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ABSTRACT

With the rapid advancements of various machine learning models, there is a sig-
nificant demand for model-agnostic explanation techniques, which can explain
these models across different architectures. Mainstream model-agnostic explana-
tion techniques generate local explanations based on basic features (e.g., words
for text models and (super-)pixels for image models). However, these explana-
tions often do not align with the decision-making processes of the target models
and end-users, resulting in explanations that are unfaithful and difficult for users
to understand. On the other hand, concept-based techniques provide explanations
based on high-level features (e.g., topics for text models and objects for image
models), but most are model-specific or require additional pre-defined external
concept knowledge. To address this limitation, we propose ConLUX, a general
framework to provide concept-based local explanations for any machine learning
models. Our key insight is that we can automatically extract high-level concepts
from large pre-trained models, and uniformly extend existing local model-agnostic
techniques to provide unified concept-based explanations. We have instantiated
ConLUX on four different types of explanation techniques: LIME, Kernel SHAP,
Anchor, and LORE, and applied these techniques to text and image models. Our
evaluation results demonstrate that 1) compared to the vanilla versions, ConLUX
offers more faithful explanations and makes them more understandable to users,
and 2) by offering multiple forms of explanations, ConLUX outperforms state-
of-the-art concept-based explanation techniques specifically designed for text and
image models, respectively.

1 INTRODUCTION

As machine learning models become more complex and popular, it has become an emerging topic to
explain the rationale behind their decisions. In particular, as the structure of machine learning mod-
els diversifies and evolves rapidly, and effective closed-source models (e.g., GPT-4 (Achiam et al.,
2023) and Gemini (et al., 2024b)) become more prevalent, model-agnostic explanation techniques
show their appeal due to their adaptability to various models and tasks (Wang, 2024). These tech-
niques consider target models as black boxes, so they can explain any machine learning model with-
out requiring any knowledge of the model’s internal structure. This paper addresses the challenge
of incorporating high-level concepts into local model-agnostic techniques to explain the decision-
making processes of various machine learning models, including large language models (LLMs).

To faithfully explain the behavior of machine learning models, it is essential to provide explanations
built from language components aligned with the decision process of the target models; to make
explanations easy to understand, it is also crucial to provide explanations built from user-friendly
language components (Poeta et al., 2023a). Unfortunately, mainstream model-agnostic explana-
tion techniques often fail to meet both requirements, as they provide explanations built from basic
features (e.g., words for text models and (super-)pixels for image models) (Ribeiro et al., 2016;
Lundberg & Lee, 2017; Ribeiro et al., 2018; Guidotti et al., 2018). In contrast, many concept-based
techniques provide explanations based on high-level features (e.g., topics in texts and objects in
images) (Poeta et al., 2023a). These techniques either utilize the internal information of the tar-
get models like gradients, activations, and attention weights (Zhang et al., 2021b; Yeh et al., 2020;
2019b; Cunningham et al., 2023; Ghorbani et al., 2019b; Crabbé & van der Schaar, 2022; Fel et al.,
2023), or pre-defined external knowledge (El Shawi, 2024; Widmer et al., 2022) to build high-level
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Flawed direction and script -0.29

Emotional but lacking impact -0.57

Shallow yet passable plot 0.14

Stunning visuals 0.45

LIME Explanation ConLUX-LIME 
Explanation

(a) (b)

Network Output: Negative

Task:  Determine the sentiment of a movie review is whether                 or                   .                Positive Negative

Figure 1: Example explanation (a) is generated by LIME, demonstrating how each word in the input
sentence contributes to the target model’s prediction. The color intensity reflects the magnitude of
the weight, with deeper hues indicating larger absolute values. Example explanation (b) is generated
by ConLUX-augmented LIME, providing an explanation based on high-level concepts.

concepts. This limits these techniques to specific types of models or tasks. Furthermore, while there
are different forms of explanations (e.g. feature attributions, rules) for various purposes (Zhang
et al., 2021c), existing concept-based explanations mainly focus only on attributions, which limits
their fidelity and applicability.

To bridge this gap, we aim to elevate the explanations of various forms provided by existing model-
agnostic techniques from feature-level to concept-level. As we focus on explaining the decision-
making process of machine learning models to end-users, we put our emphasis on local explanations,
which are more tractable for end-users. We find that existing local model-agnostic techniques all
follow similar workflows, which allows us to introduce a unified way to elevate all these techniques
from feature level to concept level. This transition necessitates automating the concept extraction
process and establishing bidirectional mappings between concept representations and feature repre-
sentations for given input data. Noticing that existing works have utilized large pre-trained models
to extract concepts and represent input data at the concept level for specific tasks (Ludan et al.,
2023; Sun et al., 2023), we generalize these findings and further observe that large models also
have the ability to map concept-level representations back to the feature-level. To this end, we pro-
pose ConLUX, a general framework that automatically incorporates high-level concepts into various
existing local model-agnostic techniques for any machine learning models, and provides local ex-
planations in various forms for diverse user needs.

We take three mainstream local model-agnostic techniques, LIME (Ribeiro et al., 2016), An-
chor (Ribeiro et al., 2018), and LORE (Guidotti et al., 2018) as examples to illustrate how ConLUX
improves local model-agnostic explanations.

Figure 1 shows a LIME explanation for a BERT-based sentiment analysis model on a movie re-
view. The target model classifies the sentence as negative. LIME provides feature-level attributions,
indicating how each word contributes to the model’s prediction. In this case, LIME assigns high
negative scores to the words “however” and “falls”, which indicates that these words contribute
much to the negative prediction. However, this explanation is unfaithful and hard to understand by
end-users. For example, the word “however” is assigned a high negative score, but it functions as
a conjunction and does not directly convey sentiment (Liu & Zhang, 2023). Moreover, such con-
fusing attributions, combined with an overwhelming amount of attribution information, complicate
the explanation for end-users. ConLUX addresses these issues by elevating the explanation from
feature-level to concept-level. ConLUX-agumented LIME extracts the main topics of the input sen-
tence using GPT-4o, and then provides attribution-based explanations with these topics. From this
explanation, users can easily understand that the negative prediction is mainly because the sentence
mentions the movie’s poor performance in “emotion impact” and “direction and script”, while the
part about “stunning visuals” and “passable plot” also expresses some positive sentiment. This ex-
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Network Output:   
Punching Bag

0.24 -0.180.19 0.15 0.11

0.38 0.060.090.25 -0.02

LIME
Explanation

ConLUX-LIME
Explanation

Figure 2: Example explanations generated by LIME (upper) and ConLUX-augmented LIME (lower)
for an image classification task.

Network Output:   Pickup

Anchors 
Explanation

ConLUX-Anchors 
Explanation

Lore 
Counterfactual 
Explanation

ConLUX-Lore 
Counterfactual 
Explanation

Pickup Pickup

Half track

Bison

Figure 3: Example Anchors, LORE explanations and their ConLUX-augmented versions.

planation faithfully reflects the decision process of the target model and is more understandable to
end-users.

Similar issues exist in the explanation of image models. We use YOLOv8 (Jocher et al., 2023) to
perform an image classification task on ImageNet (Deng et al., 2009) dataset. Figure 2 shows a
LIME explanation for an image classified as a punching bag. LIME attributes high importance to
some fragmented superpixels. End-users can hardly understand why these parts are important for
the model’s prediction. ConLUX-augmented LIME provides explanations based on objects detected
by Segment Anything Model (SAM) (Kirillov et al., 2023), and attributes high importance to the
punching bag itself and the kid in the image. This explanation is more faithful and understandable.
End-users can easily realize that the model does not perform perfectly when classifying this image
to a punching bag.

Figure 3 shows the explanations generated by Anchor, LORE, and their ConLUX-augmented ver-
sions for an image classified as a pickup. Anchors provides rule-based sufficient conditions (referred
to as anchors) for the target model’s prediction. The vanilla anchor indicates that parts of the car
and the background house guarantee the prediction as a pickup. With ConLUX, end-users can eas-
ily understand that the model classifies the image as a pickup exactly because it indeed detects the
pickup truck in the image. LORE provides rule-based sufficient conditions and counterfactual ex-
planations. Figure 3 shows the counterfactual explanations, which show users how to change the
model’s prediction by modifying the input image. The vanilla LORE explanation indicates that if
we mask a part of the grass, the background house and the whole side window of the truck will
change the model’s prediction to a Half track. In contrast, ConLUX-augmented LORE indicates
that users can simply mask the pickup truck to change the model’s prediction to a Bison, which is
more user-friendly.

The preceding examples indicate that feature-level explanations are hard to understand by end-users.
On the other hand, as high-level concepts align with the decision process of target models and users
better (Zhang et al., 2021a; Ghorbani et al., 2019a; Kim et al., 2018; Sun et al., 2023), ConLUX
addresses this by providing concept-level explanations, and the examples demonstrate that ConLUX
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makes explanations more understandable to end-users. Moreover, our empirical evaluation shows
these concept-level explanations are also more faithful to the models. Finally, benefiting from the
various types of explanations provided by existing local model-agnostic techniques, ConLUX can
provide rich explanations including attributions, sufficient conditions, and counterfactuals, satisfying
diverse user needs and offering a more comprehensive understanding of the target models. This fills
the current gap in concept-based explanations, which lack forms beyond attributions.

To elevate the explanations provided by existing local model-agnostic techniques from feature-level
to concept-level, we modify these techniques in a uniform and lightweight way based on their two
commonalities: 1) these techniques use basic features as language components to build explanations;
2) these techniques use a perturbation model, which generates samples similar to the given input by
changing some of its feature values, to capture the local behavior of the target model at the feature
level. To this end, by only elevating the language components to high-level concepts and extending
the perturbation model to generate samples by changing high-level concepts, ConLUX extends these
techniques to provide concept-level explanations.

We evaluated ConLUX on explaining two sentiment analysis models (BERT, Llama 3.1(et al.,
2024a)) and three image classification models(YOLOv8, Vision Transformer (Oquab et al., 2023;
Darcet et al., 2023), and ResNet-50 (He et al., 2016)). Our evaluation results demonstrate that
ConLUX improves the fidelity of Anchors, LIME, LORE, and Kernel SHAP explanations by
82.21%, 48.59%, 149.93%, and 48.27% respectively, and by considering various forms of explana-
tions together, ConLUX outperforms state-of-the-art concept-based explanation techniques specif-
ically designed for text models (TBM (Ludan et al., 2023)) and image models (EAC (Sun et al.,
2023)), respectively.

2 PRELIMINARIES

In this section, we introduce the background knowledge and notations used in this paper.

Machine Learning Models. We consider a machine learning model as a black-box function f that
maps an input vector x to an output scalar f(x). Formally, we let f : X → R, where X is the input
domain. For models that take fixed-dimension inputs, let X = Rn. For models capable of handling
inputs of arbitrary dimensions, let X = ∪∞

i=1Ri. Let xi denote the i-th feature value of x.

Local Model-Agnostic Explanation Techniques. A local model-agnostic explanation technique
t takes a model f and an input x, and generates a local explanation gf,x to describe the behavior of
f around x, i.e., gf,x := t(f,x). gf,x (g for short) is an expression formed with predicates. Each
predicate p maps an input x to a binary value, i.e., p : X → {0, 1}, indicating whether x satisfies a
specific condition.

As shown in Figure 4, existing local model-agnostic explanation techniques generate explanations
following a similar workflow:

1. Producing Predicates: These techniques first generate a set of predicates P based on the
input x.

2. Generating Samples: The underlying perturbation model tper generates a set of samples
Xb

s in predicate representations, where each sample zb ∈ Xb
s is a binary vector in {0, 1}d

and zb
i indicates whether the sample satisfies the i-th predicate in P. The perturbation model

then transforms the samples Xb
s back to the original input space to get Xs and f(Xs).

3. Learning Explanation: The underlying learning algorithm generates the local explana-
tion gf,x consisting of predicates in P using Xs and f(Xs).

Mainstream local model-agnostic explanation techniques like Anchors, LIME, LORE, and Kernel
SHAP, all follow this workflow. They use the same kinds of predicate sets and perturbation mod-
els, and use different learning algorithms to generate explanations with different properties. In the
following, we introduce the main components of the explanation techniques.

Predicate Sets. Given an input x, the corresponding predicate set P is defined as follows:

P = {pi|i ∈ [1, d]},
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Perturbation Model

Samples Labels

Local ExplanationLearning Algorithm

Input Data

Target Model

Predicates

Binary Vectors

1 1 1 …. 1
0 1 1 …. 0

1 1 0 …. 1

Predicate-Feature
Mapping Algorithm

Figure 4: The workflow of generating explanations by a local model-agnostic explanation technique.

where d is the number of predicates in P, a hyperparameter set by users or according to the input
data x. Each pi is a feature predicate that constrains the value of a set of feature values in x, i.e.
pi(z) :

∧
j∈Ai

1ran(x,j)(zj), where Ai is the set of indices of features that pi constrains. Specifically,
{A1,A2, ...,Ad} forms a partition of {1, 2, . . . , |x|}. Each ran(x, j) is a set containing xj , which is
set according to the type of input data. For example, we can use ran(x, j) = (xj − ϵ, xj + ϵ) for
continuous values, and ran(x, j) = {xj} for categorical values. The predicate pi is a conjunction
of indicator functions, each of which checks if a sample z has a similar value to xj (i.e., zj ∈
ran(x, j)).

Predicate Representations. The predicate representation zb ∈ {0, 1}d of a sample z is a binary
vector where zb

i = pi(z).

Perturbation Models. The perturbation model tper first randomly selects Xb
s ⊆ {0, 1}d as the

predicate representations of the samples. Then, it transforms Xb
s back to the original input space to

get Xs. For each zb ∈ Xb
s, a predicate-to-feature mapping function tp2f : {0, 1}d → X transforms

zb to z as follows: if zbi = 1, then for each j ∈ Ai, set zj = xj ; otherwise, set each zj to a masked
value, or a random value sampled from per(x, j)\ran(x, j), where per(x, j) is a perturbation range
with per(x, j) ⊃ ran(x, j).

Learning Algorithms and Explanations. The learning algorithm learns an understandable expres-
sion g as an explanation. In Anchors, g is a conjunction of predicates that provides a sufficient
condition for producing f(x) as output, i.e., f(z) = f(x) if g(z) = 1, and g(z) =

∧
p∈Q p(z),

where Q is selected by KL-LUCB algorithm (Kaufmann & Kalyanakrishnan, 2013). In LIME and
Kernel SHAP, g(z) =

∑d
i=1 wipi(z) + w0, where wi is the weight of pi, which is learned by

their underlying regression algorithms. LORE first learns a decision tree with building systems
like Yadt (Ruggieri, 2004), then extracts a sufficient condition to obtain f(x) and some counter-
factual rules from the tree as explanations. The sufficient condition is similar to Anchors, while
each of the counterfactual rules is in the form of f(z) = y if g(z) = 1, where y ̸= f(x) and
g(z) =

∧
p∈Q p(z) ∧

∧
p∈C ¬p(z), and Q and C are extracted from the decision tree.

An Example. For a text input I love this movie so much, these techniques can let each pi
constrains only one feature, and produce six predicates in the form of pi(z) := 1zi=xi . For
another text input z = I love this [MASK] so [MASK], the predicate representation of z is
p1(z) p2(z) p3(z) p4(z) p5(z) p6(z) = 1 1 1 0 1 0. The perturbation model will generate sam-
ples in predicate representation, then tp2f will transform samples back to the origin input space.
For example, a sample 0 1 0 1 1 1 is generated and tp2f maps it to [MASK] love [MASK] movie
so much. Consequently, these techniques will use the output of these samples and the samples’
predicate presentation to learn an expression, and build the explanation with the predicates.

Limited by the predicate sets and perturbation models, existing local model-agnostic explanation
techniques can only generate explanations based on the constraints of feature values, which limits
their effectiveness in explaining the behavior of the model.
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3 THE CONLUX FRAMEWORK

In this section, we propose ConLUX, a general framework to provide concept-based local explana-
tions based on existing local model-agnostic explanation techniques without significantly changing
their core components.

We introduce ConLUX in three steps: 1) defining concept-based local explanations and concept
predicates, 2) showing the modifications to the explanation techniques, and 3) demonstrating the
augmented workflow.

3.1 CONCEPT-BASED LOCAL EXPLANATIONS

As we discussed in Section 2, though the form of the explanations varies, they are all built from
predicates in P. Elevating the predicates to concept level is the key to providing concept-based
explanations.

Definition of high-level concepts varies, as Molnar (2020) mentions, “A concept can be any abstrac-
tion, such as a color, an object, or even an idea.” Here, to provide explanations that are easier to
understand by end-users, we define a concept predicate as follows:

Definition 1 (Concept Predicate). Given an input x, a concept predicate pc is a function that maps
x to a binary value, i.e., pc : X → {0, 1}, and satisfies the following properties:

1. Descriptive: The concept predicate pc can be concisely and intuitively described in natural
language.

2. Human Evaluable: The truth of pc(x) can be readily assessed by a human user.

The preceding two properties ensure that the concepts are easy to understand. Here, we provide two
examples of concept predicates for text and image models in the following:

Examples. For text models, we can define a concept predicate as follows:

• Concept Name: Poor Visual Effects and Cinematography

• Description: The input text mentioned that the visual effects and cinematography are lack-
ing, failing to create an appealing aesthetic.

For image models, we use objects in an image to define a concept predicate. As shown in Figure 2,
we can easily describe the concept predicate as “there is a punching bag in the image”, “there is a
kid in the image”, etc.

We then define a concept-based local explanation as follows:

Definition 2 (Concept-Based Local Explanation). A concept-based local explanation gcf,x is an
expression formed with concept predicates to describe the behavior of f around x.

As existing local explanation model-agnostic techniques provide various kinds of explanations like
attributions, sufficient conditions, and counterfactuals, ConLUX can elevate all these explanations
to concept level and provide users a unified interface to obtain various kinds of explanations with
a single click. Additionally, We denote such a set of various kinds of explanations as a ConLUX
unified explanation, which provides higher fidelity and offers a more comprehensive view than a
single form of explanation.

3.2 AUGMENTING EXPLANATION TECHNIQUES

As shown in Figure 4, to produce concept predicates, we should first extract high-level concepts
based on the input x; to provide explanations at concept level, we should replace the feature predi-
cates in P with concept predicates; to capture the local behavior of the target model at concept level,
we should extend the perturbation model to generate samples by changing high-level concepts.
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Producing Concept Predicates. We use large pre-trained models to provide high-level concepts
based on the input x and the target task. For text models, following the approach of Ludan et al.
(2023), we provide GPT-3.5 with task-specific information, the given input, the corresponding out-
put, and several in-context learning examples to generate candidate concepts. These concepts are
then evaluated on the input x to construct the concept predicate set.

For image models, we refer to Sun et al. (2023) to use SAM to detect objects in the image.

Consequently, ConLUX defines concept predicates (denoted as pc) using the extracted concepts, and
replaces the feature predicates set P with the concept predicates set Pc.

Performing Concept-Level Perturbation The extended perturbation model tcper generates sam-
ples in concept-level representation and tcp2f : {0, 1}|Pc| → X transforms the samples back to the
original input space. Different from the tper simply decides whether to mask a feature value, tcper
changes high-level concepts at feature level, which is more complex. Therefore, tcper is usually a
more sophisticated model. Here, for text models, we use Llama 3.1 to perform the concept-feature
mapping; for image models, since each object is still a set of pixels, we can use the same transfor-
mation as tper. As the effectiveness and faithfulness of the text perturbation are not straightforward,
we conduct an experiment to demonstrate this, as detailed in Appendix C.

3.3 CONLUX-AUGMENTED WORKFLOW

The ConLUX augments the workflow in Figure 4 as follows: it first extracts high-level concepts
based on the input x and the target task, then follows a similar workflow as their vanilla versions,
but replaces the predicate set P with Pc and the perturbation model tper with tcper. Therefore, the
ConLUX-augmented techniques can capture the local behavior of the target model at the concept
level, and provide concept-based local explanations.

More details about the implementation of ConLUX can be found in Appendix A.

4 EMPIRICAL EVALUATION

In this section, we demonstrate the generality of ConLUX, its improvement of explanation fidelity,
and the fidelity of ConLUX unified explanations by empirical evaluation. We show the general-
ity of ConLUX by applying it to four mainstream local model-agnostic explanation techniques:
Anchors, LIME, LORE, and Kernel SHAP (KSHAP for short), which provide three types of expla-
nations: sufficient conditions, counterfactuals, and attributions. We apply them to explain various
text and image models. We show the improvement of explanation fidelity by comparing the vanilla
feature-level explanations with ConLUX-augmented the concept-based explanations. Moreover, we
compare the fidelity of ConLUX unified explanations with two state-of-the-art concept-based ex-
planation techniques: Textual Bottleneck Model (TBM) (Ludan et al., 2023) for text models and
Explain Any Concept (EAC) (Sun et al., 2023) for image models.

4.1 EXPERIMENTAL SETUP

We chose sentiment analysis as the target task for text models, and image classification as the target
task for image models.

Sentiment Analysis. Sentiment analysis models take a text sequence as input and predict if the
text is positive or negative, i.e. f : X → {0, 1}, where X :=

⋃∞
i=1 Wi is the input domain, and

W is the vocabulary set. We used a pre-trained BERT (Morris et al., 2020) and Llama3.1 to predict
the sentiment of 200 movie reviews from the Large Movie Review Dataset (Maas et al., 2011),
and explained the local behavior of the models around each input text. For vanilla techniques, we
followed the settings described in Section 2. For ConLUX-augmented techniques, we set the number
of concept predicates to 10, used GPT-3.5 (Brown et al., 2020) to extract high-level concepts, and
Llama3.1 to perform the predicate-to-feature mapping. For TBM, we applied it to explain the same
200 movie reviews with its default settings.
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Image Classification. Image classification models take an image as input and predict the category
of the image, i.e. f : X → {0, 1, ...,m}, where m is the number of categories, X := R3×h×w is
the input domain, with h and w being the height and width of the image. We used a pre-trained
YOLOv8, Vision Transformer (ViT) (Oquab et al., 2023; Darcet et al., 2023), and ResNet-50 (He
et al., 2016) to predict the category of 1000 images from the ImageNet dataset (Deng et al., 2009),
and explained the local behavior of the models around each input image. For vanilla techniques, we
followed LIME to use Quickshift algorithm (Jiang et al., 2018) to obtain the superpixels, and used
these super-pixels as predicates. For ConLUX-augmented techniques, we used SAM (Kirillov et al.,
2023) to detect objects in the images, and used these objects as predicates. For EAC, we applied it
to explain the same 1000 images with its default settings.

To evaluate the fidelity of ConLUX unified explanations, as the combination of multiple forms of
explanation provides more fidelity than a single form, we used the combination ConLUX-augmented
KSHAP and LORE explanations as local surrogate models. Specifically, if an input is covered by
LORE’s rule, we use the LORE output; otherwise, we use the KSHAP explanation.

More details can be referred to Appendix B.

4.2 FIDELITY EVALUATION

4.2.1 EVALUATION METRICS

Fidelity reflects how faithfully the explanations describe the target model. As these techniques
provide explanations in different forms, we used different metrics to evaluate their fidelity.

Following the setup in the original papers of Anchors and LORE, we used coverage and pre-
cision as fidelity metrics (which are named differently in the LORE paper). Given a target
model f , an input x, and a distribution Dx derived from the perturbation model, and the cor-
responding explanation g, we defined the coverage as cov(x; f, g) = Ez∼Dx [g(z)], which indi-
cates the proportion of inputs in the distribution that match the rule; we defined the precision as
prec(x; f, g) = Ez∼Dx [1f(z)=y|g(z)], where y is the consequence of the rules in g with y = f(x)
for factual rules and y ̸= f(x) for counterfactual rules. Precision indicates the proportion of covered
inputs that g correctly predicts the model outputs.

As LIME and KSHAP are attribution-based local surrogate, we used Area Over most relevant first
perturbation curve (AOPC) (Samek et al., 2016; Modarressi et al., 2023), and accuracya as fidelity
metrics (Balagopalan et al., 2022; Yeh et al., 2019a; Ismail et al., 2021). Given a target model f , an
input x, its corresponding model output y = f(x), their corresponding explanation g, and x(k) that
is generated by masking the k% most important predicates in x, AOPC and accuracya are defined
as follows:

• AOPC: Let AOPCk = 1
|T|

∑T
x pf (y|x) − pf (y|x(k)), where pf (y|x) is the probability of f to

output y given the input x, and T is the set of all test inputs. AOPCk indicates the average
change of the model output when masking the k% most important predicates. A higher AOPCk

indicates a better explanation. We calculate the AOPC curve by varying k from 0 to 100.
• Accuracya: Accuracya indicates the proportion of inputs among all x(k) that the target model

gives the same output as the original input x, i.e. E(f(x(k)) = f(x)). Specifically, accuracya is
different from the standard accuracy, and a lower accuracya indicates a better explanation.

Specifically, we only considered the predicates that positively contribute to f(x), and we did not
use AOPC when explaining Llama 3.1, as it does not directly provide the probability for each output
token.

For TBM, EAC, and ConLUX unified explanations, considering that they can all serve as local
surrogate models, i.e. g : X → R, we defined the metrics as follows: Given a target model f ,
an input x, a perturbation distribution Dx, and their corresponding explanation g, a performance
metric L (e.g. accuracy, F1 score, MSE, etc.), we define the (in-)fidelity as Ez∼DxL(f(z), g(z)),
which indicates the performance of using g to approximate f . Here, we used the accuracy as the
performance metric. Specifically, considering the complexity of the original task, we reduced the
image classification task for local surrogates to predicting whether the target model f assigns the
same classification to x′ as it does to x.
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(c) ResNet-50

(a) YOLOv8 (b) ViT

(d) BERT

Figure 5: AOPC upon masking the K% most important predicates. We use LIME, Kernel SHAP,
and their ConLUX-augmented version to explain YOLOv8, ViT, and Resnet-50 on the image clas-
sification task and BERT on the sentiment analysis task.

Table 1: Average coverage and precision (higher are better) of Anchors, LORE, and their ConLUX-
augmented versions (denoted as Anchors* and LORE*) on two sentiment analysis models and three
image classification models.

Models Coverage (%) ↑ Precision (%) ↑
Anchors Anchors* LORE LORE* Anchors Anchors* LORE LORE*

Llama 3.1 4.9 22.5 2.3 21.3 81.2 94.2 64.3 76.9
BERT 5.3 24.4 3.2 20.3 78.2 91.0 65.3 79.4
YOLOv8 28.6 30.9 20.8 24.8 84.3 98.2 87.8 92.2
ViT 24.6 28.2 21.3 23.8 88.7 98.2 89.6 95.6
ResNet-50 28.0 30.5 20.1 29.7 89.3 99.4 85.8 92.6

4.2.2 EVALUATION RESULTS

Table 1 shows the fidelity of Anchors, LORE, and their ConLUX-augmented versions. ConLUX
improves the average coverage of Anchors and LORE by 9.0% and 10.4%, and the average precision
by 11.9% and 8.7%, respectively. Figure 5 and Table 2 show the fidelity of LIME, KSHAP, and their
ConLUX-augmented versions. Figure 5 shows the AOPC curve of LIME and KSHAP. Each AOPC
curve of ConLUX-augmented versions is higher than the vanilla counterpart. Table 2 shows the
average AOPC and accuracya. ConLUX improves the average AOPC by 0.122 and 0.145, and
decreases the average accuracya by 21.6% and 22.8%, for LIME and KSHAP, respectively. We do
paired t-tests for each setup that only differs on whether to apply ConLUX, to show the statistical
significance of the improvement. The p-value is all less than 0.01, which indicates with over 99%
confidence the improvement is significant.

We also compared ConLUX unified explanations with two state-of-the-art concept-based task-
specific explanation techniques: TBM for text tasks and EAC for image tasks. Table 3 shows
the fidelity of TBM, EAC, and ConLUX unified explanations. ConLUX helps two classic local
model-agnostic techniques to achieve 5.75% and 4.9% more accuracy than TBM and EAC.

5 RELATED WORK

Our work is related to model-agnostic explanation techniques and concept-based explanation tech-
niques.

Model-agnostic explanation techniques consider target models as black boxes and provide explana-
tions without requiring any knowledge of the model’s internal structure. Existing Model-agnostic
explanation techniques provide different types of explanations, such as feature importance (Lund-
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Table 2: Average AOPC and accuracya (higher AOPC and lower accuracya are better) of LIME,
KSHAP, and their ConLUX-augmented versions (denoted as LIME* and KSHAP*) on two senti-
ment analysis models and three image classification models.

Models AOPC ↑ Accuracya (%) ↓
LIME LIME* KSAHP KSAHP* LIME LIME* KSAHP KSAHP*

Llama 3.1 – – – – 82.3 49.8 72.1 45.4
BERT 0.243 0.456 0.379 0.553 75.7 47.7 60.3 40.2
YOLOv8 0.401 0.474 0.433 0.590 14.8 5.0 33.1 6.9
ViT 0.469 0.598 0.454 0.611 21.1 4.9 25.7 9.0
ResNet-50 0.232 0.306 0.233 0.323 36.3 14.6 33.1 8.6

Table 3: Average accuracy (higher accuracy is better) of TBM, EAC, and ConLUX unified explana-
tions on two sentiment analysis models and three image classification models.

Methods Accuracy (%) ↑
Llama 3.1 BERT YOLOv8 ViT ResNet-50

TBM 89.6 81.4 – – –
EAC – – 56.6 53.4 57.7
ConLUX 94.7 87.8 61.3 59.6 61.5

berg & Lee, 2017; Ribeiro et al., 2016; Tan et al., 2023; Shankaranarayana & Runje, 2019), decision
rules (Ribeiro et al., 2018; Guidotti et al., 2018; Dhurandhar et al., 2018), counterfactuals (Wachter
et al., 2018; Guidotti et al., 2018), and visualizations (Goldstein et al., 2015; Friedman, 2001; Ap-
ley & Zhu, 2020). However, to our knowledge, all existing model-agnostic explanation techniques
provide explanations at feature levels (Zhang et al., 2021c). Basic feature-based explanations are
usually worse in aligning with either the decision-making process of the model or end-users (Ghor-
bani et al., 2019a; Sun et al., 2023; Kim et al., 2018), which makes these explanations unfaithful and
hard to understand.

Concept-based explanation techniques provide explanations in terms of high-level concepts, which
align with the decision-making process of the model better and are more interpretable to end-users.
To our knowledge, existing concept-based explanation techniques are all model-specific or task-
specific (Poeta et al., 2023b). We categorize them into three groups: (1) techniques that extract
concepts from the model’s internal structure (Zhang et al., 2021b; Yeh et al., 2020; 2019b; Cun-
ningham et al., 2023; Ghorbani et al., 2019b; Crabbé & van der Schaar, 2022; Fel et al., 2023),
which are limited to specific types of models, (2) techniques that use external knowledge to define
concepts (El Shawi, 2024; Widmer et al., 2022), which are limited to specific types of tasks since
their methods based on the knowledge for a specific task, and (3) techniques that use pre-trained
models to extract concepts (Ludan et al., 2023; Sun et al., 2023). Ludan et al. (2023) propose TBM,
which is a surrogate model specifically designed for text data, while Sun et al. (2023) propose EAC,
which also utilizes internal information of the target model. Therefore, these techniques are only for
specific types of tasks. In addition, these techniques mainly focus only on attributions which limits
their use cases (Poeta et al., 2023b).

6 CONCLUSION

We have proposed ConLUX, a general framework that automatically extracts high-level concepts
and incorporates them into existing local model-agnostic explanation techniques to provide concept-
based explanations, which are more faithful and easier to understand by end-users. ConLUX offers
unified explanations that combine attributions, sufficient conditions, and counterfactuals. This sat-
isfies diverse user needs and fills the current gap in concept-based explanations, which lack forms
beyond attributions. ConLUX achieves this by utilizing large pre-trained models to extract high-
level concepts, elevating language components from feature level to concept level, and extending
perturbation models to sample in the concept space. We have instantiated ConLUX on Anchors,
LIME, LORE, and Kernel SHAP, and provide unified explanations. We have constructed empirical
evaluations to demonstrate the effectiveness of ConLUX.
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A THE CONLUX FRAMEWORK (CONTINUED)

In this section, we introduce the details of incorporating ConLUX into existing local explanation
methods.

We first follow Section 3 to introduce how we extend each part for text models in detail.

A.1 PRODUCING CONCEPT

ConLUX provides predicates that describe high-level concepts by utilizing a large pre-trained model.
Here, we describe the step to extract concept from text and image data in detail.

Text Data. We use GPT-3.5 to produce concept-level predicates in two step. First, we let GPT−3.5
generate the concepts that are important to the current task with a prompt as follows:

Now you are an expert at writing movie reviews, please tell me from which per-
spectives can you evaluate a movie.

Then we let the GPT − 3.5 to refine the predicates based on the current input and its similar
sentences, and format the concepts. Here, we referred to the format defined in TBM (Ludan et al.,
2023). The prompt is as follows:

Here we are presented with a text dataset accompanied by labels, and our objective
is to identify a concept in the text that correlates with these labels. The task is to
....., we have known the following concepts are important in this task. [concepts]
In additionally, you should refine the concept to make sure that concepts can be
used to correctly classify the following examples: [texts labels]
Then you are given examples of concepts across various datasets. please give me
the concepts following their format:
Example 1:
”Concept Name”: ”explicit language”,
”Concept Description”: ”’Explicit language’ refers to the use of words, phrases,
or expressions that are offensive, vulgar, or inappropriate for general audiences.
This may include profanity, obscenities, slurs, sexually explicit or lewd language,
and derogatory or discriminatory terms targeted at specific groups or individuals.”,
”Concept Question”: ”What is the nature of the language used in the text?”,
”Possible Responses”: [”explicit”, ”strong”, ”non-explicit”, ”uncertain”],
”Response Guide”:
”explicit”: ”The text contains explicit language, such as profanity, obscenities,
slurs, sexually explicit or lewd language, or derogatory terms targeted at specific
groups or individuals.”,
”Strong”: ”The text contains strong language but not explicit language, it may
contain terms that some viewers might find mature.”,
”non-explicit”: ”The text is free from explicit language and is appropriate for
general audiences.”,
”uncertain”: ”It is difficult to determine the nature of the language used in the text
or if any explicit terms are used.” ,
”Response Mapping”:
”explicit”: 2,
”strong”:1,
”non-explicit”: -1,
”uncertain”: 0
Example 2:
......
Now, please give me your formatted concepts:

Then we use the Response Guides to produce local concepts.
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A.2 CONCEPT-FEATURE MAPPING

We the the following prompt for predicate-feature mapping:

Generate a sentence similar to a given sentence from the domain of dataset. The
dataset’s description is that .
The generated sentence satisfies given concepts. Before generating the sentence,
carefully read the description of each concept to understand the properties that
the generated sentence must satisfy, think about how the sentence satisfies the
concepts first, and then create the sentence that satisfies the concepts.
Format your response as a JSON with string keys and string values. Below is an
example of a valid JSON response. The JSON contains keys thoughts, and the
answer. End your response with ###
— Concepts: 1. Concept 1 2. Concept 2 ...
Response JSON: ”thoughts”: ”In this section, you explain which snippets in your
text support the concepts. Be as objective as possible and ignore irrelevant infor-
mation. Focus only on the snippets and avoid making guesses.”, ”answer”: ”A
sentence that satisfies the concepts.” ###
Two examples of this task being performed can be seen below. Note that the
answer should be in 5 to 20 words and should be a single sentence.
Example 1:
Concepts: 1. The plot of the text is exciting, captivating, or engrossing. It may
have unexpected twists, compelling conflicts, or keep the reader eagerly turning
pages. 2. The characters in the movie are portrayed in a realistic and convinc-
ing manner. Their actions, dialogue, emotions, motivations, and development feel
authentic and relatable, making them believable to the audience. 3. The narra-
tive structure of the text is confusing or unclear, making it difficult to follow or
comprehend the events happening within the story. 4. The text introduces some
original elements or takes minor risks in the plot development, but overall, it lacks
a truly unique or innovative narrative.
Response JSON: ”thoughts”: ”The snippet ’the silly and crude storyline’ men-
tions a storyline that is described as silly and crude mentions a ’silly and crude
storyline’ which indicates a lack of creativity and reliance on clichéd plot devices,
satisfying the concept of some originality and inventive plot development. The
snippet ’the real issues tucked between the silly and crude storyline’, mentions a
contrast between real issues and a silly and crude storyline, indicating a potentially
confusing narrative structure, satisfying the concept of a confusing narrative struc-
ture. This also mentions that it has real conflict inside, which satisfies the concept
of an exciting plot. This snippet also mentions mentions ’real issues’ which indi-
cates that the characters are portrayed in a realistic and convincing manner, sat-
isfying the concept of realistic and convincing characters.” ”answer”: ”it’s about
issues most adults have to face in marriage and i think that’s what i liked about it
– the real issues tucked between the silly and crude storyline.” ###
Example 2: .... ###
Perform the task below, keeping in mind to limit the response to 5 to 20 words and
a single sentence. Return a valid JSON response ending with ###
Concepts:
Response JSON:

B EXPERIMENT SETTINGS (CONTINUED)

We experimented on two machines, one with an Intel i9-13900K CPU, 128 GiB RAM, and RTX
4090 GPU, and another with Intel(R) Xeon(R) Silver 4314 CPU, 256GiB RAM, and 4 RTX 4090
GPUs.

To measure the fidelity improvement brought by ConLUX, we keep all hyperparameters the same
for both vanilla and augmented methods.
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For LIME and KSHAP, we set the number of sampled inputs to 1000 except for explaining Llama
3.1.

For Anchors, we follow the default settings.

For LORE, we set ngen = 5.

For the LLama3.1 model, when applying it to the sentiment analysis task, we simply use the follow-
ing prompt:

From now on, you should act as a sentiment analysis neural network. You should
classify the sentiment of a sentence into positive or negative. If the sentence is
positive, you should reply 1. Otherwise, if it’s negative, you should reply 0. There
may be some words that are masked in the sentence, which are represented by
<UNK>. The input sentence may be empty, which is represented by <EMPTY>.
You will be given the sentences to be classified, and you should reply with the
sentiment of the sentence by 1 or 0.
There are two examples:
Sentence:
I am good
Sentiment:
1
Sentence:
The movie is bad.
Sentiment:
0
You must follow this format. Then I’ll give you the sentence. Remember Your
reply should be only 1 or 0. Do not contain any other content in your response.
The input sentence may be empty.
Sentence:
{The given sentence}
Sentiment:

C TEXT PERTURBATION FAITHFULNESS EXPERIMENT

As demonstrated by Ludan et al. (2023), large language models (LLMs) can verify whether an
instance satisfies a given concept. Building on this, we conduct an experiment to evaluate the con-
sistency of LLM-based perturbations. Specifically, we use LLMs to assess whether the applied
perturbations successfully alter the intended concept. For each sentence, we generate 100 random
perturbations and verify if the concepts in the generated sentences align with the expected changes.
Our results indicate that Llama3.1, the large model employed in our fidelity experiments, achieves
concept-level perturbation accuracy exceeding 99
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