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ABSTRACT

Electrocardiogram (ECG) is of great importance for the clinical diagnosis of car-
diac conditions. Although existing self-supervised learning methods have ob-
tained great performance on learning representation for ECG-based cardiac con-
ditions classification, the clinical semantics can not be effectively captured. To
overcome this limitation, we proposed a Deep ECG-Report Interaction (DERI)
framework to learn cross-modal representations that contain more clinical seman-
tics. Specifically, we design a novel framework combining multiple alignments
and mutual feature reconstructions to learn effective cross-modal representation of
the ECG-Report, which fuses the clinical semantics of the report into the learned
representation. An RME-Module inspired by masked modeling is proposed to im-
prove the ECG representation learning. Furthermore, we extend ECG represen-
tation learning with a language model to report generation, which is significant
for evaluating clinical semantics in the learned representations and even clinical
applications. Comprehensive experiments on various datasets with various exper-
imental settings show the superior performance of our proposed DERI.

1 INTRODUCTION

Electrocardiogram (ECG) is a widely used data for reflecting heart electrical activity (Attia et al.
(2019); Al-Zaiti et al. (2023)), which is of great importance in cardiac conditions classification.
Supervised learning methods have obtained effective performance in ECG signal classification with
high-quality annotations (Huang et al. (2022); Chen et al. (2024a)). However, there are a large
number of unlabeled ECG signals in the real world, and supervised learning methods have difficulty
utilizing this resource effectively. To reduce the dependence on labeled data, ECG representation
learning methods based on self-supervised learning demonstrate their powerful performance (Oh
et al. (2022); Mehari & Strodthoff (2022); Lan et al. (2022); Liu et al. (2024c)). Compared to
supervised learning methods, self-supervised learning methods aim to learn effective representations
from ECG signal data in a detached labeling context, and thus tend to be more generalizable and
adaptable to different downstream tasks, showing great potential.

Existing self-supervised methods for ECG signals can be broadly categorized into generative learn-
ing and contrastive learning approaches. Generative learning focuses on masked modeling to recon-
struct or generate the input data itself, while contrastive learning aims to learn more discriminative
representations by comparing similar and dissimilar samples. However, most of these methods are
single-modal, limiting their ability to effectively capture comprehensive, deep semantic representa-
tions of ECG signals. Specifically, generative learning methods, which emphasize signal recovery
through masked modeling, primarily focus on low-level signal patterns (e.g., local intensities and
waveforms), often overlooking high-level semantic features related to clinical conditions (Zhang
et al. (2023); Liu et al. (2023b)). Contrastive approaches, on the other hand, typically create aug-
mented views as positive pairs by applying data transformations at the input level. However, these
transformations can distort the inherent semantics of the ECG signal, leading to a loss of critical
information (Lan et al. (2024); Na et al. (2024)). Multi-modal learning has emerged as a promising
solution for these limitations due to its ability to learn effective representations from multiple data
sources (Chen et al. (2024b;c)). Compared to ECG signals, clinical reports offer direct high-level se-
mantic insights. Inspired by advances in medical imaging and radiology reports (Chen et al. (2023);
Liu et al. (2023a)), Liu et al. proposed a multi-modal representation learning approach by aligning
ECG signals with clinical reports (Liu et al. (2024b)). However, their method aligns ECG features
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with report features in the feature space, drawing inspiration from CLIP (Radford et al. (2021)),
but the interaction between modalities is relatively shallow. Furthermore, although the ECG repre-
sentations learned by MERL perform well in classification tasks, they fail to effectively convey the
underlying semantics of ECG recordings, which are crucial for understanding cardiac conditions.

To overcome these limitations, we proposed a novel Deep ECG Report Interaction (DERI) frame-
work for cross-modal representation learning. To better capture the clinical semantics of ECG sig-
nals and reports, we design an encoder-decoder structure to conduct multiple alignments and fea-
ture reconstruction. Specifically, the ECG signals and their corresponding clinical reports are first
encoded and projected into a shared alignment space to achieve an initial alignment. To enhance
interaction, two specialized decoders are employed to reconstruct features by decoding the aligned
representations into the encoding of the other modality. This reconstruction process captures the la-
tent structures in both modalities, enabling the learning of richer cross-modal representations. Sub-
sequently, the decoded features are fused with the modality-specific aligned features to create mixed
representations incorporating both ECG signal and clinical report semantics. These mixed represen-
tations are further utilized for a second alignment. Additionally, we introduce a Random Masked
Enhancement Module (RME-Module) to improve ECG representation learning. Furthermore, the
proposed DERI model is integrated with language models to generate clinical reports, providing a
way to assess the learned clinical semantics embedded in the representations. Extensive experiments
across various settings and datasets are conducted to demonstrate the effectiveness of the proposed
approach. The main contributions of this work are summarized as follows:

• To learn effective ECG representation for cardiac conditions from reports, we propose a novel
cross-modal framework of ECG-Report via multiple feature alignment and mutual feature recon-
struction. An RME-Module is also designed for ECG representation learning enhancement.

• To better illustrate the clinical semantics learned by DERI, we combine it with a language model
for report generation. The pre-trained model provides effective ECG representation and a language
model is used to decode it into clinical reports, which can provide clinical semantics visually.

• Comprehensive experiments on downstream datasets are conducted to evaluate the proposed DERI
method, including zero-shot classification, linear probing, and even report generation. Experi-
mental results illustrate that our proposed DERI method surpasses all SOTA methods by a large
margin, which represents that our method can learn more effective clinical semantics.

2 RELATED WORK

2.1 SINGLE-MODAL ECG REPRESENTATION LEARNING

There are various self-supervised learning methods for ECG representation learning. Most of these
methods are single-modal, which conduct generative learning or contrastive learning on unannotated
ECG signals. CLOCS (Kiyasseh et al. (2021)) and ASTCL (Wang et al. (2023)) are the SOTA single-
modal contrastive learning methods that explore temporal and spatial correlations of ECG signals.
Similarly, ST-MEM (Na et al. (2024)) proposes to learn ECG representation by spatial-temporal
masking modeling and reconstruction of 12-lead ECG signals. Although all these unimodal methods
have achieved good performance, they still fall short in learning the clinical semantics of ECG
signals (Liu et al. (2024b)). Single-modal contrastive and generative methods extract representations
only from ECG signals and are therefore not related to diagnostic reports.

2.2 MULTI-MODAL ECG REPRESENTATION LEARNING

Several works conduct ECG multi-modal learning for better classification. Raghu et al. (2022)
proposes to learn representations from ECG signals and structured data from labs and vitals by
contrastive learning. Lalam et al. (2023) combines ECG signals with structured Electronic Health
Records (EHRs) to conduct contrastive learning. BPNet fuses ECG signals with PPG signals to
better conduct blood pressure estimation (Long & Wang (2023)). However, these methods do not
use diagnostic report data, making it difficult to learn the clinical semantics effectively. To learn the
clinical semantics of ECG signals, Liu et al. proposed to align ECG features with clinical reports in-
spired by multi-modal learning in medical images and radiology reports (Liu et al. (2024a;b)). Intro-
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Figure 1: Framework of proposed DERI for ECG-Report multi-modal representation learning.

ducing corresponding diagnostic reports for ECG representation learning greatly improves their per-
formance on the downstream cardiac condition classification task, but these multimodal approaches
only achieve shallow modal interaction. The learned representations are also not able to efficiently
incorporate the semantics in the reports. Therefore, we design our proposed DERI method to con-
duct deep cross-modal interaction and then expand the model to report generation, which is of great
meaning for clinical diagnosis.

2.3 CLINICAL REPORT GENERATION

Clinical report generation in radiology has obtained great performance inspired by imaging caption-
ing You et al. (2016; 2021). R2Gen (Chen et al. (2020b)) uses a memory-driven Transformer to
generate a radiology report directly with the representation of the medical image. CvT2DistilGPT2
(Liu et al. (2023b)) demonstrates that pre-trained NLP models can provide benefits for radiology
report generation as well. X-REM proposed to fuse the image-text multi-modal representation and
then used retrieval-based methods to generate the predicted reports from the retrieval corpus (Jeong
et al. (2024)). Inspired by these image-based clinical report generation methods, we extend our pro-
posed ECG representation learning method to ECG-based clinical report generation, which can help
understand the clinical semantics of the cardiac conditions from the ECG signals.

3 METHODOLOGY

3.1 OVERVIEW

Our DERI framework is designed to learn effective multi-modal representation from ECG signals
and corresponding clinical reports. Compared to learning ECG representation alone, our DERI can
obtain much deeper interaction between signal modal and text modal via feature aligning and re-
construction. As depicted in Figure 1, we adopted a dual-encoder framework as the backbone. Our
DERI performs modal interaction representation learning from feature alignment and feature recon-
struction. We also design an RME-Module to enhance the ECG representation learning. Deeper
modal interactions enable learned representations to include more clinical information, from satis-
fying cardiac status classification to generating diagnostic reports.

3.2 ECG-REPORT MULTIPLE ALIGNMENT

The ECG-Report Alignment in DERI contains two strategies including modal-specify feature align-
ment and mix-modal feature alignment. Given an ECG signal recording ei with corresponding clin-
ical report ri, we construct an ECG-Report pair as (ei,ri), with i = 1, 2, 3, ..., N where N is the
number of recordings. Two distinct encoders Fe and Ft are used to learn the latent encoding of
ECG signal and report text respectively, represented as ze,i and zt,i. Specifically, the latent encoding
is obtained by ze,i = Fe(ei) and zt,i = Ft(ri). To align the ECG encoding and text encoding, we
use two linear projectors Pe and Pt to map them into an alignment space of the same dimension,
which can be represented as Âe,i = Pe(ze,i) and Ât,i = Pt(zt,i). The align loss Lalign, which is
inspired by the CLIP loss (Radford et al. (2021)), to close the distance between the representations
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of ECG and report in the alignment space. Specifically, each ECG recording and the corresponding
report are regarded as a positive pair. The loss function Lalign is expressed as Eq. 1 to Eq. 3.

Lalign =
1

2B

N∑
i=1

N∑
j=1

(Le,t
i,j + Lt,e

i,j ), (1)

Lx,y
i,j = −log

exp(sx,yi,j /τ)∑B
k=1 I[k ̸=i]exp(s

x,y
i,j /τ)

, x ∈ [e, t], y ∈ [e, t], (2)

sx,yi,j =
Â⊤

x,iÂy,j

∥ Âx,i ∥∥ Ây,j ∥
, (3)

where B is the batch size, x ∈ [e, t], y ∈ [e, t] represents the ECG modal or the text modal, τ is the
temperature coefficient which is set as 0.7, I is the indicator function. Through calculating the align
losses of ECG-report Le,t

i,j and report-ECG Lt,e
i,j , the model can perform better feature alignment.

Furthermore, to conduct deep ECG-report interaction, we adopt Cross-Modal Reconstruction (de-
picted in Section 3.3) to decode the representation of another mode (De and Dt represent decoded
ECG feature and decoded text feature) from the aligned modal representation. Then the decoded fea-
tures are added to the aligned modal representation to obtain the mix-modal encoding. By combining
alignment and reconstruction, mixed-modal can better achieve deep ECG-report interaction. Specif-
ically, we will use the Âe,i and Ât,i as the core to obtain the mix-modal encoding M̂e

i = Âe,i ⊕Dt

and M̂ t
i = Ât,i ⊕De, and then conduct encoding alignment in mixed space, thus obtaining the final

multimodal representation. The mixed alignment loss can be calculated as Eq. 4.

Lmixed =
1

2B

N∑
i=1

N∑
j=1

(L′e,t
i,j + L′t,e

i,j ), (4)

where L′e,t
i,j and L′t,e

i,j is calculated by using M̂e
i and M̂ t

i to replace Âe,i and Ât,i as Eq. 2 and Eq. 3.
Therefore, our proposed method can effectively extract mixed modal representations with report
characteristics by using only ECG signals after completing the pre-training stage, and can better
complete the task of zero sample classification and report generation.

In conclusion, the whole loss for multiple ECG-report alignment can be written as Eq. 5.
LERA = Lalign + Lmixed (5)

3.3 CROSS-MODAL MUTUAL RECONSTRUCTION

To better guide the model in achieving deeper modal interactions between ECG signals and diag-
nostic reports, we introduce cross-modal mutual reconstruction. Specifically, after we obtained the
aligned ECG feature Âe,i and the aligned Text features Ât,i, we aim to facilitate modal interactions
by reconstructing the target modes while bringing them closer to each other in space. We introduce
decoder transformers to decode the semantic space of one modal in the alignment space to another
modal. Reports offer intuitive semantic information valuable for heart state classification but are
often unavailable. Therefore, we introduce a shared embedding derived from the textual modality
decoder. This shared embedding is combined with the ECG features, enriching them with additional
textual features to enhance heart state classification. After completing the pre-training in this man-
ner, the final representation obtained from inputting only the ECG data effectively encapsulates the
semantic information of the corresponding report text. This process is represented as: Eq. 6.

D̂e,i = De(Ât,i), D̂t,i = Dt(Concat[Âe,i, SEt]), (6)

where De and Dt are the decoder transformers to obtain ECG encoding D̂e,i and report encoding
D̂t,i respectively, and SEt are the shared embedding. Then we use standard contrastive loss on the
original feature embeddings and the decoded embeddings for cross-modal reconstruction as Eq. 7.

LCMR = Le
DEC + Lt

DEC =
1

2B

N∑
i=1

N∑
j=1

(Lze,de
i,j + Lzt,dt

i,j ) (7)
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Figure 2: Pipeline of zero-shot classification and report generation of our proposed DERI.

where Le
DEC and Lt

DEC represents the loss of ECG and report feature reconstruction respectively,
Lze,de
i,j and Lzt,dt

i,j represent to use De and Dt with the original features ze,i and zt,i to calculate the
similarity as the same of Eq. 3.

3.4 LATENT RANDOM MASKING ENHANCEMENT

We further conduct an RME module on latent ECG encoding to facilitate representation learning.
Considering that augmentation directly at the data level entails the loss of semantic information
about the signal, we use our proposed RME-Module on the ECG encoding. Specifically, as the
Encoder extracts encodings, it tends to focus on the local features of the signal to form an encod-
ing sequence. Rather than applying global average pooling to the ECG encoding sequence and
using two separate dropout operations to create augmented views, we instead randomly mask the se-
quence twice, independently. Then, a multi-head attention mechanism is employed to aggregate the
sequence, producing two augmented views of the encoding as a positive pair. This random masking
approach helps preserve sequence-level semantic features while enabling the model to learn global
features more effectively. We then use standard contrastive loss on these two augmented encoding
views. The whole process can be illustrated in Eq. 8

LRME = − 1

L

N∑
i=1

N∑
j=1

log
exp(si,jτ)∑L

k=1 I[k ̸=i]exp(s
x,y
i,j /τ)

,

where si,i = z1 ⊤
e,i z2e,i,

z1e,i = MHA(Mask(ze,i)) = MHA(M1 × ze,i),

z2e,i = MHA(Mask(ze,i)) = MHA(M2 × ze,i),

(8)

where MHA is a multi-head attention, Mask is the random mask strategy, which generates random
mask sets M1 and M2. M1 and M2 with each entry independently sampled with masking ratio
p = 0.1 are in Rb×n where b is the batch size and n is the length of the embedding sequence.
Each item in M is either 0 or 1, indicating whether the corresponding patch should be masked. We
add a global average on the MHA to obtain the global representation of the masked embedding.
Importantly, the random masks are generated by two independent random noises.

In summary, our proposed DERI learns representative ECG features with the help of clinical reports
by jointly minimizing LERA, LCMR and LRME . The overall training loss can shown as Eq. 9.

Ltotal = LERA + LCMR + LRME (9)

3.5 DOWNSTREAM TASKS ON DERI FRAMEWORK

After training the proposed DERI model, we can obtain an effective representation of ECG signals
that contains clinical report information. Then we can use the representation to conduct zero-shot
classification and report generation. Considering the quality of the category prompts for zero-shot
classification will have a great impact on the performance (Pratt et al. (2023); Maniparambil et al.
(2023)), we adopt the CKEPE prompts which are constructed by combining large language model
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(LLM) and clinical knowledge (Liu et al. (2024b)). The whole process of these two downstream
tasks is illustrated in Figure 2.

Zero-shot Classification. We adopted CKEPE (Liu et al. (2024b)) as the category prompts and used
the trained report encoder Ft and the projector to obtain the prompt embeddings of all categories.
We then use the trained DERI model to obtain the Mix Encoding, which is the final representation
containing both ECG signal features and the corresponding clinical report features. Finally, we cal-
culate the similarity between the Mix Encoding and the prompt encoding and then adopt the category
to which the prompt with the highest similarity belongs as the classification result. Importantly, all
the parameters of the proposed DERI are frozen in this process.

Report Generation. After we obtain the final representation of ECG, we adopt GPT-2 as the text
decoder to construct an encoder-decoder structure since DistilGPT2 (Sanh (2019)) has shown its
great performance on radiology report generation (Nicolson et al. (2023); Wang et al. (2024)). We
adopt a trainable linear layer to transform the dimension of the input encoding to meet the dimension
of the GPT-2 and conduct fine-tuning on the GPT-2 to minimize a cross-entropy loss LCE between
the generated report to the ground truth reports. After training the linear layer and fine-tuning the
GPT-2, we can generate corresponding diagnostic reports with ECG signals alone.

4 EXPERIMENT

4.1 DATASETS

MIMIC-ECG The proposed DERI model is pre-trained on the MIMIC-ECG dataset (Gow et al.
(2023)), which contains 800,035 paired ECG signals and clinical reports from 161,352 unique sub-
jects. We removed all the samples without reports containing more than 3 words and replaced
’NaN’ or ’Inf’ in the ECG signal with mean interpolation. Finally, the dataset used for pre-training
has 771,693 samples. We also conduct report generation tasks on this dataset.

PTBXL (Wagner et al. (2020)) contains 21,837 12-lead ECG signals recorded from 18,885 patients
at a sample rate of 500 Hz with a duration of 10 seconds. It contains four multi-label classification
tasks: Superclass, Subclass, Form, and Rhythm. The four different tasks are divided based on the
ECG annotation protocol. These four tasks are multi-label classification tasks.

CPSC2018 (Liu et al. (2018)) is a publicly accessible dataset that contains 6,877 12-lead ECG
recordings with a sampling rate of 500 Hz. The duration of these signals ranges from 6 to 60
seconds. Each recording has one corresponding label within nine categories.

Chapman-Shaoxing-Ningbo (CSN) (Zheng et al. (2020; 2022)) is a publicly accessible dataset
that contains 45,152 12-lead ECG recordings with a sampling rate of 500 Hz. Each recording has
a duration of 10 seconds and the ECG signals with ”unknown” annotation are removed. Therefore,
23,026 ECG records with 38 categories were used for classification.

4.2 EXPERIMENTAL SETUP

Pre-training. For the encoders used for ECG and reports, we adopt a random initialized 1D-
ResNet18 and the Med-CPT (Jin et al. (2023)) respectively. For decoders, we adopt two transformers
with 8 attention heads, a depth of 2, and a hidden size of 256 respectively for ecg encoding recon-
struction and report encoding reconstruction. We use the AdamW optimizer with a learning rate of
1e-3 and a weight decay of 1e-8. The epoch for pre-training is set as 50 with a cosine annealing
scheduler to adjust the learning rate. We conduct all the pre-trained experiments on four NVIDIA
GeForce RTX 4090 GPUs with a batch size of 512 per GPU.

Classification. We freeze the whole DERI and conduct zero-shot classification as illustrated in
Section 3.5. For linear probing, we add a new linear classifier and freeze all other parameters in
our DERI. We adopt three different settings, which utilize 1%, 10%, and 100% of the training data
to train the linear classifier. Since these tasks are all classifications that contain many categories,
we adopt the macro AUC as the evaluated metric. We conduct these experiments on one NVIDIA
GeForce RTX 4090 GPU and more details about the implementation are provided in the Appendix B.
The baselines we compared include single-modal methods such as ASTCL. (Wang et al. (2023)),
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CRT (Zhang et al. (2023)), STMEM (Na et al. (2024)) and multi-modal method MERL. More
details can be found in the Appendix C.

Report generation. We adopt the Natural Language Generation (NLG) metrics to evaluate our
report generation performance first, which include BLEU-n for n-gram overlap evaluation (Papineni
et al. (2002)) and ROUGE-L with the longest common sub-sequence between the original report and
generated report (Lin (2004)). Considering that NLG metrics can not effectively reflect the clinical
accuracy of the generated report, we further integrated Clinical Efficiency (CE) metrics inspired by
the zero-shot classification (more details can be found in Appendix E). Specifically, we use the pre-
trained text decoder to obtain prompt embeddings of all categories in the CKEPE. We feed the pre-
trained text decoder with the ground clinical report and calculate the similarity as the classification
probability for the category. We adopt the category with the highest classification probability as the
ground truth label. Then we use the generated report to obtain the predicted label in the same way.
The predicted labels are then used to compute precision, recall, and F1 scores against ground truths
as the CE metrics. We conduct the experiments on two NVIDIA GeForce RTX 4090 GPUs.

4.3 RESULTS ON CLASSIFICATION
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Figure 3: Zero-shot classification

Since most of the existing ECG representation learn-
ing methods are proposed without a text encoder for
zero-shot learning, we compared our proposed DERI
with MERL to verify the cross-modal ECG repre-
sentations learned from clinical reports. The com-
parison results are illustrated in Figure 3. It is evi-
dent that our proposed method, DERI, significantly
outperforms MERL across all tasks. The dotted line
in the figure indicates the average performance of
the two zero-sample methods on the six classifica-
tion tasks. DERI achieves an average macro AUC
of 78.73, while MERL attains only 75.25. This un-
derscores DERI’s capability to learn clinically rele-
vant representations through deep cross-modal inter-
actions between ECG signals and diagnostic reports.
Compared to MERL which just aligns the ECG and report encoding, our proposed DERI achieves
deep cross-modal interaction by multiple alignment and feature reconstruction, which enables the
model to learn more effective representation for zero-shot clinical classification.

To better evaluate the performance of our proposed DERI on ECG representation learning, we con-
duct linear probing and compare the result with other ECG self-supervised learning methods because
linear probing has been a standardized procedure for self-supervised learning (Wang et al. (2023)).
The experimental results are shown in Table 1. Random Init refers to using the proposed DERI
framework to obtain the ECG-specific mixed encoding without pre-training, followed by training
the model in a supervised learning setting for classification. It can be observed that DERI outper-
forms all the baselines including multi-modal method MERL and other single-modal self-supervised
learning methods across all settings of training data ratio and datasets. Interestingly we found that
DERI achieved the greatest performance advantage when using only 1% of the training data.

Table 1: Linear probing AUC. We bold the best results and grey represents the second highest.
PTBXL-Super PTBXL-Sub PTBXL-Form PTBXL-Rhythm CPSC2018 CSN

Method 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100%

SimCLR 63.41 69.77 73.53 60.84 68.27 73.39 54.98 56.97 62.52 51.41 69.44 77.73 59.78 68.52 76.54 59.02 67.26 73.20
BYOL 71.70 73.83 76.45 57.16 67.44 71.64 48.73 61.63 70.82 41.99 74.40 77.17 60.88 74.42 78.75 54.20 71.92 74.69
BarlowTwins 72.87 75.96 78.41 62.57 70.84 74.34 52.12 60.39 66.14 50.12 73.54 77.62 55.12 72.75 78.39 60.72 71.64 77.43
MoCo-v3 73.19 76.65 78.26 55.88 69.21 76.69 50.32 63.71 71.31 51.38 71.66 74.33 62.13 76.74 75.29 54.61 74.26 77.68
SimSiam 73.15 72.70 75.63 62.52 69.31 76.38 55.16 62.91 71.31 49.30 69.47 75.92 58.35 72.89 75.31 58.25 68.61 77.41
TS-TCC 70.73 75.88 78.91 53.54 66.98 77.87 48.04 61.79 71.18 43.34 69.48 78.23 57.07 73.62 78.72 55.26 68.48 76.79
CLOCS 68.94 73.36 76.31 57.94 72.55 76.24 51.97 57.96 72.65 47.19 71.88 76.31 59.59 77.78 77.49 54.38 71.93 76.13
ASTCL 72.51 77.31 81.02 61.86 68.77 76.51 44.14 60.93 66.99 52.38 71.98 76.05 57.90 77.01 79.51 56.40 70.87 75.79
CRT 69.68 78.24 77.24 61.98 70.82 78.67 46.41 59.49 68.73 47.44 73.52 74.41 58.01 76.43 82.03 56.21 73.70 78.80
STMEM 61.12 66.87 71.36 54.12 57.86 63.59 55.71 59.99 66.07 51.12 65.44 74.85 56.69 63.32 70.39 59.77 66.87 71.36
MERL 82.39 86.27 88.67 64.90 80.56 84.72 58.26 72.43 79.65 53.33 82.88 88.34 70.33 85.32 90.57 66.60 82.74 87.95

Random Init 78.10 84.33 89.47 69.96 78.70 84.01 60.82 67.14 70.08 60.12 79.34 83.98 64.67 75.57 91.45 67.42 74.54 79.97
DERI 85.46 89.84 90.52 73.50 80.60 85.52 62.53 72.51 84.37 65.44 83.66 92.34 79.45 89.40 93.45 77.93 87.86 91.93

Notably, on the PTBXL-Super task, our proposed DERI with 1% training data outperforms all the
single-modal ingle-modal self-supervised learning methods with 100% training data, just below the
multi-modal method MERL. We can also observe that the multimodal methods MERL and DERI
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show excellent performance on all classification tasks with the training data setup, reflecting the ef-
fectiveness of ECG representation learning in conjunction with clinical reports. The same significant
performance advantage of DERI over MERL also exists, which implies that our proposed method
is more effective in realizing cross-modal representation learning of ECG with clinical reports to
extract important clinical information for cardiac condition classification.

Distribution shift can effectively validate the learning ability of representation learning models for
different data domains, to evaluate their generalizability and robustness. Therefore, we adopt linear
probing with 100% training data to re-train the classification heads on three classification tasks,
namely, PTBXL-Super, CPSC2018, and CSN, to conduct distribution shift experiments. It is worth
noting that since both the MERL and DERI methods achieve zero-sample classification, we do not
need to re-train the classification head for the model, but only need to reclassify the zero-sample
classification results. Specifically, we trained the single-modal supervised learning methods with
linear probing on one dataset (source domain) and then tested it on other datasets (target domain).

Table 2: Distribution shift AUC. We bold the best results and grey represents the second highest.
Source Domain

Zero-shot Training Data Ratio
PTBXL-Super CPSC2018 CSN

Target Domain CPSC2018 CSN PTBXL-Super CSN PTBXL-Super CPSC2018

SimCLR ×

100%

69.62 73.05 56.65 66.36 59.67 62.11
BYOL × 70.27 74.01 57.32 67.54 60.39 63.24
BarlowTwins × 68.98 72.85 55.97 65.89 58.76 61.35
MoCo-v3 × 69.41 73.29 56.54 66.12 59.82 62.07
SimSiam × 70.06 73.92 57.21 67.48 60.23 63.09
TS-TCC × 71.32 75.16 58.47 68.34 61.55 64.48
CLOCS × 68.79 72.64 55.86 65.73 58.69 61.27
ASTCL × 69.23 73.18 56.61 66.27 59.74 62.12
CRT × 70.15 74.08 57.39 67.62 60.48 63.33
STMEM × 76.12 84.50 62.27 75.19 73.05 64.66

MERL
√

0% 88.21 78.01 76.77 76.56 74.15 82.86
Ours

√
0% 88.78 78.83 79.50 81.02 76.70 85.84

The target domain preparation is the same as the MERL (Liu et al. (2024b)), which is illustrated with
details in the Appendix D. The experimental results are shown in Table 2. Notably, our DERI per-
forms better across six distribution shift settings than the zero-shot method MERL, especially when
the source domain is CPSC2018. Compared to self-supervised learning methods, only STMEM
outperforms our DERI in the PTBXL-Super to CSN setting while DERI outperforms other methods
with 100% training data for linear probing. It can be observed that MERL achieves the second-best
performance on most settings, excluding PTBXL-Super to CSN. These experimental results support
that multi-modal learning with ECG and reports for zero-shot classification can effectively improve
the robustness and generalization of the learned representation. The significant performance advan-
tages of DERI over MERL further illustrate the effectiveness of deepening modal interactions and
enabling cross-modal representation learning by deepening the modal interactions of ECG-Report.

4.4 RESULTS ON REPORT GENERATION

In addition to the ability to learn valid representations of ECGs for cardiac condition classification,
our proposed DERI method achieves deep cross-modal interactions, and the extracted representa-
tions contain valid clinical report information that can be used for diagnostic report generation. To
further support our approach, we conducted experiments of report generation on the MIMIC-ECG
dataset. The pre-trained DERI and MERL are used as the encoder to combine with DistilGPT2 as
an encoder-decoder framework for report generation. To better verify the effect of the proposed mix
encoding in DERI, we also adopt the aligned ECG encoding in DERI as a variant called DERI-align.
The NLG and CE metrics of the generated reports are shown in Table 3.

Table 3: Report generation on MIMIC-ECG. Best results in bold and grey for second highest.

Encoder
NLG CE

BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L F1 PRE REC

MERL 59.68 54.09 49.58 46.52 69.52 23.03 25.01 23.05
DERI 62.48 57.23 52.90 49.85 71.45 24.90 26.74 24.88

DERI-Align 61.33 55.98 51.75 48.50 70.59 23.33 24.96 23.60

We observe that our proposed DERI outperforms MERL on both NLG metrics and CE metrics,
which illustrates that the representation learned by our method contains more clinical information.
This result demonstrates that our proposed method enables better modal interactions between ECG
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signals and REPORT, thus extracting more effective representations. In addition, by comparing the
results of DERI-align with DERI, we demonstrate that the proposed cross-modal feature reconstruc-
tion method can effectively learn the information of the clinical report, thus generating a diagnostic
report that is closer to the ground truth.

F1 PRE REC
34

36

38

40

42

44

Sc
or

es

35.8

38.3

35.1

37.0

38.4

36.6
36.3

38.3
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42.2

44.2

41.4

43.5 43.3

45.3

42.8 42.6
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MERL (LLaMA2-7b)
DERI (LLaMA2-7b)

DERI-Align (LLaMA2-7b)
MERL (vicuna-7b)

DERI (vicuna-7b)
DERI-Align (vicuna-7b)

Figure 4: Report Generation CE Metrics.

To better verify the CE metrics calculation method,
we adopt large language models (LLMs) LLaMA2-7b
(Touvron et al. (2023)) and vicuna-7b (Zheng et al.
(2023)) to conduct report classification. Specifically,
we feed the original reports and generated reports to the
LLMs respectively and then ask the LLMs to choose
the best class from six given categories, which include
Normal ECG, Myocardial Infarction, ST/T Change,
Conduction Disturbance, Hypertrophy, and Others.
The answers of the original reports are regarded as
ground truth and the answers of the generated reports
are predicted labels. We then calculate the CE metrics
as Figure 4.

We can observe that the results of report categorization
using LLMs are basically the same as the results of our proposed zero-shot categorization method:
DERI is the best and DERI-align is the second best, while both methods outperform MERL on
F1. Meanwhile, the calculation of CE using vicuna performs better results than LLaMA2. We also
provide example generated reports as Figure 5.

As we can see, The red portion of the ground truth is not accurately generated, the gray portion of
the generated report is incorrect, and the green portion is correct. Although our method also does
not fully generate the corresponding diagnostic reports, our method greatly reduces the error rate of
the generated reports. From the results, the reports generated by our method are of higher quality,
which also proves that our method achieves effective deep-modal interaction.

Ground Truth: sinus rhythm.. poor 
r wave progression - probable 
normal variant. inferior st-t changes 
may be due to myocardial ischemia. 
abnormal ecg.

Generated: sinus rhythm. inferior 
and anterior t wave changes are 
nonspecific. borderline ecg.

Generated: sinus rhythm. inferior 
st-t changes may be due to 
myocardial ischemia. abnormal 
ecg.

Generated: sinus rhythm. inferior 
st-t changes may be due to 
myocardial ischemia. abnormal 
ecg.

MERL DERI-Align DERI

Figure 5: Example of generated reports on MIMIC-ECG dataset.

To conduct more comprehensive experiments about report generation, we adopt different language
models as the text decoder instead of DistilGPT2, including Med-CPT (Jin et al. (2023)), PubMed-
Bert (Gu et al. (2020)), and SciBert (Beltagy et al. (2019)). More details and experimental results
can be found in Appendix E.

4.5 ABLATION STUDY

To better verify the performance of the key components/design choices of our DERI, we conduct
comprehensive ablation studies on zero-shot classification and linear probing with 1% training data
across different classification datasets. All results are proposed with average AUC on six down-
stream datasets.

Table 4: Ablating Multiple Alignment and Feature Reconstruction
Lalign Lmixed Le

DEC Lt
DEC Le

RME Zero-shot Linear Probing (1%)
√ √ √ √

76.34 72.36√ √ √ √
77.41 69.20√ √ √ √
78.06 69.61√ √ √ √
78.22 68.31√ √ √ √ √
78.73 74.05

Multiple Alignment and Feature Reconstruction. We realize the validation of the effect of these
compositions by ablating the corresponding loss functions separately, and the experimental results
are reported in Table 4. Table 4 shows that for zero-shot classification, Lmixed brings the best
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improvement while Le
RME for linear probing. This suggests that the second alignment of mixed en-

coding can better fuse the clinical information from reports because zero-shot classification learning
is conducted to calculate the similarity between the learned representations and prompt representa-
tions. The effect of Le

RME on linear probing exemplifies the effectiveness of the RME-Module we
designed to improve the learning ability of ECG representations. The model trained with all the loss
functions obtains the best performance, which illustrates the effectiveness of our proposed DERI
method in ECG representation learning.

Table 5: Ablating RME-Module.
Zero-shot Linear Probing (1%)

Latent Dropout 76.88 71.86
RME-Linear 78.05 72.40
RME-Module 78.73 74.05

RME-Module. We compared the effect of the RME-
Module and its variant that uses linear projectors instead
of the attention mechanism which is set as RME-Linear,
and Latent Dropout used by MERL. The experimental
results are reported in Table 5. We can observe that
the random masking strategy obtains better performance
than dropout while using the multi-head attention mechanism instead of global meaning can achieve
the best performance, enhancing the model’s ability to learn ECG representation for classification.

Table 6: Ablating Masking Ratio.
Mask-ratio Zero-shot Linear Probing (1%)

0.1 78.73 74.05
0.2 77.67 68.69
0.3 78.05 71.26
0.4 77.62 73.55
0.5 76.35 72.21

We then further explore the impact of the masking ra-
tio p on the performance by changing it from 0.1 to
0.5 with a step of 0.1. The experimental results are
shown in Table 6. We observe that the masking ratio of
0.1 obtains the best performance among other masking
ratios in both zero-shot classification and linear prob-
ing. Therefore, we adopt the masking ratio of 0.1 in our
RME-Module.

Shared Embedding and Mix Encoding. We also conduct experiments to verify the effect of the
shared embedding used in cross-modal reconstruction. We remove the shared embedding from Dt
to De as a variant of our proposed DERI. In addition, we use the pre-trained aligned ECG features
to conduct zero-shot classification and linear probing to verify whether the mix encoding performs
better than the aligned encoding for classification. This means that we adopt the same pre-training
model but use the aligned ECG encoding instead of the mixed encoding for downstream tasks.

Table 7: Shared Embedding and Mix Encoding.
Zero-shot Linear Probing (1%)

Without SE 77.25 70.22
DERL-Align 78.03 73.59
DERL 78.73 74.05

The experimental results are shown in Table 7.
It can be observed that removing the shared em-
bedding from Dt to De during text encoding
reconstruction leads to a decline in model per-
formance for both zero-shot and linear prob-
ing tasks. Furthermore, using the mixed encod-
ing, which includes the decoded report features,
outperforms using only the aligned ECG features. These findings underscore the strong representa-
tion learning capability of DERI.

5 CONCLUSION

In this study, we proposed DERI, an innovative deep ECG-Report interaction framework for cross-
modal representation learning. To obtain deep ECG-Report interaction, we design multiple align-
ments and cross-modal mutual reconstruction. Besides, an RME-Module is conducted on the ECG
latent encoding for representation learning enhancement. Moreover, we extended ECG representa-
tion learning to clinical diagnostic report generation, aiming to deliver more intuitive ECG clinical
insights. Our extensive experiments demonstrate the DERI’s capability to learn the clinical se-
mantics of ECG signals with the help of reports, which achieves the best performance on ECG
classification and report generation.

Limitations and Future Work. One potential limitation of our work is that the report used is
closer to a clinical semantic description of the signal and remains structurally different from a real
diagnostic report. Additionally, we plan to expand our DERI into a more comprehensive cross-
modal representation learning model, which can learn from other modal data, such as electronic
medical records, further enhancing its relevance in clinical medicine.
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APPENDIX

A RELATED WORK ON ECG REPORT LEARNING

Exploration of ECG signals with the report is now more and more popular. Ref. (Yu et al. (2023)) is
proposed to conduct ECG zero-shot classification based on LLMs and retrieval-augmented genera-
tion (RAG) and then obtain a great performance on ECG classification. However, this method needs
to construct a vector database first for retrieval and the performance depends on the quality of the
database. This RAG method has high storage requirements and high computing costs. In addition,
although this method is also a multimodal method, it does not use the diagnostic report correspond-
ing to the ECG signal, and cannot extract the high-level semantics in the report as efficiently as our
DERI method.

METS (Li et al. (2024)) is proposed to simply calculate the cosine similarity between the ECG em-
bedding and the report embedding for multi-modal ECG-Text SSL pre-training. However, this is too
simple to learn the cross-modal representation of ECG and reports. Actually, it’s the previous works
of the MERL with simpler methods with lower results. MERL is the work that further improved
METS.

MEIT (Wan et al. (2024)) aims to use an instruction prompt to generate reports based on the ECG
signal input with LLMs. However, in our work, our DERI framework is not designed only for report
generation, but also for ECG classification. It is used to learn effective representation with more
clinical cardiac information from ECG signals. Although we also conduct report generation, it is
just one of the ways to verify the representation of ECG learned.

ECG-Chat (Zhao et al. (2024)) is a great work for multi-modal ECG learning, which combines the
ECG encoder and classification results to construct instructions for LLM. In addition to the ECG
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signal, it also uses the electrical health record and other information for DSPy and GraphRAG.
Compared to the original report, ECG-Chat can generate structured reports that include medical
history diagnoses and recommendations.

B IMPLEMENTATION FOR ECG CLASSIFICATION.

We provide more details about ECG classification datasets used in our experiments here. We adopt
the same data split strategy as MERL (Liu et al. (2024b)). The details are shown in Table 8. Notably,
the PTBXL dataset with different tasks is split according to the official strategy (Wagner et al.
(2020)) while the CPSC2018 and CSN datasets are split as 7:1:2.

Table 8: More details about the ECG classification datasets.
Dataset Number of Categories Samples Train Valid Test

PTBXL-Super 5 21,388 17,084 2,146 2,158
PTBXL-Sub 23 21,388 17,084 2,146 2,158
PTBXL-Form 19 8,978 7,197 901 880
PTBXL-Rhythm 12 21,030 16,832 2,100 2,098
CPSC2018 9 6,877 4,950 551 1,376
CSN 38 23,026 16,546 1,860 4,620

Furthermore, we provided more details about the hyper-parameters used for linear probing on ECG
classification tasks in Table 9.

Table 9: Hyperparameter settings for Linear Probing
Learning rate 0.01

Batch size 16
Epochs 100

Optimizer AdamW
Learning rate scheduler Cosine annealing

Warump steps 5

C BASELINE.

More details about the compared baselines in our experiment are shown as below.

SimCLR. (Chen et al. (2020a)) This method aims to maximize consistency between differently
augmented views of the same data example including random cropping, random distortion, and
random Gaussian blur. Contrastive loss obtained by the representation of augmented views is used
to optimize the base encoder.

BYOL. (Grill et al. (2020)) This method uses an online network to predict the presentation of other
augmented views of the same sample obtained by a target network. Therefore, BYOL conducts
contrastive learning without negative pairs.

BarlowTwins. (Zbontar et al. (2021)) This proposes to measure the cross-correlation matrix be-
tween the outputs obtained by two identical networks with distorted versions of a sample. The
cross-correlation matrix is made as close to the identity matrix as possible since it can make the
representation of distorted versions from the same simple to be similar.

MoCo-v3. (Chen et al. (2021)) This method proposes to train the transformer for self-supervised
learning based on investigation of the fundamental components during training. In this way, they
aim to overcome the instability of the transformer for a better representation.

SimSiam. (Chen & He (2021)) This method uses an encoder to process two augmented views of
one sample and then a prediction MLP is applied on one side while stop-gradient is applied on the
other side. Neither negative pairs nor momentum are used to learn meaningful representations.
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TS-TCC. (Eldele et al. (2021)) This method first augments the sample using weak and strong aug-
mentation and then learns robust temporal representation with a cross-view prediction task. Finally,
the similarity among contexts from the same sample is minimized as contextual contrasting learning.

CLOCS. (Kiyasseh et al. (2021)) This method proposed to learn patient-specific representations of
ECG signals via contrastive learning with consideration of both temporal and spatial information.

ASTCL. (Wang et al. (2023)) This method proposes a novel ECG augmentation method based on the
noise attributes and then combines an adversarial module and a spatial-temporal contrastive module
to learn the spatial-temporal and semantic representations of ECG signals.

CRT. (Zhang et al. (2023)) This method proposes to model temporal-spectral correlations of tempo-
ral time series by a cross-reconstruction transformer. Through cross-domain dropping reconstruc-
tion, the model can adequately capture the cross-domain correlations between temporal and spectral
information of time series data.

STMEM. (Na et al. (2024)) This method is proposed to learn the spatial-temporal relations of ECG
signals for masked modeling. ECG signals are divided into patches on the temporal and spatial
dimensions and then the model reconstructs the masked patches to learn spatial-temporal features of
12-lead ECG signals for classification.

MERL. (Liu et al. (2024b)) This method extends ECG self-supervised learning to multi-modal
learning by directly aligning the ECG signal encoding and the text encoding to learn ECG repre-
sentation for classification. However, shallow interaction between ECG signals and reports can not
provide effective clinical semantics for the representation.

D DISTRIBUTION SHIFT SETTING.

Considering that the source domain may not cover all the categories of the target domain, target do-
main categories are merged into the most similar source domain categories. Categories in the target
domain while not in the source domain and the corresponding ECG recordings will be removed.
The details of the category relations for distribution shift are illustrated in Table 10 and Table 11.

Table 10: PTBXL-Super to CPSC2018 and CSN.
Source Domain Target Domain

PTBXL-Super CPSC2018 CSN

HYP None RVH, LVH
NORM NORM SR

CD 1AVB, CRBBB, CLBBB 2AVB, 2AVB1, 1AVB, AVB, LBBB, RBBB, STDD
MI None MI

STTC STE, STD STTC, STE, TWO, STTU, QTIE, TWC

Table 11: Category relations between CPSC2018 and CSN
CPSC2018 CSN

AFIB AFIB
VPC VPB

NORM SR
1AVB 1AVB

CRBBB RBBB
STE STE
PAC APB

CLBBB LBBB
STD STE, STTC, STTU, STDD

E REPORT GENERATION.

We provided more comprehensive experimental results here by adopting different language models
as the text decoder for report generation, including Med-CPT, PubMedBert, and SciBert. The ex-
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perimental results of NLG and zero-shot CE are proposed in Table 12. We use the same strategy of
R2Gen (Chen et al. (2020b)) to adopt these language models as text decoders for report generation.

Table 12: NLG and CE of Report Generation on MIMIC-ECG Dataset.

Decoder Encoder
NLG CE

BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L F1 PRE REC

DistilGPT2
MERL 59.68 54.09 49.58 46.52 69.52 23.03 25.01 23.05
DERI 62.48 57.23 52.90 49.85 71.45 24.90 26.74 24.88

DERI-Align 61.33 55.98 51.75 48.50 70.59 23.33 24.96 23.60

PubMedBert
MERL 57.87 51.84 46.99 43.44 71.58 28.31 31.39 28.98
DERI 62.30 56.75 52.16 48.67 75.34 31.39 33.77 31.41

DERI-Align 61.93 56.33 51.74 48.25 75.08 30.45 32.47 31.20

MedCPT
MERL 57.84 51.78 46.89 43.32 71.56 27.63 29.82 28.39
DERI 61.11 55.42 50.79 47.28 74.36 31.27 33.73 31.24

DERI-Align 61.88 56.28 51.68 48.19 75.03 28.33 30.44 29.76

SciBert
MERL 55.72 49.52 44.46 40.37 69.86 26.99 29.59 27.84
DERI 61.95 56.37 51.78 48.33 75.11 31.17 33.98 30.99

DERI-Align 61.50 55.84 51.17 47.58 74.95 28.57 30.14 29.58

We can observe that although DistilGPT2 achieves the best BLEU-n metrics, other decoders have
better ROUGE-L and CE metrics, especially the PubMedBert. This may be attributed to PubMed-
Bert being pre-trained on a dataset with biomedical research articles that contain more clinical in-
formation that is important to clinical reports. To better understand the zero-shot CE metrics, the
whole process to obtain CE metrics here is provided in Figure 6.

Ground Truth: sinus rhythm.. poor r 
wave progression - probable normal 
variant. inferior st-t changes may be due 
to myocardial ischemia. abnormal ecg.

Similarity

NORM CD MI LBBB

… CD

Label

Generated: sinus rhythm. inferior 
st-t changes may be due to 
myocardial ischemia. abnormal ecg.

Similarity

NORM CD MI LBBB

… CD

Predicted

Clinical 
Effect

Clinical Database

LLM

Original 
Prompt：

“Atrial 
Fibrillation”
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Figure 6: CE metrics calculation inspired by zero-shot classification.

We also provide more examples of the generated reports from MERL and DERI to make a better
illustration, including reports in three lengths: long, medium, and short. The generated results are
shown in Figure 7.

It can be observed that our DERI outperforms MERL in report generation at all three lengths, which
indicates that our proposed DERI approach achieves a deeper ECG-Report cross-modal interaction,
effectively incorporating the clinical semantics in the report while learning ECG representations.

To better verify the performance of our proposed DERI, we compared the result of the generated
report task on the PTB-XL dataset. It should be noted that the results of baselines are referred to in
the original paper and the experimental results are shown in Table 13.

We can see that our proposed DERI obtains the best performance, which verifies the great effect of
our method on learning ECG-report cross-modal representation. In addition, LLM-based methods
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Figure 7: Examples of generated reports in three lengths.

Table 13: Report Generation Results on PTB-XL Dataset.
Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L

Our Framework
MERL-DisGPT2 48.9 44.4 41.2 37.4 55.4
DERI-DisGPT2 58.6 54.8 51.9 48.6 64.2

DERI-Align-DisGPT2 54.1 49.8 46.6 43.2 60.1

Baseilnes from MEIT

GPT2-Medium 32.9 27.8 25.4 23.2 39.1
GPT2-Large 43.7 39.5 35.5 32.0 48.1

GPT-Neo 47.4 44.9 39.8 37.3 48.6
GPT-NeoX 46.9 45.3 41.7 39.9 55.3

GPT-J 48.5 45.2 42.8 40.5 55.0
BLOOM 49.1 46.2 42.7 41.5 58.0

OPT 50.2 47.7 43.1 41.8 56.8
LLaMA-1 51.4 48.5 46.5 43.0 58.8

Mistral 48.6 47.5 44.6 42.1 59.1
LLaMA-2† 51.5 48.4 46.9 43.9 59.4

Mistral-Instruct† 50.1 48.1 45.7 42.5 59.2

Baseilnes from ECG-Chat
PTB-XL 6.5 - - 0.9 25.6

ECG-Chat 15.9 - - 2.3 23.9
ECG-Chat-DDP 32.3 - - 11.2 29.9

always need high computing resources, while our proposed method can be conducted on 4090 GPUs
with greater performance.

Moreover, we conduct report classification on PTBXL for better support that our method can effec-
tively learn high-level semantics from report data, including single-label and multi-label. Specifi-
cally, we conduct single-label classification as the same as Figure 6.We use the Med-CPT to encode
the prompt of all categories as the label embedding first. Then, to obtain ground truth, we encode
the original report to obtain embedding and then calculate the similarity of all label embedding.
The category with the highest similarity will be regarded as the true label of the original report. For
the predicted label, we conduct the same process with the generated report. On the other hand, for
multi-label report classification, since the real label of ECG signals in the downstream dataset is
provided, we feed the corresponding prompt of the target category of the label to the text encoder to
obtain the prompt embedding. Then, after our DERI learning the representation of the ECG signals,
we calculate the similarity between the learned representation and the target prompt embedding and
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then conduct a sigmoid function on the similarity to obtain the predicted probability of each target
category. Finally, we conduct an optimal classification threshold search with the help of a precision-
recall curve. Categories with a higher probability than the threshold will be regarded as predicted
labels. Experimental results are shown in Table 14.

Table 14: Report Classification on PTBXL dataset.
Single Label Method F1 PRE REC

Prompt
MERL-DisGPT2 22.6 27.9 21.5
DERI-DisGPT2 40.1 46.5 38.7

DERI-Align-DisGPT2 32.0 38.1 30.0

Multi-label Method F1 Acc AUC

Super
MERL-DisGPT2 53.3 66.0 75.7
DERI-DisGPT2 56.1 72.9 76.9

DERI-Align-DisGPT2 55.5 72.3 76.1

Sub
MERL-DisGPT2 19.3 85.0 71.1
DERI-DisGPT2 21.1 86.5 72.7

DERI-Align-DisGPT2 19.7 85.3 72.2

Form
MERL-DisGPT2 20.8 78.3 62.9
DERI-DisGPT2 26.5 89.0 68.0

DERI-Align-DisGPT2 24.8 84.0 66.0

Rhythm
MERL-DisGPT2 18.5 93.3 71.1
DERI-DisGPT2 24.1 95.2 74.5

DERI-Align-DisGPT2 23.1 94.0 73.7

F REPRESENTATION VISUALIZATION.

To investigate the learned ECG representation further, we visualize the learned representation of
DERI and MERL. We use t-SNE to visualize the representation as Figure 8. For PTBXL, we adopt
the PTBXL-Super setting to obtain the category. For Chapman, we keep the nine categories with
the largest sample sizes for better visualization. It can be observed that after t-SNE, the represen-
tations learned by our DERI can be more clustered, with greater differentiation between different
categories, which indicates that our method is able to learn discriminative ECG representations more
efficiently than the simple utilization of diagnostic reports by MERL, containing more cardiac clin-
ical information.

PTB-XL Chapman CPSC2018

MERL

DERI

Figure 8: T-SNE visualization on three classification datasets.
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