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ABSTRACT

Transformer-based large language models (LLMs) exhibit complex emergent be-
haviors, yet their internal mechanisms remain poorly understood. Existing inter-
pretability methods often rely on supervised probes or structural interventions such
as pruning. We propose the notion of identity-projection, a property in tokens and
prompts whereby the features they embed—directly or indirectly—reflect the same
features they carry independently, even in different contexts. Leveraging the local
linear separability of latent representations within LLM components, we introduce
a method to identify influential attention heads by measuring the alignment and
classification accuracy of hidden states relative to class prompts in each head’s
latent space. We find that these alignments directly affect model outputs, steering
them towards distinct semantic directions based on the attention heads’ activation
patterns. In addition, we propose a novel unsupervised method, Head2Feat, which
exploits this linear property to identify and align groups of datapoints with target
classes, without relying on labeled data. Head2Feat is, to our knowledge, the
first unsupervised approach to extract high-level semantic structures directly from
LLM latent spaces. Our approach enables the identification of global geometric
structures and emergent semantic directions, offering insights into the model’s
behavior while maintaining flexibility in the absence of task-specific fine-tuning.

1 INTRODUCTION

Transformer-based auto-regressive large language models (LLMs) (Vaswani et al., 2017), such as GPT
(Brown et al., 2020) and LLaMA 3 (Grattafiori et al., 2024), have become the dominant architecture
for natural language processing (NLP) tasks. Despite their success, the internal mechanisms that drive
their behavior remain only partially understood. Their depth and complexity give rise to emergent
abilities (Wei et al., 2022) that are difficult to isolate and analyze.

The Transformer architecture is composed of two primary components: a self-attention mechanism,
which enables the model to read from previous tokens, and a multi-layer perceptron (MLP) block,
which updates the current token representation (Elhage et al., 2021). Prior work has shown that
attention heads (AH) can act in sequence to guide the MLP toward task-relevant features (Lv
et al., 2024) , (Chughtai et al., 2024). This guidance emerges through the coordinated activity of
multiple attention heads, which collectively shape the information passed to the MLP. Together, these
components allow the model to integrate contextual information and generate coherent next-token
predictions.

Attention heads have been shown to encode interpretable features such as truthfulness (Li et al., 2024),
temporal structure, and geographical information (Gurnee & Tegmark, 2023). Remarkably, many of
these properties can be recovered using simple linear probes (Alain & Bengio, 2016) applied directly
to the output of individual attention heads. This suggests that LLMs often represent semantic features
in a robust, locally linear way, similar to static word embeddings such as Word2Vec (Mikolov et al.,
2013), but with the added flexibility of contextual adaptation.

Unlike the residual stream, which aggregates information into a shared latent space—facilitating
the disentanglement of features—individual attention heads tend to operate in distinct subspaces
and exhibit specialization in specific linguistic or semantic functions. Moreover, many attributes
are distributed across multiple heads, rather than being localized to a single one. This dispersion
complicates interpretability and undermines the effectiveness of simple linear probes for isolating and
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localizing specific features. Yet, if these distributed representations align along consistent geometric
directions, it may still be possible to uncover stable, interpretable features.

We introduce identity-projection, a property in tokens and prompts whereby the features they embed
in any prompt—directly or indirectly—reflect the same features they carry independently. This
property enables prompt classification without training, reveals attention heads with high attribution,
and provides a simple mechanism to trace information flow within the model.

In this paper we make three contributions: (1) We demonstrate that tokens and prompts project their
features into the subspaces of their parent promtps which we call identity-projection. (2) We introduce
IPA (Identity Projection Analysis), a zero-shot method for classifying prompts and identifying the
most important attention heads. (3) We propose Head2Feat, an unsupervised mechanism that clusters
vectors according to their relevance to a given semantic feature.

2 RELATED WORKS

The Geometry of Latent Space and Linear Representation Works like Linear Representation
Hypothesis (Park et al., 2023) showcase that hgih-level, abstract concepts reside in the latent space as
linear directions within a model, which was extended via Frame Representation Hypothesis (Valois
et al., 2024) which was generalized to various concepts. Other papers, such as Language Models
Represent Space and Time (Gurnee & Tegmark, 2023) have discovered that models create a world
model of concepts like space and time.

Mechanistic Interpretability and Feature Discovery. Understanding the internal workings of
large language models (LLMs) is a significant challenge. One approach is using probes (Alain &
Bengio, 2016) to assess if specific information is encoded in a model’s hidden states. More advanced
methods, such as autoencoders (standard (Hinton & Salakhutdinov, 2006), variational (Kingma et al.,
2013), and sparse), aim to extract interpretable features from the latent space.

For transformers, techniques like Activation Patching (Meng et al., 2022) and Path Patching
(Goldowsky-Dill et al., 2023) provide causal interpretability by identifying how specific behav-
iors or factual information are localized within the model. Tools like LogitLens (nostalgebraist, 2020)
and TuneLens (Belrose et al., 2023) visualize and predict token probabilities. Recent work has also
explored the roles of attention heads in managing knowledge conflicts (Jin et al., 2024) and automatic
discovery of computational pathways (Kramár et al., 2024; Ferrando & Voita, 2024).

Model Steering and Activation Engineering A growing body of research focuses on manipulating
LLMs by intervening in their internal activations. (Meng et al., 2022) introduced the Rank-One
Model Editing (ROME) method, which allows for causal tracing and editing of factual associations in
a model’s feed-forward layers, establishing the localization of knowledge within model parameters.

Recent advances in activation engineering have enabled real-time manipulation during inference.
Techniques like Inference-Time Intervention (ITI) (Li et al., 2024), Context-Aware Activation Addi-
tion (CAA) (Panickssery et al., 2023), In-Context Vectors Liu et al. (2023), and Style Vectors (Konen
et al., 2024) can guide model outputs toward desired behaviors without retraining. Our proposed
method of using self-representation for analysis and steering aligns with these approaches, offering a
way to uncover and leverage influential semantic directions in an unsupervised manner.

3 IDENTITY-PROJECTION IN TOKENS

A central question in understanding LLMs is how semantic information is encoded and flows through
the model. We argue that semantic attributes are encoded as consistent, high-dimensional directions
within the model’s representation space, which remain stable across different contexts and can be
activated even when the associated token is not explicitly present.

Past research (Li et al., 2024; Gurnee & Tegmark, 2023; Konen et al., 2024) has shown that there
exist directions in attention heads that are invariant to context. We define prototypes as these invariant
semantic directions p ∈ Rd, which encode specific meaning (e.g., ”France-location,” ”joy-sentiment,”
”past-tense”). The attribute subspace Sa ∈ Rd is the space where semantically similar prototypes
reside.
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We argue that this prototype invariance extends to tokens and prompts, where it is equivalent to their
semantic identity. That is, part of the token’s identity is encoded in the attention heads, which we refer
to as identity-projection: when semantically related information is present in a context, the model
activates the same prototype directions that would be activated if the token itself were explicitly
mentioned. For example, processing ”Emmanuel Macron” activates the same ”France-location”
prototype that would be activated by explicitly mentioning ”France,” enabling the model to maintain
consistent geographical representations even when France is only implicitly referenced.

The following proposition formalizes this intuition:
Proposition 1 (Shared Feature Directions via Identity-Projection). Let hn : T ×C → Rd denote the
representation function for attention head n mapping token t in context C to a d-dimensional vector.
Assume a conceptual semantic distance d where dsem(t, s) is the shortest path length between tokens
t and s in a semantic association graph. Given that active features are invariant within tokens, for
token t and any context C ′, define:

1. Prototype vector: pt := hn(t, t)

2. Self-consistency: ⟨h(t, C ′), pt⟩ > 0

3. Distance-decay: For token s with dsem(t, s) = k and a decay function f(k):

⟨hn(s, C
′), pt⟩ ≥ f(k)⟨hn(t, C

′), pt⟩

4. Orthogonality: For tokens u with dsem(t, u) → ∞: ⟨hn(u,C
′), pt⟩ ≈ 0

Then, to quantify the influence of a prototype on a given prompt, we project the input vector v onto
the prototype vector p. The influence score is given by:

I =
⟨v,pt⟩
∥pt∥

. (1)

This score indicates how strongly the prototype is activated in a specific context, allowing us to assess
the role of each prototype in the model’s processing of a given prompt.

(a) Correlation between the subsets of prompts
(b) Alignment of attention heads with respect
to base tokens

Figure 1: Correlation between the difference of different sets including prompts with the word
France/Italy, prompts related to France/Italy and unrelated prompts.

To empirically validate this property, we compare three levels of similarity with respect to a target
token: explicit mentions, implicit references, and unrelated prompts. We expect a monotonic decrease
in alignment across these three levels. To this end, we constructed six datasets—three for France and
three for Italy—partitioned into explicit, implicit, and unrelated sets. For each group, we averaged
results and computed differences along the France–Italy direction

pc =
1

P

∑
i∈P

vi −
1

N

∑
i∈N

vi (2)
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where P and N are sets of positive and negative examples, respectively. And then, quantify their
magnitude using Eq. 1.

Figure 1b shows that the top-50 heads from the implicit set strongly align with those from the explicit
set, while correlations with unrelated prompts remain near zero. The implicit–explicit correlation
reaches 0.85 (Figure 1a), consistent with the Proposition 1 prediction that related tokens share feature
directions and unrelated ones will have orthogonal views in it.

These properties enable us to analyze and interpret model behavior systematically. In particular, we
can align token features with respect to prompts using two complementary approaches: aligning
tokens between each other and aligning contrastive prompts with the respective contrastive token. This
alignment allows us to quantify which components of the model carry specific semantic information
and how different prompts activate these components.

3.1 ATTRIBUTION SCORING THROUGH SELF-REPRESENTATION

We leverage our identity-projection framework to identify which attention heads encode specific
semantic prototypes. We present two complementary approaches which we both call IPA: multi-class
classification using multiple token prototypes, and contrastive analysis using paired token differences.

Multi-Class Token Classification For semantic domains with multiple classes (e.g., languages,
emotions, character styles), we extract a prototype for each class using its name token embedding as
a reference direction. Given a prompt, we classify it by computing the influence score (Eq. 1) for
each class prototype and selecting the class with the highest score.

To identify the most important attention heads for each semantic domain, we evaluate classification
performance using F1-score across all heads. Heads that achieve high F1-scores are considered to
strongly encode the corresponding information from that class.

Interestingly, all languages share important attention heads in layers 3, 16, 17, and 24, as seen in
Figure 2a. Countries also share attention heads in layers 16 and 24 with languages, while emotion-
related features appear to be concentrated in layer 3. Most character styles are embedded in the
second half of the model, with the notable exception of Yoda, as shown in Figure 2b. All the heatmap
graphs can be found in the Appendix

(a) Attention Head F1-Score based on Spanish
sentences

(b) Attention Head F1-Score based on Yoda
speaking style

Figure 2: Influence scores obtained from the dataset TruthfulQA with respect to the ”Truthful” -
”Untruthful” vector

Contrastive token analysis For binary semantic distinctions, we extract prototypes using contrastive
token pairs. We compute the prototype direction using Eq. 2

We then rank attention heads by their influence scores when aligned with this contrastive prototype.
Figure 3 compares two approaches:
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• Single pair: Using one contrastive prompt pair to extract the prototype
• Multiple pairs: Averaging across 1,500 contrastive pairs from TruthfulQA (Lin et al., 2021)

Both approaches identify similar high-influence attention heads, with the top-5 heads showing
significantly stronger prototype activation. The single-pair approach seems to deviate from the
multi-pair one, but, for the truthful case it requires only a few critical heads while the rest are just
needed as support. Interestingly, preventing output reversion to baseline requires patching several
lower-influence heads as well.

(a) A pair of prompts (b) 1500 pairs of prompts

Figure 3: Influence scores obtained from the dataset TruthfulQA with respect to the ”Truthful” -
”Untruthful” vector

3.2 ACTIVATION PATCHING

To validate that our identified attention heads actually control the semantic features, we employed
activation patching (Zhang & Nanda, 2023) experiments. We used continuous activation patching
where we modify specific attention head outputs by adding activations from a reference (”corrupted”)
prompt that exhibits the desired semantic property, then evaluate whether the model’s behavior shifts
accordingly.

We tested our method on multiple semantic domains identified in Section 3.9. For each target style,
we:

• Selected the top-ranked attention heads based on F1-scores or influence scores from our
attribution analysis

• Patched clean activations with corrupted prompts using the format ”Answer as/in style”
prepended to the initial prompts

• Generated 70 tokens for each patched prompt and evaluated the output

We primarily relied on attention heads with the highest attribution scores from our analysis. In
some cases, we found that including several of the main heads associated with ”English” improved
performance, suggesting that effective semantic steering requires both activating the target style and
suppressing the default (English) style.

The prompts used followed the format ”Answer as/in style”, which was prepended to the question
prompt, and we generated 70 tokens for each. For selecting the attention heads, we primarily relied on
those with the highest F1-score or Influence Score from Section 3.1. In some cases, adding attention
heads from the ”English” results helped improve the accuracy of the generated answers. This suggests
that steering the output depends not only on attributing the desired style, but also on mitigating the
influence of the style currently being used.

From Table 1, we observe that changing languages was highly effective, the number of attention
heads changed was around 20 which is equivalent to 2% of the AH (for the rest of the elements the
amount of heads had to be of 40 which is 4%) and the metrics showed good results. In contrast,
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Figure 4: Overview of Head2Feat architecture. The model uses an attention mechanism to pair class
and instance vectors projected into a shared attribute space, where prototypes are learned to identify
attention heads encoding semantically relevant features related to the target attribute.

Table 1: Results from the activation patching using different styles

Style BERT-Spanish Score BERT-German Score Accuracy (%) Emotion Classification
Spanish 0.72 0.57 100 Neutral
German 0.60 0.66 99.0 Neutral

Sad 0.62 0.55 68.3 Sadness
Angry 0.59 0.57 59.4 Anger
Truth 0.61 0.57 100 Neutral
Lie 0.61 0.57 9.9 Neutral

Random 0.62 0.58 100 Neutral
Default 0.62 0.58 100 Neutral

altering the emotional style improved emotion classification but reduced factual accuracy, as the
model prioritized emotional expression over precise question-answering.

These results confirm that our attribution method successfully identifies attention heads that have high
attribution values towards specific semantic properties, towards the point of only needing 4 prompts
to obtain the scores

3.3 UNSUPERVISED CLASSIFICATION THROUGH PROTOTYPE ALIGNMENT

Self-Reference can be used as the basis for an unsupervised-learning loss, that allows aligning
instances with specific subspaces that we care about. For this, we propose Head2Feat, a method
that operates across all attention heads simultaneously and leverages the self-representation property
to identify regularities across prompts and discover attribute subspaces that capture semantically
meaningful directions. Given two sets of attention head outputs, HI ∈ RN×D—the instance vectors
we want to evaluate—and HC ∈ RN×D—the attribute-related class vectors—our model seeks to
align their representations their shared prototypes.

Our architecture (Figure 4) identifies the subset of attention heads that most effectively encode
semantic information by randomly pairing a class vector—from a set of class vectors related to the
target attribute subspace—with an instance vector via an attention mechanism and forcing them
to always output the same attention weight distribution. Both vectors are projected into a shared
attribute space using a common value transformation, enabling meaningful comparisons. Within this
space, the model learns a set of prototypes that are encouraged to align with the class vectors, while
instance vectors are trained to align with their nearest prototype. This process facilitates the discovery
of attention heads that capture semantically relevant features without requiring supervision.
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3.4 PROJECTION INTO A SHARED LATENT SUBSPACE

Each attention head Hn is independently projected via a head-specific function fn and then normal-
ized, ensuring all projections reside within a shared latent subspace:

Ḣn = fn(Hn) (3)

We then compute the similarity between class and instance vectors using an attention mechanism.
The class outputs ḢC are projected into key space, while the instance outputs ḢI are projected into
the query space. A shared value projection WV is applied to both:

Qs = ḢIWQ
s K = ḢCWK V I

s = ḢIWV
s V C

s = ḢCWV
s (4)

Due to the need for positive augmentations, we employ several slots that capture the same features
but with different combination of attentions. Each slot s uses separate projection matrices WQ

s and
WV

s while sharing a common WK .

3.5 ATTENTION MATCHING

We compute attention interactions only between corresponding heads (i.e., row-wise) from ḢC and
ḢI , focusing on their shared informative content rather than inter-head relations. The attention
weights are defined as:

Ai =

n∑
j=1

ḢC
ij Ḣ

I
ij , Attn(A, V ) = softmax

(
A√
dk

)
V (5)

We enforce that each instance-class pair maintains the same attention distribution, enabling the
discovery of a shared attribute space. This is achieved by minimizing the Jensen-Shannon Divergence
(JSD) between their attention distributions (Menéndez et al., 1997):

Lattention = JSD(Attna ∥ Attnb) (6)

3.6 PROTOTYPE LEARNING

To further organize the latent space, we adopt learnable prototypes following Caron et al. (2021).
Each learnable prototype represents the model’s approximation of the true class vector prototype.
We optimize these prototypes by aligning them closely with their corresponding class vectors. This
alignment is enforced using a standard cross-entropy loss:

Lprototype = −
C∑
i=1

yi log(ŷi) (7)

3.7 SINKHORN NORMALIZATION AND CONTRASTIVE SOFT LABELS

In addition to hard alignment with class prototypes, we apply a soft labeling strategy based on the
Sinkhorn-Knopp algorithm (Cuturi, 2013). The normalized prototype assignments serve as target
distributions for instance embeddings:

P = diag(u)K diag(v) (8)

The instance loss is defined as the symmetric KL-Divergence between the outputs of different slots
computed from the various attention head outputs:

Linstance =
1

2

2∑
i=1

− K∑
k=1

p
(j)
k log q

(i)
k

 (9)
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3.8 FINAL OBJECTIVE

The total loss combines all the components above:
Ltotal = λ1Lattention + λ2Linstance + λ3Lprototype (10)

This framework enables the model to uncover the shared attribute space, allowing each instance
vector to naturally align with the most appropriate learned prototype—ideally positioned near its
corresponding true prototype.

Through an ablation study of the different losses, we found that all of them are strictly necessary;
removing any of them causes the model’s accuracy to become essentially random.

For hyperparameter optimization, we performed a grid search over values 0.01, 0.1, 1, and 10 for the
three λ parameters. The optimal combination was found when all three λ values were set to 1.

3.9 DATASET

To evaluate the generalization ability of our model and the emergence of semantic prototypes, we
tested it on a diverse set of datasets spanning multiple domains. Each dataset consists of a list of
texts and a separate list of classes, with no knowledge between them, including: country–continent,
emotional text–emotion label, animal–biological class, multilingual text–language name, iconic
quotes–fictional character, and book excerpts–author name. We include benchmarks such as the
XQuAD dataset (Dumitrescu et al., 2021), the Emotion Cause dataset (Ghazi et al., 2015) and
TruthfulQA (Lin et al., 2021) among these ones; and some curated prompts to test the results of
the activation patching, with facts and text generation. Additional details on these benchmarks are
provided in Appendix A.

3.10 UNSUPERVISED CLASSIFICATION & DATA CLUSTERING

(a) Languages (b) Character Style (c) Emotions (hard)

(d) Continents (e) Authors (f) Truth

Figure 5: UMAP clusters of different datasets

We evaluated the clusters produced by Head2Feat using the Adjusted Rand Index (ARI) (Hubert &
Arabie, 1985), Silhouette Score (Rousseeuw, 1987), and classification accuracy based on both the
ground-truth labels and the LLM’s own predictions. For both Head2Feat and IPA, classification was
performed by assigning each instance to its nearest prototype and comparing the resulting label with
the true label.

To provide qualitative insights, we include several visualizations: UMAP projections (McInnes et al.,
2018) of the learned representations, alignment heatmaps between prototypes and class labels, and
Principal Component Analysis (PCA) of the alignment vectors.
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Data Description Name Acc (%) ARI Silhouette

Countries / Conti-
nents

LLM Answers 100 - -
Linear Probe 93.2 - -
IPA 94 - -
Head2Feat 94 0.78 0.71

Emotions
LLM Answers 68.9 - -
Linear Probe 78.86 - -
IPA 58.6 - -
Head2Feat 62.6 0.38 0.42

Animals / Fami-
lies

LLM Answers 94.3 - -
Linear Probe 92 - -
IPA 72.3 - -
Head2Feat 83 0.61 0.76

Languages
LLM Answers 100 - -
Linear Probe 100 - -
IPA 87.2 - -
Head2Feat 100 1 0.93

Character Style
LLM Answers 73.6 - -
Linear Probe 87.3 - -
IPA 55 - -
Head2Feat 87 0.71 0.87

Authors
LLM Answers 65 - -
Linear Probe 66.25 - -
IPA 61.3 - -
Head2Feat 70.6 0.46 0.54

Table 2: Classification accuracy
and clustering quality across vari-
ous semantic attributes. We com-
pare the performance of the LLM,
Head2Feat, and IPA on tasks rang-
ing from token-level features (e.g.,
languages) to abstract ones (e.g.,
authorship and truthfulness). For
Head2Feat, we also report cluster-
ing metrics: Adjusted Rand Index
(ARI) and Silhouette score.

As shown in Table 2, we bench-marked Head2Feat and IPA across a diverse set of datasets encompass-
ing a variety of attribute types, including geographic origin, speech patterns, and writing style. While
IPA performed good in most settings—highlighting the salience of certain semantic attributes—the
unsupervised classification approach consistently outperformed it, while obtaining a similar level to
the outputs from the LLM. We believe the difference between the methods is mostly related to the
difference of obtaining information from all the attention heads, instead of just a single one.

Figure 5 illustrates that for simpler attributes, such as country or profession, the UMAP representations
form well-separated clusters, indicating successful prototype assignment. In contrast, for more
complex or abstract styles, the cluster boundaries become less distinct, reflecting the complexity of
the attribute, and its diminishing shared space between them.

Importantly, two of the tasks in Table 2—Author and Character Style—require abstraction that go
beyond surface-level or token-specific cues. In these two, Head2Feat obtained better results than
the LLM’s own predictions, demonstrating its ability to capture higher-level stylistic and discourse
features.

4 DISCUSSION

Our experiments reveal semantic self-representation in transformers: interpretable features are
encoded as stable directional vectors within attention head outputs. We demonstrate zero-shot
identification of semantically relevant attention heads through contrastive alignment, revealing which
heads encode shared versus class-specific attributes. These findings show that both factual and
stylistic information are encoded as distinct prototype vectors that can be isolated without supervision.
This prototype invariance—where semantic directions remain stable across contexts—helps explain
transformers’ generalization abilities, paralleling findings in in-context learning (Hendel et al., 2023).
By identifying geometric conditions under which semantic prototypes emerge in an unsupervised
manner, we provide new insights into the latent structure governing language generation. This
framework enables controllable generation through discovered prototype directions, allowing precise
manipulation of semantic attributes without task-specific fine-tuning.
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In the preparation of this manuscript, we used OpenAI’s ChatGPT (GPT-4) as a language assistance
tool to improve clarity, grammar, and readability in parts of the text. All scientific content, ideas, and
analyses presented in this paper are the original work of the authors. The use of ChatGPT was limited
to language refinement and did not influence the experimental design, results, or conclusions.
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APPENDIX AND SUPPLEMENTARY MATERIAL

The code and datasets used in our experiments will be released upon acceptance of the paper. A link
to the repository will be included in the camera-ready version.

A DATASETS

We used and constructed several small datasets to observe where all of this attributes are encoded in
LLMs and if all semantic features work as prototypes.

Famous Locations and People From Same Country We formed two datasets consisting of 100
sentences each one related to the description of famous monuments and the other for famous people,
from 5 different countries and we extracted the final 10 attention head outputs from it.

Languages To evaluate the ability of Head2Feat to distinguish between languages, we employed
the XQuAD (Dumitrescu et al., 2021) dataset a benchmark for cross-lingual question answering.
We sampled 200 questions per language, covering English, Spanish, Russian, Hindi, German, and
Mandarin Chinese. This setup enables us to test whether language identity can be reliably inferred
from the internal representations of the model.

Emotions To investigate the representation of affective states, we used two datasets targeting
emotional content. First, we constructed a controlled dataset of 100 English sentences, each expressing
one of five emotions—joy, sadness, anger, fear, and disgust—without explicitly naming the emotion
in the text.

Second, we used a more challenging benchmark: a subset of the Emotion Cause dataset (Ghazi et al.,
2015), which includes 1,594 English sentences annotated with seven emotion labels (fear, sadness,
anger, happiness, surprise, disgust, and shame). We sampled 600 random examples from this dataset
for training and validation purposes.

Famous Fictional Characters In addition, to probe where stylistic and character-specific features
are encoded in the model, we constructed a small-scale dataset centered on fictional characters with
distinctive linguistic patterns. For each of six well-known characters—Elmer Fudd, Foghorn Leghorn,
Jar Jar Binks, Porky Pig, Scooby-Doo, and Yoda—we collected 50 iconic phrases from publicly
available sources such as fan wikis and quote databases.

Literature Authors We obtained 20 book quotes per literary author—William Faulkner, Gabriel
Garcı́a Márquez, Ernest Hemingway, Edgar Allan Poe, Virginia Woolf, William Shakespeare, and
Mark Twain—from the website Goodreads.
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True or False Statements We compiled a dataset of 100 sentences, evenly split between true and
false statements. Several of the false statements were constructed as direct negations or opposites of
their true counterparts.

Finally, to study the encoding of categorical features in more controlled settings, we compiled three
structured datasets.

Countries The first contains the names of all recognized countries and a predefined set of continent
classes (Africa, Asia, Europe, Oceania, and the Americas), used to probe how geographic categories
are internally represented.

Animals The second includes a collection of animal species names and a set of biological class
categories—mammals, invertebrates, birds, amphibians, reptiles, and fishes—used to investigate how
categorical distinctions among animals are encoded.

Famous People / Jobs / Countries The final dataset consists of the names of 100 famous individuals,
each of whom can be categorized along two dimensions: country of origin and occupation. The
dataset includes 20 examples for each of five countries (USA, Japan, Brazil, India, and France) and
five occupations (athlete, scientist, politician, musician, and actor), allowing us to evaluate how
different clustering objectives emerge depending on the targeted feature.

B ATTENTION HEAD WEIGHTS

To better isolate the features of interest, we incorporated positive augmentations, following the
approach commonly used in contrastive learning. Specifically, we extracted multiple output vectors
from our attention mechanism, where each query-value pair—referred to as a slot in our design—is
orthogonal to the others. We employed two slots, yielding two distinct attention weight distributions
per experiment.

In some cases (e.g., Figures 13a and 13b), the attention was sharply focused on a single head,
suggesting a localized and interpretable signal. In contrast, other examples (e.g., Figures 11a and
11b) exhibited more diffuse attention distributions, with no clear subset of heads responsible for
encoding the relevant prototypes. Across most scenarios, the key difference between the slot-specific
distributions was the relative weight assigned to particular heads, rather than a change in which heads
were active.

C PROBABILITY HEATMAPS

We visualize the alignment of individual instances across all classes in the dataset using heatmaps.
In most cases, the distributions are sharply concentrated within the correct class, indicating strong
alignment. However, for more nuanced datasets such as Emotion-Easy (Figure 15) and Emotion-Hard
(Figure 16), the class separability is less pronounced, despite high classification accuracy. This can be
attributed to the inherently overlapping nature of emotional expressions, which often encode multiple
affective cues simultaneously. Our model captures this mixture, typically assigning high weight
to a dominant emotion while also registering lower intensities for secondary ones. For instance,
in Emotion-Easy, instances labeled as disgust frequently show secondary associations with anger
or sadness, and fear often co-occurs with disgust. Interestingly, these co-occurrence patterns are
asymmetric and not always bidirectional.

D PROBE’S WEIGHTS CONVERGENCE TO PROMPT OUTPUTS

We trained linear probes to classify each dataset’s classes using attention head outputs. For each
probe, we identified the attention heads with the highest similarity to the class prompt representations

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

(a) Attention Head Weight Distribution, Slot 1 (b) Attention Head Weight Distribution, Slot 1

Figure 6: Continents

(a) Attention Head Weight Distribution, Slot 1 (b) Attention Head Weight Distribution, Slot 1

Figure 7: Animals

(a) Attention Head Weight Distribution, Slot 1 (b) Attention Head Weight Distribution, Slot 1

Figure 8: Emotions (easy)
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(a) Attention Head Weight Distribution, Slot 1 (b) Attention Head Weight Distribution, Slot 1

Figure 9: Emotions (hard)

(a) Attention Head Weight Distribution, Slot 1 (b) Attention Head Weight Distribution, Slot 1

Figure 10: Languages

(a) Attention Head Weight Distribution, Slot 1 (b) Attention Head Weight Distribution, Slot 1

Figure 11: Authors
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(a) Attention Head Weight Distribution, Slot 1 (b) Attention Head Weight Distribution, Slot 1

Figure 12: Characters

(a) Attention Head Weight Distribution, Slot 1 (b) Attention Head Weight Distribution, Slot 1

Figure 13: Truth

Figure 14: Continents Figure 15: Emotions (easy)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 16: Emotions (hard)
Figure 17: Animals

Figure 18: Languages

Figure 19: Characters

Figure 20: People / Jobs Figure 21: People / Countries
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and those achieving the highest classification accuracy. Across most datasets, the top-performing
probes exhibited a consistent upward trend in similarity over the course of training, with relatively
low variance, indicating stable convergence. Their most influential attention heads aligned strongly
with the target class prompts. An exception was the countries dataset, where no attention heads
showed a significant correlation with the prompts. Similarity scores varied across datasets, with an
average around 0.5.

E CLUSTERS

We visualize the clustering results of our various datasets using UMAP and PCA. In most cases,
the clusters exhibit clear separability between classes. For more challenging datasets—such as
Authors (Figure 38), Characters (Figure 39), and the Hard Emotion subset (Figure 36)—the most
distinct classes remain well-separated, though some classes exhibit significant overlap and cannot be
completely disentangled.
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Figure 22: Truth

Figure 23: Authors

Figure 24: Emotions (hard) Figure 25: Animals

Figure 26: Languages Figure 27: Characters

Figure 28: People / Jobs Figure 29: People / Countries
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Figure 30: Truth Figure 31: Authors

Figure 32: Emotions (easy)

(a) UMAP cluster (b) PCA cluster

Figure 33: Continent Clusters
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(a) UMAP cluster (b) PCA cluster

Figure 34: Animal Clusters

(a) UMAP cluster (b) PCA cluster

Figure 35: Emotion (easy) Clusters

(a) UMAP cluster (b) PCA cluster

Figure 36: Emotion (hard) Clusters
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(a) UMAP cluster (b) PCA cluster

Figure 37: Language Clusters

(a) UMAP cluster (b) PCA cluster

Figure 38: Author Clusters

(a) UMAP cluster (b) PCA cluster

Figure 39: Character Clusters
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(a) UMAP cluster (b) PCA cluster

Figure 40: Truth Clusters

(a) UMAP cluster (b) PCA cluster

Figure 41: People-Job Clusters

(a) UMAP cluster (b) PCA cluster

Figure 42: People-Country Clusters
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