
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OS-ATLAS: A FOUNDATION ACTION MODEL FOR
GENERALIST GUI AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing efforts in building GUI agents heavily rely on the availability of robust
commercial Vision-Language Models (VLMs) such as GPT-4o and GeminiPro-
Vision. Practitioners are often reluctant to use open-source VLMs due to their
significant performance lag compared to their closed-source counterparts, partic-
ularly in GUI grounding and Out-Of-Distribution (OOD) scenarios. To facilitate
future research in this area, we developed OS-Atlas —a foundational GUI action
model that excels at GUI grounding and OOD agentic tasks through innovations
in both data and modeling. We have invested significant engineering effort in
developing an open-source toolkit for synthesizing GUI grounding data across
multiple platforms, including Windows, Linux, MacOS, Android, and the web.
Leveraging this toolkit, we are releasing the largest open-source cross-platform
GUI grounding corpus to date, which contains over 13 million GUI elements. This
dataset, combined with innovations in model training, provides a solid foundation
for OS-Atlas to understand GUI screenshots and generalize to unseen interfaces.
Through extensive evaluation across six benchmarks spanning three different plat-
forms (mobile, desktop, and web), OS-Atlas demonstrates significant performance
improvements over previous state-of-the-art models. Our evaluation also uncovers
valuable insights into continuously improving and scaling the agentic capabilities
of open-source VLMs.

1 INTRODUCTION

With the recent adoption of large language models (LLMs), the fantasy of building digital agents (Wu
et al., 2024)—similar to JARVIS in The Iron Man—to automate daily tasks is evolving from science
fiction into a tangible reality. Many current agents make decisions based on textual descriptions
of the environments, such as HTML and accessibility trees, which is often lengthy (Zheng et al.,
2024a), noisy (Cheng et al., 2024; WebAIM, 2024), and hard to acquire in practice. More recent
studies (Cheng et al., 2024; Hong et al., 2024b; Li et al., 2024) have explored the use of large vision-
language models (VLMs) to develop graphical user interfaces (GUI) agents capable of performing
complex tasks simply by analyzing the screen - an information-complete medium for agent’s decision-
making, allowing for greater flexibility. At the core of a GUI agent lies an action model that enables
GUI grounding - the process of transforming natural language instructions into executable actions
within the operating system (e.g., clicking somewhere on the screen).

Despite their advancements, existing open-source VLM-based GUI action models have been criti-
cized for their poor performance in GUI grounding and generalizing to Out-Of-Distribution (OOD)
scenarios (Lu et al., 2024b; Chai et al., 2024), significantly restricting their applicability in real-world
situations. The ineffectiveness of current models can be attributed to two primary factors.

First, most existing VLMs are rarely pretrained on GUI screenshot images. While some early efforts
have focused on gathering screenshots corpus for websites (Lee et al., 2022; Chen et al., 2024b)
and mobile applications (He et al., 2020; Wang et al., 2021), there remains a significant lack of
a large-scale, open-source corpus of screenshots that encompasses multiple platforms (Windows,
MacOS, Linux, iOS, Android), a variety of applications, and different resolution sizes. Given that all
GUIs operate under similar design principles, we believe that pre-training on such a comprehensive
corpus would enable GUI agents to achieve better GUI grounding, especially in OOD generalization.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Web

Mobile
DesktopWindows

MacOS

Linux

Grounding Mode Action Mode Agent Mode

Grounding

Plug-in

Action
(Web)

Action
(Desktop)

Action
(Mobile)

Agent
(Mobile)Agent

(Desktop)

Agent
(Web)OS-Atlas

Planner

Grounding
<x, y>

Zero-shot OOD
Generalization

Specific
Agentic Tasks

Optimize

Figure 1: (Left) The OS-Atlas model operates in three distinct modes to cater to various research
needs. In Grounding mode, OS-Atlas predicts element coordinates based on user instructions and can
be integrated with a planner module to create a complete agent. In Action mode, OS-Atlas functions
independently to solve step-level agent tasks universally across different platforms and applications,
even in zero-shot OOD scenarios. In Agent mode, OS-Atlas undergoes further supervised fine-tuning
to address specific agent tasks. (Right) Overall performance comparisons between OS-Atlas and
other state-of-the-art models.

Second, the heterogeneity of content and format in existing datasets (Zhang et al., 2024c; Chen et al.,
2024c), along with the issue of action naming conflicts, further undermines generalization. In current
datasets, the same action is often labeled with different names across platforms. For instance, the
“tap” action on mobile devices and the “click” action on desktop platforms are logically equivalent
yet labeled differently. This inconsistency can create confusion during model training and ultimately
result in decreased performance.

In this work, we are motivated to build a strong foundation action model to facilitate the development
of future generalist GUI agents. Toward this goal, we make the following contributions:

1. We have developed and released the first multi-platform GUI grounding data synthesis toolkit. This
toolkit enables the automatic synthesis of GUI grounding data across various platforms, including
Windows, macOS, Linux, Android, and the Web. By doing so, it significantly reduces the engineering
efforts required for data curation in future research.

2. Leveraging this data toolkit, we curated and open-sourced the largest multi-platform GUI grounding
corpus to date, which comprises over 2.3 million distinct screenshots and more than 13 million GUI
elements. Notably, our corpus includes desktop grounding data that has not been present in previous
works. To facilitate evaluation of GUI grounding, we identify and re-annotate 11.32% incorrect
samples in the popular benchmark ScreenSpot (Cheng et al., 2024) and release ScreenSpot-V2.

3. Through the above data innovation and an approach to resolving action naming conflicts during
training, we developed OS-Atlas, a highly accurate foundation action model that operates universally
across all GUIs. OS-Atlas can function in three different modes when developing GUI agents as
depicted in Figure 1.

4. We present the most comprehensive evaluation of GUI agents to date, covering six benchmarks
across three different platforms: desktop, mobile, and web. As shown in Figure 1, OS-Atlas demon-
strates a superior performance improvement over previous SOTA models. This strong performance
indicates that OS-Atlas can serve as an open-source alternative to powerful commercial VLMs, such
as GPT-4o, for developing future GUI agents.

2 RELATED WORK

GUI Agents and Large Action Models. Autonomous agents powered by LLMs, known as lan-
guage agents (Weng, 2023; Sumers et al., 2023), have recently garnered significant attention due
to their interactive capabilities (Wang et al., 2023; Sun et al., 2023; Hong et al., 2024a; Durante
et al., 2024). Recent efforts have begun to enable agents to interact with operating systems via
programs (Sun et al., 2024) or API calls (Wu et al., 2024; Zhang et al., 2024a). However, the
closed-source nature of most commercial software imposed significant limitations, as agents don’t
have access to their internal APIs or codes. Consequently, research shifts toward GUI-based agents

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

that interact with digital devices through human-like mouse and keyboard actions (Cheng et al., 2024;
Hong et al., 2024b; Zheng et al., 2024a). To facilitate effective agent interactions, Large Action Mod-
els (LAMs) have been developed to address general agentic tasks by interpreting human intentions
and predicting actions in the form of function-calling (Zhang et al., 2024c;b; Zeng et al., 2023; Yin
et al., 2023). Nevertheless, progress is hindered by the limited quantity and vast diversity of available
agent data (Li et al., 2024; Xu et al., 2024). Specifically, LAMs focusing on GUI interactions remain
underexplored, with only a few attempts made to train GUI grounding models or agents (Cheng et al.,
2024; Hong et al., 2024b; Gou et al., 2024).

To the best of our knowledge, OS-Atlas is the first LAM specifically designed for GUI agents.

GUI Executable Language Grounding. The core functionality of an LAM is to convert natural lan-
guage (NL) instructions into actions and associated parameters (e.g., element coordinates), commonly
known as GUI Executable Language Grounding, or simply GUI grounding. Existing GUI grounding
training data can be divided into two types: referring expression grounding (REG) (Liu et al., 2023)
and instruction grounding (IG) (Li et al., 2020). REG focuses on locating specific elements on the
screen based on explicit references in the language instructions, such as “click the Open button.”
Collecting REG data from webpages is straightforward through crawling and parsing (Cheng et al.,
2024; Chen et al., 2024b). However, when it comes to other platforms (e.g., desktop and mobile), it
presents significant challenges and often requires substantial human effort.

Compared to REG, IG data is more crucial for real-world applications. IG can be considered a
superset of REG, as it also includes actions that do not require specific coordinates, such as “Type”.
Moreover, the instructions in IG data are often nuanced and lack explicit element identification. For
instance, an instruction like “delete the last file” requires reasoning to identify the targeted action
type and element. IG data is often limited in size and diversity (Zhang et al., 2024b; Zheng et al.,
2024b), due to the need for human annotation during collection (Li et al., 2024).

OS-Atlas tackles these data-related challenges by developing a multi-platform infrastructure for
collecting GUI grounding data. A concurrent study by Gou et al. (2024) also addresses these
challenges; however, their focus is limited to scaling web data.

3 OS-ATLAS

To establish a robust foundation action model for GUI agents, we propose enhancements from both
data (§ 3.2) and methodological (§ 3.3) perspectives. Leveraging these innovations, we trained
OS-Atlas, the first foundation action model specifically designed for GUI agents.

3.1 TASK FORMULATION AND TRAINING

Our training process consists of two consecutive phases: (1) GUI Grounding Pre-training, which
equips VLMs with the knowledge to understand GUI screenshots and identify elements on the screen,
and on top of it, (2) Action Fine-tuning, which transforms instructions into executable GUI actions.
The framework overview can be found in Figure 2.

GUI Grounding Pre-training. This phase requires a large, high-quality, and diverse set of
<screenshot, element referring expression or instruction, element coordinate> triplets, where the
coordinates are represented as either points or bounding boxes. Models use the screenshot and the
referring expression or instruction to predict the corresponding element coordinates. To facilitate
large-scale pre-training, we have collected the largest multi-platform GUI reference corpus to date and
synthesized a set of instruction grounding data using VLMs, as detailed in § 3.2. As shown in Table 1,
our pre-training corpus covers 5 distinct platforms and includes over 2.3 million unique screenshots
containing more than 13 million elements. We denote the pre-trained model as OS-Atlas-Base.

Action Fine-tuning. To enable OS-Atlas to solve OS tasks effectively, we compile existing agent
datasets for multi-task imitation learning. Specifically, we use <screenshot, task instruction, action
history> triplets as model input and train the model to predict the corresponding action. Each action
can be further represented as <thoughts, action type, action parameters(e.g., coordinates)> triplets.
In our preliminary investigation, we discovered that fine-tuning with multiple diverse datasets can

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

OS-Atlas

Web

OS-Atlas-Base

Desktop Mobile

(452,173)

Search Bar

(407,681)

Value 20.3

(849,830)

“North”

>13M Elements
CLICK [[x, y]]
SCROLL [Dir.]
TYPE [Text]

LONG_PRESS [[x, y]]
……
SELECT [Ele.]

Task

Basic Action

+

Unified Action Space

GUI Grounding Pretraining Action Fine-tuning

>2M ScreenShots Diverse Platforms

Action

Thought

Custom Action

VLM

Figure 2: Overall training pipeline of OS-Atlas. We first perform large-scale pre-training using 13
million GUI grounding data collected to build OS-Atlas-Base. Next, we conduct multitask fine-tuning
on agent data, resulting in OS-Atlas.

introduce conflicts between actions, which degrade performance (see § 5.3). To address this issue, we
propose the use of a unified action space during training (see § 3.3).

3.2 GROUNDING DATA COLLECTION

Dataset #Screenshots Open #ElementsWeb Mobile Desktop Source

SeeClick 270K 94K - ✓ 3.3M
Ferret-UI - 124K - ✗ <1M
GUICourse 73K 9K - ✓ 10.7M
CogAgent 400K - - ✗ 70M

OS-Atlas 1.9M 285K 54K ✓ 13.58M

Table 1: Statistics of the grounding data we collected
compared to existing efforts. (For open-source datasets,
we only count the amount of data made publicly avail-
able.)

As shown in Table 1, existing GUI ground-
ing corpora predominantly focus on web-
page screenshots, as these can be easily ob-
tained using web crawlers (Cheng et al.,
2024; Hong et al., 2024b; Chen et al.,
2024b) or on mobile screenshots (You et al.,
2024; Zhang et al., 2024d), leaving a sig-
nificant gap for desktop screenshots. Fur-
thermore, many of these corpora are either
not open-sourced or are available only in
relatively small scales. To lay a solid foun-
dation for GUI agents, we have developed
and open-sourced the first cross-platform
GUI grounding data collection platform,
along with a dataset comprising 13 million
GUI grounding instances that cover Windows, macOS, Linux, Android, and the Web. However, due to
significant discrepancies between these platforms, we were required to create distinct infrastructures
for each one, which presents unique challenges in ensuring consistent data quality and compatibility
across different environments.

Web. We crawled about 4 million web pages from the latest URLs obtained from FineWeb (Penedo
et al., 2024), a cleaned and deduplicated English dataset derived from CommonCrawl. For each
webpage, we extracted all visible clickable elements from the HTML code — including buttons, scroll
bars, search bars, hyperlinks, and SVG images with titles — along with their referring expressions
and coordinates derived from the associated HTML attributes. Unlike previous methods (Cheng et al.,
2024) that primarily focused on processing only the upper portions of websites, we render entire
websites and then segment them into 1920x1080 resolution screenshots. This approach enhances the
diversity of our web data by capturing a more comprehensive view of each webpage.

By excluding all error pages (e.g., 404 errors), we initially curated 3.7 million webpage screenshots
and 37 million elements. However, upon human examination, we identified numerous low-quality
samples within this dataset. To address this issue, we implemented rule-based data filtering to exclude
webpages that were either incompletely rendered or contained poorly distributed elements (e.g., all
elements clustered at the bottom of the screen). Additionally, we restricted the maximum number of
elements per webpage to 10 to encourage diversity. As a result of these stringent filtering criteria, we
obtained a cleaned corpus consisting of 1.6 million screenshots and 7.7 million elements.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Desktop & Mobile. Capturing desktop and mobile screenshots is significantly more complex than
collecting web screenshots. Previous methods primarily relied on manual collection, which resulted
in a relatively small dataset. However, large-scale automated data collection presents the following
challenges: (1) the substantial engineering efforts required to set up a simulation environment for
data collection within a real operating system, and (2) the necessity of designing a program to
mimic human interactions with the operating system, thereby changing system states to obtain new
screenshots.

For Android, we utilize AndroidEnv (Toyama et al., 2021) to create a simulation environment, and
for Linux, we employ OSWorld (Xie et al., 2024). Given the difficulties associated with virtualizing
Windows and MacOS, we deploy the data synthesis platform on physical machines to collect data
from these two operating systems. On these platforms, we leverage A11y tree to collect grounding
data. Due to the differences in A11y tree APIs and tools supported by each operating system, we
utilize pyatspi to access the A11y tree on Ubuntu, pywinauto on Windows, and ApplicationServices
on macOS. We then simulate human-computer interactions by sampling actions from the obtained
A11y tree. In our simulation environment, we employ two different exploration methods: Depth-First
Search (DFS) and Random Walk. We apply a similar data filtering pipeline to the grounding data
obtained as we did for the webpages.

Instruction Grounding Data Collection. In addition to the large-scale automated collection of
referring expression data, we also annotated existing trajectory datasets using GPT-4o to obtain
instruction grounding data. Given a high-level task instruction along with the before-and-after
interface screenshots of an action, we instruct GPT-4o to carefully analyze the changes in the
interface to derive a sub-instruction for the current action. Specifically, we employ Set-of-Mark
prompting (Yang et al., 2023) to indicate the locations of the operated elements, which helps GPT-4o
better comprehend the screenshots. We annotated the training sets of four trajectory datasets collected
from both web and mobile platforms, namely Mind2Web (Deng et al., 2023b), AMEX (Chai et al.,
2024), and AITZ (Zhang et al., 2024d). We also utilize instruction grounding data from two publicly
available datasets: AndroidControl (Li et al., 2024) and Wave-UI 1.

3.3 UNIFIED ACTION SPACE

Our preliminary investigation found that blindly mixing data from different sources for multitask
fine-tuning can significantly harm performance due to action space conflicts. For instance, the action
“click” in a desktop environment is logically equivalent to the “tap” operation on a mobile device;
training with such conflicts can confuse the model. To address this issue, we propose a unified action
space that standardizes the format of all existing datasets. Our unified action space comprises both
Basic Actions and Custom Actions. The prompt can be found in Table 6.

Basic Actions. These are standardized and available across all platforms. They provide essential
functionality and are defined with a specific format, ensuring consistency and reliability. In the
current design, we have three basic actions: click, type, and scroll. This design significantly reduces
the size of action space when fine-tuning, and facilitates knowledge sharing across platforms and
apps.

Custom Actions. These are unique to each user’s platform and device. They enable the model
to support new and unseen actions defined by users. The design of custom actions is crucial to
OS-Atlas’s good out-of-distribution performance, as they allow for on-demand extensions to support
previously unseen tasks and actions. Typical custom actions include open app (to open the specified
application) and drag (to move an object to another location).

1https://huggingface.co/datasets/agentsea/wave-ui. We remove entries from ScreenSpot (Cheng et al., 2024),
Mind2Web, and Omniact to avoid data contamination in downstream evaluation.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS: GROUNDING TASKS

4.1 EVALUATION DETAILS

Benchmarks. We begin by conducting a comprehensive evaluation of the GUI grounding perfor-
mance of OS-Atlas-Base. Our evaluation utilizes ScreenSpot (Cheng et al., 2024), which assesses
single-step GUI grounding capabilities across multiple platforms. During the evaluation, we identified
approximately 11.32% percent annotation errors in the ScreenSpot dataset. To enhance the accuracy
of our grounding evaluation, we corrected these errors and re-annotated certain examples, ensuring
that the total number of test samples remains unchanged. In recognition of ScreenSpot’s contributions,
we have named the revised grounding dataset ScreenSpot-V2.

Settings. Following Gou et al. (2024), we evaluate under two settings: 1) the Grounding Mode
Setting, which utilizes a planner model (e.g., gpt-4o) before grounding. The instructions from
ScreenSpot are treated as subtask instructions and input into the planner to generate more detailed
instructions for the grounding models. 2) the Standard Setting without a planner, which directly uses
the original instructions from ScreenSpot.

Models. We consider two distinct backbone models: Qwen2-VL (Wang et al., 2024), which is
trained explicitly with GUI data, and InternVL-2 (Chen et al., 2024d) which is trained without GUI
data. These models also differ in their handling of image resolutions. InternVL-2-4B employs
AnyRes (Liu et al., 2024; You et al., 2024) to resize images and segment larger images into smaller
patches, which are then encoded independently using vision encoders. In contrast, Qwen2-VL-7B
supports arbitrary image resolutions by directly mapping an image into a dynamic number of visual
tokens. We denote our model as OS-Atlas-Base-4/7B, based on the backbones being used. Further
details regarding the training setups can be found in Appendix E.

Baselines. We focus on VLMs that are explicitly trained with GUI data, including Fuyu (Bavishi
et al., 2023), CogAgent (Hong et al., 2024b), Qwen2-VL (Wang et al., 2024), SeeClick (Cheng et al.,
2024), and even a concurrent work UGround (Gou et al., 2024). We omit general VLMs such as
GPT-4V, as they are well-studied and perform poorly on ScreenSpot (Cheng et al., 2024).

Metrics. We follow previous practices by using grounding accuracy on ScreenSpot, where a
prediction is considered correct if the predicted location falls within the ground truth element’s
bounding box. However, this metric does not capture more fine-grained grounding errors. Therefore,
we also use Intersection over Union (IoU), a widely used metric for measuring localization accuracy
in object detection. IoU quantifies the overlap between the predicted bounding box and the ground
truth bounding box.

4.2 RESULTS AND ANALYSIS

As shown in Table 2, under both settings, OS-Atlas-Base significantly outperforms previous grounding
models on ScreenSpot across mobile, desktop, and web platforms, achieving state-of-the-art results.
A similar trend is observed in ScreenSpot-V2 (see Appendix B). Notably, even for VLMs like Qwen2-
VL, which have been pre-trained on GUI screenshots, incorporating GUI grounding pre-training
can further enhance grounding capabilities. To gain deeper insights into the reasons behind this
strong performance, we conducted a series of analyses under the standard setting (without a planner),
including those in § 5.3, using InternVL-2-4B due to GPU constraints.

The Effect of Grounding Data Scaling. We plot the changes in grounding accuracy and IoU
of OS-Atlas-Base-4B on ScreenSpot throughout the training process. As illustrated in Figure 3,
grounding accuracy and IoU exhibit a clear positive correlation with the scaling of data, particularly
in the case of IoU and the web domain, where we have nearly 10 million elements. The correlation is
relatively weak in grounding accuracy because it cannot capture finer-grained errors. On one hand,
this suggests the significant potential of continuously scaling the grounding data to further enhance
performance. On the other hand, it underscores the need for more challenging benchmarks and
improved metrics to effectively track performance improvements.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

OS-Atlas-Base
-4B

w/o IG w/o IG,Mobile,
Desktop

0

20

40

60

80

100
82.61 83.48

70.00
63.11 61.17

50.49

(a) Web

OS-Atlas-Base
-4B

w/o IG w/o IG,Mobile,
Desktop

0

20

40

60

80

100

72.16
62.89

32.99
45.71

39.29
28.57

(b) Desktop
Text Icon/Widget

OS-Atlas-Base
-4B

w/o IG w/o IG,Mobile,
Desktop

0

20

40

60

80

100 85.71 84.98

17.58

58.52 54.59

10.04

(c) Mobile

Figure 4: Ablation studies and performance on ScreenSpot. IG/Mobile/Desktop refers to instruction
grounding, mobile, and desktop grounding data, respectively.

Planner Grounding Models Mobile Desktop Web Avg.
Text Icon/Widget Text Icon/Widget Text Icon/Widget

-

Fuyu 41.00 1.30 33.00 3.60 33.90 4.40 21.31
CogAgent 67.00 24.00 74.20 20.00 70.40 28.60 49.58
SeeClick 78.00 52.00 72.20 30.00 55.70 32.50 55.75
InternVL-2-4B 9.16 4.80 4.64 4.29 0.87 0.10 4.32
Qwen2-VL-7B 61.34 39.29 52.01 44.98 33.04 21.84 42.89
UGround-7B 82.80 60.30 82.50 63.60 80.40 70.40 74.15
OS-Atlas-Base-4B 85.71 58.52 72.16 45.71 82.61 63.11 70.13
OS-Atlas-Base-7B 93.04 72.93 91.75 62.86 90.87 74.27 82.47

GPT-4o

SeeClick 83.52 59.39 82.47 35.00 66.96 35.44 62.89
UGround-7B 93.40 76.90 92.80 67.90 88.70 68.90 82.71
OS-Atlas-Base-4B 94.14 73.80 77.84 47.14 86.52 65.53 76.81
OS-Atlas-Base-7B 93.77 79.91 90.21 66.43 92.61 79.13 85.14

Table 2: Grounding accuracy on ScreenSpot. The best results are in bold.

20

25

30

35

40

45

50

Io
U

(%
)

Web Desktop Mobile

600 1200 1800 2400 3000 3600 Final
Training Steps

50

55

60

65

70

75

80

Ac
tio

n
Ac

c.
 (%

)

Figure 3: The effect of grounding data scaling on two
metrics. The performances on three different domains
are reported.

Ablation. We first remove the instruction
grounding (IG) data from the pre-training
phase to conduct a more controlled ablation
analysis. Next, we further exclude mobile
and desktop data to investigate whether pre-
training solely on web data can generalize
to other platforms. The results presented in
Figure 4 reveal the following insights: (1)
Referring expression data is nearly sufficient
for training a strong grounding model and
can be easily scaled compared to instruc-
tion grounding data. (2) Despite the sim-
ilarities between different GUI platforms,
pre-training solely on web data struggles to
generalize to other platforms. This empha-
sizes the importance of our data infrastruc-
ture in facilitating the scaling of desktop and
mobile referring expression data.

4.3 APPLICATION: GROUNDING MODE

We evaluate how OS-Atlas-Base work under the grounding mode in Figure 1: it can serve as a
replacement for the grounding module of an existing GUI agent, thereby enhancing overall perfor-
mance. In this study, we benchmark our approach on the challenging OS agent testbed, OSWorld (Xie
et al., 2024). OSWorld is an interactive environment just like our computers, where the agent must

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

interact with the operating system at each step and wait for a response before proceeding to the
next step. Refer to Figure 8 for a concrete example from the benchmark. Following their best
practices, we constructed a screenshot-based GUI agent using GPT-4o. Given a specific task, the
agent generates a detailed, step-by-step plan to accomplish it. It then executes this plan by generating
actions and coordinates at each step. We substitute these coordinates with those generated by an
external grounding model, either OS-Atlas-Base or SeeClick.

As shown in Table 3, although GPT-4o with OS-Atlas-Base as the grounding module still lags behind
human performance, it significantly outperforms other grounding methods such as SeeClick and
Set-of-Mark (SoM). This demonstrates the potential of OS-Atlas-Base as a standalone grounding
module for developing future GUI agents.

Models Successful Rate Avg.OS Calc Impress Writer VLC TB Chrome VSC GIMP WF

GPT-4o + SoM 20.83 0.00 6.77 4.35 6.53 0.00 4.35 4.35 0.00 3.60 4.59
GPT-4o 8.33 0.00 6.77 4.35 16.10 0.00 4.35 4.35 3.85 5.58 5.03
+ SeeClick 16.67 0.00 12.76 4.35 23.52 6.67 10.86 8.70 11.54 7.92 9.21
+ OS-Atlas-Base-4B 20.83 2.23 14.89 8.70 23.52 13.33 15.22 13.04 15.38 7.92 11.65
+ OS-Atlas-Base-7B 25.00 4.26 17.02 8.70 29.41 26.67 19.57 17.39 19.23 8.91 14.63

Human 75.00 61.70 80.85 73.91 70.59 46.67 78.26 73.91 73.08 73.27 72.36

Table 3: Successful rate on OS World benchmark, divided by apps (domains). Workflow (WF) is a
special domain that requires navigation across multiple apps.

5 EXPERIMENTS: AGENT TASKS

5.1 EXPERIMENT SETUPS

Training details. Given that there are currently relatively few agent benchmarks, especially in
the desktop domain, we have only utilized three datasets — AMEX (Chai et al., 2024) (mobile),
AITZ (Zhang et al., 2024d) (mobile), and Mind2Web (Deng et al., 2023a) (web) — to train our model,
leaving a significant number of available benchmarks for OOD testing. For the sake of simplicity
in notation, we denote our model as OS-Atlas-4/7B, which reflects the different backbone models
utilized: InternVL-2-4B and Qwen2-VL-7B.

Evaluation Benchmarks. We examine five distinct agent benchmarks across three different plat-
forms: AndroidControl (Li et al., 2024) and GUI-Odyssey (Lu et al., 2024a) for mobile agents;
GUI-Act-Web (Chen et al., 2024a) and OmniAct-Web (Kapoor et al., 2024) for web agents; and
OmniAct-Desktop for Windows environments. We only use the test split from these benchmarks for
evaluation. Detailed statistics for these benchmarks can be found in Appendix C. Following common
practices (Cheng et al., 2024; Deng et al., 2023a; Zhang et al., 2024d), we evaluate all benchmarks at
the subtask granularity, as described in § 3.1. This involves allowing the model to predict actions for
each step based on the task instruction, the associated screenshot, and action history (if available).

Settings and Baselines. We evaluate under two different settings to demonstrate two different
practical applications of foundation action models like OS-Atlas: (1) zero-shot OOD setting (the
Action Mode in Figure 1). In this setting, action models are benchmarked on unseen tasks, domains,
or applications in a zero-shot manner, mimicking real-world usage scenarios for GUI agents.; (2)
supervised fine-tuning setting (the Agent Mode): In this setting, researchers fine-tune models on
downstream tasks to create agents specifically tailored for their intended applications.

In the zero-shot OOD setting, we use GPT-4o as the baseline, as existing VLMs perform poorly
under this setting. For the supervised fine-tuning setting, we select InternVL-2, Qwen2-VL, and the
grounding model, SeeClick, as our backbone for training.

Metrics. We evaluate our models using three commonly used metrics for GUI agents that assess
the accuracy of action type prediction, coordinate prediction, and step success rate, denoted as Type,
Grounding, and SR, respectively. Type measures the exact match score between the predicted action
types (e.g., CLICK, SCROLL) and the ground truth, often referred to as Type EM in the literature.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Models GUI-Act-Web OmniAct-Web OmniAct-Desktop
Type Grounding SR Type Grounding SR Type Grounding SR

Zero-shot OOD Setting

GPT-4o 77.09 45.02 41.84 79.33 42.79 34.06 79.97 63.25 50.67
OS-Atlas-4B 79.22 58.57 42.62 46.74 49.24 22.99 63.30 42.55 26.94
OS-Atlas-7B 86.95 75.61 57.02 86.12 69.35 59.99 90.24 62.87 56.73

Supervised Fine-tuning Setting

InternVL-2-4B 81.42 47.03 36.17 47.51 51.34 24.39 67.00 44.47 29.80
Qwen2-VL-7B 89.36 90.66 82.27 89.22 85.94 78.58 96.27 94.52 91.77
SeeClick 88.79 78.59 72.34 86.98 75.48 68.59 96.79 70.22 72.69
OS-Atlas-4B 89.36 89.16 81.06 88.56 82.00 73.91 96.51 85.53 84.78
OS-Atlas-7B 89.08 91.60 82.70 97.15 95.41 93.56 97.15 95.85 94.05

Table 4: Results on web and desktop tasks. InternVL-2/Qwen2-VL and OS-Atlas-4/7B differ in that
the former utilizes the original checkpoints, while the latter is fine-tuned on OS-Atlas-Base.

Models AndroidControl-Low AndroidControl-High GUI-Odyssey
Type Grounding SR Type Grounding SR Type Grounding SR

Zero-shot OOD Setting

GPT-4o 74.33 38.67 28.39 63.06 30.90 21.17 37.50 14.17 5.36
OS-Atlas-4B 64.58 71.19 40.62 49.01 49.51 22.77 49.63 34.63 20.25
OS-Atlas-7B 73.00 73.37 50.94 57.44 54.90 29.83 60.42 39.74 26.96

Supervised Fine-tuning Setting

InternVL-2-4B 90.94 84.05 80.10 84.09 72.73 66.72 82.13 55.53 51.45
Qwen2-VL-7B 91.94 86.50 82.56 83.83 77.68 69.72 83.54 65.89 60.23
SeeClick 93.00 73.42 75.00 82.94 62.87 59.11 70.99 52.44 53.92
OS-Atlas-4B 91.92 83.76 80.64 84.69 73.79 67.54 83.47 61.37 56.39
OS-Atlas-7B 93.61 87.97 85.22 85.22 78.48 71.17 84.47 67.80 61.98

Table 5: Results on mobile tasks. InternVL-2/Qwen2-VL and OS-Atlas-4/7B differ in that the former
utilizes the original checkpoints, while the latter is fine-tuned on OS-Atlas-Base. AndroidControl-
Low refers to the scenario where both low-level and high-level instructions are provided as inputs,
while AndroidControl-High indicates that only high-level instructions are given.

Grounding evaluates the performance of GUI grounding in downstream tasks. SR represents the
step-wise success rate, where a step is deemed successful only if both the predicted action and its
associated arguments (e.g., coordinates for a click action) are correct. Appendix D provides detailed
information on how these metrics are calculated.

5.2 RESULTS

The performances are presented in Table 4, 5. OS-Atlas achieved SOTA performance across three
different platforms, six distinct datasets, and two evaluation settings. In comparison with GPT-4o, our
model demonstrated superior capabilities in addressing unseen tasks across all six OOD evaluation
datasets, even the desktop domain models haven’t seen during action fine-tuning. This suggests
that in the realm of GUI agents, OS-Atlas has the potential to be a robust open-source alternative to
leading commercial VLMs. Additionally, the results of the SFT setting further confirm that OS-Atlas
can serve as a robust foundation for researchers to train their custom GUI agents.

5.3 ANALYSIS

In this paper, we present two key research contributions: the development of a data infrastructure
for grounding data synthesis and the proposal of a unified action space. We conduct experiments
to analyze the significance of these factors in enhancing the zero-shot OOD performance of a
foundational action model.

First, we investigate the effect of grounding pre-training by training OS-Atlas directly from the
original VLMs, which we refer to as w/o pre-training. As illustrated in Figure 5, omitting the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Web Desktop Mobile
0

10

20

30

40

Pe
rfo

rm
an

ce
s (

%
)

(a) Step-wise Success Rate
OS-Atlas-4B
w/o Pre-training
w/o Unify Action

Web Desktop Mobile
0

10

20

30

40

50

60

Pe
rfo

rm
an

ce
s (

%
)

(b) Grounding Acc.

Figure 5: Ablation studies on the zero-shot OOD setting. The results are reported respectively across
three platforms.

pre-training stage significantly degrades performance, particularly on the desktop and web platforms,
where we have very limited data available for fine-tuning (7k samples for web and none for desktop).
These results highlight the critical importance of the data infrastructure for grounding data synthesis;
with this infrastructure in place, we can easily improve OOD downstream performance simply by
scaling the pre-training corpus.

Next, we investigate the impact of removing the unified action space during fine-tuning, denoted as
w/o unified action. For each fine-tuning dataset, we adhere to the optimal action space design proposed
in SOTA models. As illustrated in Figure 5, we again observe a noticeable drop in performance.
This validates our hypothesis that the conflicting action spaces indeed degrade model performance.
Quantitatively, we find that employing our unified action space reduces the number of unique action
types from 17 to 10, effectively resolving several naming conflicts, such as between “tap” and “click”,
“press home” and “home”, as well as “type” and “input”.

5.4 OS-ATLAS-PRO

Web Desktop Mobile

60

70

80

90

Av
g.

 P
er

fo
rm

an
ce

(%
)

77.49

84.78

68.19

79.23

92.99

70.93

OS-Atlas-4B OS-Atlas-Pro-4B

Web Desktop Mobile

70

80

90

100

Av
g.

 P
er

fo
rm

an
ce

(%
)

88.13

94.05

72.79

89.80

97.04

78.13

OS-Atlas-7B OS-Atlas-Pro-7B

Figure 6: OS-Atlas-Pro evaluation results.

To ensure that most datasets remain available for OOD
evaluation, OS-Atlas is initially trained using a limited
selection of 3 agent datasets. To fully leverage its po-
tential for broader applications, we use all 7 previously
mentioned agent datasets for multitask fine-tuning. We
report the average Success Rate (SR) across three do-
mains: Web (GUI-Act-Web and OmniAct-Web), Mo-
bile (AndroidControl-Low/High and GUI-Odyssey),
and Desktop (OmniAct-Desktop). As illustrated in
Figure 6, large-scale multitask fine-tuning significantly
enhances model performance, thereby ensuring a bet-
ter user experience when deployed in real-world appli-
cations.

6 CONCLUSION

In this paper, we present OS-Atlas, a foundation action
model for GUI agents. OS-Atlas demonstrates excep-
tional performance in tackling open-environment GUI
tasks across six complex benchmarks. This strong
performance highlights the potential of OS-Atlas as
an open-source alternative to powerful commercial
VLMs, such as GPT-4o, for the development of future
GUI agents.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS AND REPRODUCIBILITY STATEMENT

This research focuses on constructing a foundation action model for generalist GUI agents. The
data used are obtained either from synthesizing or reprocessing from previously released datasets,
with all datasets or benchmarks properly cited. There are no discrimination, bias, or fairness issues
that need to be addressed in this paper. Further, our models are not expected to generate potentially
harmful content. To ensure reproducibility, we provide all experimental details in Section 5 and their
corresponding appendices. We will release all data, source code, and model checkpoints to support
reproducibility.

REFERENCES

Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, and
Sağnak Taşırlar. Introducing our multimodal models, 2023. URL https://www.adept.ai/
blog/fuyu-8b.

Yuxiang Chai, Siyuan Huang, Yazhe Niu, Han Xiao, Liang Liu, Dingyu Zhang, Peng Gao, Shuai Ren,
and Hongsheng Li. Amex: Android multi-annotation expo dataset for mobile gui agents. arXiv
preprint arXiv:2407.17490, 2024.

Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie Fang, Yue Zhao, Chongyi Wang, Jun Liu,
Guirong Chen, Yupeng Huo, Yuan Yao, Yankai Lin, Zhiyuan Liu, and Maosong Sun. Guicourse:
From general vision language models to versatile GUI agents. CoRR, abs/2406.11317, 2024a.
doi: 10.48550/ARXIV.2406.11317. URL https://doi.org/10.48550/arXiv.2406.
11317.

Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie Fang, Yue Zhao, Chongyi Wang, Jun Liu,
Guirong Chen, Yupeng Huo, et al. Guicourse: From general vision language models to versatile
gui agents. arXiv preprint arXiv:2406.11317, 2024b.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and
Feng Zhao. Agent-flan: Designing data and methods of effective agent tuning for large language
models. arXiv preprint arXiv:2403.12881, 2024c.

Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi
Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to commercial
multimodal models with open-source suites. arXiv preprint arXiv:2404.16821, 2024d.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiy-
ong Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents. arXiv preprint
arXiv:2401.10935, 2024.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web. arXiv preprint arXiv:2306.06070,
2023a.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023b. URL https://openreview.net/forum?
id=kiYqbO3wqw.

Zane Durante, Qiuyuan Huang, Naoki Wake, Ran Gong, Jae Sung Park, Bidipta Sarkar, Rohan
Taori, Yusuke Noda, Demetri Terzopoulos, Yejin Choi, Katsushi Ikeuchi, Hoi Vo, Li Fei-Fei,
and Jianfeng Gao. Agent ai: Surveying the horizons of multimodal interaction, 2024. URL
https://arxiv.org/abs/2401.03568.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents.
arXiv preprint arXiv:2410.05243, 2024.

11

https://www.adept.ai/blog/fuyu-8b
https://www.adept.ai/blog/fuyu-8b
https://doi.org/10.48550/arXiv.2406.11317
https://doi.org/10.48550/arXiv.2406.11317
https://openreview.net/forum?id=kiYqbO3wqw
https://openreview.net/forum?id=kiYqbO3wqw
https://arxiv.org/abs/2401.03568

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zecheng He, Srinivas Sunkara, Xiaoxue Zang, Ying Xu, Lijuan Liu, Nevan Wichers, Gabriel
Schubiner, Ruby B. Lee, and Jindong Chen. Actionbert: Leveraging user actions for semantic
understanding of user interfaces. In AAAI Conference on Artificial Intelligence, 2020. URL
https://api.semanticscholar.org/CorpusID:229363676.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jürgen Schmidhuber. MetaGPT: Meta programming for a multi-agent
collaborative framework. In The Twelfth International Conference on Learning Representations,
2024a. URL https://openreview.net/forum?id=VtmBAGCN7o.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14281–14290, 2024b.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem AlShikh,
and Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal generalist
autonomous agents for desktop and web. CoRR, abs/2402.17553, 2024. doi: 10.48550/ARXIV.
2402.17553. URL https://doi.org/10.48550/arXiv.2402.17553.

Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Martin Eisenschlos, Urvashi
Khandelwal, Peter Shaw, Ming-Wei Chang, and Kristina Toutanova. Pix2struct: Screenshot
parsing as pretraining for visual language understanding. ArXiv, abs/2210.03347, 2022. URL
https://api.semanticscholar.org/CorpusID:252762394.

Wei Li, William Bishop, Alice Li, Chris Rawles, Folawiyo Campbell-Ajala, Divya Tyamagundlu,
and Oriana Riva. On the effects of data scale on computer control agents. arXiv preprint
arXiv:2406.03679, 2024.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. Mapping natural language
instructions to mobile UI action sequences. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel
Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 8198–8210, Online, July 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.acl-main.729. URL https://aclanthology.org/2020.acl-main.
729.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, 2024.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
open-set object detection. arXiv preprint arXiv:2303.05499, 2023.

Quanfeng Lu, Wenqi Shao, Zitao Liu, Fanqing Meng, Boxuan Li, Botong Chen, Siyuan Huang,
Kaipeng Zhang, Yu Qiao, and Ping Luo. GUI odyssey: A comprehensive dataset for cross-app GUI
navigation on mobile devices. CoRR, abs/2406.08451, 2024a. doi: 10.48550/ARXIV.2406.08451.
URL https://doi.org/10.48550/arXiv.2406.08451.

Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. Omniparser for pure vision based
gui agent. arXiv preprint arXiv:2408.00203, 2024b.

Guilherme Penedo, Hynek Kydlı́ček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
finest text data at scale, 2024. URL https://arxiv.org/abs/2406.17557.

Theodore R Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L Griffiths. Cognitive architec-
tures for language agents. arXiv preprint arXiv:2309.02427, 2023.

12

https://api.semanticscholar.org/CorpusID:229363676
https://openreview.net/forum?id=VtmBAGCN7o
https://doi.org/10.48550/arXiv.2402.17553
https://api.semanticscholar.org/CorpusID:252762394
https://aclanthology.org/2020.acl-main.729
https://aclanthology.org/2020.acl-main.729
https://doi.org/10.48550/arXiv.2406.08451
https://arxiv.org/abs/2406.17557

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Qiushi Sun, Zhangyue Yin, Xiang Li, Zhiyong Wu, Xipeng Qiu, and Lingpeng Kong. Corex:
Pushing the boundaries of complex reasoning through multi-model collaboration. arXiv preprint
arXiv:2310.00280, 2023.

Qiushi Sun, Zhirui Chen, Fangzhi Xu, Kanzhi Cheng, Chang Ma, Zhangyue Yin, Jianing Wang,
Chengcheng Han, Renyu Zhu, Shuai Yuan, et al. A survey of neural code intelligence: Paradigms,
advances and beyond. arXiv preprint arXiv:2403.14734, 2024.

Daniel Toyama, Philippe Hamel, Anita Gergely, Gheorghe Comanici, Amelia Glaese, Zafarali Ahmed,
Tyler Jackson, Shibl Mourad, and Doina Precup. AndroidEnv: A reinforcement learning platform
for android. abs/2105.13231, 2021. URL http://arxiv.org/abs/2105.13231.

Bryan Wang, Gang Li, Xin Zhou, Zhourong Chen, Tovi Grossman, and Yang Li. Screen2words:
Automatic mobile ui summarization with multimodal learning. The 34th Annual ACM Symposium
on User Interface Software and Technology, 2021. URL https://api.semanticscholar.
org/CorpusID:236957064.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Ji-Rong Wen. A survey on large
language model based autonomous agents. http://arxiv.org/abs/2308.11432, 2023.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model’s
perception of the world at any resolution. arXiv preprint arXiv:2409.12191, 2024.

WebAIM. Webaim: The webaim million - the 2024 report on the accessibility of the top 1,000,000
home pages, 2024. URL https://webaim.org/projects/million/. Accessed on
September 30, 2024.

Lilian Weng. Llm-powered autonomous agents. lilianweng.github.io, Jun 2023. URL https:
//lilianweng.github.io/posts/2023-06-23-agent/.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement.
arXiv preprint arXiv:2402.07456, 2024.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. arXiv preprint arXiv:2404.07972,
2024.

Fangzhi Xu, Qiushi Sun, Kanzhi Cheng, Jun Liu, Yu Qiao, and Zhiyong Wu. Interactive evo-
lution: A neural-symbolic self-training framework for large language models. arXiv preprint
arXiv:2406.11736, 2024.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441,
2023.

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khyathi Chandu, Kai-Wei Chang, Yejin Choi, and
Bill Yuchen Lin. Lumos: Learning agents with unified data, modular design, and open-source llms.
arXiv preprint arXiv:2311.05657, 2023.

Keen You, Haotian Zhang, Eldon Schoop, Floris Weers, Amanda Swearngin, Jeffrey Nichols, Yinfei
Yang, and Zhe Gan. Ferret-ui: Grounded mobile ui understanding with multimodal llms. arXiv
preprint arXiv:2404.05719, 2024.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttuning:
Enabling generalized agent abilities for llms. arXiv preprint arXiv:2310.12823, 2023.

Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Yu Kang, Qingwei
Lin, Saravan Rajmohan, et al. Ufo: A ui-focused agent for windows os interaction. arXiv preprint
arXiv:2402.07939, 2024a.

13

http://arxiv.org/abs/2105.13231
https://api.semanticscholar.org/CorpusID:236957064
https://api.semanticscholar.org/CorpusID:236957064
https://webaim.org/projects/million/
https://lilianweng.github.io/posts/2023-06-23-agent/
https://lilianweng.github.io/posts/2023-06-23-agent/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jianguo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu, Weiran Yao, Juntao Tan, Thai Hoang,
Liangwei Yang, Yihao Feng, Zuxin Liu, et al. Agentohana: Design unified data and training
pipeline for effective agent learning. arXiv preprint arXiv:2402.15506, 2024b.

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Hoang, Shirley Kokane, Weiran Yao, Juntao
Tan, Akshara Prabhakar, Haolin Chen, et al. xlam: A family of large action models to empower ai
agent systems. arXiv preprint arXiv:2409.03215, 2024c.

Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao, Nuo Xu, Xiao Xiao, Zhongyu Wei, and Duyu
Tang. Android in the zoo: Chain-of-action-thought for gui agents, 2024d.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist web
agent, if grounded. In Forty-first International Conference on Machine Learning, 2024a. URL
https://openreview.net/forum?id=piecKJ2DlB.

Longtao Zheng, Zhiyuan Huang, Zhenghai Xue, Xinrun Wang, Bo An, and Shuicheng Yan. Agentstu-
dio: A toolkit for building general virtual agents. arXiv preprint arXiv:2403.17918, 2024b.

14

https://openreview.net/forum?id=piecKJ2DlB

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Unified Action Space Prompt
You are a foundational action model capable of automating tasks across various digital environ-
ments, including desktop systems like Windows, macOS, and Linux, as well as mobile platforms
such as Android and iOS. You also excel in web browser environments. You will interact with
digital devices in a human-like manner: by reading screenshots, analyzing them, and taking
appropriate actions.
Your expertise covers two types of digital tasks:

- Grounding: Given a screenshot and a description, you assist users in locating elements
mentioned. Sometimes, you must infer which elements best fit the description when they aren’t
explicitly stated.

- Executable Language Grounding: With a screenshot and task instruction, your goal is
to determine the executable actions needed to complete the task. You should only respond with
the Python code in the format as described below:
You are now operating in Executable Language Grounding mode. Your goal is to help users
accomplish tasks by suggesting executable actions that best fit their needs. Your skill set includes
both basic and custom actions:
1. Basic Actions
Basic actions are standardized and available across all platforms. They provide essential function-
ality and are defined with a specific format, ensuring consistency and reliability.

Basic Action 1: CLICK
- purpose: Click at the specified position.
- format: CLICK <point>[[x-axis, y-axis]]</point>
- example usage: CLICK <point>[[101, 872]]</point>

Basic Action 2: TYPE
- purpose: Enter specified text at the designated location.
- format: TYPE [input text]
- example usage: TYPE [Shanghai shopping mall]

Basic Action 3: SCROLL
- purpose: SCROLL in the specified direction.
- format: SCROLL [direction (UP/DOWN/LEFT/RIGHT)]
- example usage: SCROLL [UP]

2.Custom Actions
Custom actions are unique to each user’s platform and environment. They allow for flexibility
and adaptability, enabling the model to support new and unseen actions defined by users. These
actions extend the functionality of the basic set, making the model more versatile and capable of
handling specific tasks.
Your customized actions varied by datasets.

Table 6: The prompt for the action fine-tuning with a unified action space.

A DATA STATISTICS

We detailed the statistics of the pre-training corpus we collected in Table 7.

B SCREENSPOT-V2

During our error analysis of Screenspot, we identified that several errors stem from incorrect or
ambiguous annotations in the benchmark. Specifically, we observed the following issues:

1. Some instructions contain spelling mistakes or reference elements that are not present in the
screenshots.

2. Certain questions are ambiguous, allowing for multiple valid answers, while the ground
truth includes only one of these options.

3. Several questions exhibit a high degree of similarity to one another.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Training dataset Type Platform Source #Elements #Screenshots

FineWeb-filtered REG Web synthetic 7,779,922 1,617,179
Windows-desktop REG Windows synthetic 1,079,707 51,726
Linux-desktop REG Linux synthetic 41,540 1,186
MacOS-desktop REG MacOS synthetic 13,326 1,339
Pixel6-mobile REG Mobile synthetic 104,598 21,745
SeeClick REG Web & Mobile public 3,303,479 364,760
AMEX REG Mobile public 1,097,691 99,939
UIbert REG Mobile public 16660 5682

Mind2Web-annotated IG Web GPT-4o 5,943 5,943
AITZ-annotated IG Mobile GPT-4o 10,463 10,463
AMEX-annotated IG Mobile GPT-4o 5,745 5,745
AndroidControl IG Mobile public 47,658 47,658
Wave-UI IG All platforms public 65,478 7,357

Total 13,582,210 2,240,717

Table 7: Grounding training datasets statistics overview.

Planner Models Mobile Desktop Web Avg.
Text Icon/Widget Text Icon/Widget Text Icon/Widget

-
SeeClick 78.39 50.66 70.10 29.29 55.22 32.52 55.09
OS-Atlas-Base-4B 87.24 59.72 72.68 46.43 85.90 63.05 71.86
OS-Atlas-Base-7B 95.17 75.83 90.72 63.57 90.60 77.34 84.12

GPT-4o
SeeClick 85.17 58.77 79.90 37.14 72.65 30.05 63.60
OS-Atlas-Base-4B 95.52 75.83 79.38 49.29 90.17 66.50 79.09
OS-Atlas-Base-7B 96.21 83.41 89.69 69.29 94.02 79.80 87.11

Table 8: Grounding accuracy on ScreenSpot-v2. The best results are in bold.

4. Some ground truth bounding boxes are incorrectly labeled.

Given that the aforementioned factors could lead to biased evaluation results, we revised and edited
the questions in the Screenspot benchmark. We ensured that the total number of questions remained
the same in the release of Screenspot-v2. Our specific approach is outlined as follows:

1. We removed the problematic questions and replaced them with new ones.
2. We revised the instructions that were in the REG form and rewrote them as natural language

instructions.
3. We corrected mislabeled ground truth bounding boxes.

We modified a total of 63 out of 436 (≈14.4%) questions in the web domain, 28 out of 334 (≈8.4%)
in the desktop domain, and 53 out of 502 (≈10.6%) in the mobile domain. The evaluation results on
the new benchmark can be found in Table 8.

C DETAILS OF EVALUATION BENCHMARKS

We display the statistical details of the evaluation benchmarks in Table 9. Notably, AndroidControl-
Low denotes that both low-level and high-level instructions are provided as the inputs, while
AndroidControl-High denotes that only the high-level instruction is in the input. Although screenshots
from the training set of AndroidControl are used during the pretraining phase, we still classify it as an
OOD dataset because it contains diverse OOD splits that differ from the training set. GUI-Odyssey-
Random/Task/Device/App datasets are four different test splits based on the categories. We report the

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

macro-average performance across these splits. For OmniAct, the original dataset only provides the
initial screenshot and does not have the dynamic environment, thus we evaluate the first action of
each example under the OOD setting (Action mode). While under the supervised fine-tuning setting
(Agent mode), we evaluate all actions in the trajectories.

Benchmarks Platforms #Test Samples History? # Unified Actions

GUI-Act-Web Web 1,410 3+2

Omniact Web 1,427 3+11
Desktop 594 3+11

AndroidControl-Low Mobile 7,708 ✓ 3+5
AndroidControl-High Mobile 7,708 ✓ 3+5

GUI-Odyssey-Random Mobile 29,414 3+6
GUI-Odyssey-Task Mobile 17,920 3+6
GUI-Odyssey-Device Mobile 18,969 3+6
GUI-Odyssey-App Mobile 17,455 3+6

Table 9: Details of the agentic benchmarks. History represents whether the history information of
the previous actions is provided in the input. #Unified Actions denotes the number of actions (basic
actions + custom actions) for each task.

D DETAILS OF EVALUATION METRICS

To ensure fair comparisons across all baseline methods, we standardize the evaluation metrics for
each action.

For click-based actions (e.g., CLICK, LONG PRESS), the action models must generate both the
action type and the position coordinates (x,y). Since the ground-truth bounding box is not always
available in the test data, we measure the performance by calculating the distance between the
predicted coordinates and the ground-truth coordinates. Following Lu et al. (2024a), we consider the
coordinates correct if they fall within a distance of 14% screen width from the ground truth.

type-based actions (e.g., TYPE, OPEN APP) are considered correct if and only if both action type
and action content are correct. We calculate the F1 score between the predicted text and the ground
truth. The text is considered correct if F1 >0.5.

For scroll action, the direction argument (i.e., UP, DOWN, LEFT, and RIGHT) must precisely match
the ground truth.

For other actions (e.g., PRESS BACK), they must exactly match the ground truth to be considered
correct.

E TRAINING DETAILS

OS-Atlas-Base and OS-Atlas (4B) InternVL-2 employs Dynamic Aspect Ratio Matching to
process dynamic high-resolution input. We set the max dynamic patch parameter to 6 to ensure
the model captures sufficient pixel information. As a result, the input image, after resizing, is
divided into a maximum of 6 tiles of 448×448 pixels, along with a thumbnail of the entire image
to capture global context. In terms of grounding data format, to maintain consistency with the
original InternVL training process, we convert all box format data into the form <box>[[x1, y1,
x2, x2]]</box>, where (x1, y1) and (x2, y2) are the normalized relative coordinates within the
range [0,1000]. Similarly, point data is converted into <point>[[x, y]]</point> format. <box>,
</box/>, <point>, and </point> are treated as special tokens.

OS-Atlas-Base and OS-Atlas (7B) Qwen2-VL can handle arbitrary image resolutions by map-
ping them into a dynamic number of visual tokens, offering a more human-like visual process-
ing experience. Through our experiments, we discover that setting the max pixel of image
input to 1024x1024 during both training and inference yields excellent results for GUI grounding

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

tasks, while also optimizing the model’s training and inference cost. Similarly, to maintain consis-
tency with Qwen2-VL’s original grounding training format, we convert box data into the format
<|box start|>(x1,y1),(x2,y2)<|box end|>, where <|box start|> and <|box end|>
are treated as special tokens.

We follow SeeClick to preprocess grounding pre-training data, formatting each REG data sample
into three types: point grounding, box grounding, and OCR. Each type of data is wrapped up using
30 distinct GPT-generated prompts. To accelerate the training process, we group 15 samples into a
single conversation, using 100 predefined prefix prompts.

F SCALING LAW OF GUI GROUNDING PRETRAINING

We also find that downstream task performance is not an ideal metric to measure scaling law. This is
because downstream datasets often cannot accurately reflect the true data distribution, and evaluation
metrics are too coarse-grained – for instance, correctly clicking an element does not necessarily mean
the predicted coordinates exactly match the ground truth.

To study the scaling effect more rigorously, we plot the loss curve and, following Kaplan et al. (2020),
fit a power law-based scaling curve, as shown in Figure 7. The horizontal axis represents the number
of model training steps. Each step encompasses 1,024 samples, with each sample containing up to 15
grounding elements. The dark blue curve depicts the smoothed loss trajectory. From the figure, we
observe a compelling trend suggesting significant potential for continually scaling pretraining data.
Through our scaling law analysis, we estimate that increasing training data by 8 times could lead to
a 40% relative reduction in loss. Moreover, scaling data by 64 times might potentially yield a 57%
relative decrease in loss.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Pretraining Steps (2^N)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

8x Data 64x Data

Smoothed Loss Curve
Predicted Curve

Figure 7: The curve of scaling law for the GUI grounding pretraining stage.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

G CASE STUDY: OS-WORLD

Step 1 Step 2

GPT-4o Grounding Model

Step 3

Step 4 Step 5

[[364, 1036]]

Click on the gear icon
Settings

Click on \"Settings\" in the
dropdown menu

[[443, 844]] [[948, 398]]

Click on the search settings
input box

TYPE ['files: exclude']

Type \"files: exclude\" in
the search settings input box

Click on \"Add Pattern\"
button under Files: Exclude

[[925, 767]]

Step 6

Step 7 Step 8

TYPE ['**/__pycache__']

Type the pattern to exclude
__pycache__ folders

[[1221,759]]

Click on the \"OK\" button to
confirm the exclusion pattern

Press Enter to confirm the
exclusion pattern

ENTER HOTKEY [CTRL, “W”]

Close the settings tab using
the keyboard shortcut

Task Please help me modify VS Code setting to hide all
"__pycache__" folders in the explorer view.

Step 9

Figure 8: A case study from OS-World. OS-Atlas-Base works in the grounding mode, integrating
GPT-4o as a task planner to create an agent. For each Click step, OS-Atlas-Base outputs the
coordinates based on the provided step-level instructions.

19

	Introduction
	Related Work
	OS-Atlas
	Task Formulation and Training
	Grounding Data Collection
	Unified Action Space

	Experiments: Grounding Tasks
	Evaluation Details
	Results and analysis
	Application: grounding mode

	Experiments: Agent Tasks
	Experiment Setups
	Results
	Analysis
	OS-Atlas-Pro

	Conclusion
	Data Statistics
	Screenspot-v2
	Details of evaluation benchmarks
	Details of Evaluation Metrics
	Training Details
	Scaling Law of GUI Grounding Pretraining
	Case Study: OS-World

