|Vfi(x)| ., < B for all x.

los

The unbiasedness condition E;[g!] = V f;(x!) is standard in the literature of stochastic methods (Lan) 2020)).
Compared to a gradient-variance-boundedness assumption (i.e., there is o > 0 such that E[||g{ —V fi(z!)|?] <
0?) made for analyzing a non-adaptive stochastic gradient method, the gradient-boundedness condition in

Assumption |3 is stronger. Nevertheless, such an assumption is standard for Adam-type methods (Chen
et al.|, 2023b).

Algorithm 1: A Local training-based Decentralized framework with Adaptive gradient updates and
Compressed communication (LoDAdaC)

Input: > 0,0< 6, <1, >0,0 <~ <1, amaximum number T of communication rounds, a
number K of local training steps per communication round, a n-compression operator Q, d-dimension
vector-value functions {r;}, and a mixing matrix W;

Letxl == =20 =20 =2) =-.. = 2% = 2°, and set m;l,and u;l to 0 for each i.

fort=0,1,---,TK —1 do

for all agents i € {1,2,...,n} in parallel do

Obtain one random sample ! and compute a stochastic gradient g! < VF; (x!, &!);

Let m! = gym!™' + (1 - B1) gt;

Let ul =r(g%,g},...,0));

Update P P SN | S

if mod(t+ 1, K) =0, then

t+1 t t+3g t t+1 t+3 t+1 t+1
t Set x;"" =z + Q[mz : - @z] and mi+ =z * JF'Y(Z;L:l Wji@j+ *@ﬁ)-

else

t4+1
L Update /™! = ;"2 and /™' = .

The condition in line 9 of Algorithm [I] indicates that neighbor communication happens every K iterations,
namely, K local updates are performed per communication round. In addition, we only need to communicate
the compressed vectors to obtain Z?:1 Wﬂ@?l, as explained below. For each i = 1,2,...,n, let agent 4

maintain a vector y; and initialize it as y{ = 2. Then, for all ¢t > 0, let yEH =yt if mod(t+1,K) # 0,

1 1
and yf“ =yl + Z?:1 W;, 0 [x?rz — gﬂ otherwise. This way, we have xf“ = X;JFQ + (yﬁ"‘1 — KE‘H) and

thus enable the reduction of communication cost by only communicating compressed message.

With appropriate parameter 8; and vector function r;, the local update of LoDAdaC in line 8 of Algorithm
encompasses several well known optimizers as special cases. As we demonstrate in Section[3.2] our theoretical
results apply to all optimizers listed in Table 2}

3.2 Convergence analysis

In this subsection, we establish the convergence rate results of Algorithm [I| We first derive a consensus error
bound in Lemma [3.1] This bound is essential because it explicitly characterizes the relationship between
the consensus error and key algorithmic parameters, including the step size «, MLT steps K, compression
error 17 of @, and the spectral gap p of the communication graph. Such a characterization allows us to
rigorously analyze how MLT and compression impact the convergence speed. Then we establish a bound
in Theorem [3.1] on the objective gradient at averaged points. This bound enables us to show the final
convergence rate results of our algorithm with several specific choices of popular adaptive updates. All
proofs are given in the appendix.

Under review as submission to TMLR

Optimizer Description

Vanilla SGD B =0and r, =0, i.e., ul = 0 for all 7 and ¢

Momentum (Heavy-ball) SGD | 3; € (0,1) and r; = 0, i.e., ul = 0 for all i and ¢

AMSGrad al = Boul ™' + (1 — Ba)glogt, ul=max{ul™t ul},
A;l =0, and 3 € (0,1)

Adam ul = Boul™' + (1 — Ba)gl o gt, with By € {\/T—Vq;(ﬁp 1)

Adam-mini ul = ﬁgu;‘f*l +(1— f2)mean(gfog!), with 35 € [#4—1’ 1)

AdaGrad uf = t% Zi:o g; ©9;

Table 2: Representative optimizers of Algorithm (1| with specific selections of 5, and ry

Lemma 3.1 Under Assumptz'ons E let 0 < v < %. Then the sequence {wt}TK L generated by
Algorithm [1] satisfies

TK-1
56 80 15
E : < a’nK*C B* 1.
TK [} o*nK?C, where C := ST =p) (7(1/))—1—1772) d (3)

Theorem 3.1 Suppose that Assumptions hold and ||ull|w< By, for allt > 0 and i € {1,2,...,n}, for
some By, > 0. Let C denote the constant defined in and o,y > 0 satisfy

g (1-=p)(1—n*
<99 < TP
Y= RIVB, 1o 100

TK=1 generated by Algorithm |1 satisfies

Then the sequence {x'};

TK-1

4\/372

oTK o2L%B2B2

V@) IP] <E[f (=) -]+ 8B, + 0 6(1 — 31)?

2

afiBl, et & 1 1
+ o (4\/Bu+ +aL) = .
(1= B1)? P L \/uéf2 +4 \/uffl +6 (5)
2
+a’L A rkB? + %azTané
né no
1? /\/B, 1 TEL 03321282 (B, 1
+a<+6+) 2TnK3C'+Z b1 (L)
” 5 Wi 51—)2 5 WG

For each optimizer listed in Table[2| we are able to show the condition ||u!||«< By,Vt, Vi for some constant

2
TK-1 .
Sito = 1 L is bounded; see Lemma |A.
245 JulTl4s

[3:1] we specify the choice of @ and obtain the convergence rate of Algorithm [I] by different ways of defining
the second momentum term u! in line 7 of Algorithm

B,, and that E Thus by Theorem

Theorem 3.2 Under Assumptions @ let 6 = O(1) be a universal positive constant and C be the constant
defined in (@ Choose T and K such that o and v > 0 satisfy

4 2
40/n(B5 +9) \wgmin #71 L oy TP T (6)
JVTK 4SL\/BL +0 100

o =

Under review as submission to TMLR

t}TK 1

where = O(1) is a constant. Then for the sequence {x generated by Algom'thm with any optimizer

in Table[3, we have

TK-1

xf) — f* n nKC
"y > E[me 2], ||2}—0(%+M+ ?C))

3.3 Linear speed up, topology independence, and communication reduction

Based on the convergence rate results in Theorem [3.2} we discuss how the number n of agents, the number K
of local updates, and compression ratio 1 — 7 affect the iteration complexity and communication complexity
of our algorithm to produce an e-stationary point in expectation.

Linear speed up and topology-independent step size. By and the definition of C in , if

n3K3
r=9 (w0)

then @ =0(—=), 7= = O(anK), and we obtain

TlKKZ B 197 @) 41X =0 (=))

Letting 7 be selected from {0,...,7K — 1} uniformly at random, we have from @ that
E[[|Vf@E)]2+2X7 1] = (\/17K> Hence, to obtain an e-stationary point in expectation, the total
number of local iterations per agent is TK = © (ne4)

Given K, we have T = © (nK€4); when ¢ = O (“_p)nié(l_y’z)), the chosen T will satisfy and the first

inequality in @ holds. Thus in this case, we obtain a linear speed up with respect to n, and the step size
a = O(ne?) and is independent of p and 7.

Multiplied reduction of communication cost. For a small enough ¢ > 0, we can further reduce the

order of communication rounds by picking K. Suppose € = O ((W) V) for some v € (0,1). Then

we can choose K = © (e_1+”) and T =0 (ﬁ%), which satisfies . This way, compared to performing a

single local update, i.e., K = 1, we reduce the number of communication rounds by an order of e '*¥. In
addition, by using an n-compression operator, our algorithm only needs 1 — n of communication amount as
compared to using no compression. Therefore, the total communication volume required by our algorithm
is © (3+V) achieving multiplied reduction of the total communication cost.

4 Numerical experiments

In this section, we demonstrate the efficacy of the proposed framework over a set of numerical experiments.
We consider three standard benchmarks, including training a convolutional neural network LeNet5 (LeCun,
et al., [1998) on the FashionMNIST dataset (Xiao et al.,[2017)), a resnet architecture Fixup-ResNet-20 (Zhang
et al., [2019)) on the CIFAR-10 dataset (Krizhevsky et al., 2009)), and a small-scale 10.7M parameter GPT
model, from nanoGPT (Andrej, [2022), on the tiny-shakespeare dataset. We will show the performance of
LoDAdaC equipped with the following adaptive gradient updates: AdaGrad, Adam, and AMSGrad on ho-
mogeneously distributed training data. We will compare LoDAdaC against SQuUARM-SGD (Singh et al.|
2021), which incorporates compressed communication and local training with a momentum-based SGD.
Our methods improve over SQUARM-SGD with the addition of an adaptive update. We provide an addi-
tional comparison against DADAM |Nazari et al.| (2022)), which represents methods with decentralized and
compressed communication but always with a single local update per communication round.

Under review as submission to TMLR

~
o

—e— DistributedAMSGrad

DistributedAdaGrad
—e— DistributedAdam
—4— DADAM

—e— DistributedAMSGrad

DistributedAdaGrad
—e— DistributedAdam
—4— DADAM

w
»

—e— DistributedAMSGrad

DistributedAdaGrad
—e— DistributedAdam
—4— DADAM

215 >~ SQUARM-SGD EGD g ~>— SQUARM-SGD g ~>— SQUARM-SGD
- 5 330 -
o g 50 = 530
E 1o p :E 25 g
g g4 —e— DistributedAMSGrad g~ 2
30 DistributedAdaGrad 20 >25
0.5 —e— DistributedAdam)
20 —4— DADAM 2.0

—%- SQUARM-SGD

~
Epochs

© $ o
~ 4 4

Epochs

(a) CIFAR-10 optimizer comparison.

$
S
Epochs

$
S
Epochs

(b) tiny-shakespeare optimizer comparison.

—— K=1
—e— K=1 80 B g B 4.0 K=2 4.0
2.0 E:i 70 us —— K=5
- k=10 P —4+- K=10 035
" = 560 2 - K=20 8
215 - K=20 8 330 —— K=50 p
2 —»— K=50 350 2 S 3.0
El g = k]
€ <40 5 25 o =
510 g = S 25 -
£ © 20
30
05 2 15 2.0
10
° ® ®) ® ° ® o o ®
° &Qe &Qe %&b §§° @o& Q@b 9&0 &Qu @a &QQ &@ &Qe @Q:: &@
~ ~ * % 5 < ¥ w ~ ~ &

Communication Rounds

Communication Rounds

(c) CIFAR-10 reduction in communication rounds.

2.00
175
1.50

£12s

glnu

5
go7s

~8— K=50,Top-k=30%

K=10,Top-k=40%
—#— K=2,Top-k=60%
—4— K=1,Top-k=None

Communication Rounds

Communication Rounds

(d) tiny-shakespeare reduction in comm. rounds.

&

PO
8

Test Accuracy

o

Training Loss
o

~o— K=50,Top-k=30%

K=10,Top-k=40%
—o— K=2,Top-k=60%
—— K=1,Top-k=None

Validation Loss

0.50

0.25

0.00

10 10° 102 107! 10°
Scaled Communication Volume

10 10° 102 107! 10° 1075
Scaled Communication Volume

1072 1072 107t 10° 1073
Scaled Communication Volume

107 1072 102 107! 10° 10

Scaled Communication Volume

(e) CIFAR-10 reduction in communication volume. (f) tiny-shakespeare reduction in comm. volume.

Figure 1: Convergence performance: Plotted above are the training loss and test accuracy of CIFAR-10
(left) and training loss and validation loss on tiny-shakespeare (right). The top row compares optimizer
performance. The middle row demonstrates the reduction in communication rounds based on the number of
local updates. The bottom row compares the total communication volume scaled relative to the uncompressed
baseline with a single local update per communication round.

We implement all of these methods in PyTorch. For FashionMNIST and CIFAR-10, we run our experiments
on a CPU server. This server has two-way 64-core (256 threads) AMD EPYC 7742 CPUs at 2.25GHz and
2TB DDR4 memory. For tiny-shakespeare on nanoGPT, we run the experiments on a separate server with
4 NVIDIA A100 GPUs. Both test systems have Python 3.12.3 and PyTorch 2.7.0+cul26 installed, running
on top of Ubuntu 24.04.2 LTS.

We will compare training loss and test accuracy as well as validation loss for the GPT model. We will compare
these values relative to the number of communication rounds and the communication volume. We ran a
significant parametric study, evaluating possible parameters within: local updates K = [1,2,5, 10, 20, 50],
optimizers = [AdaGrad, Adam, AMSGrad, DADAM, SQuARM-SGD], Top-k compression = [30%, 40%,
50%, 60%, None]. We use a ring topology with 4 agents for communication. We will show a representative
selection of these results below on CIFAR-10 and tiny-shakespeare, with FashionMNIST and the rest of the
results appearing in the appendix. We use a batch size of 64 for the CIFAR-10 and FashionMNIST datasets
and a batch size of 128 for training the GPT model. We initialize the learning rate to 0.001 for AdaGrad,
Adam, and AMSGrad on CIFAR-10 and FashionMNIST and use 3 values of 51 = 0.9, 2 = 0.999 for Adam
and AMSGrad. We use a learning rate of 0.0001 on tiny-shakespeare. We tune the learning rate to 0.01 for
SQUARM-SGD on CIFAR-10 and FashionMNIST and 0.005 on tiny-shakespeare — higher learning rates,
such as the recommended learning rates of 0.1 and 0.2 from (Singh et al., |2021)), did not converge with a
number of tests when using our Top-k compression operator.

Under review as submission to TMLR

4.1 Optimizer Comparison

We first compare the performance of different optimizers with n = 4 agents with a fixed local updates per
communication of K = 20 and Top-k compression of 40% and 50% for CIFAR-10 and tiny-shakespeare,
respectively. We display these results in Figures [Ta] and [[b] We compare against SQuUARM-SGD and
DADAM as our baselines for this set of experiments.

We observe that SQUARM-SGD is slightly slower to converge on CIFAR-10 with the given hyperparameters,
but it achieves a similar test accuracy. Its performance in terms of validation loss is significantly worse on the
GPT model, a known issue of training language models with non-adaptive momentum SGD methods (Zhao
et all |2025). We note that across these experiments, AdaGrad and Adam are generally most performant
overall, though the performance of all methods contained within our framework is relatively similar. As
such, we will focus on Adam in subsequent results.

4.2 Number of Local Updates

Our next set of experiments analyzes the effect of the number of local updates per communication on training
performance. Figures [Id and [Id] give results with Adam training on CIFAR-10 and tiny-shakespeare using
Top-k compression of 40% and 50%, respectively. We plot training loss and test accuracy/validation loss
against the total number of communication rounds for K =1 to K = 50. We run all experiments to the same
number of epochs, which gives a reduction in communication rounds proportional to K. For CIFAR-10, we
note only a 1% loss in maximum test accuracy with K = 50 local updates per communication compared
to the baseline K = 1 instance. On tiny-shakespeare, we likewise observe less than a 1% degradation of
minimum validation loss when comparing K = 50 to K = 1 local updates per communication. We observed
similar results with the same experiments on FashionMNIST in Figure [3]in the appendix.

4.3 Communication Volume

We continue our experiments by giving the relative proportion of communication volume used by our frame-
work with a selection of K and Top-k values, as compared to a K = 1 baseline without compressed communi-
cation. Figures[Ieand [T give such a comparison using Adam on CIFAR-10 and tiny-shakespeare. We overall
observe a significant reduction in communication volume at a relatively low cost to optimization quality. On
CIFAR-10, we observe no loss in quality between K = 2 with Top-k = 60% to K = 50 with Top-k = 30%,
despite a reduction in communication volume of 50x. Comparing K = 50 with Top-k = 30% to the baseline
with no compression or local updates, we note that we use only about 0.6% of the communication volume.
The maximum test accuracies across all experiments are within a few percent of the baseline. We observe
similar results on tiny-shakespeare when considering validation loss instead of test accuracy.

4.4 Larger Agent Counts and Differing Topology

We demonstrate the linear scaling of our method by running experiments with 4, 9 and 16 agents in a ring
and a 2D grid communication topology. Given in Figure |2 are plots of training loss and test accuracy for
CIFAR-10 when using Adam, AdaGrad, and AMSGrad optimization. We set K = 20 for all tests with
Top-k = 40% compression. We plot results for training loss and test accuracy and using a ring topology in
the left two columns and the 2D grid topology in the right two columns. The 2D grid topology is defined
as 3 x 3 for 9 agents and 4 x 4 for 16 agents. Note that the ring and grid topologies are equivalent for
4 agents. We observe relatively consistent results across all optimizers, with near-linear scaling in most
cases. Minimum achieved training loss and maximum test accuracy are also relatively close, similar to as we
previously observed in Figure [I] across varying K values.

5 Conclusion

We propose a local training based decentralized algorithmic framework with adaptive local update and com-
pressed communication. Convergence guarantees are established under mild conditions. The local update

10

Under review as submission to TMLR

—o— DistributedAdam:N=4,Ring
DistributedAdam:N=9,Ring
—e— DistributedAdam:N=16,Ring

- N
n o

o

Training Loss

PO
3

Test Accuracy

—e— DistributedAdam:N=4,Ring
DistributedAdam:N=9,Ring
—e— DistributedAdam:N=16,Ring

Training Loss

—e— DistributedAdam:N=4,Grid
DistributedAdam:N=9,Grid
—e— DistributedAdam:N=16,Grid

PO
& 3

Test Accuracy

Epochs

AN)
LS
Epochs

(a) Adam agent scaling with ring topology.

Epochs

Epochs

(b) Adam agent scaling with grid topology.

—e— DistributedAdaGrad:N=4,Ring
DistributedAdaGrad:N=9,Ring
—e— DistributedAdaGrad:N=16,Ring

~
o

0

Training Loss

o

90

PRI
&

Test Accuracy

—e— DistributedAdaGrad:N=4,Ring
DistributedAdaGrad:N=9,Ring
—e— DistributedAdaGrad:N=16,Ring

Training Loss

—e— DistributedAdaGrad:N=4,Grid
DistributedAdaG 9,Grid
—e— DistributedAdaGrad:N=16,Grid

90

PRt
&

Test Accuracy

—e— DistributedAdaGrad:
DistributedAdaGrad:
—e— DistributedAdaGrad:|

Epochs

N
~ o
Epochs

K:
Epochs

Epochs

(c) AdaGrad agent scaling with ring topology. (d) AdaGrad agent scaling with grid topology.

—&— DistributedAMSGrad:N=4,Ring
DistributedAMSGrad:N=9,Ring
\ —e— DistributedAMSGrad:N=16 Ring

- N
n °

o

Training Loss

90

—e— DistributedAMSGrad:N=4,Grid
DistributedAMSGrad:N=9,Grid
—e— DistributedAMSGrad:N=16,Grid

> " >
g oo 415 oo
3 50 ES g 50
< €10 <
% 40 e g o
& £ 8
30 30
—e— DistributedAMSGrad:N=4,Ring 05
20 DistributedAMSGrad:N=9,Ring 20
00 st 10 —e— DistributedAMSGrad:N=16,Ring 00 10
o) L) o) °] o) o) °) o) o)
° < N w“ g “ ® < o 2 ° <> 2 o 4

Epochs

Epochs

(e) AMSGrad agent scaling with ring topology.

Epochs

(f) AMSGrad agent scaling with grid topology.

Figure 2: Convergence performance: Plotted above are the training loss and test accuracy of CIFAR-10
when scaling to 4, 9, and 16 agents using ring topology (left two columns) and 2D grid topology (right two
columns). All experiments were run with K = 20 local updates per communication round.

of our framework encompasses several well-known optimizers as special cases, including vanilla SGD, mo-
mentum SGD, Adam, AMSGrad, AdaGrad, and Adamini, and the established convergence results apply to
all these optimizers. To the best of our knowledge, this is the first work to provide theoretical convergence
guarantees for Adam-type algorithms in MLT-based decentralized nonconvex optimization. Our empirical
experiments further highlight the compounded benefits of integrating MLT with CC, demonstrating signifi-
cant reductions in communication overhead without compromising convergence speed or accuracy.

References

A. F. Aji and K. Heafield. Sparse communication for distributed gradient descent. In EMNLP 2017: Confer-
ence on Empirical Methods in Natural Language Processing, pp. 440—445. Association for Computational
Linguistics (ACL), 2017.

D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. Qsgd: Communication-efficient sgd via gradient
quantization and encoding. Advances in neural information processing systems, 30, 2017.

K. Andrej. NanoGPT. https://github.com/karpathy/nanoGPT, 2022. Last Accessed March 2025.

D. Basu, D. Data, C. Karakus, and S. Diggavi. Qsparse-local-sgd: Distributed sgd with quantization,
sparsification and local computations. Advances in Neural Information Processing Systems, 32, 2019.

J. Bernstein, Y. Wang, K. Azizzadenesheli, and A. Anandkumar. signsgd: Compressed optimisation for
non-convex problems. In International Conference on Machine Learning, pp. 560-569. PMLR, 2018.

11

https://github.com/karpathy/nanoGPT

Under review as submission to TMLR

C. Chen, Shen, H. Huang, and W. Liu. Quantized adam with error feedback. ACM Transactions on
Intelligent Systems and Technology (TIST), 12(5):1-26, 2021.

Congliang Chen, Li Shen, Wei Liu, and Zhi-Quan Luo. Efficient-adam: Communication-efficient distributed
adam. IEFEE Transactions on Signal Processing, 2023a.

L. Chen, W. Liu, Y. Chen, and W. Wang. Communication-efficient design for quantized decentralized
federated learning. IEEFE Transactions on Signal Processing, 72:1175-1188, 2024.

X Chen, M Hong, S Liu, and R Sun. On the convergence of a class of adam-type algorithms for non-convex
optimization. In 7th International Conference on Learning Representations, ICLR 2019, 2019.

X. Chen, X. Li, and P. Li. Toward communication efficient adaptive gradient method. In Proceedings of the
2020 ACM-IMS on Foundations of Data Science Conference, pp. 119-128, 2020.

Xiangyi Chen, Belhal Karimi, Weijie Zhao, and Ping Li. On the convergence of decentralized adaptive
gradient methods. In Asian Conference on Machine Learning, pp. 217-232. PMLR, 2023b.

L. Condat, I. Agarsky, and P. Richtarik. Provably doubly accelerated federated learning: The first theoreti-
cally successful combination of local training and communication compression. Preprint, arXiv:2210.13277,
2022.

L. Condat, A. Maranjyan, and P. Richtarik. LoCoDL: Communication-efficient distributed learning with
local training and compression. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=PpYy0dR3Qw.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic opti-
mization. Journal of machine learning research, 12(7), 2011.

Hongchang Gao and Heng Huang. Adaptive serverless learning. arXiv preprint arXiv:2008.10422, 2020.

S. Ge and T.-H. Chang. Gradient tracking with multiple local sgd for decentralized non-convex learning. In
2023 62nd IEEE Conference on Decision and Control (CDC), pp. 133-138. IEEE, 2023.

F. Haddadpour, M. M. Kamani, M. Mahdavi, and V. Cadambe. Local sgd with periodic averaging: Tighter
analysis and adaptive synchronization. Advances in Neural Information Processing Systems, 32, 2019.

F. Haddadpour, M. M. Kamani, A. Mokhtari, and M. Mahdavi. Federated learning with compression: Unified
analysis and sharp guarantees. In International Conference on Artificial Intelligence and Statistics, pp.
2350-2358. PMLR, 2021.

L. Hou, R. Zhang, and J. T. Kwok. Analysis of quantized models. In International Conference on Learning
Representations, 2018.

T. H. Hsu, H. Qi, and M. Brown. Measuring the effects of non-identical data distribution for federated visual
classification. Preprint, arXiv:1909.06535, 2019.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances and open
problems in federated learning. Foundations and trends® in machine learning, 14(1-2):1-210, 2021.

S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh. Scaffold: Stochastic controlled
averaging for federated learning. In International conference on machine learning, pp. 5132-5143. PMLR,
2020.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. Preprint, arXiv:1412.6980, 2014.

A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, and S. Stich. A unified theory of decentralized sgd with
changing topology and local updates. In International conferemnce on machine learning, pp. 5381-5393.
PMLR, 2020.

12

https://openreview.net/forum?id=PpYy0dR3Qw

Under review as submission to TMLR

Anastasia Koloskova, Sebastian Stich, and Martin Jaggi. Decentralized stochastic optimization and gossip
algorithms with compressed communication. In International Conference on Machine Learning, pp. 3478—
3487. PMLR, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

A. Lalitha, O. C. Kilinc, T. Javidi, and F. Koushanfar. Peer-to-peer federated learning on graphs. Preprint,
arXiw:1901.11173, 2019.

Guanghui Lan. First-order and stochastic optimization methods for machine learning, volume 1. Springer,
2020.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

L. Li, Y. Fan, M. Tse, and K. Lin. A review of applications in federated learning. Computers & Industrial
Engineering, 149:106854, 2020.

X. Li, W. Yang, S. Wang, and Z. Zhang. Communication efficient decentralized training with multiple local
updates. stat, 1050:21, 2019.

X. Li, B. Karimi, and P. Li. On distributed adaptive optimization with gradient compression. In International
Conference on Learning Representations, 2022.

Gabriel Mancino-Ball, Yangyang Xu, and Jie Chen. A decentralized primal-dual framework for non-convex
smooth consensus optimization. IEEE Transactions on Signal Processing, 71:525-538, 2023.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient learning
of deep networks from decentralized data. In Artificial intelligence and statistics, pp. 1273-1282. PMLR,
2017.

P. Nazari, D. A. Tarzanagh, and G. Michailidis. Dadam: A consensus-based distributed adaptive gradient
method for online optimization. IEEE Transactions on Signal Processing, 70:6065-6079, 2022.

A. Nedié¢, A. Olshevsky, and M. G. Rabbat. Network topology and communication-computation tradeoffs in
decentralized optimization. Proceedings of the IEEE, 106(5):953-976, 2018.

S. Reddi, S. Kale, and S. Kumar. On the convergence of adam and beyond. In International Conference on
Learning Representations, 2018.

S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Kone¢ny, S. Kumar, and H. B. McMahan. Adaptive
federated optimization. In International Conference on Learning Representations, 2020.

Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic variance reduction
for non-convex optimization. In International conference on machine learning, pp. 314-323. PMLR, 2016.

A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani. Fedpaq: A communication-
efficient federated learning method with periodic averaging and quantization. In International conference
on artificial intelligence and statistics, pp. 2021-2031. PMLR, 2020.

N. Singh, D. Data, J. George, and S. Diggavi. Squarm-sgd: Communication-efficient momentum sgd for
decentralized optimization. IEEE Journal on Selected Areas in Information Theory, 2(3):954-969, 2021.

A. Spiridonoff, A. Olshevsky, and Y. Paschalidis. Communication-efficient sgd: From local sgd to one-shot
averaging. Advances in Neural Information Processing Systems, 34:24313-24326, 2021.

S. U. Stich. Local sgd converges fast and communicates little. Preprint, arXiv:1805.09767, 2018.
S. U. Stich, J.-B. Cordonnier, and M. Jaggi. Sparsified sgd with memory. Advances in neural information

processing systems, 31, 2018.

13

Under review as submission to TMLR

J. Sun, X. Wu, H. Huang, and A. Zhang. On the role of server momentum in federated learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 15164-15172, 2024.

T. Sun, D. Li, and B. Wang. Decentralized federated averaging. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(4):4289-4301, 2022.

X. Sun, N. Wang, C. Chen, J. Ni, A. Agrawal, X. Cui, S. Venkataramani, K. El Maghraoui, V. V. Srinivasan,
and K. Gopalakrishnan. Ultra-low precision 4-bit training of deep neural networks. Advances in Neural
Information Processing Systems, 33:1796-1807, 2020.

Y. Sun, L. Shen, H. Sun, L. Ding, and D. Tao. Efficient federated learning via local adaptive amended
optimizer with linear speedup. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(12):
14453-14464, 2023.

N. Wang, J. Choi, D. Brand, C Chen, and K. Gopalakrishnan. Training deep neural networks with 8-bit
floating point numbers. Advances in neural information processing systems, 31, 2018.

Y. Wang, L. Lin, and J. Chen. Communication-compressed adaptive gradient method for distributed non-
convex optimization. In International Conference on Artificial Intelligence and Statistics, pp. 6292-6320.
PMLR, 2022a.

Y. Wang, L. Lin, and J. Chen. Communication-efficient adaptive federated learning. In International
conference on machine learning, pp. 22802-22838. PMLR, 2022b.

Z. Wang, J. Zhang, X. Wu, and M. Johansson. From promise to practice: Realizing high-performance
decentralized training. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=1o3nlFHOft.

T. Wu, Z. Li, and Y. Sun. The effectiveness of local updates for decentralized learning under data hetero-
geneity. IEEFE Transactions on Signal Processing, 2025.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. Preprint, arXiv:1708.07747, 2017.

Lin Xiao and Stephen Boyd. Fast linear iterations for distributed averaging. Systems & Control Letters, 53
(1):65-78, 2004.

C. Xie, O. Koyejo, I. Gupta, and H. Lin. Local adaalter: Communication-efficient stochastic gradient descent
with adaptive learning rates. Preprint, arXiv:1911.09030, 2019.

H. Xing, O. Simeone, and S. Bi. Decentralized federated learning via sgd over wireless d2d networks. In 2020
IEEFE 21st international workshop on signal processing advances in wireless communications (SPAWC),
pp. 1-5. IEEE, 2020.

Yangyang Xu, Yibo Xu, Yonggui Yan, Colin Sutcher-Shepard, Leopold Grinberg, and Jie Chen. Parallel and
distributed asynchronous adaptive stochastic gradient methods. Mathematical Programming Computation,
15(3):471-508, 2023.

H. Yu, S. Yang, and S. Zhu. Parallel restarted sgd with faster convergence and less communication: Demys-
tifying why model averaging works for deep learning. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pp. 5693-5700, 2019.

Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual learning without normal-
ization. In International Conference on Learning Representations, 2019.

S. Zhang, A. E. Choromanska, and Y. LeCun. Deep learning with elastic averaging sgd. Advances in neural
information processing systems, 28, 2015.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Diederik P Kingma, Yinyu Ye, Zhi-Quan
Luo, and Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. Preprint, arXiv:2406.16793,
2024.

14

https://openreview.net/forum?id=lo3nlFHOft

Under review as submission to TMLR

Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham M Kakade. Deconstructing what
makes a good optimizer for autoregressive language models. In The Thirteenth International Conference
on Learning Representations, 2025.

W. Zhao, X. Jiao, M. Hu, X. Li, X. Zhang, and P. Li. Paddlebox: Communication-efficient terabyte-scale
model training framework for online advertising. In 2022 IEEFE International Conference on Big Data
(Big Data), pp. 1401-1408. IEEE, 2022.

A Convergence analysis of compressed decentralized algorithms with multiple local
adaptive gradient updates under nonconvex settings

In this section, we give a complete analysis of our decentralized algorithmic framework. We write the updates
of Algorithm |1 in the more compact matrix form for all ¢ € [T K],

M’ =M™ + (1 - 51)G, (10)
Update U* > 0, (11)
Mt
Yo = 12
o (12)
X3 = Xt — oY, (13)
if mod(t+ 1, K) = 0, then X' = X! + Q {X“% - g} : (14)
X = X2 4 X (W - D), (15)
else, X!t = X3 XM = X, (16)
where
Gt = [957957’92]) Mt = [mﬁvméavm;]) X: [&13@27"';£n]3
Q[X] = [Qlw1], Qlaa], ..., Qln]] .
We let
-1 < N Y PR N
X=-X1,X=XJ=x1'ym=-M1y=-Y1,Y =YJ.
n n n
First we establish bounds on the sequence {M*}, {U*} and {Y'}.
Lemma A.1 Under Assumption@ it holds that for any t € [TK],
IM|< (1= Bi) VB < vaB, ||[Y'|<vnBs3, ||Y'|< VaBi~?, (17)
Imill< B, [m'||< B, [Imillo< Boo, Vi€ {1,2,...,n}. (18)

Proof. From the update of m, i.e., m! = Blmfl + (1 —B1) g¢, we have that for any ¢ > 0 and each
i€{1,2,...,n},

lmfl|= [18rm™" + (1 = B)gill< Bullmi ™ +(1 = Bu)llgill< Bullmi™ oo+ (1 = 1) B,

where the second inequality holds from [|gf||< B by Assumption Recursively applying the inequality
above and noticing m; 1= 0, we obtain

Imi< (1+ B+ B2 +...+ 81— BB = (1-) B <B.

Hence, it holds |[m'(|< B and [M!||< (1—8i{"")/nB. Now by U’ > 0, we immediately have || Y!|=
2 _
< vaBsH and Y4 = Y - ¥ = v - ¥

t

2 B
n
S5

2

Mt
VU145

15

Under review as submission to TMLR

In addition, we have that for any ¢ > 0 and each i € {1,2,...,n},

lmfllce= l18rmi ™" + (1 = B1)gillo < Bullmi ™ loo+ (1 = B)lgflloo< Brllmi ™ floot(1 = 1) Boo

where the second 1nequahty follows from ||g!||co < Boo by Assumption |3} I Recursively applying the inequality
above and noticing m; © = 0, we obtain

[milloo< (1481 +B7 +...4+B1) (1 — B1)Boo = (1 — B17") Boo < B

The proof is then completed. O

The next lemma shows the bound of the consensus error of X.

Lemma A.2 Under Assumptions letp=1—p, 0< v < %, and Q be an n-compression
operator with n > 0. Then, the following statements hold:

(i) For any r € [T), it holds

16 2
16 (19)
+4 (1 + Yg) (1 +) [HX’“K X T“)KH] +2 (1 +) 0?K*nB2 L.
(if) For any r € [T, it holds
2 4 2
E Hx(’r'-‘rl)K _X(r+2)KH <4 1+— 7]E {HXTKH }
- - 16)1—n2 +
2 ~ 2
+ 32" (14 8) <1+ ij)ﬂ«: [HXK - XUHE| } (20)
16 4
+ (3 (1 + A) +2 (1 + 2)) o*K*nB*6 "
P L—=n
(iii) It holds
TK-1
1 L2) 56 (80 15\ o,
e ;]E{||Xl||}<anKC’ where C = <’YP+1_772>B6 : (21)
. oy . -~ 2
If in addition v = O((1 — p)(1 — n?)), we have C := © (W).
Proof. (i) From the update rules (L3)(L6), we have, for all s € [K — 1],
XTK+3+1 _ XrK+s _ aYrK-&-s,
and for the final step in the block of size K, we conduct the compressed communication step.
First, using and the inequality (a + b)? < (14 n1)a® + (1 + 57 H)b? for any 1, > 0, we have
s 2
HX7J'_K+5+1||2: HXS_K _ aZY1K+i
i=0
(22)

)

<L+ m) X+ + 0y

Z YTK—H

< XL R P, s € [K - 1.

16

Under review as submission to TMLR

Next, we analyze the case of s = K — 1. By , it holds that
X$-+1)K = X(tDE—3 _ x(r+DKy | ,YX(rJrl)K(W —1).
Noticing X (+DEJ = X(+DEK=3J from 7, and J(W —I) = 0, we have

XY+1)K _ X(r+1)K7% o X(T+1)K7%J + 7(&(7”%1)[{ o X(T+1)K7%J)(W . I)
= XOFDEZE (I = 0)((1 =)T+ 4 W) 44 (XOHDE - XHDE=) (W - T),

Denote W = (1 —y)I+~W. For any 12 > 0, it then holds
HXY-H)KHQ
<) [XODEE A W (1) [y (0K xR (w |
<(1+ 1) HX(T-i-l)K—%(I _ J)WH2 +4(1+n51) 2 H (X(T'i‘l)K _ X(T-&-I)K—%) HQ’
where the second inequality follows from ||[W —I||2< 2.
Recalling p =1 — p and by (I — J)J = 0, we have
HX(T%’l)K*%(I _ J)WH

1

1-7) HX“H)K—E(I . J)H +y HX““)K—%(I . J)WH

IN

1

(
(1=) HX(T_;,_l)K—E(I _ J)H + HX<T+1)K—%(I — (W — J)H
(

1

! [e

IA

—(1 =) | xR -y
Substituting into , we obtain
2
r+1)K
e

2 2
<(1+1m)(1 — ’Yﬁ)2 Hx(rJrl)Kf%(I _ J)H +4 (1 + 772_1) ’Y2 Hx(r+1)K _XrH)E-3 |7

For the first term in the RHS of , using the bound ||Y || < VnBJI~2, we have

HX(r+1)K—%(I _ J)H2 _ H (anx_l B aY(m)K_l) (1— J)H2

2
|l (rF 1)K -1 (r+1)K—1
=[x - e

22 rK |2 —1\ 272 p2s—1
< (L+n) [X+ (1 +n0t) 2KnB2

For the second term in the RHS of , using the bound ||Y!||< \/nBd~2, we have

K—1
HX(TJrl)K _ (K-} 2 ||X(r+1)K XK g Z yrE
i=0
) K—1 2
<(1+m) HX(TH)K _ XrKH F(1+ 771_1)042 Z yrE+i
i=0

2
<(1+m) HX(TH)K _ XrKH + (1 +771_1) o2K2nB2s~ 1.

17

(23)

(24)

(25)

(28)

Under review as submission to TMLR

Plugging f back into 7 we arrive at

2
]

2
<(1+m)1 = 79)% (L4 n0) X +4 (1 + 03) y2(1+m) HX(T“)K - XTKH
+ (T +m)A =) +4(1+n3")) L +n7") 2K°nB?5 (29)

Let n1 = 7% and 12 = . By the definition of v, 0 < yp < 1, we then have

~ ~\ 2
(- @ < (1428) (1=) (30)
4(1+772_1)72(1+171)§4<1—|—Z§>’y(1+;>, (31)
(T+n) =) +4(1+m") %) (L+n) <2 (1 + $> . (32)

We then complete the proof of by using the inequalities — in .
(ii) From and Definition for any 73 > 0, it holds that

E HX(T+2)K _ X(r—i—l)KH2 —E HX(T+2)K—1 o) {X(T“)K‘% _ X(r+2)K—1} _ X(r+1)KH2
=k HX(HQ)KA _ X (r+2)K—3 + Xr+2)K—-3 _ x(r+1)K +0 {X(r+2)K7% _ X(rﬁ)}(ﬂ} H2
<(1+7)E ”X(r+2)K7% _ XK= _ g [X(r+2)K7% _ X(Mz)Kq} H2
1 2
+(1+n3 HE HX(T”)K—E - X(T“)KH
<(1+4n3)°E HXU‘“)K—% — X (K- H2 + 1+ E HX“”)K—% - X<7"+1>KH2 . (33)

For the second term in the RHS of , using the bound ||Y*||< /nB§~2, we obtain
2

HX<T+2>K% _ X<r+1>KH2 _ 2 < ?K?nB%5 1. (34)

K-1
Z Y(r+1)K+i
i=0

For the first term in the RHS of (33), by X("+2K-1 — X(+DK 414 | Yt||< /nBd~2, for any 1y > 0, we
have

K—1
E HX(T-'FQ)K—% _ X(T+2)K—1H2 _E|x+DE _ Z Yr+DE+ (DK
i=0
) K-1 17
S(]- + 774)E HX(T+1)K _ X<T+1)KH + (1 + 774_1)E o Z Y(r+1)K+z
i=0
2
<(1+n)E HX(T“)K - ET“)KH + (14 YK 2B, (35)

Substituting f into , we have
B HX(T+2)K B X(r+1)KH2

2
<(1+n3)n? <(1 +0)E HX(r+1)K _X(r-i-l)KH + (1 +7741)a2K2n325_1>

+ (1 +n3Ha?K*nB* 1. (36)

18

Under review as submission to TMLR

2
We now bound ‘X(’"H)K — X(TH)KH . By , we have that for any n5 > 0,

E U X(r+D)E _ X(r—&-l)KH2:|

=K U (X(H—l)K _ X(7'+1)K—%) (Y(W —TI)—1I) + AX K=} (1— J)(W— I)Hz]

1112 r 12
<(1+m5) (1+29)° {HX””K X (K= }+(1+n51)472E[HX1+1)K 2] (37)

where we have used JW = J in the equality and ||[y(W —I)—1I||, < ~[|W — I|o+[I||o< 1+ 2y and
IW —I||2< 2 in the inequality.

For the first term in the RHS of 7 we know from that for any n; > 0,

HX(rH)K _ (K-} 2

2
< (1+m) HX(””K - X’“KH + (1 +n") o’ KBt (38)
For the second term in the RHS of , we know from (27)) that

2
[= xR)| < @) X () 0?K2B% T (30)

Plugging and into , we have
E [Hx(r+1)K _ X(r+1)KH2]
<(1+n;") 497 ((1 o) | X+ (L) azKQnBZ(S*l)
+ (14 15) (1429)° ((1 o) KO T (1) a2K2nB261). (40)
Combining and (36), we arrive at
E HX(H—Q)K _ X(r+1)KH2
<(L+)P (L+ma) (14 150) 49 (1) | X5

2
Lo)P (L ma) (14 75) (14 29)° (1) | XK - x|

n°((

(1 +m) (L4+n5") 49 (L+07") ®K*nB?6!

(14 n04) (1+n5) (1+29)° (14 n71) 2 K2 B2}

(140)a? KB~ + (1415 1)a?K*nB? ", (41)

1+ n3)n°

1+mns
1+

~— ~— ~— ~—

+
+
+(
+

Let 13 = na = 15 = *5- andnl—'”’ Byv<%ﬁ)_"2)and0<n,ﬁ<l,wehave

Um0+ () (29 0) < 22 () (14 22), (12)
(L) (L) (L4 051) 497 (L) < 497 <1 - Yg) 4772, (43)
(L) (L4ma) (L5 ") 42 (L4 ') <1+ % (44)
(L+ne)n*(1+ma) (1+n5) (1+29)* (1+n;7") <2 (1 + ig) 7 (45)
e+ (et <2 (1). (16)

19

Under review as submission to TMLR

We complete the proof of by using the inequalities — in .

2
(iii) Denote Q" =E [HXZ_KHZ} +E [HX’"K - X(Hl)KH] . Then, since 0 < n < 1, the two inequalities in
and imply

QFFL < A + Ay, (47)
where
~ ~\ 2 2
P P 2 4 2 341
Ag=(1+ — 1—-— 4 v 114 = — (1 +8 48
(e (B et () 5)
80 15
Ay = (A + 2) o?K?*nB*5 1. (49)
v 1=m
By p=1— p, it holds that
1—p)(1—n? 25(1 — > p(1—n?
S(p)(n)gmm 200 —n) ’) . (50)
100 P2+ 32p+ 64 + 48p + 16p12 " 128 + 2p2(1 — n?)
, oa-n®) (N ﬁ)Q 2 4 ™ 2(1-n?) —
Notice that v < 2 () ylelfs o) +4y = <1-f,andy < N TG AS 160 implies

2
47<1+%>+“T’7(1+8'y)§1—%. Thus

P Y P
A< (1+22)(1-2) <122 1.
O<+16)< 8) 16 ©

From x9 = 2° = 20, Vi € {1,2,...,n}, we have | X} |]?>= 0 and X° = 0. By (36) with r = —1 and (46)), we
have

2 4 2
E[HXO_XKH] §2<1+ - 2)042[(2713251 < —A;.
VP

Thus, multiplying both sides of by Agfk and summing it over £k =0,1,...,7 — 1 gives

r—1
16
O <ATTQO+) AT A <00+ — A
k=0 P
16 2
O A+E [HXO—XKH] (51)
vp
1 4 1
g—(iAl +2 (1 + 2) ?K*nB?* ! < —§A1. (52)
P L—=n P
Summing up the above inequality for all r = 0,1,...,7 — 1, we obtain
T—1
1 rE2 18
= ;E [Ix)°] < A (53)

Summing with m =1 over s € {0,1,..., K — 2}, we derive that, for all r € [T+ 1],
K—1

S IR P < 2 X 22K 0?0 B2

s=1

1
K
This implies

K-1

1

7 O X P <3 X P42k %0 n B2
s=0

20

Under review as submission to TMLR

Thus, we have

1 TK-1 1 T-1 1 K-1 1 T-1 56
- E Xt 2_ — - E XTKJrS 2<7 E XTK 2 2K2 2 B26—1 < A,
TK; X TZ:KZ X} ||fT;<3 IX|*+2KanB? ") < —Au

This completes the proof.

To prove the convergence of our algorithm, we define an auxiliary sequence as follows

=gy D (' —z' ") vt € [TK],
1—p

with Z ! = Z°. The lemma below shows the difference of two consecutive z-points.

Lemma A.3 Let {2'} be defined in (54). It holds that for all t € [TK],

t+1 t_ B ai t—1 1 1 ai g
z = - m!~lo — _= B —
liﬂlnizl \/u§_2+5 \/uf_l—&-d ni:u/uf +4

where ui_2 =0.

Proof. By (12)-(16) and (W —I)J = 0, we have

Thus by (54), we have

t+1 t—gttl _ gt 4 A (—t—i—l_—t)_ A (—t_—t—l)

t
)
-1

2ttt =x T+ — (= G T -z
1—-p 1—-p1
1 —t+1 it B —t =t
= —— (¢ -z — T -z
1*51() 1*51()
1 o — m; B ai: mTl
1=h) 1=p S JulTr 48
_ 1 gzn:61mf_1+(1—ﬁ1)gf B gzn: m;~!
1=B ni4 \/uf_1+5 1=h ni4 u§_2—|—5
:1ﬁ1 gzmzqo _ _ @ gi ’
—hin i \/u§72+5 \/uﬁfl-i-é i ulT 4

which is the desired result.

Lemma A.4 Under Assumptions[1 and[3, it holds that for all t € [TK],
1 n L2
LS) - vRE)E < DX,
i=1

and
a2 L2612B2

IVf(z") = Vi@E)|*< =2

21

(57)

Under review as submission to TMLR

Proof. First, by the L-smoothness of f; for each i € {1,2,...,n} and Young’s inequality, we have

1« 2 - _
I (AR Zum 2|2,
which indicates by the definition of X* . Also, by the L-smoothness of f, it follows

T 2 G LB,
IVf (=) - Vi@ P 222 —)P B 20—

(1—=p1)?
2 2
232 n t—1 2 n - 2723232
ED Lb’lz gz m; < Lﬁl az SozLﬁle
(L=B)2|n = ul™2 46 1=F51)? n = ul™2 46 o(1~ 1)
where the last inequality holds by ||m!~!(|< B from . This completes the proof. O

Lemma A.5 Under Assumptions[1{3, it holds that

TK—-1

> E [- 2]

t=0

2ﬂ 02 B2 TK-1 n 2

1 1 1
OO]:E - _
(A =5)? ; n; \/u’;*z—i—é \/uﬁfl—i—é
TK-1

+2a2<2§TKBQ+ElZ X407 + IE

S iwrer])

Proof. By and Young’s inequality, we have

TK-1

> E [l 2]
t=0
TK-1 B ad 1 1 i
<E |2 =) mi o -
; l—ﬁln; \/ugf%r(s \/u§*1+6

2

EED SN)y g (60)

TK-1 n
1 1
> Ly mi e
t=0 7/Li=1 \/ \/’U,t 1
TK-1 2
1 g 1 1
DD - . o)
=0 iz \/uf_g—i-é \/u§_1+5

22

Under review as submission to TMLR

To bound the second term in RHS of , we have

2

=0 || = \JulTt 40

TK-1 n t ot N - -
<E| Y lz(gi_sz(iL'i)-i-Vfl(:Bi) V@) + V@)

2

=0 || =t u§_1+5
2
<6E{TKZ‘1 Ly~ (g - VhGD) |5~ |1y (Vi) - ViE)
t=0 i=1 w446 =0 ||™ =1 Jultt 46
2
TK—1 n —
1 V(@)]
" ; n; u§_1+5
2 2
TK—-1 n TK—1 n -
1 - (g = Vii(=))) 1 (Vfi(z}) = Vfi(@"))
e R RV e =
t=0 i=1 u, +9 t=0 = +0
2
TK—1 n —
1 V(@)]
’ ; n; u§_1+5
2 2
_Bp |y s g AE| |p|S Ly (W) - Vi)
n? t=0 i=1 u§_1+5 =0 izt u§_1+5
B 2
TK—1 n —
1 Vi@
+ 6E —
; n; uﬁ_l 1)
6 MMK—1 n TK-1, n B
< SB[Yl - VhE LS (Ve - V@) P
L t=0 i=1 t=0 i=1
6 TK—1 1 n
O Vs ||]
t=0 i=1
6r2 [TEZ TK—1
<74 nTKB® + —<E Z X817] +]E Z Vi@ H] (62)

where in the last inequality, we have used , and the equality holds because

< ~ Vi) (;—ij<w§->>>
Vult s Juit 4
< — Vi) Bilg; Ve 1>0 Vit

from the fact that g%, g, ..., g%, are conditionally independent of each other. Plugging and into (60),
we complete the proof. O

23

Under review as submission to TMLR

Lemma A.6 Suppose Assumptions[1] and[d hold, and |ut||< By, for allt > 0 and i € {1,2,...,n}. It
) %> 3
n =1 t=1 =+ 1)

holds
*Wﬁ n STAE N5 tavE)

§ 2V

Proof. By Assumption [3] it holds that

=1 uf% +6
1K ViEY
Vf V@), -) ———=
< =) n;\/u§1+6>
+ <Vf(a;t)’711§ (vfi(mjt.—lif;l‘))> <Vf —t %Z V{ 1+5> (64)

Next we bound each of the four terms in the RHS of . For the first term in the RHS of , we use
Young’s inequality and to have

o 1 &K (VSil=l) = VEY)
<Vf<z> vi), Ly (Tl - v/ >
nz:l t1+(5

>~ 2n1f§ (197) = vr@IF + 1194 () = Vi (=)])
(e s)

o?pL*B* L7 2
- o (s), "

where we have used ufl > 0 in the first inequality. For the second term in the RHS of , we have

. 1 viEY
V() - Vi@, -y L2l (66)
< =) n;\/ufl+5>
v (@) ,/B ,
>—”4 TENL B0 or () - v
Cvr@)|” QBfL2B2\/Bu+6 -
- 4B, +6 21 -p1)2 7

24

Under review as submission to TMLR

where the first inequality follows from Young’s inequality and ufl > 0. For the third term in the RHS
of , we have from Young’s inequality that

1 (Vfi<mz>Vf<wf>)>
Vf(:li)77
< n; VulTt+e

1 Z(VI @I VBT (ot) - 1 (3 u)

n 4B, + 0
Vi@ VBT e
Z 4\/ﬁ 5 [
4B, +0 né L
Since ||[ul||oo< By for allt > 0 and i € {1,2,...,n}, the last term in the RHS of can be bounded as
1 V(@)

Vi@, - > =1V %, 69

Substituting 7 into and rearranging terms yields the desired result. O

Now we are ready to show the main convergence result.

Theorem A.1 Suppose that Assunlptions hold, Q is an n-compression operator, and ||ul||< B, for
allt >0 andi€ {1,2,...,n}. Let C denote the constant defined in , o,y > 0 satisfy

g 1-p)(—7n?
< ————— < P 7
= 8LVB, 1o T 100 (70)
Then, it holds
TK-1
« aTK o?L*p2B2
- - E =t 2 <E 0 *
wh s &g BV @I <BU 6 I 5 m s s
2
afBl, e & 1 1
+ ———= (4B, +d+al — —
(1—51)2 () ; n; \/u§72+§ \/u§71+5 (71)
2
+a?L (2 rkB + 6La2TnK3C>
no §
al? (VBu¥0 1\ o an o< a®B2L2B? (\/Bu 51 >
| —— 4+ —= TnK°C .
+n< 5 +2f> " +Z(51_51) 5 o
Proof. By the L-smoothness of f, we have
FET) < () +(VF(E), 27 =2+ 5 Hzt“ |
which together with gives
n t
FE) <f () —a <Vf O >+ 5 -2
n 4 t—1 2
i=1 \/u; +0

Under review as submission to TMLR

Take expectation, sum up over t, and rearrange terms of the above inequality. Noticing z° = x°, we have

TK-1 L& ¢ TK-1
R S we}| E A RIS D SR (ERE
t=0 nia uffl +0 t=0 72)
72
Oéﬂl TK-1 , n "y 1
+1_ﬁIZE Vi(z'), =) mito \/t \/H
t=0 i=1 U, u
Below we bound the inner-product terms on the RHS of . First
6 TK-1 [1 n 1
! E|(Vf (zt) , — mf >
1— 5 tz:; _< n; \/uf—Q \/ut 1
g TE _< NS] >
= E|(Vf(@"),=> mi'o
1=5 ; i n; \/u:f*2 5 \/uffl
/81 TK-1 < , n , 1 1 >
+ E[(Vf (z — m; "o - (73)
-6 = Z \/u§_2+6 \/ui_lJré
For the first term in the RHS of , we use Young’s inequality to have
61 TK-1 < , 1 n . 1 1 >
E[(Vf (ac) ,— m; o —
1=5 tz:; n; \/uf_2+5 \/uf_lJré
TK-1 1)
<Y st IV @]
t=0 u
2
+T§:1 251\/ lim¢_1o 1 B 1
1_[31 nim \/u§_2+5 \/uf_1+5
1 TK-1)
E|[vF@)]
S Sl
2
N Til 282B2 \/B, + 6 1 H 4)
(1—p1)? 7111 \/,th \/utl

26

Under review as submission to TMLR

where in the last inequality, we have used |[m! !||.o< By by Lemma For the second term in the RHS
of , it holds

ﬂ TK—-1 1 n 1
T 15 Z E <Vf(zt)Vf(wt),Zm§_lo
P o

1
i \/uﬁfz—i-éi\/uf*l—i—é >

TK-1

<> s v e - v @]
S~ 28VBLD S ! 2
+ Z (1—61)? Ta—pe © ; \/ut 2 B \/u§*1+5

2
1
\/ut 2 - \/uifl s ’ (75)

where in the last inequality, we have used (58) and |[m! || < Bw by Lemma Plugging and
into , we obtain

TK o?L%32B? TKzlwa? VB +0 1Z
VB, 1000 - P T L T (-A) n

aBy Til]E <Vf (z") lth,_lo ! - ! >
1-81 = nim \/u§_2+5 \/uf_1+5

2 aTK o?L*BiB?
VBT ; e 107 @)1 FSW«%%W

TK-1

2

4032B2 \/B, +0 TK !

Chy 2 O 2 1 H\/ut = \/ut - : (76)

Now plugging , and after taking full expectation into and rearranging terms gives

3a 6La2\ "= s o - aTK o?L2B2B?
(75);E“'W(“’)'”SEW“‘J(@ AN e RN

2
TK-1 n
af?B2,

e 5 (4B, +5+aL)E Z Z \/ \/u“
%]

24
+a?L (5TKBQ + —E

s TKzl (V 0y L EIXLIP QﬁfLQBQ(VB”‘H L)
«@ _— .
2V 6(1—p1)? 4 2V/8
Plug into the inequality above, notice 3 \/%‘f = 6%0‘2 27 \/]‘; l and rearrange terms. We obtain the
desired result and complete the proof.

O

27

Under review as submission to TMLR

To prove Theorem we only need to consider the following three settings of {U*}

AMSGrad : Ut = g, Ut ! + (1 — B2)G' o G' with U~ ! =0, U’ = max {ﬁt, Ut_l}% (77)
Adam : U' = 3, U 4 (1 — 3,)G' 0 G (78)
t
1

AdaGrad: U= —Y G°0G’;, (79)

t+1 =

where

O = (@, a, . ah], U = [ul,ub . ul]. (50)

Notice that when 5; = 0 and 8 = 1, AMSGrad reduces to the vanilla SGD, and when $; € (0,1) and
B2 = 1, it reduces to the momentum SGD. Consequently, our theoretical guarantees on AMSGrad naturally
extend to these two special cases as well. Adam-Mini (Zhang et al.| |2024) can be regarded as a special case
of Adam by using a constant scalar (instead of a vector) for each block of variables as the second momentum.
Therefore, the results on Adam also hold for Adam-Mini.

Below we bound |lu!|| and the summation of the difference between the consecutive terms in the sequence

L TK—1
{ T }tzo for the three optimizers in 1 7)- 1

Lemma A.7 Let u;z =0 foralli=1,2,...,n. Under Assumption@ forallt >0 and i€ {1,2,...,n},
the following statements hold.

(i) For AMSGrad in (77), it holds ||ut||< B%, and

2

TK-1 n
1
Z Z - < g. (81)
i= \/ 249 \/u§‘1 +6
(ii) For Adam in (78)), it holds ||ul|.< B2, and
TK-1 2
- 1 TKd(1 - f2)°Bs
S < THUO - paf B)
i= \/ut 2 \/uﬁ_l +4
(#ii) For Adagrad in (@ it holds ||ut||< B2, and
TK-1 2
N IR 1 2d B3
= < =5
n Z - 5 (83)

t=0 =1 \/ut 2 \/’U,t !

Proof. (i) Noticing @; ' = 0 and g o g¢||c< B2, we have ||| < (1 — B5"") B% for each i € {1,2,...,n}
and ¢t > 0. By u! = max{ul,uf 11 it holds

|00 < max{ [t [loo, ;" oo} < max{||a]loc, 185 lloo, [l 2|0}
< max {[[@f]loc, 1@ oo -, 187 lloc, a7 loc

< max {(1-p5"") B, (1 - 55) B, (1= B2) B, u; oo} = (1 - B571) B,

where the equality holds because 2 € (0, 1] and ui_1 =0.

28

Under review as submission to TMLR

In addition, we have

TK—-1 2
D
=0 i \/uﬁfz—&-é \/Uf71+5
TK—-1 n
1 1 1 1 1
D B = i v - T
t=0 i=1 \/ui + 6 \/ul +6 . \/uz +6 \/ui + 6
TKfll n 1 1 1
n

<TK11i(1) 1
= Vo ul™2 44)))
1 ! 1 1
:T\/gizl t=0 (u572+6 17 uffl—i—&)
= 1

~.

1
n\/g =1 |[\/u; 2 +6
1

where 7 L — \/ — ’ % holds because u.~? > 0 and u}~! > 0, and the equality holds because
u, u,

uwl™t s nondecreasmg with ¢ for each i € {1,2,...,n}.

(i) Noticing u; ' = 0 and ||g} o g!||-c< B2, we have |[ul[< (1 - g5") B%.

For all t > —1, it holds

2
1 1

VB (1= Boglogl, +0 ul '+,
(1—B2) ([Ut '—glogl]y)
VIBul™ + (1= Ba)gl o gl + 0v/[ul ™" +6];(\/[Boul ' + (1 — Ba)gt o gll; + 6 + /[ul ' +4];)

Ld0 - B2)? B2
— 63 ?

| -2

H\/,u 145 \/ut 1

where the last inequality follows from 0 < [u!~] < B2 and 0 < [glog!]; < B2 . Then the desired inequality
holds.

(iii) By u} = = S g7 og; and ||g! o gl||eo< B2, it holds |uf||< BZ. For all t > 1, it holds

2

2 d
1 B 1 _Z 1 B 1
Vull s JulT 40 VI T gl egl 40 Vw40
2

RN (O gflogz 5)

IV a7+ 1g T ogl M + o/ [ul 2l + 0[S ul T+ 1gl Togl T+ 0+ /ul 7 +0)

dB%,
S

29

Under review as submission to TMLR

where the last inequality follows from 0 < [u!?]; < B% and 0 < [g}"' o g!™!]; < BZ. Then

2 2
P \/uf_2 +9 \/uﬁ_l +0 =1 "o \/uf_2 +0 \/uz_l +0
Qngo
<
53
The proof is then completed. O

Now, we prove Theorem with its complete statement given as follows.

Theorem A.2 Suppose that Assumptions hold, and Q is an n-compression operator. Let 6 = O(1) be
a universal positive constant, C be the constant defined in , and o,y > 0 satisfy

4 B2 _ 2
_A0y/n(BL+0) _ o J Al == (85)
VTK 48L\/BZ 4 100
where § = O(1). Then, the following statements hold.
(i) For AMSGrad in (71), it holds
1 TK—-1
% 2 E[IVA@P LX)
t=0
_ 1 0 * 22 2 1 (86)
_0< nTK(f(;c) f*+LB BOO+LB>+TKdBOO(BOO+L+1)
nKC’ 213 N 9 o 4 nKC 9
T ——L*B (1+L+Boo)+TKLB(1+BOO)+ T (1+B%)).
(ii) For Adam in with By € [va(lil,l}, it holds
1 TK—
LS [nw @ P IXL P
t=0
1 1
- (x°) — f* + LB>B%, +LB2) 7 0BL (Boe + L+ 1) (87)
nKC’ n nKC
——I’B>(1+L+B ——L?B*(1 + B2 1+B%)).
P ECL B L B+ e B0+ B + PR+ L)

(iii) For AdaGrad in (79), the relation holds as well.

Proof. From Lemma it holds that ||ul||.o< B.,Vt,Vi with B, = B2 for all the three optimizers in

-

30

Under review as submission to TMLR

Dividing both sides of by —2LE_ — 9\/nTK and rearranging terms, we have

4y/BZ +5
1 TE! . a?L2p2B?
ﬁ;E[HVf(') |I°] < \/7((0) f)*m

2
n

2, \/ut 2,5 \/ut 1

24 2L2nK2C [/B2 +§ 1 6al
dalA/B2 +6-—-B?+4/B2 +§ 00
+a~/oo+n5+\/oo+ m (+ +

) 24/6)
20272102
. 2r2% (\/BL +6 1
AV (1—&)(o a%))

TK(1—

L WPEB 32 (4«/32 5+ aL) Ti
t=0

Adding to the above inequality and replacing o by 10V Bi 19

obtain

< 1 in the resulting inequality, we

5 0>nL>F3B2(B2, + 6
Z E{lv‘f)" +7”X ”2] eﬁ(@)= 1)+ ZnTKil(l (53;)

2

4 232 / TK-1 n 1 1
- BJI“K 1 (4V BL+0+1)E Z Z - (88)
(—51 \/u;;—2+5 \/u§—1 P
1 24 ALPnK?CO* (B2, +0)% (/BL +46 1 L
. 60 LB + 02 64L*nK*C6*(Bs, +0)2 o T n +67
vVnTK 0 TK) 26 0
N 64n6%(B% +6) [B2L2B? (/B2 +6 L N 16nK2CH%(B2, + 6)
TK 6(1— f1)? 5 2o TK '
We now substitute the results in Lemma [A77] to the above inequality.
(i) For AMSGrad, we have
TK-1 2
- 1 d
Z Z - < 5 =0(d).
=0 izt \/ut 2 \/uﬁ_l + 6
(ii) For Adam, we know from s € [\/vagil, 1] that
TK—1 2
- TKd(1 — (3:)?B2
E|D> Z < TR 5352) > — O(dBL).
DY e R
(iii) For Adagrad, we have
TK-1 ?
S 1 1 1 2dB3
y iy - < 200 — 0Bk,
=0 "iz1 \/uﬁ_z +0 \/uﬁ_l +9
Therefore, we obtain the desired results. O

31

Under review as submission to TMLR

B The matrix-form adaptive gradient updates

It should be noted that our theoretical results extend to matrix-form adaptive gradient updates, where the
d-dimension real-valued functions {r;} are replace by some d x d dimension real-valued functions {r;}. Under
this formulation, we update the second-momentum matrices U; as Ul = r,(g?,g},...,g!) and the model

1 _1
parameter by z; * = x! — o (U +6) 2 ml.

Our theoretical results apply to the matrix-form adaptlve gradient method, provided that max, ||[U]s]|
is uniformly bounded for all i € {1 2,...,n} and ¢ > 0, and that the summation

1

2
Z?K tl) S H (U2 4+6)~2 — (U +6)~ 2| remains bounded.

A notable example of this framework is the matrix-form AdaGrad method, where U! is updated as

1
U= ngig?, for each agent i = 1,...,n
s=0

For this choice of {U!}, it is not difficult to show that |[Ul].s|< B% for all » € {1,2,...,d} and s €

{1,2,...,d}, and

2 2d°Bj3
< ==
S =5

H (U2 4+4)7% — (UL 40) 2 (89)

n
i=1

3=

TK—
t=0
Therefore, our theoretical results extend naturally to the matrix-form AdaGrad method.

C Examples of n-compression operators

In this section, we provide a few concrete examples of compression operators that are n-compression opera-
tors. More examples can be found in (Chen et al., 2023a; [Koloskova et al., 2019)).

IIx]

Example C.1 QSGD (Alistarh et al., |2017) compresses x € R% by Qqgq(x) = 222 x)Hx” L lxl‘ + fJ where
= stgd(x) with

¢ is uniformly distributed on [0,1]%, s is a parameter about compression level. Then Q():

T = (1 + min {d/sz, \/&/s}) is an n-compression operator with n =1 — ;.
Example C.2 Qpurse(x) (Stich et all |2018) randomly selects k out of d coordinates from x, or the k

coordinates with the largest values in magnitude from x. Then Qgparse(X) is an n-compression operator with
d k-

n=dk
Example C.3 Qgossip(x) (Koloskova et all |2019) sets Qgossip(x) = x with probability p € [0,1] and
Qgossip(x) = 0 with probability 1 —p. Then Qgossip(X) is an n-compression operator withn =1—p

D Additional Numerical Experiments

We include a suite of additional numerical results in this section. These results were omitted from the
primary paper for space considerations. We expand on the results demonstrated in Figure [I] in several key
ways. Figure [3] includes all omitted FashionMNIST results using the same experiment setup as shown in

Figure

We also include expanded parameter settings using otherwise the same setup as in Figure [1| again with
4 agents. Figure [repeats the optimizer comparisons demonstrated in Figure [I] with a wider variety of
local update counts. Figure [f] repeats the experiments comparing the effect of local update counts on
communication rounds shown in Figure [I] with Adam’s update, while comparing AdaGrad’s and AMSGrad’s
adaptive updates as well. Figure [6] compares varying values of Top-k compression for all three optimizer
variants. We do not show training loss with these figures for space and clarity, while noting that the training
loss plots would otherwise be consistent with those shown in Figures [T] and [3]

32

Under review as submission to TMLR

D.1 FashionNMIST Results

In Figure [3] we plot the results for the same experiments on FashionNMIST as performed and displayed
for CIFAR-10 and tiny-shakespeare in Figure [I] in the main body of the paper. For these results, Top-
k compression of 30% is used. The primary observations in this figure are consistent as with Figure
We generally observe little to no degradation of accuracy and loss performance, even when including local
updates and Top-k compression. In particular, FashionMNIST suffers less in terms of quality impacts when
including compression and minimizing communication than the two other benchmarks.

D.2 Additional Optimizer Comparisons

In the main body of the paper, Figures[la]and [Ib]compare optimizer performance for a fixed value of K = 20.
Figure [repeats these experiments with additional values of K = 2,5,10,50, using 4 agents. Shown are
test accuracy/validation loss with compression values of 30%, 40%, and 50% for FashionMNIST, CIFAR-
10, and tiny-shakespeare, respectively. We overall again observe consistent results as with Figure [T} where
Adam outperforms other optimizers on FashionMNIST and tiny-shakespeare and AdaGrad outperforms other
optimizers on CIFAR-10. Likewise, SQUARM-SGD consistently lacks in generalization performance on the
GPT language model with the tiny-shakespeare dataset.

D.3 Additional Number of Local Updates Comparisons

In Figure [f] the experiments using Adam in Figures and [3B] are repeated with the AdaGrad and
AMSGrad adaptive updates. For each optimizer and benchmark dataset, we plot the accuracy or validation
loss that results with local updates of K = 1,2,5,10,20,50. Again, we use Top-k compression values of
30%, 40%, and 50% for FashionMNIST, CIFAR-10, and tiny-shakespeare. Likewise, we note that accuracy
performance is minimally affected by the number of local updates used in these tests.

D.4 Additional Top-k£ Compression Comparisons

We fixed Top-k compression values for each dataset for the bulk of the experiments demonstrated thus far,
to avoid a parametric explosion in the number of results presented. Figure [f] demonstrates that a different
choice of Top-k compression in the same order of what was used has minimal impact on the overall optimizer
performance and resultant appearance in plots. In Figure @ we fix K = 20 and vary Top-k to 30%, 40%,
50%, and 60% for each optimizer (Adam, AdaGrad, AMSGrad) and dataset (FashionMNIST, CIFAR-10,
tiny-shakespeare). We observe a reduction in total used communication volume scaling linearly with Top-k
percentages, as expected, while accuracy and validation loss are relatively consistent across all tests.

33

Under review as submission to TMLR

90
—&— DistributedAMSGrad
204 —#— DistributedAdaGrad 80 1
' —o— DistributedAdam 70 4
—4— DADAM -
215 —— SQUARM-SGD & 601
— S
2 8501
£ -
g 107 8 40 1 —e— DistributedAMSGrad
30 —— DistributedAdaGrad
—&— DistributedAdam
0.5 1 20 —4— DADAM
10 - —%— SQUARM-SGD
O 9 O O 9 O L9 O 5 9 9 O 5 9 9
S R SR I S\ S SO NN D
Epochs Epochs
(a) FashionMNIST optimizer comparison.
—o— K=1 901
50 - K=2 80
—a— K=5 70
—— K=10 .
215 —¢— K=20 & 60
] —h— K=50 E
=y S 50-
£ 1.0 f’ 40
© 1.0 A 1 _
= 2
30 A
0.5 20 4
— ® ® -— 10
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q
N . S N N O S
Communication Rounds Communication Rounds
(b) FashionMNIST reduction in communication rounds.
—e— K=50,Top-k=30% 901
20 ~— K=10,Top-k=40% 80 A
' —e— K=2,Top-k=60%
—— K=1,Top-k=None . 70
215 @ 60
= S
(o)} [V
c O 50 A
<., =
© . T (%] 4 -
£ g 40
30 A
0.5 A 20
101
1073 1072 107t 10° 1073 1072 1071 10°

Scaled Communication Volume Scaled Communication Volume

(¢) FashionMNIST reduction in communication volume.

Figure 3: Convergence performance for FashionMNIST: Plotted above are the training loss and test
accuracy of FashionMNIST. The top row compares optimizer performance with Top-k 30% compression and
a local update count of K = 20. The middle row demonstrates the reduction in communication rounds
based on the number of local updates with Top-k compression of 30%. The bottom row compares the total
communication volume scaled relative to the uncompressed baseline with no local updates.

34

Under review as submission to TMLR

90 1
80 4
704
g
] 60 A
=
3 50
<
o
§ 401 —e— DistributedAMSGrad
30 —#— DistributedAdaGrad
—e— DistributedAdam
201 —— DADAM
104 —— SQUARM-SGD
T T T T T T T
SHE B PN I IS P R

. Sy oo —e— DistributedAMSGrad
I 4.0 —#— DistributedAdaGrad
70 —a— DistributedAdam
> @ 3.51 —4— DADAM
2 60 8 —— SQUARM-SGD
5
g 501 % 3.0+
B+ e DistributedAMSGrad | = _ |
304 —m— DistributedAdaGrad = &
—e— DistributedAdam
20 4 —4— DADAM 2.04
— SQUARM-SGD
101
T T T T T
B & R & &£
Epochs

90
—o— DistributedAMSGrad
80 1 4.0 —m— DistributedAdaGrad
704 —#— DistributedAdam
. » 354 —4— DADAM
2601 K4 —— SQUARM-SGD
© S
5 c
3 501 $3.01
= < 2
é 401 —8— DistributedAMSGrad § 40 A —e— DistributedAMSGrad %
304 —#— DistributedAdaGrad = 304 —m— DistributedAdaGrad 2257
—#— DistributedAdam —e— DistributedAdam
201 —4— DADAM 20 —— DADAM 2.0
101 —— SQUARM-SGD —»— SQUARM-SGD
T T T T T T T 101 T T T T T T T T T T T T
(N ° N 13 o {o o o o N I N o o o N o S
L N R RN K N N D » N S S
Epochs Epochs Epochs
(b) K = 5: FashionMNIST, CIFAR-10, and Shakespeare optimizer comparison.
90 | 90
—e— DistributedAMSGrad
80 4 807 4.0 ~#— DistributedAdaGrad
201 704 —e— DistributedAdam
. N 354 —4— DADAM
g 60 { 3 60 8 —%— SQUARM-SGD
£ <
S 501 3 50 5 3.0
2 < 5
§ 40 —e— DistributedAMSGrad E 404 —e— DistributedAMSGrad %
201 —m— DistributedAdaGrad 01 —#- DistributedAdaGrad | = 2
—e— DistributedAdam —e— DistributedAdam
20 1 —4— DADAM 204 —— DADAM 2.0
] —— SQUARM-SGD —%— SQUARM-SGD
10 101
T T T T T T g g T T T T T T T T T T T T
S .9 N N i3 N & o N o o N N o o o S o S
veT AT ST T e R A N < Y g B . MR
Epochs Epochs Epochs
(¢) K = 10: FashionMNIST, CIFAR-10, and Shakespeare optimizer comparison.
90
—e— DistributedAMSGrad
80 801 4.0 —m— DistributedAdaGrad
70 —e— DistributedAdam
. N 354 —4— DADAM
E 60 3604 § —»— SQUARM-SGD
=1 \5 c
g g 504 § 3.0
< < ®
= 404
B 40 —e— DistributedAMSGrad | 40 —e— DistributedAMSGrad | =
—#- DistributedAdaGrad | " | —#- DistributedAdaGrad | = 2]
201 —e— DistributedAdam —e— DistributedAdam
—4— DADAM 20 —4— DADAM 2.0
—— SQUARM-SGD 1 — SQUARM-SGD
T T T T T T T T 0 T T T T T T T T T T T T
o o N S N ° S S N o o N o o o o N o
A A SRR L S R P S
Epochs Epochs Epochs

(d) K = 50: FashionMNIST, CIFAR-10, and Shakespeare optimizer comparison.

Figure 4: Additional optimizer comparisons: Plotted above are accuracy (for FashionMNIST and
CIFAR-10) and validation loss (for tiny-shakespeare) for the tested optimizers across a range of local update
counts K. For each subplot, FashionMNIST is on the right, CIFAR-10 is in the middle, and tiny-shakespeare

is on the right.

35

Under review as submission to TMLR

90 A
80 A
70 A
9 9
® ® 60 A
=} >
g g 501
< —— < ——
il 0 40 -
8 = & =
¢ 30 A ¢
—— ——
3¢ 20 A 3¢
—p— 10 i —p—
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
S & & & & &S S & & & & &S
N Y v Vv) % ~ N Vv %) %
Communication Rounds Communication Rounds
(a) AdaGrad (left) and AMSGrad (right) on FashionMNIST with Top-k compression of 30%.
90
80
80 1
70 4
70 A
> > 60 -
e g
g 50 g 501
< < 40
B 40 o 407
8 g
30 - 301
20 A 20
10 A 10 A
Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q
° N ~ X P o ° N NG 0% P X
Communication Rounds Communication Rounds
(b) AdaGrad (left) and AMSGrad (right) on CIFAR-10 with Top-k compression of 40%.
—o— K=1 [] —o— K=1
4.0 4 - K=2 4.0 1 —m— K=2
35 —— K=5 —— K=5
—— K=10 o 3.5 4 —4— K=10
a —— K 3 —— K=20
o 3.0 A |
a —— K e —#— K=50
o S 3.0
.E 2.5 - E
z b
F20- 2251
1.5 4 2.0
1.0 4
Q Q Q Q
S S S S
) Q 2 Q
% % v
Communication Rounds Communication Rounds

(c) AdaGrad (left) and AMSGrad (right) on tiny-shakespeare with Top-k compression of 50%.

Figure 5: Additional number of local updates comparisons: Plotted above are accuracy (for Fash-
ionMNIST and CIFAR-10) and validation loss (for tiny-shakespeare) using AdaGrad (left) and AMSGrad
(right), comparing across a range of local update values K.

36

Under review as submission to TMLR

80

-3
=}

Test Accuracy
I
o

201

>
9
e
5
o
o]
<
k]
o

—8— K=20,Top-k=30%

—— K=20,Top-k=40%

—#— K=20,Top-k=50%

—4— K=20,Top-k=60%

—8— K=20,Top-k=30%
—— K=20,Top-k=40%
—a— K=20,Top-k=50%
—— K=20,Top-k=60%

Test Accuracy

80 -

o
o
!

I
o
L

20 A

—8— K=20,Top-k=30%
—— K=20,Top-k=40%
—a— K=20,Top-k=50%
—— K=20,Top-k=60%

T
1072
Scaled Communication Volume

T
1073

T T
1072 1072

Scaled Communication Volume

T T
1073 1072

Scaled Communication Volume

(a) Adam (left), AdaGrad (middle), and AMSGrad (right) on FashionMNIST with varying Top-k compression.

Test Accuracy

>
9
I
3
o
5]
<
i
@

—8— K=20,Top-k=30%

—#— K=20,Top-k=40%

—e— K=20,Top-k=50%

—4— K=20,Top-k=60%

80

~
o
!

o
o
!

[
o
!

N
o
!

w
o
!

201

101

—8— K=20,Top-k=30%
—— K=20,Top-k=40%
—a— K=20,Top-k=50%
—— K=20,Top-k=60%

Test Accuracy

—0— K=20,Top-k=30%
—— K=20,Top-k=40%
—8— K=20,Top-k=50%
—4— K=20,Top-k=60%

1074

T T
1073 1072
Scaled Communication Volume

(b) Adam (left), AdaGrad (middle),

and AMSGrad (right) on CIFAR-10

T T
1073 1072
Scaled Communication Volume

T T
1073 1072
Scaled Communication Volume

with varying Top-k compression.

Training Loss

—8— K=20,Top-k=30%
—— K=20,Top-k=40%
—o— K=20,Top-k=50%
—— K=20,Top-k=60%

Validation Loss

4.0

3.51

3.01

2.5

2.0

—8— K=20,Top-k=30%
—— K=20,Top-k=40%
—e— K=20,Top-k=50%
—— K=20,Top-k=60%

Validation Loss

w
[
s

w
o
!

N
o
s

N
1=}
!

—8— K=20,Top-k=30%
—— K=20,Top-k=40%
—e— K=20,Top-k=50%
—— K=20,Top-k=60%

T T T
1074 1073 1072

Scaled Communication Volume

T T T
1074 1073 1072

Scaled Communication Volume

T T T
10°° 1074 1073
Scaled Communication Volume

(c) Adam (left), AdaGrad (middle), and AMSGrad (right) on tiny-shakespeare with varying Top-k compression.

Figure 6: Additional Top-k compression comparisons: Plotted above are accuracy (for FashionM-
NIST and CIFAR-10) and validation loss (for tiny-shakespeare) using Adam (left), AdaGrad (middle), and

AMSGrad (right), comparing across a range of Top-k compression values.

37

	Introduction
	Contributions
	Problem formulation and technical assumptions
	Notations and definitions

	Related work
	Centralized or decentralized (stochastic) adaptive gradient methods
	MLT in distributed learning
	MLT+CC in distributed learning

	Decentralized adaptive methods with MLT and CC
	A unified algorithmic framework
	Convergence analysis
	Linear speed up, topology independence, and communication reduction

	Numerical experiments
	Optimizer Comparison
	Number of Local Updates
	Communication Volume
	Larger Agent Counts and Differing Topology

	Conclusion
	Convergence analysis of compressed decentralized algorithms with multiple local adaptive gradient updates under nonconvex settings
	The matrix-form adaptive gradient updates
	Examples of -compression operators
	Additional Numerical Experiments
	FashionNMIST Results
	Additional Optimizer Comparisons
	Additional Number of Local Updates Comparisons
	Additional Top-k Compression Comparisons

