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ABSTRACT

We present an algorithm for the empirical group distributionally robust (GDR)
least squares problem. Given m groups, a parameter vector in R¢, and stacked de-
sign matrices and responses A and b, our algorithm obtains a (1+¢)-multiplicative
optimal solution using O(min{rank(A), m}'/3c=2/3) linear-system-solves of
matrices of the form A TBA for block-diagonal B. Our technical methods fol-
low from a recent geometric construction, block Lewis weights, that relates the
empirical GDR problem to a carefully chosen least squares problem and an ap-
plication of accelerated proximal methods. Our algorithm improves over known
interior point methods for moderate accuracy regimes and matches the state-of-
the-art guarantees for the special case of /., regression. We also give algorithms
that smoothly interpolate between minimizing the average least squares loss and
the distributionally robust loss.

1 INTRODUCTION

Machine learning algorithms and their training datasets have grown tremendously in the past decade,
both in size and complexity. This increased model complexity has made it challenging to interpret
and predict their behavior in unobserved scenarios. Hence, many applications that involve soci-
etal decisions still rely on simple, interpretable models like linear regression, often after feature
engineering. Examples of such applications are predicting housing prices across cities, estimating
wages across industries, forecasting loan amounts across banks, predicting life insurance premiums
for different groups, and projecting energy consumption in various communities (Cohen-Addad
etal., 2024).

A shared safety and sometimes legal concern across the above applications is the potential for wildly
different model qualities for different distributions, i.e., outputting a notably worse model for some
source data distributions (Data, 2014; Barocas & Selbst, 2016; Hardt et al., 2016; Veale et al., 2018,;
Selbst et al., 2019; Berk et al., 2021; Corbett-Davies et al., 2023; Chouldechova, 2016; Kleinberg
etal.,2018; Agarwal et al., 2019; Cohen-Addad et al., 2024; Song et al., 2024). Specifically, consider
fitting a linear model € R to make real predictions on some task over m groups where group

i’s dataset consists of n; entries and is denoted by S; = {(aj b )}jeni)- The utilitarian or the

1071
total-cost-minimizing objective minimizes the average squared prediction error across groups, i.e.,
1 1 2
min — — ||Ag,x — bg, 1
min — Z o llAsz —bsil; (1)
1€[m]
where Ag, == [al...al"]T € R"*% s the feature matrix and bg, = [b}...b"]" € R"™ is the

label vector for group i € [m).

Due to the inherent heterogeneity of the datasets, the model derived from optimizing objective equa-
tion 1 may be particularly detrimental for some groups, as the prediction error could be dispropor-
tionately higher for these groups. To overcome these limitations, the following egalitarian or group
Distributionally Robust Optimization (DRO) objective has been considered in several recent works
(Ben-Tal et al., 2013; Duchi et al., 2016; Sagawa et al., 2019; Levy et al., 2020; Soma et al., 2022;
Abernethy et al., 2022; Song et al., 2024),

1
min max — ||Ag,x — b5i||§ . 2)
xR i€[m] N; )
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Objective 2 is the “fairest” objective among all objectives that balance utility and distributional ro-
bustness by ensuring that no one group has a loss that is too high (Kleinberg et al., 2018; Choulde-
chova & Roth, 2018; Asadpour et al., 2022; Chen et al., 2022; Rahmattalabi et al., 2019; Golrezaei
etal., 2024)

Since objective 2 is a convex problem, it is natural to apply standard black-box optimization tech-
niques to solve it. However, we identify several challenges in applying existing methods:

Efficient first-order algorithms have geometry-dependent rates. To our knowledge, using an
efficient first-order method (such as sub-gradient descent) will incur a geometry-dependent runtime.
In particular, if the matrices Ag, or if the stacked matrix A = [A{ ... A{ T are poorly condi-
tioned, then this will be reflected accordingly in the convergence rates. This is a drawback of the
existing results by Abernethy et al. (2022) and Song et al. (2024).

Objective equation 2 is not smooth. Since the objective is the pointwise maximum of several
continuous functions, the derivative is not well-defined at the points at which the maximizing func-
tion changes. Thus, applying subgradient descent to this objective without a customized analysis
will result in a rather unimpressive 1/c? dependence in the iteration complexity.

Min-max optimization/regret minimization approaches have a 1/c? dependence on iteration
complexity. Since problem 2 is a min-max optimization objective, it is also natural to try to use
game theory-inspired approaches that use some oracle (such as gradients) for each group as a black
box. For instance, we can cast objective 2 as a repeated game between a min player (equipped
with a no-regret algorithm) and a max player (equipped with the best response oracle). The main
shortcoming of this approach is that even though the function for each group is smooth, the iteration
complexity (to get € average regret) for smooth online convex optimization still has an unimpressive
1/&? dependence (as opposed to 1/¢ for smooth convex optimization) (Soma et al., 2022; Zhang
et al., 2024a). Thus, this approach is no better than directly applying sub-gradient descent to objec-
tive equation 2.

Interior point methods have a poor iteration complexity for large m. Another natural approach
(that can partially address the previous two issues), following the discussion by Boyd & Vanden-
berghe (2004, Section 6.4), is to rewrite problem 2 in its epigraph form and use an interior point
method (IPM) to solve the resulting problem (which, in this case, is a quadratically constrained lin-
ear program). Unfortunately, this will give an algorithm whose analysis is only known to yield an
iteration complexity of O(y/m), where each iteration solves a linear system in matrices of the form
A TBA for a block-diagonal B (see Remark 1.1). A naive implementation of this algorithm will
thus have a superlinear runtime in the number of groups, which is undesirable when the number of
groups is large. Alternately, consider an example in which we copy each group & times in the ob-
jective. The new objective value does not change from the original objective value, but the iteration
complexity from the IPM now blows up to v/mk. This also signals to us that we should search for
an algorithm whose iteration complexity is mostly independent from m.

Hence, designing an algorithm without these shortcomings requires novel ideas.

1.1 OUR RESULTS

In this paper, we present a new algorithm (Algorithm 1) to approximately optimize objective 2,
which addresses the aforementioned difficulties. We state the iteration complexity of our algorithm
in the following theorem.

Theorem 1 (Robust regression). Let Ag, € R"*% and bg, € R™ for all i € [m]. Denote their
concatenations by A == [Al ... Al 1" € R"™Yand b = [bf ...b |7 € R" where n :=
> ic[m) M- Let € > 0. Then Algorithm 1 returns @ such that,

1
max — ||Ag.Z — bg. ||, < (1 +¢): min max
max —— |As, silla £ (1 +¢) mnin max ——

and it runs in

”Aslw - bsi

2 3)

-\ 14/3
min {rank(A), m}*/? (log ("b%) + log (m)>

22/3
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linear-system-solves in matrices of the form ATBA, where B is a block-diagonal matrix for which
block i has size n; X n;.

We prove Theorem 1 in Appendix C. We compare the guarantee of Theorem 1 against the other
baselines in Table 1.

Algorithm Iteration Complexity Each Iteration
. 1
Subgradient descent " ll, maxa<i<m = || Asi Evaluate V f(x)
62
Nesterov acceleration . 1 1z ~
2" 1, (maxi<icm ——||As;
on smoothened objective 2( 1<i< E\ﬁ |As Hop> Evaluate V f3 5(x)
. 1 ~
Abernethy et al. (2022) 2" ll; maxi<ism 7= [|Asi |, Evaluate V f55(x)
£
Interior point with log barrier 1/2100 (1 Linear-system-solve
(Boyd & Vandenberghe, 2004) m'/?log (2) in ATBA
This paper ml/3 Linear-system-solve
(naive geometry) c2/% in ATBA
{o regression with Lewis rank(A)1/3 Linear-system-solve
weights (Jambulapati et al., 2022) e2/3 in ATDA
{, regression with IPM 1/2 1 Linear-system-solve
(Lee & Sidford, 2019) rank (A)™/“log (2) in ATDA
This paper (Theorem 1) %ﬁ)’m}l/a Llne?;-sAysTt%mAsolve
€

Table 1: The complexities of algorithms for optimizing equation 2 or for the special case of /.,
regression, assuming OPT = 1 (the first three guarantees are additive approximations) and ignoring
polylog(n,m) terms. We write D to be a diagonal matrix and B to be a block-diagonal matrix
where each block has size (n; + o(1)) x (n; + o(1)). We remark that in the special case where
n; = 1, our algorithm exactly recovers guarantees of Jambulapati et al. (2022). We stress that we
include the references to ¢, regression only to show that our algorithm is no worse than that of
Jambulapati et al. (2022) in this special case of n; = 1 for all 7, and none of their algorithms apply
to our general setting.

Unlike the aforementioned first-order methods, our algorithm has no geometry-dependent terms.
Additionally, our algorithm improves over the standard log-barrier [IPM when the desired accuracy
€ > m~1/* — this improvement is more pronounced when m > rank (A), i.e. when the number
of data sources is much larger than the dimension of the parameter vector . Additionally, for

€ > rank (A)_l/ ‘. our guarantee matches the best known guarantee for /., regression (Lee &
Sidford, 2019; Jambulapati et al., 2022).

Remark 1.1 (Why use linear-system-solve complexity?). We benchmark our algorithms using the
number of linear-system-solves for a few reasons. First, this is typically how second-order algo-
rithms are compared, such as interior point methods for linear programming (Lee & Sidford, 2019).
Second, the particular structure of the linear-system-solves presents the possibility of a faster amor-
tized runtime for the systems over the algorithm’s run. This observation, combined with an under-
standing of how the linear systems changed between iterations, was used recently used to achieve
fast runtimes for linear programming (Lee & Sidford, 2019) and £, regression (Adil et al., 2024).

Interpolating between robust and nonrobust optimization. We also study the following family
of objectives that interpolate between objectives 1 and 2 for different values of p > 2,

1 1 5 p/2
in — Z lAgx — bg . 4
gé%ndm;} (n |As,x sl||2> (4)
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In particular, note that choosing p = 2 in the above objective gives us the average least-squares
problem in objective 1, while p — oo recovers objective 2. Varying p from 2 to oo and minimizing
gives solutions that interpolate between utilitarian and egalitarian approaches, allowing for a smooth
trade-off between utility and robustness. To this end, we give Algorithm 5 to approximately optimize
objective 4 and prove the following guarantee about its iteration complexity.

Theorem 2 (Trading off utility and robustness). Let Ag, € R"*? and b, € R™ for all i € [m)].
Denote their concatenations by A = [Af ... Al |7 € R™*?and b == [b} ...b] ]T € R"
where n == Zie[m] n;. Let p > 2 and € > 0. Then Algorithm 5 returns T such that,

m 1 P 1/p m 1 P 1/p
Agx—b <1 - mi Ag,x — bg, 5
<; (W” 5 S,,|2) ) <(+e) Inin, (;(W ST SZ||2> ) (3)

and runs in

3
0 <p0<1> min {rank (A) ,m} 7 log (ped> )

linear-system-solves in matrices of the form ATBA, where B is a block-diagonal matrix for which
block i has size n; X n;.

We prove Theorem 2 in Appendix D.

In the special case where n; = 1 for all 7 (and therefore the problem is ¢, regression for p > 2), the
complexity promised by Theorem 2 is comparable to that promised by Jambulapati et al. (2022) for
¢, regression. The main difference is that our iteration complexity is unconditionally polynomial in
p. In contrast, the comparable result from Jambulapati et al. (2022) seems to require mild assump-
tions on the problem parameters (see the “Discussion on numerical stability” by Jambulapati et al.
(2022, Section 4)).

Remark 1.2 (Large values of p). Note that for values of p larger than log(m), solving equation 2 is
almost equivalent to solving equation 4. To intuitively see this, first recall that for any vector © € R?
and p = log,(m) we have, ||z||co < |||, < 2 - ||®||co. This implies that for all i € [m] we have
the following for objective equation 4 (for p = log,(m)) for any x € R,

1/p

112[37‘31{] IlASiw_bSiH2 < Z ||ASLx_bSLH12) < 211'2[?2{] ||Asi$_bs'i||2
1€[m]

In particular, this means that minimizing the interpolating objective equation 4 also minimizes the
robust objective equation 2 (up to numerical constants) and vice versa. Thus, for p = Q (logy(m)),
for our intended applications, it makes sense to minimize the robust objective instead. This is why, in
Theorem 2, we do not care too much about the exponent on p in the iteration complexity. Our main

goal is to show that we can get a O(poly(p,log (1)) min {rank (A), m}l/B) iteration complexity.

1.2  PRIOR RESULTS, CONNECTIONS, AND OPEN PROBLEMS

Here, we discuss prior work that conceptually and technically relates to ours. We then suggest
natural directions for future work.

Multi-distribution learning. Many learning problems involve multiple data sources, for instance,
when multiple agents generate their data independently. One can formulate these multi-distribution
problems as standard learning/optimization problems by considering a mixture of their distributions,
as in objective 1. However, this approach often biases solutions toward dominant data sources,
leading to poor performance on outliers—an issue stemming from statistical heterogeneity. This
limitation motivates the study of multi-objective optimization problems (Miettinen, 1999; Ehrgott,
2005), where each agent m has a distribution D,,, that defines its objective as E.p, [f(€m; 2)],
and where models x,,, can vary across agents—a framework known as personalization.

One of the earliest algorithms for such problems was introduced by Blum et al. (2017), where each
agent’s objective must be minimized to a pre-specified threshold e with high probability, framed
within a PAC learning framework (Valiant, 1984; Vapnik, 2013). Subsequent research has refined
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these algorithms, achieving optimal sample complexity guarantees for learning from multiple dis-
tributions (Chen et al., 2018; Nguyen & Zakynthinou, 2018; Hanneke & Kpotufe, 2019; Haghta-
lab et al., 2022; Zhang et al., 2024b). Our objectives 2 and 4 offer different approaches to multi-
distribution learning, where data distributions correspond to empirical agent distributions. In par-
ticular, Mohri et al. (2019) analyzed objective 2 to establish generalization bounds for unknown
mixtures of agents’ distributions.

Beyond sample efficiency, researchers have also examined other challenges, such as communication
costs in large-scale distributed optimization (McMahan et al., 2016). A particularly relevant study is
that of Bullins et al. (2021), which employs an efficient distributed quadratic sub-solver (Woodworth
et al., 2020; Patel et al., 2024) to implement an inexact Newton method for optimizing quasi-self-
concordant functions (see Definition 2.1).

Group fairness. Recently, interest in algorithmic fairness has intensified (Barocas & Selbst, 2016;
Abebe et al., 2020; Kasy & Abebe, 2021) with researchers exploring fairness across various do-
mains, including supervised learning (Calders et al., 2009; Dwork et al., 2012; Hardt et al., 2016;
Kusner et al., 2017; Goel et al., 2018; Ustun et al., 2019), resource allocation (Bertsimas et al., 2011;
2012; Hooker & Williams, 2012; Donahue & Kleinberg, 2020; Manshadi et al., 2021), schedul-
ing (Mulvany & Randhawa, 2021), online matching (Chierichetti et al., 2019; Ma et al., 2023),
assortment planning (Singh & Joachims, 2018; Biega et al., 2018; Singh & Joachims, 2019; Chen
et al., 2022), and facility location (Gupta et al., 2022). The extensive literature on algorithmic fair-
ness falls into three main categories: (1) individual fairness, which ensures that similar individuals
receive comparable predictions (Dwork et al., 2012; Loi et al., 2019; Chen et al., 2022), (2) group
fairness, which aims for equal treatment of different demographic groups, often in terms of resource
allocation or performance parity (Singh & Joachims, 2018; Balseiro et al., 2021), and (3) subgroup
fairness, which blends aspects of both individual and group fairness (Kearns et al., 2018; 2019).

This paper focuses on a well-studied group fairness notion in machine learning literature: the group
DRO problem (Ben-Tal et al., 2013; Duchi et al., 2016; Sagawa et al., 2019). The idea of inter-
polating between robustness and utility is also common (Golrezaei et al., 2024) and closely related
to multi-objective optimization, where scalarization (Miettinen, 1999; Ehrgott, 2005) helps recover
desired solutions along the Pareto frontier.

Linear programming and ¢, regression. In the last several years, there has been a surge of
work in obtaining second-order, condition-free algorithms for linear programming and /,, regression
(Bubeck et al., 2018; Lee & Sidford, 2019; Adil et al., 2019; Jambulapati et al., 2022). Observe
that £, regression is a special case of the problem we study in objective equation 4, which is re-
covered when all n; = 1, and ¢, regression is captured by linear programming. Note that neither
of these problem families is expressive enough to capture the objectives we study. In general, to
achieve iteration complexities in the smaller of the two dimensions for these problems, it appears
that a geometric understanding of the solution space is required — these ideas were central to the
improvements obtained by Lee & Sidford (2019); Jambulapati et al. (2022) as well as our work.

Open problems. Our work raises several open questions. One limitation of Theorem 1 is that
its iteration complexity is not high-accuracy, meaning its dependence on ¢ is not polylog(1/e).
Designing a high-accuracy solver under the same conditions as Theorem 2 with iteration complexity

O (poly(min {rank (A),m},log (1))) remains an open problem.

A more ambitious general goal is to design algorithms for convex quadratic programs with the afore-
mentioned iteration complexity. This would generalize analogous results for linear programming
(Lee & Sidford, 2019). We view the current work as a first step towards this goal, as the objective
equation 2 is a structured convex quadratic program for which we get an iteration complexity inde-
pendent of m. It would also be interesting to consider other complexity measures beyond rank (A),
for instance, assumptions about the ground-truth labeling vector 7 for each group’s data .5;.

Finally, our results suggest that optimizing for “/,,-interpolants” between non-robust and robust ob-
jectives may be computationally easier than optimizing for the robust objective alone. A more pre-
cise statistical characterization of how robustness and utility trade-off as p varies in collaborative,
fair, or multi-distributional learning settings would be valuable. Additionally, exploring interpola-
tions or solution concepts along the Pareto frontier of the m-dimensional multi-objective optimiza-
tion problem or other DRO notions (eg Wasserstein DRO (Blanchet et al., 2019; Cisneros-Velarde
et al., 2020)) could yield further insights.
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1.3 PAPER OUTLINE

In the remainder of this paper, we will outline the key details of our approach and provide a proof
outline for our theoretical results. In Section 2, we give proof sketches of our main results. In
Appendix A, we give an analysis of mirror descent under inexact subproblem solves — we will need
this in the proof of Theorem 2. In Appendix B, we modify an acceleration scheme due to Carmon
et al. (2022), which we will use to iterate calls to the proximal subproblem solver equation 8 for the
proof of Theorem 2. In Appendix C, we prove Theorem 1. In Appendix D, we prove Theorem 2.
Finally, in Appendix E, we prove some background results that appear in the main body, particularly
about block Lewis weights.

2 TECHNICAL OVERVIEW
In this section, we sketch our proofs for Theorem 1 and Theorem 2.

Notation. Here and in the rest of the paper, we ignore the dataset size normalization factors 1/,/n;
as we can fold this into A g, and bg,. Additionally, let f(x) == >, ||[Ag,x — bgs,[[5if2 <p <
and let f(x) = maxi<i<m ||[As, @ — bg,||, if p = co. Note that in the 2 < p < oo case, we let
f(x) be the pth power of the objective written in Theorem 2; this is to make future calculations
easier and makes a difference of only polynomial factors in p in the iteration complexity. Without
loss of generality (by rescaling), let OPT = 1, where OPT = f(x*). So, it is enough to get an
e-additive optimal solution Z. Also without loss of generality, let A be such that rank (A) = d.
For a positive semidefinite M € R*?, denote |||y, == V& M. As shorthand, for y € R",
we will often refer to the norm |[yl|g = o lys, g)l/p for p > 1, where with a slight abuse
of notation yg, denotes the coordinates of y indexed by S;. Finally, in an abuse of notation, for

symmetric matrices M, let M~! denote the pseudoinverse of M.

Recall that many iterative methods for convex optimization can be seen as decomposing a com-
plex problem into a series of simpler subproblems (Nocedal & Wright, 2006). Our algorithms for
distributionally robust linear regression follow this pattern, where the simple subproblem resembles

Olg):== min_ f(z) , (©)

lz—allp<rq

for some positive semidefinite M and for some ball radius r4, which may depend on the query q.
Sub-routines like equation 6 are central to many trust-region methods (Conn et al., 2000; Nocedal
& Wright, 2006), and, importantly when f is the sum of a linear function and a self-concordant

barrier, interior point methods derived from the self-concordant barrier framework * (Nesterov &
Nemirovskii, 1994).

With such a subproblem structure in hand, three questions arise. (1) How do we solve the subprob-
lems efficiently? (2) How do we combine our subproblem solutions to arrive at our final answer?
(3) How do we choose the “local geometry” M to optimize the iteration complexity we get from the
previous two parts? We address these concerns in order in the following discussion.

2.1 SOLVING PROXIMAL SUBPROBLEMS

For this discussion, let M be any positive semidefinite matrix, as the arguments apply for any ge-
ometry M. It will be helpful to assume that ||-||; is a good approximation to our objective function
in the sense that for some distortion /\ that is as close to 1 as possible, we have

1

m P
forall € R? : |z — by < (Z |As,z — bgi|§’> < Az — by

i=1
Here, we discuss how to solve problems of the form equation 6 for a fixed query q. Our strat-
egy follows two general steps. First, we establish some form of local stability for V2 f(x)
within the ball we are solving in, i.e., we want A& f(x) to not change too much inside the ball
{x eR? : ||x — gy < rq}. Second, we use this to demonstrate that an appropriate second-order
algorithm exhibits a favorable convergence rate to an approximate solution for our subproblem. We
handle the p = oo and 2 < p < oo cases separately below.

“In this case, the matrix M is given by the Hessian of the barrier function evaluated at the subproblem’s
solution.
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2.1.1 THE ROBUST CASE (p = 00).

Unfortunately, since f is not even differentiable (it is the pointwise maximum of Euclidean norms,
each of which is also not differentiable), we cannot directly argue about the stability of V2 f(x). We

therefore first need to find some surrogate objective f so that:

1. The approximation error Hf— f H is small;
2. The surrogate objective fis smooth in ||-||,; in such a way that we can solve the proximal
subproblems fast.
To smoothen f(x), we use the family of objectives parameterized by (3,
\/52 + HAslw - bSng -6
B

This can be seen as composing the softmax function with temperature § with “inner functions”
\/62 +||Ags,x — bg, ||§ — §. Tt is straightforward to show that for all z € RY, ﬁ,a(m) — flx)] <

fs.5(x) = Blog Zexp (7
i=1

Blogm + §. So, setting 8 = ¢/4logm and § = ¢/4, it is sufficient to optimize fg s up to £/2
additive error to get an e-additive suboptimal solution to our original objective. Furthermore, we
prove that fz s is O(1/8 + 1/6)-smooth in the norm [|Az|; = maxi<i<m [[Az|[,. Thus, if

[|llg is @ good approximation to ||Az||;_, we will get that fg s is also smooth in the norm |||y,

Next, Carmon et al. (2020) show that if fg s satisfies a higher-order smoothness condition called
quasi-self-concordance with respect to the norm |||, then we can get the required Hessian stability
for a fixed rq = ©(1/¢) (in particular, rq does not depend on g here). To clarify, we define quasi-
self-concordance as follows.

Definition 2.1 (Quasi-self-concordance, adapted from (Karimireddy et al., 2018, Appendix A)). Let
f:R* — R. We say that f is v-quasi-self-concordant in the norm ||-|| if for all vectors y € R¥,
directions d € R, and t € R, we have

‘(i)3f(y ¢ td)

Then, Carmon et al. (2020) shows how to leverage this Hessian stability to implement equation 6
with low linear-system-solve iteration complexity. However, previously, it was only shown that
the composition of the softmax function with linear functions is quasi-self-concordant. So, it was
unknown whether composing softmax with other functions could also be quasi-self-concordant.

d 2
<vidl () flo+a

To resolve this, we prove a much more general composition result, which to the best of our knowl-
edge was not known prior to this work and may be of independent interest. It essentially states that
if we compose the softmax function with any combination of “inner” functions that are quasi-self-
concordant, the resulting function is also quasi-self-concordant. For a more formal statement, see
Lemma C.3.

Lemma C.3 (Composing softmax with quasi-self-concordant functions). Let ||-|| be an arbitrary
norm and hi, ..., hy, be such that h;: R4 — R. Let h be the vector formed by concatenating the
results of h, ..., hy. Additionally, let hq, ..., hy, be such that for all 1 < i < m and for all
y,d e R™andt € R,

(;&) hi(y +td) < ||d]| (Lipschitzness)
d\? d\?
<dt> hi(y +td)| <v|d] <dt) hi(y + td) (quasi-self-concordance).

Then, for ally,d € R™ and all t € R, we have

(&) s (S0 (2252))

< (o)l (i)2|seﬁ(h(y+td))~
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Hence, to show the requisite Hessian stability, we use the following steps. We show that the “inner”

functions for equation 7, \/ 52+ ||Ag,x — bg, H; — ¢, are each O(1/6)-quasi-self-concordant in

the norm ||Ag,x|,. So, we can apply our composition result Lemma C.3 to prove that fg,g is
O(1/p + 1/6)-quasi-self-concordant in the norm max;cm,) ||As,x||,. Again, assuming that ||-||y,

is a good approximation to [|||5_, we will get that ‘]?gyg is quasi-self-concordant in ||z, as well.

With these analytic inequalities in hand, we can finally apply the recipe given in Carmon et al. (2020)
and get our subproblem solver for the p = oo case.

2.1.2 THE INTERPOLATING CASE (2 < p < 00).

Instead of explicitly constraining 74 like in the p = oo case, we regularize our movement from q in
the norm ||-||. Specifically, the subproblem we solve for any query g is

argmin f(z) +ep? |z — qlly; - (8)
zERY
This is the natural generalization of the proximal problem that Jambulapati et al. (2022) use to get
their results for £, regression, and the outline of our solver for these subproblems is similar to what
Jambulapati et al. (2022) use for this special case (see their Section 4).

However, we go a step further and show how to obtain approximate stationary points to equation 8
instead of just getting a small objective value. This is because the acceleration scheme we use to
iterate subproblem solutions to get our final answer T requires us to obtain an approximate stationary
point for equation §. The main new technical tool we develop for this purpose is a form of strong
convexity for functions of the form ||y||5 for y € R* for any k > 1. See Lemma D.3.

Lemma D.3 (Strong convexity of ||y||5). Let v € R* for k > 1. For any /A € R¥, we have

4
-2
lo+ Al = [loll; +pllol™" (v, 4) + 5 Al

With Lemma D.3, we can argue about the strong convexity of ||z — g||};, which means that we can
convert an approximately optimal solution to equation 8 in function value to one that is approxi-
mately optimal in parameter space as well. We combine this with a local gradient Lipschitzness
property of the objective equation 8§ to get our approximate stationary point, which is enough for our
purposes. The local gradient Lipschitzness property itself follows from a form of Hessian stability
that we show for the objective equation 8. See Lemma D.9.

Finally, to obtain an approximately optimal solution to equation 8 in function value, we again apply
the Hessian stability property to conclude that equation 8 is relatively smooth and relatively strongly
convex in a simpler reference function. We show how to solve optimization problems in this refer-
ence function up to an approximate optimality that is sufficient for the rest of our applications — this
requires a mild modification of the standard mirror descent analysis, and we do this in Appendix A.
Combining all of these building blocks gives us our subproblem solver for the 2 < p < oo case.

2.2 ITERATING PROXIMAL CALLS

We now discuss the second item. Recall that we think of O(q) as answering a proximal problem for
the query g. It is not hard to show that under reasonable conditions on f and on the structure of the
subproblems, we can iterate calls to O(q) to optimize f (see, e.g., (Carmon et al., 2020, Appendix
A)). This conceptually simple approach will already give us guarantees of the form ||zg — z* ||, /€
for the problems we study.

But we can do better. An acceleration framework originally due to Monteiro & Svaiter (2013) and
generalized/refined in subsequent works (Bubeck et al., 2019; Carmon et al., 2020; 2022) gives a
recipe to iterate calls of O(q) to optimize the original function f. From these, the iteration com-
plexity we need for an e-additive solution with an initialization oy and optimum x* is roughly

(leo — =*||pg/ 5)2/ ? (see Theorem B.3 for a more formal statement). This cosmetically resembles
the rate we get in Theorem 1. To get something that looks like our rate for Theorem 2, we use our
new strong convexity lemma (Lemma D.3). With this, we can demonstrate that after a sufficient
number of iterations, we have ||x; — z*|\; < 0.5 ||xo — x*||,;. Therefore, repeating this argument
yields a high-accuracy solution, as required.



Under review as a conference paper at ICLR 2026

Interestingly, our algorithm for the 2 < p < oo case employs a form of the accelerated scheme
developed in Carmon et al. (2022), which does not require solving an implicit equation for the query
point, thereby improving upon the results from Jambulapati et al. (2022) for £, regression. It would
be practically relevant to obtain this for the p = oo case (in Appendix B, we discuss a technical
challenge in obtaining this).

2.3 THE GEOMETRY OF THE PROXIMAL SUBPROBLEMS AND BLOCK LEWIS WEIGHTS
At this point, we have the tools we need to get rates of the form O <(||:c0 - :U*HM/5)2/3> for the

x* HM(p—2)/(3p—2)

robust objective (Theorem 1) and of the form O (H:co — ) for the interpolating

objective (Theorem 2). From this, we see that the rates depend on the geometry M that we impose
on our problem. Our goal in this section is to choose this geometry M.

Observe that when we solve equation 6, we are solving an optimization problem over the sublevel
sets {x : |lx||y; < rq} — these are ellipsoids. Now, consider choosing the ¢, geometry that best
approximates our loss function. Specifically, recall that earlier in the section, we stated that for some
distortion A > 1 that is as close to 1 as possible, we want

m P
d . D
forall z € R* : |l — bl < <Z |As,x — bg, 2) < Allx — by
i=1
To see what kinds of distortion guarantees we can hope for, let us see what happens when we choose
the most “obvious” geometry. By relating /5" to £, we get
1
2
2>
2 )

1 1
m 2 m D m
(Z 1As,@ - bs, ) < (Z |As,@ - bs, 5) <min (Z |As,@ —bs,
i=1 i=1
2
5) = ||Az — b|l,. Thus, setting M = AT A (which is

i=1
and notice that (2111 |As,z — bg,
1/3.-2/3

what we call the naive geometry in Table 1) gives us our basic rate of m
Theorem 1 and m(P—=2)/(37=2) in the setting of Theorem 2.

in the setting of

But, there exists an improvement over above naive geometry. Note our loss function is a norm on
. . . 1
R? — in particular, we can check that for y € R", the functions lyllg, = 7 lys:II5) ™ for

1 < p < oo are norms. Now, recall John’s theorem, a fundamental result in high-dimensional
convex geometry.

Theorem 2.2 (John’s theorem, John (1948)). For any symmetric convex body K C RY, let £(K)
denote the ellipsoid of maximum volume contained within K. Then, we have

E(K) C K CVd-£(K) .
Moreover, the \/d is worst-case optimal (e.g. let K be the unit {, ball).

It is easy to see that sublevel sets of norms, i.e., sets of the form {x € R? : x| < 1}, are sym-
metric convex bodies. Hence, using John’s theorem, we see that for our normed losses, there exists
M that achieves distortion A < V/d. From this, it is easy to see that there exists M for which we
can guarantee ||zo — x*||y; < V/d. Plugging this into the guarantees from the previous subsections,
we get that if we choose the M from John’s theorem, and then switch based on whether m < d, we
get exactly the rates quoted in Theorem 1 and Theorem 2.

However, as written, this is only an existence result. To make this useful for us and actually find
M, we need an algorithm to calculate John’s ellipsoid for the level sets of our losses (or some other
ellipsoid that gets an even better approximation factor). To this end, a result of Manoj & Ovsiankin
(2025) gives us an efficient algorithm to find this ¢ geometry for the loss families we consider.

Theorem 2.3 (Combining Lemmas 5.6, 5.8, Equation (1.8) from Manoj & Ovsiankin (2025)). Let
p > 2. There exists an algorithm that finds a positive diagonal matrix W € R™*" such that for all
x € R% and all ¢ € R, we have

HWéf% (Am—cb)” m
2 < Z ||A51:13 — cbs,
i=1

1
g) < |WE (Aw - )|
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The algorithm runs in O(logm) linear-system-solves in matrices of the form ATDA for positive
diagonal matrices D.

The diagonal entries of matrix W are called block Lewis weights. This is a generalization of Lewis
weights, and both objects have been used previously for various matrix approximation problems
(Bourgain et al., 1989; Musco et al., 2022; Jambulapati et al., 2023b;a; Manoj & Ovsiankin, 2025).
Furthermore, Lewis weights are central to improvements in the iteration complexities for linear
programming and vanilla ¢, regression (Lee & Sidford, 2019; Jambulapati et al., 2022). We go into
greater detail about block Lewis weights in Appendix E.

Additionally, notice that the distortion of O(rank (A)l/ 2=1/p ) guaranteed by Theorem 2.3 is opti-
mal. To see this, let A € R"*4 be such that for i € [d], row a; = e;, where e; is the ith standard
basis vector. Then, foralld + 1 < i < n, let a; = 0. In words, A is the d-dimensional identity
matrix atop a large matrix of all Os. It is easy to see that for any p, we have ||Az||, = |||, and the

best distortion we can get for relating |||, to any d-dimensional £ norm is dit/2=1/»l,

With Theorem 2.3 and its near optimality in hand, we choose M = ATW'"F A if rank (A) <m
and M = AT A if rank (A) > m (recall that in the latter case, we get a /m distortion for free
from relating ¢5° to ¢7). Combining this with the results from the previous two subsections gives
us Theorem 1 and Theorem 2.

2.4 ALGORITHM FOR DISTRIBUTIONALLY ROBUST REGRESSION

In this section, we produce pseudocode of the algorithm that yields the guarantee of Theorem 1. See
Algorithm 1.

Algorithm 1 MinMaxRegression: optimizes equation 2 to (1 4 ¢)-multiplicative error

Require: Regression problems (Ag,,bs,),...,(Ag,, , bs,, ), accuracy € > 0
1: Using (Manoj & Ovsiankin, 2025, Algorithm 2) with input [A |b], find nonnegative diagonal W
and weights w1, . . . , w,, such that for all j € S;, W[j][j] = w; and for all z € R? and ¢ € R,

|Az — cb] gHWl/zAmch”QbH < \/2(rank (A) + 1) | Az — cb;_ .
oo 2 oo

2: if YOI, w; > m then >rank (A) +1 <> w; <2(rank (A) + 1)

3: | Reset W =1,.

4: Letxg = (ATWA)_1 ATWb. > @ = argmin HWlZAJ} — Wl""rsz,,.
xR -

5: Let

V82 + [As@ b |l — 6

B

f:(-}’(;((l:) = flog Zexp
i=1
where 5 = m and 0 = §.
~ ~ 2
6: Let f(x) = fe/a10gm,e/4(®) + 1550 i {rank(A) T HWI/QA(w - iBo)HQ.

7: Using (Carmon et al., 2020, Algorithm 3), implement a (m, g) -ball optimization

> A family of smoothenings of the objective.

oracle for f, where C'is a universal constant. > /teration complexity guaranteed by Lemma C.5
8: Using (Carmon et al., 2020, Algorithm 2), implement a %—MS oracle for f.

~ ( min{ran m}'/3 log( 4
9: Run (Carmon et al., 2020, Algorithm 1) for O fra k(AE); /3} tog () iterations using the

MS oracle from the previous line and with initial point x¢ and final point Z.
10: return x
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A MIRROR DESCENT WITH INEXACT UPDATES

Notation warning. This section is meant to be a self-contained, standalone analysis of mirror
descent under inexact updates. The notation is chosen to be consistent with most material we could
find on mirror descent and therefore conflicts with the notation used in the rest of the paper.

In this section, we give an analysis of unconstrained mirror descent when each Bregman proximal
problem is solved only approximately (Algorithm 2). Although we expect that this is a standard fact
about mirror descent, we could not find an appropriate reference. Hence, we produce it here.

Algorithm 2 ApproximateMirrorDescent: Implements mirror descent to optimize convex and dif-
ferentiable f given L-relative smoothness and p-relative strong convexity in the reference h when
we may not be able to solve each proximal problem exactly.

Require: Initial point x, iteration count 7'.
1: Define
Dy(x,y) = h(z) — h(y) — (Vh(y), z —y)
x* == argmin f(x) :
zeR4
2: fori=1,...,Tdo
3: x} = argmin f(z;—1) + (Vf(zi-1), & —x;—1) + LDp(x, x;—1) > We may only be able
zcRd
to approximate x; — see the next line.
4: Let x; be an approximate stationary point for the above objective.
return argmin f(x;)
0<i<T

In Algorithm 2, we assume that the function f is p-relatively strongly convex and L-smooth in a
reference function h. This means that for all z,y € R%, we have

uDp(x,y) < f(x) — f(y) = (Vf(y),z —y) < LDn(z, y).
Using (Lu et al., 2018, Proposition 1.1), when f is twice-differentiable, this condition is equivalent
to asking for all € R?,

uV2h(z) < V2f(x) =< LV?h(z).
We are now ready to state the performance guarantee of Algorithm 2. See Theorem A.1.
Theorem A.l. Let index j be the index output by Algorithm 2. Let /\; be defined such that
N, =V f(xi—1) + L (Vh(xz;) — Vh(zi—1)).

Then, we have

Flag) — f@) < L (1= £) Dyt m0) + max (A, mi - 7).

1<i<n

To prove Theorem A.1, we begin with a few standard facts about the mirror descent iterations.
Lemma A.2. Lety € R be arbitrary. We have
(Vi(@i-1),zi —y) = L(Dn(y,xi-1) — Dn(y, i) — Dp(@i, @i—1)) + (Diszi — y) -

Proof of Lemma A.2. By the three point identity (see, e.g., (Sra et al., 2016, Equation (A.9))), we
have

Dp(y,zi—1) — Dn(y,x;) — Dp(xi, xi—1) = — (Vh(x;) — Vh(xio1), 2 — Y)
1
=7 (Vf(xi1) — Diyxi —y),
completing the proof of Lemma A.2. O

Lemma A.3 (Mirror descent lemma under approximate stationary point updates). Let y € R? be
arbitrary. For every iteration i, we have

f(@i) = f(y) < (L — p)Du(y,®i—1) — LDw(y,@:) + (Di, i — y) -

16



Under review as a conference paper at ICLR 2026

Proof of Lemma A.3. The definition of p-relative strong convexity tells us that

flxiz1) — f(y) < (Vf(xiz1),xio1 —y) — uDi(y, zi—1).

‘We now write

f@i) = f(y) < f(xio1) = fy) +(Vf(@i-1), @i — 2io1) + LDy (i, @i-1) (L-RS)
<(Vf(®i-1),®i —y) — uDn(y,®i—1) + LDp (i, xi-1) (u-RSC)
< (L —w)Dn(y,xi—1) — LDp(y, i) + (D, i — y) (Lemma A.2)

completing the proof of Lemma A.3. O

We now have the tools to complete the proof of Theorem A.1.
Proof of Theorem A.1. Let E; = f(x;) — f(x*) — (A;, z; — *). Substituting y = x* and rear-
ranging the conclusion of Lemma A.3 gives

B, < (L - p)Du(a*,@,1) — LDp(a", ;).

i

We multiply both sides by (ﬁ) and write
L\ L Lit!
—— )| E;<——Dp(x*,xi—1) — ———— Dp(x*, ;).
(£55) B = e =
Adding over all T iterations yields
T I\ L \T
; (IJ—I_L) E’L S L.Dh(ﬂ:*,wo) — (w> LDh(:E*,mT) S LDh(x*,ir()).

Expanding out the definition of F; and rearranging gives

T T

3 (qu) (f(@:) ~ f(@*) < LDp(@" o) + 3 (qu> (B, @ — ")

i=1 =1

By the geometric series summation formula, we define and have

=5 (5) -E (e )

Let j be the index that Algorithm 2 returns. It is easy to check that

T 7
2 (qu) (F(@:) — f(@") = Cr (f(;) — f(2*)

and

T I\
Z ( ) (N, — ™) < Cp max (A, x; — ™).

l — 1<i<n
i—=1 lu’ ==
l]ll.S gi\/es us

f(xj) — f(z*) < iDh(ic*,a:o) + max (A;,x; — z*).

Cr 1<i<n
Finally, notice that
L T
07:—“ . §L<17%> .
T (1 + ﬁ) —1
Combining everything completes the proof of Theorem A.1. O
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Finally, we add another useful lemma that quantifies the descent, if any, in the objective value
between iterations.

Lemma A.4. For every iteration i, we have
f(xi) = f(xic1) < —LDp(xi—1, %) + (Diy s — 1) .

In particular, if (i, x; — x;—1) < LDy (x;—1,x;), then iteration i is a descent step.

Proof of Lemma A.4. We substitute y = x;_1 in the conclusion of Lemma A.3. This gives
f(®i) = f(@i-1) < —LDp(xi—1, i) + (DiyTi — Ti-1)
completing the proof of Lemma A .4. O

B OPTIMAL MS ACCELERATION UNDER CUSTOM EUCLIDEAN GEOMETRY

In this section, we adapt the bisection-free Monteiro-Svaiter acceleration framework developed in
Carmon et al. (2022) to handle custom Euclidean geometries. The object of interest here is Algo-
rithm 3, which we will call with different choices of the oracle Oy for our algorithms.

Algorithm 3 OptimalMSAcceleration: optimizes function f given MS oracle Oys.

Require: Initial xq, function f, oracle Oys, initial A{,, multiplicative adjustment factor o > 1,
iteration count 7T’
1: Setvg = xg, Ao =0, A6 =0.
2: Set §1, A = O(:Bo; /\6) and )\/1 = A
3: fort=0,...,T do

. / _ 1 7
4 =gy (14 /144N Ay)
5: A,’5+1:At—|—a2+1
. _ A a;+1
0 @=gar et A
7: if £ > 0then 11, \ry1 = Ons(gi; Ny q)
. A
8: Ye41 = min {1, /\:E }
9: At41 :7t+1@2+1 and At+1 :At+at+1 D;’lﬂ 1 :A1;+1 — (l*‘ﬁf. |)(14+|
1— A Ver1 AL g ~
10: @y = S 4 ST
11: if’}/t+1 = 1 then
1
12: | 2 = A1
13: else
15: | Vg1 = v — at+1M_1Vf(iBt+1)

In order to state the performance guarantee of Algorithm 3, we require the notions of an MS oracle
and a movement bound. See Definition B.1 and Definition B.2.

Definition B.1 (MS oracle, generalization of (Carmon et al., 2022, Definition 1)). Let M € R4*¢
be a positive semidefinite matrix. An oracle O: R% x R>o — R? x R> is a 0-MS oracle for

function f: R? — R if for every q € R and \' > 0, the points (x,\) = O(q; \') satisfy

T—q+ 1M*1Vf(sr:)

. < e~ gl

M

Definition B.2 (Movement bound (Carmon et al., 2022, Definition 2)). For a norm ||-||o, induced
by positive semidefinite M € R numbers s > 1,¢,\ > 0, and =,y € R?, we say that (x,y, \)
satisfies a (s, ¢)-movement bound if

1
A)s—1 :
= if s < o0
I =yl 2 {SC‘) Ao
< if s =00

18
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With these in hand, we are ready to state the convergence guarantee we get with Algorithm 3. See
Theorem B.3.

Theorem B.3 (Modification of (Carmon et al., 2022, Theorem 1)). Let f: R — R be convex and
differentiable. Consider running Algorithm 3 with parameters o = exp (3 -3 +1) and a o-MS

oracle with 0 < o < 0.99 (Definition B.1). Let s > 1 and ¢ > 0 and suppose that for all t such that
At > A, ort = 1, the iterates (T, q:—1, A\+) satisfy an (s, ¢)-movement bound (Definition B.2). Let
C be a universal constant. For any iteration count T satisfying

2
CS x 7$* s+1 735+1 .
s (7” 0=l if s < oo
b

£

T > C A * (12
(¢l — 2" [lyg)*/* log (222e2lin) s — o

we have

flxr) = f(x¥) <e.
The proof of Theorem B.3 follows the same recipe as the proof of (Carmon et al., 2022, Theorem
1). The only modification needed is that stated in Lemma B .4.

Lemma B.4 (Replaces (Carmon et al., 2022, Proposition 1)). In the context of Theorem B.3, let
Ey = f(z¢) — f(&*),Dy = % ||lvo, — w*Hi/I Nevr = 4 ||@eg1 — ‘It||12v[- Then, for allt > 0, we
have

At+1Et+1 + DtJrl + (1 - UZ)A;JFI min {)\t+17 )\;+1} Nt+1 S AtEt + Dt.

Consequently, for all T > 1,+/Ar > %Ztesﬁ ﬁ
T t

Do
Er<== and (1-0%) > ANN,<Dy— ArEr.
Ar tesZ
T

Proof of Lemma B.4. This proof is a straightforward modification of (Carmon et al., 2022, Proposi-
tion 1). We have

1 N 1 _ ~ 2
Diyq = 3 |[vig1 —x ||i/[ =3 H’Ut — a MV (Zr41) — az*||M

- a; _ 2
= Dt —+ at+1 <M71Vf($t+1),$* — ’Ut>M =+ t;—l ||M71Vf($t+1)“M .
By definition of g; and A} ; = A; + aj,, we have
a1/5+1’ut = A;+1Qt — Ay = a;+15t+1 + A;H (Qt - it-s-l) — Ay (fvt - 5t+1) .
Subtracting a}, ;* and taking the inner product with M~V f(Z41) gives
Aty <M VI @i41), " ’Ut>M
= M7V (@e41), apyr (85 = Zegr) + Apyy (@sr — @) + A (B — Tur) )y
<y (F(@) = [(@e41) + Ay MV (@111), Bogr — Go)pg + Ae (F(®0) = F(@i40))
SAE; — ALy (f(@ig1) — (7)) + ALy (MUY (@041), B0 — Qi)
Rearranging gives
Al (f( @) — f(&Y) < AEy + af (M7 f(@i40), 00 — )
+ Ay M7V (@441), Bri1 — Go) g
Next, recall that by Definition B.1, we have

_ ~ ~ 2 ~
M7V (@er1) + At (@err — @) ||y < A 107 | Tesr — aellg -
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‘We use this to write

A1 M7V (Zyg1), Ty — qt>M
L T o~ 1 _ _ A2
= S IMTVI @) + Mea @ = @)llyg — 5 1MV @) g — =57

~ 2
N €41 — QtHM

IN

Nr (1= 0)Nes — 5 MOV )|
from which we conclude
(MY (@r41), Brg1 — )y < A1 (1= 0%)Nigy — ﬁ MV £ (@ 141) o -
Substituting back gives
b1 (f(@s) — f(&") S AE + ab (MY f(@40), 0 — ),
+ AL M7V (@41), Bern — Gy
< A B+ apy,y <M_1Vf(%t+1),vt — :c*>M

A, _ ~ 2
— Ay M (1= 0N — 2;:1 M7V (@015

Next, recall that ;41 aQH = ayy1 and Y41 A1 = min {)\Hl, )\QH }, by construction. Let Xt+1 =
min {A\;11, A}, } We multiply both sides by ;1 and conclude

Ver1Ap 1 (f(@eg1) = f(2)) < g1 ArEr + apn (MY f(Begr), v — 27y

> ’7t+1A/ 1 _ ~ 2
— A;+1At+1(1 — 0'2)Nt+1 — Tﬁ_ HM 1Vf($t+1)||M .
Now, by convexity of f and from the definition of &1, we have
* 1- Y A * 7t+1A/ ~ *
Flan) - fat) < LA () gy + PEAEL (1) - p@)).
Aty A1
Recall the geﬁnition of FE;, multiply both sides by A:y1, apply our bound on
Ye+1 A1 (f(Te41) — f(x*)), and we get
Ai1Ei1 < (1= 1) A By + 1 Ay (f(@e41) — )
< AE + a <M_1Vf(5t+1)7 vy — 33*>M
> ’Yt+1A/, _ ~ 2
— Al A (1= 0®)Niyr — Tf“ MV F(@e11) ||
t+1

After shifting terms around, we see that it remains to show

_ A, _ ?
a1 (M7 f(@y41), v — ) — flasta ok HM_lvf(-’EtH)Hi/[ <Dy —Dyyq.

2X¢41
In fact, by the choice of a;, ; and the definition of A} |, we have
! / 2 I !
tr1(ai1)” = apy + A=Ay

Multiply both sides by 77, /(2] ;) and we get

’

2 2 Al min{l,ﬁ}%JrlA; 1 Al
Aip1 Vi1 Att1 + < Ye+1 A4

2 2Xi41 2Xi41 T 2

We recycle an earlier computation and know that

2
Dt — Dt+1 = (Zt+1 <M71Vf(&:'t+1),'ut — IB*>M — a’t;—l “Milvf(it+1)||i/l

_ Al _
> a1 M7V (@), v — $*>M - %jﬁl ||M71vf(mt+1)”i/[7

which completes the proof of the potential decrease.

The remaining statements follow as written in (Carmon et al., 2022, Proof of Proposition 1), and we
conclude the proof of Lemma B.4. [
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Now that we have shown Lemma B.4, we refer the reader to (Carmon et al., 2022, Appendix A) for
the proof of Theorem B.3, as it now follows exactly as written there.

We also give additional bounds on the movement of the iterates in ||-||,, which is a straightforward
adaptation of (Carmon et al., 2020, Lemma 31) to the improved framework from Carmon et al.
(2022).

Lemma B.5. Forallt > 1, we have both

lve — & [l < V21|20 — 2"l

N 2 .
—r* < 2 g — —x*
2 mnM_(ﬁfE?zaAi \/1_Uz>nwo 2"l

In the statement of Lemma B.5, the cost of overshooting the guess A, becomes evident — without
an additional strong convexity guarantee, it is challenging to ensure that each iterate remains in a
small ball around x*. This is the main reason we are unable to apply the framework of Carmon et al.
(2022) to the p = oo case.
Proof of Lemma B.5. Using the same notation as in Lemma B.4 and in that proof, we define

P, t = At Et + Dt

/Xt ‘= min {Ah )\2} .
By induction on the conclusion of Lemma B.4, for ¢ > 1 we have

t
1 ~
3 i — @*||3y = Dy < Py + (1 — 0?) > AN < Py = [l — [
k=1
Thus,
[or — @* || pg < V2 @0 — 25 -

For the second conclusion, we introduce the following notation.

gy = (1 —ye41)As
t — -
- At
Ay
Bt+1 Ve
At

Vt+111;+1 a2+1 At
1) =1—(1—« 1,[3 =1- . =
t+ ( ¢ 1>( ¢ 1) At+1 Ag 1 At+1

We also establish for any 1,

WAL A 1N (X
= = — - — — IMmax _
Nag o Nivi(ap)? v N AT

which implies
’YiAg 2 )‘é
N a; max { )\1'7
Notice that

i1 — @[ < gl — 2% [pg + (1 — ugr) [ B — %[
<oy |z — 2y + (U= avg1) (lge — 2% lyg + [ Ze41 — Gellng)
<oyl — 2y
+ (1= 1) Bt [|loe — & [|pg + (1= Besr) [[ve — & [|yg + 1Te41 — gellpg)
= (Bis1 + arpr — a1 Be41) |2 — ¥y
+ (1 — 1) (L= Bea) loe — 2™ lpg + (1 — 1) [[Ze41 — @l
=01 |[2e — &[|pg + (1= Se41) [|oe — 2|y + (1 — 1) [ @1 — @il
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t t
<[ 0ir1 o — 2*[lpg + (1 - H5i+1) [ve — @[l

1=0 1=0
t+1 t+1
+Y 0 I 6 =) 12 — qiallm
i=1 j=i+1
t+1 t+1
<V2lzo—at|y+ Y [ 61— ) 1T — izl
i=1 j=i+1

t+1

* AZ ~
:Vﬂ%*wMﬁ§:mHﬂ*%W%f%4M

t+1

—fwrwm+ZAi

t+1

’Y
= \foO - HM + 1 Z ‘ TV 1'72 le qi71||M

i qi—lHM

(ziﬁfﬁ & .
<V2||lzg — &gy + — - (Z AiviAp |2 — qi- 1|§/I>

A1

t+1 'yl

(Zz 1 .
< V2o — &y + A \/ 20 — 2" g
t+1

2?1 a; max l,A—% D)
S\/§Hw07w*HM+ A '\/72|$0(I}*|
t+1 —
< _
\fHCBO x|y + 15 <f+1)\ \/17||330 i | P
VA
C p—
=|V2+ mex ¢?ﬂ,m 2"l

completing the proof of Lemma B.5. O

C MINIMIZING THE DISTRIBUTIONALLY ROBUST LOSS

The goal of this section is to prove Theorem 1. We break up the proof into parts as described in
Section 2. We structure the section as follows. In the rest of this subsection, we present Algorithm 1,
our algorithm that minimizes the distributionally robust loss. In Appendix C.1, we introduce our
smooth approximation for the objective equation 2 and show that it is a good additive approximation
(this is a standard argument, but we include it as it provides crucial intuition).

As the main difficulty of the proof in Theorem 1 is to establish a Hessian stability for our surrogate
loss, we devote the bulk of this section to proving this. Recall that in Section 2.1.1, we claimed
that a higher-order smoothness condition called quasi-self-concordance gives us the needed Hessian
stability — in fact, this follows from (Carmon et al., 2020, Lemma 11). In light of this, it suffices to
demonstrate that our surrogate loss is quasi-self-concordant.

In Appendix C.2, we work out some calculus facts related to the softmax function. In particular,
it is in Appendix C.2 that we prove the general composition result Lemma C.3 that states that if
we take the softmax of several quasi-self-concordant functions, then the resulting function is also
quasi-self-concordant. In Appendix C.3, we apply this composition fact to prove that our surrogate
objective is quasi-self-concordant. Finally, in Appendix C.4, we combine these building blocks with
the acceleration framework in Carmon et al. (2020) and complete the proof of Theorem 1.
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C.1 SMOOTHLY APPROXIMATING THE OBJECTIVE

Recall that for y € R”, let [|y||g_ = maxi<;<m [|ys;[,, Where for y € R™ we let yg, refer to the
vector in R™ indexed by the indices in S;. Also, for y € R™, let Iseg(y) refer to the function

Ises(y) == Blog (é exp (%)) :

At a high level, our algorithm will minimize the function

\/52 +||Ags,x — bg,
B

for appropriate choices of the parameters 5 and 0. This choice of smoothening is natural because of
the following approximation statement — see Lemma C.1.

2
53— 0

fa.5(z) = Blog Zexp

=1

Lemma C.1. For all x € R?, we have

fos(@) —||Az —b|lg_| < Blogm + 0.

Proof of Lemma C.1. These guarantees are well-known, but we prove them anyway for the sake of
self-containment. We first prove that for any v € R™, we have

max v; < lseg(v) < max v; + Blogm.
1<i<m © = 8( )_1§i§m, i+ Blog

In one direction, we have

m

|Seg(’U) S ﬁlog <Zexp (megﬂzgmlh)) = ﬁ]ogm + lglia<)§nyi7
=1 -

and in the other, we have

Iseg(v) > Blog <exp (W)> = max v;.

153 1<i<m

Next, for v € R™, we will show that

o]y — 6 < \/62+ [[vll3 — 6 < |lvll,-
Vo2 + w3 — 6 < Va2 +\/|lvl; -6 = ||v]l,,

2 2 2 -

82+ vl — 8> /llv]z — 6 = [[v]l, —&.

Fost@) < o (Vo4 |As@ bs 5 -0) + Blogm < Az~ bl_ -+ logm

1<i<m

Indeed, we have

and

From this, we get

and

~ i Agiﬁc - bgi -0
fas(x) > Blog <Z exp (” , 3 [P )) > [|Az —bllg_ — 4.
i=1
Putting these together gives
‘fﬁ’g(w) —||Ax — b||goo‘ < max (Blogm,d) < Slogm + 4,

completing the proof of Lemma C.1. O

Eventually, we will choose § = ¢/(4logm) and § = /4 and then minimize j?g’g to £/2 additive
error. In light of Lemma C.1, this will be enough to get an e-additive approximation to the optimum
for [[Az —b|g_.
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C.2 CALCULUS FOR LOGSUMEXxP

We investigate certain properties of Iseg(y) when each entry [y]; is a function h,(t) for ¢t € R for
all i € [m]. Let h(t) € R™ denote the vector where its ith entry is given by h;(t). We treat each h;
as a one-dimensional restriction of a function g;: R™ — R, so h;(t) = ¢;(y + td) for center y and
direction d (we omit the parameters vy, d in the notation h; as it will be clear from context). Finally,
recall the definition of quasi-self-concordance (Definition 2.1).

We begin with calculating the first two derivatives of Iseg(h(¢)) with respect to ¢ in Lemma C.2.
Lemma C.2. Let \;(t) := exp (h;(t)/B). Then, we have

( a ) 1se5(h(t)) = 2=t i(0) A1)

& SN0
AV L (SR AR (S O | S AOR
() B(h(t))6< S (PR ))* ST

Proof of Lemma C.2. The first derivative follows from the chain rule. Indeed, we have

s, S (O s v - )
S () B S (t) B iy Ai(t)

For the second derivative, we use the differentiation rule for multiplication and division and the
chain rule, giving

sty = [ MO + Ai<t>hg’(<;> ézif(; )A);(tm — 5 (Z MBhi(0)
[ (S A OR0? + BN (1) (ST M) = § (1 M0m(0)”
(2 Xi(1)’
L ZL AWM (S MR | X @k (0
B\ i) (X, (1)’ S ()

This completes the proof of Lemma C.2. O

Isey (h(1)) = 8 -

< max hj(t).

Next, we prove a general fact regarding composing Ise with a vector formed by functions that are
themselves quasi self concordant. See Lemma C.3.

Lemma C.3 (Composing softmax with quasi-self-concordant functions). Let ||-|| be an arbitrary
norm and hy, ..., h,, be such that h;: R® — R. Let h be the vector formed by concatenating the
results of hy, ..., hy,. Additionally, let hy, ..., hy, be such that for all 1 < i < m and for all
y,d € R™andt € R,

(;it) hi(y +td) < ||d]| (Lipschitzness)

‘ <c§lt>3 hi(y + td)

Then, forally,d € R™ and all t € R, we have

’( ) Blog (Zexp( y+td))> < <156 +z/) d|l (i)zlseﬂ(h(y—f—td)).

As far as we are aware, this type of composition result was not previously known and may be of
independent interest.

d\2
<v|d| (dt) hi(y + td) (quasi-self-concordance).

To prove Lemma C.3, we need Lemma C.4.
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Lemma C.4. For any two random variables X,Y, we have
Var [XY] < 2|V ||°, Var [X] + 2| X|%, Var[Y].

Proof of Lemma C.4. The proof follows that of Giraudo (2014), but we reproduce it here for com-
pleteness. First, notice that for random variables U, V', we have

2Var [U] + 2Var [V] — Var [U + V] = Var [U] 4 Var [V] — 2Cov [U,V] = Var [U — V] > 0.
LetU = (X —E[X])Y and V =E[X]Y. Then, U + V = XY, and we have
Var [XY] < 2Var [(X — E[X])Y] + 2Var [E[X] Y] = 2Var [(X — E[X])Y] + 2E [X]* Var [Y].
It remains to bound Var [(X — E [X])Y]. By Hélder’s inequality, we have

Var[(X - E[X])Y] < E[(X - E[X])Y)?] <E[(X - E[X])*] IY]|%, = Var [X]|V[]Z -

Combining everything gives us the conclusion of Lemma C.4. O
We are now ready to prove Lemma C.3.

Proof of Lemma C.3. Let \;(t) == exp (h;(t)/5).

In this proof, we will encounter many weighted averages of vectors z € R™ of the form

21‘11 Ai(t)zi
27;1 Ai(t)
Let D be the distribution over [m] whose entries are given by D; = X;(¢)/ > ", X;(¢). In the rest
of this proof, all expected values, variances, and covariances will be taken with respect to this distri-

bution. In an abuse of notation, let A(t) denote the “random” variable that is h;(t) with probability
D;. Define 1'(t), h" (t), k"' (t) analogously.

To find the third derivative of Iseg(h(t)), we start with its second derivative. By Lemma C.2, it is
given by

vy - L[ SE M OR®? (SR OO | T MOk )
Ises (h(t)) = 5( ST ) _< ST ) >+ ST
Ty T
_ %Var W (1) + E 1" (1)].

We now differentiate the above term by term. First, we have

S (BOF9) 4 nrw)

)~ 1S NOR) (O MR (D)
’ it Mi(t) 8 (7 X(#)
(S MORE (SR MOR0) (S MO O) ) | S MOk
B Sy Aa(t) (X, A1) iy Xilt)
- %COV W (1), B (1)) + E [0 (1))
Next, we have
GEWOF =20 (0] G (0] =220 (0] (Ver 0] + ()
and
d ’ 2
i (W ()]
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(S Xi(ORi(1)? + 25 (DR (A1) (22 Mi#) — 5 (2 M(ORi(#) (23, Ma(0)hi(1)?)

(0 ilt)?
(I R + 2ROR M) 1T (ST MOR) (S5 ARL(0)?)
S At B (0 i)
S (MO ) 1 (T, M) (D0 AOR?)
- ST () 3 (2 i)

- %COV [0 (£), 1 (£)2] + 2E [ ()" (1))

Combining everything gives us
Isey' (h(t))

fl ZCov / / 2 / " o / l ar / "
=3 (BC [0 (£), 1 (£)%] + 2B [ (t) " (t)] — 2E [1(¢)] (BV [ ()] + E[h (t)])>

L Cov (1), H"(t)] + E [ (1)

B
1 2
= @Cov [h'(t), h/(t)z] — ?]E [1/(t)] Var [A'(t)] + %Cov W (), " ()] +E[n"(t)].
We first analyze the terms that only depend on h’(t). To do so, we use Lemma C.4 to write

|Cov [1/(t), ' (¢)?]] < +/Var [W/(t)]\/Var [/ (t)2] < 2]|d]| Var [/ (t)] .

Now, we have

% |Cov ['(t), k' (t)*] — 2B [1/(t)] Var [1/(t)]|
< ; [Cov [1(0, (]| + 3 [ 1)) Var 10

HdHVar[ (1)) < %ndn se! (1 ().

Next, we take care of the remaining terms. We have

5 1Cov (0, 10| + [B v (0)]] < 5 (maxi(6)) E 1)~ E 0" (0)] + [E (2 (1)]

< 7 s (ht) + E 1 (1)

< % Il 1sefs (A(1)) + v [|d]| E [1” (2)]

12 7
< (5 + u) || Isej5 (R (),

where the penultimate line follows from Lemma C.7. Combining these conclusions yields

Isel} (h(8))] < (l,f +v) I 1se! (A (1)),

completing the proof of Lemma C.3. O

C.3 SMOOTHNESS AND QUASI-SELF-CONCORDANCE OF THE MODIFIED OBJECTIVE
The main result of this subsection is Lemma C.5.

Lemma C.5. Let W be such that for all z € R, we have [Azllg < HWI/QAzHQ. For all
T,z € R% and t € R, we have

Y t L DY iwzaz|’ h
pr ool +1z) < g‘f'B H ZH (smoothness)

2
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2
< (166 )HW1/2A H < > fﬁ(;(a:+tz) (quasi-self-concordance).

’(;)31"[3 slx+tz)| <

Our goal in the rest of this section is to prove Lemma C.5.

We begin with defining h;(¢) as (absorb the §, y, d parameters into the definition of h;)

hi(t) = \/62

Let h(t) denote the vector whose ith entry is h;(t). Then, observe that

m ) m 52 )
Iseg(h(t)) = Blog (Z exp <hlﬁ(t))> = Blog Zexp \/ ﬁl
i=1 1=1

It is easy to see that every one-dimensional restriction of fg,g can be obtained by an affine transfor-
mation of Iseg(h(t)) after appropriate choices of y, d € R™. Hence, we first analyze Iseg(h(t)) for
ally,d € R™.

We begin with proving the smoothness of Iseg(h(t)) with respect to ||-[|g
Lemma C.6. Forally,d € R™ and allt € R, we have

<5t>2 Ises (h(t)) < G + ;) ldllg. -

Proof of Lemma C.6. By direct calculation, it is easy to see that
(ys, +tds,, ds,)

h/
(0= hi(t) ©)
ey — s B 1al0) — 0 ha(t) _ ks 5 — i0?
' hi(t)? hi(t)
We plug this into the result of Lemma C.2 and get
Isefs (h(t)) < = 3 max RL(t)? + max h(t)
2
tds,,d ds, |5 — hi(t)?
~ L imax (ys, +1ds,, ds,) + max ds. [l — (1)
B \/(52 v \/52 )
1 s (1 1 )
g 2 = (B + 5) ”ng(x, )
completing the proof of Lemma C.6. O

Our next task is to show that Iseg(h(t)) is O(1/8 + 1/6)-quasi-self-concordant in [|-|| ;_. To do so,
we will appeal to Lemma C.3. To be able to do this, we first have to prove the quasi-self-concordance
of each component function in Iseg(h(t)).

Lemma C.7. Forally,d € R™ and allt € R, we have
d\? >
2 2
(% ) Vo2 + s, ((dt) NE +ysi+tdsi||2).

Proof of Lemma C.7. Although a similar fact appears in (Ostrovskii & Bach, 2020, Section 2.1.2),
it is not in the exact form we need. So, we prove the required statement here.

2—5‘

Recycling the computation from equation 9, recall

— hi(t)?

hil(t) = —hi R
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which gives
—2RL(ORY (ha(t) — WO (R (ORL()  BRLOR(D)

o (i) ()
Finally, again recalling equation 9, notice that
‘ h; (t) ‘ _ ‘ <ySi + tdSi? d51> o < Ys, + tdSi dSi > < Hdsz ||2
‘ - ()2 - ’ = :
hal?) halt) Vo + lys, +tds, 12 \/5 + lys, + tds, |2 g
Combining everything completes the proof of Lemma C.7. O

We are now ready to prove the quasi-self-concordance of Ises(h(t)) in [|-[|g_ -

Lemma C.8. Forally,d € R™ andt € R, we have

(&) sestnon| < (2 + 2 tats, (£) seathion

Proof of Lemma C.8. In the statement of Lemma C.3, let [|-|| = [|-||5_ . By the definition of ||-[|5__
and h;, we have for all 7 and ¢ that hi(t) < ||d|;_. Additionally, from Lemma C.7, we have

that the h;(t) are 3/0-quasi-self-concordant in the norm ||d||;_ for all 4. Lemma C.8 now follows
immediately from Lemma C.3. O

Finally, we can prove Lemma C.5.

Proof of Lemma C.5. By the conclusion of Lemma C.6, we know that for all y,d € R™ andt € R

that
(C‘;)Q Ises (h(t)) < ((15 + ;) [T

Lety = Ax — b for some « and d = Az for some z. Let

V2 + |lys. 13 —

B

g(y) == Blog | > exp

i=1
Then,

2 2
(4) ot (4) ae-vsom= (1) m

With the exact same reasoning applied to the conclusion of Lemma C.8, we also see that
16

d\® ~ d\2 ~
‘(dt) fas(x+tz)| < (5 + Z) Az (dt) fas(x+1tz).

The conclusion of Lemma C.5 then follows from remembering that we have W such that for all
z € R ||Az||g_ < ||[W!'/2Az]|, (following from Theorem 2.3). O

C.4 ANALYSIS OF ALGORITHM 1

In this subsection, we use the calculus facts from the previous two subsections to analyze Algo-
rithm 1. The outline of this proof follows that of (Jambulapati et al., 2022, Theorem 2), which in
turn builds up to using the proof used in (Carmon et al., 2020, Corollary 12). The main idea is to
define the algorithm based on the norm given by a good choice of positive semidefinite M, given by
Theorem 2.3.

In the rest of this section, let W be factor-2 block Lewis weight overestimates for [A|b]. As in
Line 1 of Algorithm 1 and from the corresponding guarantee given in (Manoj & Ovsiankin, 2025,
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Lemmas 5.6, 5.8), this means that within 2 log m linear-system-solves in ATDA for diagonal D,
we can find W such that for all z € R? and ¢ € R we have

|Az — cb] gHWl/zAmfcwl/QbH < \/2(rank (A) + 1) | Az — cb|,_ .
oo 2 oo

Note that choosing ¢ = 1 yields our original objective on either side of the above inequality. Moti-
vated by the above, it is natural to use the norm given by M := A TWA to give the geometry for
the ball optimization oracle and for the analysis. Additionally, without loss of generality and for the
sake of the analysis, let us rescale the problem so that

1=OPT = [[Az" - bg_ -
Also, as mentioned earlier, assume without loss of generality that rank (A) = d.
We begin with Lemma C.9, which bounds our initial suboptimality in f and in ||- llng-

Lemma C.9. Let T 5 := argmin f5 5(z). Then,
zcR4

|Zp,6 — @ollpy < (2+2(Blogm +6))v/2(d + 1)
Fo.0(@0) = F3.5(@p.5) < v/2(d+1) — 1 +2(Blogm + 4)

Proof of Lemma C.9. 1t is easy to check that

20 = (ATWA) ' ATWb = argmin [W'/2Az ~ W'/
2

zER?

By Lemma C.1, for all z € R,
‘ﬁg’g(m) —||Ax — b||goo‘ < Blogm + 6,
implying
lA2* = bllg_ — fas(@ss)| < Blogm + 6.
Combining this with Theorem E.3, we get
1< |Az* —bl,_ < Az —b],_ < HW1/2A:c0 - Wl/%H2

and

W12y~ Wb, [WAwt — W,

2(d + 1) = 2(d + 1)

Combining these gives

< |Az* — b, =1.

1< | WA - W] < \2(d+1).
Additionally,
| WAz, — W2 < 20+ 1) A% — bl
< VAT ) (Foal@as) + Alogm +0)
< V21 1) (|Az* —bllg,, +2(Blogm +0))
= /2(d+1)(1 + 2(Blogm + 9)).

Then,
1% — @ollyy = H (W”QA:EM - Wl/zb) . (Wl/QAa:o - Wl/Qb) Hz

< |W'2Azss - Wb 4 | WAz, - W2
2 2
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< (24 2(Blogm + 6))y/2(d + 1),

and
Fo6(®@0) = fs,5(&p.0) < |Amo — bllg_ — [|Az* = bllg_ +2(Blogm +9)
< HWl/zAmo - W1/2bH2 — OPT + 2(Blogm + )
</2(d+1)—1+2(Blogm +6).
This completes the proof of Lemma C.9. O

We are now ready to prove Theorem 1.

Proof of Theorem 1. Algorithm 1 optimizes the regularization of fgiven by

€
110R?

Fl@) = fas(x) + HWI/QA(a: - :co)Hz ,

~

where R is such that ||[zg — Zg 5|/, < R. Let & := argmin f(x). Using (Carmon et al., 2020,
zERY
Proof of Corollary 12), we know that for every iterate « of Algorithm 1,

€

|fl@) — Fas(@)| < 3.

We now choose 3 = ¢/(41logm) and 6 = /4, so that %75 approximates f up to error £/2 on every

point. Using Lemma C.9, this gives R = (2 + ¢)/2(d + 1). It is therefore sufficient to optimize f
up to £/4 additive error.

Next, using Lemma C.5 and (Carmon et al., 2020, Lemmas 11, 43), we have that fis (1/v,e)-
Hessian stable in ||-||y, for v = Q(1/(elogm)). We now invoke (Carmon et al., 2020, Theo-

rem 9), which tells us that we can implement a (C/+/d, C'/<)-ball optimization oracle for f with
@) (log (3)2) linear-system-solves.

The next step is to turn the ball optimization oracle into a %-MS oracle (Definition B.1). Using

(Carmon et al., 2020, Proposition 5), we get a ball oracle complexity of O (log (4)) to implement
the MS oracle. In total, our linear-system-solve complexity for implementing the MS oracle for

iteration ¢ is O (log (g)3>

Finally, using (Carmon et al., 2020, Theorem 6), we get that Algorithm 1 has a Newton iteration
complexity of

; ((1 i ewlogm)w or (ﬁ; ) <10g <<1ogm/e>d<1 (1 swlogm/s)>>3

3 £

dt/3 dlogm 14/3
:O<€2/310g< . ) ,

as promised.

Next, we analyze what happens if we fall in the case where W = I,,,. Here, by using the /m
distortion from approximating ¢ with ¢5*, we have for all z € R,

[Az — b

72 <Az - b”goo < [|[Az — bl|,.

Using this and repeating the previous analysis with this choice of M gives us a rate of
ml/3 mlogm\ /3
(i ()"
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as required.

It remains to determine the form of the Newton steps. For this, it is sufficient to understand the

Hessian of f A straightforward calculation shows that it is of the form AT BA where B is a block-
diagonal matrix where each block has size |.S;| x | S;|. Thus, each Newton step solves a linear system
of the form ATBAz = v.

Combining this with the iteration complexity guarantee to find W (see Theorem 2.3) completes the
proof of Theorem 1.

D INTERPOLATING BETWEEN AVERAGE AND ROBUST LOSSES

In this section, we prove Theorem 2. As before, our proof follows the outline in Section 2. The main
technical challenges are to establish a form of strong convexity for our objective f and then to build
a solver for the proximal problem equation 8.

The rest of this section is organized as follows. In Appendix D.1, we derive calculus facts about
our objective f, including bounds on its Hessian and the promised strong convexity (particularly
Lemma D.2 and the more general result it builds on, Lemma D.3). In Appendix D.2, we prove
some facts about the iterates of Algorithm 3 when applied to our setting. In Appendix D.3, we
more precisely define and analyze our solver for proximal sub-problems. This section is fairly
technical and we give a more detailed outline there. Finally, in Appendix D.4, we assemble all these
components and analyze Algorithm 5, thereby proving Theorem 2.

Throughout this analysis, we rescale the problem so that f(x*) = 1. It is now sufficient to solve for

an e-additive error solution.

D.1 CALCULUS FOR THE OBJECTIVE

In this section, we work out some calculus facts related to our objective ||Ax — bH’g’p. Throughout
- . . »

this discussion, let f(z) == [[Az — b|¢ .

Lemma D.1. For any z € R%, we have

pY_llAsz—bs " |Aszl5 < 2T (V@) z<plp— 1)) |Asz —bs |57 | As,z];-
=1

=1

Proof of Lemma D.1. Let us first calculate the derivative and hessian for f(-) using the chain rule
and usual matrix differentiation rules:

f($) = Z ||A5'1w - bSi
=1

Vf(.’ll) = pz HASzm - bSng_2 A—Sr1 (A'Szm - bSq,) ’ (10)

i=1

m
Vif(x)=pY_ [lAs —bs|l5"* AL As,

i=1

+p(p - 2) Z ||A51{B - bSi
=1

p
2

12)74 (A; (AsiiL‘ - bsl)(Aslw - bSi)TASi) . D

Using this formula, we take the quadratic form with respect to a vector z. By Cauchy-Schwarz,
notice that

z' ||A51:E - bsi 12774 (A; (A&w - bSL)(ASLw - bSi)TASi) z
= ||AS¢$ - bSq‘ ”12)_4 <AS1;Z’ A'Sim - bSi>2 < HA&m - bSng_Q ||Aszz||§ :

With that, we have

ZT (v2f(w)) z < pz HASzw - bSi P2 HAS7Z||§ + (p - 2) HAsla: - bSi P2 HAS,an )

i=1
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=p(p—1)> ||As,z—bs, |57 |As.2];5 - (12)
=1

For the lower bound, we use our calculation for V2 f(z) to write

2T (V@) 2> p) | Ase—bs |5 |As 2[5,
i=1
completing the proof of Lemma D.1. O

D.1.1 STRONG CONVEXITY OF THE OBJECTIVE

The main pair of results of this section are Lemma D.2 and Lemma D.3. We can think of Lemma D.2
as a form of strong convexity for our objective.

Lemma D.2 (Strong convexity of f). Let f(x) := |Ax — b||§p. For all d € R?, we have

Pt d)> f(@)+ (V). d) + o A},
and therefore
l — & |l < 2°/273/Pa 27V (f () — )P

Lemma D.3 (Strong convexity of ||y||5). Let v € R* for k > 1. For any /A € R¥, we have
4
—2
v+ Al > [lo]ls +pllvlls " (v, A) + % [AY e
To motivate Lemma D.3, let us see how Lemma D.3 implies Lemma D.2.

Proof of Lemma D.2. Note that

Vf(iﬂ) = Zp HA&w - bSi

i=1

12772 'A—Sr1 (Aslw - bsl) :

This implies
Zp ”Aslaj — bs, 12772 <A57w — bg,, A51d> = <Vf(w)a d>
i=1
Combining this and applying Lemma D.3 (which is a strong convexity lemma for || - |5 that we

prove subsequently in this section), we get
f@+d) =A@ +d) b} = |Ad+(Az—b)[}

- Z ||A51d+ (Aslx - bS7)

=1

5
. " _ 4
>UemmaD) N A gz — bs, |5 + pllAs,® — bs, |57 ((Ag,@ — bs,), Ag,d) + > |As.d|f
=1

= Z ||A513: —bg,
=1

uati 4 4
=aen 0| Az = blg, + (Vf(@).d) + 5 |Adlg, = f(2) + (Vf(x),d) + o [Ad]lg, -

We now take care of the second statement. Observe that at optimality, we have V f(x*) = 0.
Plugging this in (replace x by «* and d by @ — x* above), rearranging, and taking pth roots gives

. 4 2
IA@ - 2)]g, < (

_ 4
b+ (plAs,@ = bs 5 AL (As,@ —bs).d) + 5 | As d]}

-1/p
) @)= @) = (@) - S
Next, recall that by Theorem 2.3,
@~y = || W2 P A - 2

LS @)V A —27)]g,

Stitching the inequalities together completes the proof of Lemma D.2. [

32



Under review as a conference paper at ICLR 2026

In the rest of this subsection, we prove Lemma D.3. We begin with a few numerical inequalities.

LemmaD4. Fora < —1/2andp > 2, g(a) := (—(23% is nonincreasing in .

Proof of Lemma D.4. We first take the derivative of g with respect to a,

o p—Ra+ 1P — (25 (~Ca+ 1)) (14 pa)
9@ = (—(2a+ 1)) ’
p(=(2a+ 1)) + p(=(20+1))"*7" (1 + pa)
(—(2a+1))p ’
(=@2a+1)) + (1 +pa)
(—(2a + 1))p/2+1
_ (p—2)a
“ P C@a 1) <0,

where in the final inequality we used that p > 2 and o < —1/2. This completes the proof of the
lemma. O

We also need the following lemma, which is similar to a result due to Adil et al. (Adil et al., 2019,
Lemma 4.5). It amounts to proving Lemma D.3 when the dimension k = 1.

Lemma D.5 (Case A. of Lemma D.6). Forany o € Randp > 2,
4
1+ a” > 1+pa—|—2—p|a|p .

Proof of Lemma D.5. Note that the inequality is true when p = 2 and becomes an equality. We
consider the case when p > 2 and use h(«) to denote the error function,

4
ha) =14 al” — (1+pa+2p|a|p> .

We aim to show h(c) > 0 for all & € R. Let us first write the derivatives of h.
_ 4 _
Wi = (taP @ a) - (14 5laP%a))

W@ == 1) 1L+l = el ) =po -1 (14 el =[5

It is now easy to verify the following statements about /,

I W (-2) = h"(-2) = 0 and h"(a) > 0 for « < —2, = within the range (—o0, —2] the
function h is minimized at —2;
I. W'(-2) = 0and h"’(a) < 0 for @ € (—2,—-2/3] = h/(a) < 0 in the range (—2, —2/3],
i.e., in that range the function A is minimized at —2/3;
. A'(-2/3) < 0 = A/(0) and h”(a) > 0 for « > —2/3 = the function h is decreasing
in (—2/3,0) and increasing in [0, 00), i.e., within the range (—2/3, c0) the function h is
minimized at 0.

As a result of the above observations, it is enough to check the inequality at the inputs o €
{-2,-2/3,0}. We have for p > 2,

h(=2)=1—(1—2p+4)=2p—4>0,

2 1 2 P
n(_2) -1 _ 1_£+i2 1 1 2p 4 1 2p 3
3 3P 3 2p

3 ) 3p 3 3 3 3
h0)=1-1=0 .

This implies that 2 () > 0 for all values of «, concluding the proof of Lemma D.5. O
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Next, we prove a special case of Lemma D.3.

Lemma D.6. Foranya € R, 8 > 0, and p > 2, we have

2 2\P/2 4 2\p/2
(40 +8°)77 2 L4pa+ o (o +57)77

Proof of Lemma D.6. Let us study the difference of both sides of the inequality using the following
function,

b B) = (1 o 4 ) (1t o (o 45777

We want to show that for« € R, § > 0, and p > 2, h(c, 8) > 0. We will break this proof into three
cases: A.aw € Rand 8 = 0; B. @ € (—00,—2] U [-2/3,00) and 8 > 0; and C. @ € (—2,—-2/3)
and 8 > 0. These cases together cover of the entire range of « € R and 5 > 0.

Case A. When § = 0, the proof simply follows from the statement of Lemma D.5 by noting
ol = (Va?)? = (a2,

In the remaining two cases we will show that for any « € R, increasing the value of 3 still maintains
h(a, 8) > 0. To see this, we first note that the derivative of h(c, 8) w.r.t. 8 is given by,

Vgh(a,B) = pB (((1 + a)2 + 52)”/2_1 _ ;ip (a2 + 52)17/2—1)

For 8 > 0, ensuring this derivative is positive is equivalent to the following,

Vsh(a,8) > 0=pB (1L+a)’ + 5" > ps - o (a2 4 52"

2/(p—2)
) (@®+8%)

z(1+a)2+,82>1-(a2+62) ,

=0 (14 0)* + 5% > (2p2

4
= (3a®+8a+4)+38° >0,
8 4
— 72 2
=B > - = = . 13
B (a +ga+ 3) (13)
Case B. Note that the roots of the quadratic function 3a? + 8« + 4 are given by a; = —2 and

a2 = —2/3. This means that for o € (—o00, —2] U [-2/3, 00) we have 302 + 8« + 4 > 0 which is
sufficient to ensure using equation 13 that Vgh(«, 8) > 0, and hence h(c, 3) > 0. This takes care
of Case B.

Case C. Now we only need to consider the range o € (—2,—2/3) with 8 > 0. In this range, the
recall the equivalence equation 13,

4

Vgh(a,B) >0=03> \/— <a2+§a+3> =: fo(a) .

Thus for all 8 > By(a) we know that h(a, 8) is increasing in 8 and vice-versa. This allows us for
any given e € (—2, —2/3) to further break Case C into two sub-cases:

Case C.I For 3 € [0, fy), since h(a, () is decreasing in £ its lowest value is attained at 5 = 0 and
we only need to verify that h(«,0) > 0. We get this directly from Lemma D.5.

Case C.II For S5 € [y, o), since h(a, ) is increasing in 3 its lowest value is attained at 8 = S
and we only need to verify that h(c, Bp()) > 0. We first simplify the expression for h(c, Bo(r)),

Ba, Bo(@) = ((1+ ) + 83)"% = (1 +pa+ K, (a® + 83)"") |
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1+ pa 1
— (9 — 1)P/2
=—(—2a-1) <(—2a— )72 + 3p/2_1)

Now since « € (—2,—2/3) < —1/2 we can use Lemma D.4 to note that the first term is non-
decreasing in o which means that its lowest value in this range can be lower bounded by its value at
a=-2ie,fora € (-2,-2/3),

h(O(,,Bo(Oé)) Z h(_QaBO(_2)) )

1-—2p 1
_ _ap/2 _
=3 ( 3p/2 +317/21) ’

=2p—-1-3=2(p—-2)>0,
which finishes the proof of Case C.II and also Case C. Together Cases A, B and C complete the
proof of Lemma D.6. O

We are now ready to prove Lemma D.3.

Proof of Lemma D.3. First, assume that ||v||, = 1. We will later extend the result to all v.

Since ||v||, = 1, we can write A = av + Sw where (v, w) = 0 and |w]||, = 1, so that we have

HAH; = o2 + 32. Without loss of generality, we have 3 > 0. Fixing w and « for now, it is enough
to show that for all 5 > 0, we have

? 4 4
|0+ a)o+Bwlf = (L+a)? + 82" 2 1+ pa+ o A5 = 1+pa+ o (a2 +52)"°.
This follows immediately by Lemma D.6.

We now extend the result for all v. Let © := v/ ||v||, and note that

AP A 40 AP
o+ 81 = ot [+ oo 2 1ot (1+ (oo Y+ o |12 )
0]l 1l lolly /27 vl
_ 4
2
= llvllz +pllvlls™ (v, 4) + 55 1Al
completing the proof of Lemma D.3. O

D.1.2 SMOOTHNESS OF THE OBJECTIVE
The main result of this subsection is Lemma D.7.

Lemma D.7. Forall x € R, we have

fw) - fr) < P20 =3 A — )2

2

Proof of Lemma D.7. By Taylor’s/mean-value theorem, we can write for some y on the line con-
necting «* and x,

fl@) = f@") + (Vf(@"),z —27) + %(ﬁc —a*) 'V f(y)(z — z)

- -1 &
Sequatwn 12 f(m*) + M Z ||Asly — bSi

—2 2
3 £ A, (@ — )l
i=1
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p—2 2

(Z |As; (z — w*)ll’é)
i=1

p
2

< fla) + 22D (Z |As,y — bs,
i=1

R INCRP S

completing the proof of Lemma D.7. O

D.2 FACTS ABOUT THE ITERATES

The main result of this section is Lemma D.8. In words, Lemma D.8 tells us that each proximal
query we make in Algorithm 3 (see Line 7 of Algorithm 3) has bounded objective value. We will
need this later when we argue about the convergence rates for the algorithms used to solve the
proximal subproblems.

Lemma D.8. For all queries q;, we have

p

flar) < f(ze) + (9p(p —1))2 51

Proof of Lemma D.8. We establish the following upper bound on f(v;) — f(x*) using the ingredi-
ents developed so far:

-1 L,
flog) = f(2*) < 2%ﬂ%)l z | A (v, — :c*)Hép (Lemma D.7)
-1
< Z%Jc(’vt)l_% lvs — «’L‘*Hi/[ (Theorem 2.3)
<pp-— 1)f(’Ut)17% llzo — $*||i/[ (Lemma B.5)
< plp— 1) f(v:)'722(2d)' "% (Lemma E.5)
<8 ip(p — f(v) P
Now, recall that we assume by rescaling that f(x*) = 1. From this, it trivially follows that

1< d=r pp—1)f (vt)k%. Combining these and re-arranging the above inequality leads to
the following polynomial inequality in f(v;),

0> f(v) —8d Fp(p— 1) f(v,)~
= f(v) — 94" P p(p — 1) f(v,)'~
> f(v) — 94 P p(p — 1) f(v)'~

where in the last inequality we used the fact that the optimal value f(z*) = 1 (due to our rescaling),
which implies that for p > 2,

(SIS ST VI SE V)
+
QL —
it
|
|
=
—
=
|
—_
S~—"
~
—~
o
B
S~—"
]
|
—_

(14)

1< flwn) <d'opp—1)f(v)' 7
Solving for f(v;) in equation 14, we get
fw) < (Opp—1)F 5"

Using the definition of g; from Algorithm 3 (Line 6) along with the convexity of f (Jensen’s in-
equality), and using our bound on f(v;) we note that,

fla) < flze) + foe)
< f(me) + Opp—1)2d5 ",

which completes the proof of Lemma D.8. O
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D.3 PROXIMAL SUBPROBLEMS — CALCULUS, ALGORITHMS, PROOFS
Let

fa. (@) = f(@) +ep” 1T — qullyy -

In this subsection, we design and analyze an algorithm (Algorithm 4) that approximately solves the
subproblem

argmin fq, (Z).
zeR?
Specifically, we will output (211, Ar+1) that satisfy the %-MS oracle condition (Definition B.1) and
an appropriate movement bound (Definition B.2).

This subproblem is the workhorse of Algorithm 5, and once we implement and analyze the solver,
it is very straightforward to plug this into Algorithm 3 and Theorem B.3 to get our final iteration
complexity.

Algorithm 4 GpRegressionProxOracle: Implements 1-MS oracle for |- llg, regression (see
Lemma D.20 and Algorithm 2.
Require: Query gy, previous iterate x;, intended parameter distance ~.

1: Define _ _ .
fa. (@) = f(Z) +ep” |2 — qilpg
hao(®) =& — @il %2 (g + 0" 1 — @3y

Dhg, (®,Y) = hq,(®) = hg,(y) = (Vhe,(y), @ —y)’

Zq, = argmin fg, ()
ZeRd
p
2: Let T > Cp°Melog (dpehqt(féqt) (%) )
3: Run Algorithm 2 with input iteration count 7', base function fg,, reference function hg,, and

initialization q;.

The goal of the rest of this section is to analyze Algorithm 4. The analysis follows several steps:

1. We find a reference function hq, that depends on the query point g; for which the proxi-
mal objective fg, is relatively smooth and relatively strongly convex with O(po(l)) con-

dition number (see Appendix A for a sense of why this is useful). The main result here is
Lemma D.9.

2. We show that fg, is strongly convex, following from Lemma D.3. This will help us un-
derstand the argument suboptimality for any point that approximately optimizes fq, in
function value. We also show that the reference function hg, is strongly convex, using the
same tools, for the same reason.

3. We show a form of smoothness for fq,. This helps us bound the gradient of any point
that approximately optimizes fq,. Combining these later will tell us that an approximate
solution to fg, in argument value is also an approximate stationary point, i.e., it satisfies
the %-MS condition (Definition B.1).

4. We solve the proximal subproblems. This solution itself follows a few steps:

(a) We apply Theorem A.1. This tells us that as long as we can approximately solve the
Bregman proximal problems (approximately implementing Line 3 in Algorithm 2),
we will be in good shape.

(b) This means we have to figure out how to approximately solve problems of the form
argmin (g, x) + Lhg, (), where L is the smoothness constant derived for fq, with
zER?
respect to hg,. We do this up to an accuracy that approximate mirror descent can
handle (see Theorem A.l for details on what we want this approximation to look
like). For the approximation to work, we need to approximately solve this problem up
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to both argument accuracy and approximate stationarity. The main technical result of
interest here is Lemma D.18.

5. We use the smoothness and strong convexity guarantees to show that our solution from the
previous step satisfies the %-MS oracle (Definition B.1), which means we can plug-and-

play into Theorem B.3.

D.3.1 HESSIAN STABILITY
Throughout this section, we adopt the following notation:

Cp = ep?
f(w) = Z ||A5'1w — bs,
i=1

fa(@) = f(@)+ Cp @ — qlyy
2
hq(@) = ||z — qllg2y(g) + Cp 2 — qllyy
We begin with proving our Hessian stability fact, which should also be equivalently viewed as show-
ing that fq, is relatively smooth and relatively strongly convex in hq, with O(p°™) condition num-

ber. Our main result is Lemma D.9 which relies on analytical results Lemma D.10 and Lemma D.11
that we prove later.

p
2

Lemma D.9. Forall x € R4 and p > 2, we have
1
mvth(m) < V2 fy(x) < p-eVihy(z) .

Proof of Lemma D.9. Using an arbitrary z € R? we can write the following quadratic form of the
hessian of f,
2TV @)z <V p-(p- 1)) Ase —bs |57 Azl
i=1
=D (p - 1) Z ||ASi (w - q) + ASiq - bSi HIQ)_Q ”ASLZHS ’
i=1
_ -2 2 —
<Op-(p-1) (022 |As, (x — @)l | As,2l3 + 50 | As,g — bs,
i=1

<9Op-(p-1)-a2> |Ag(x - @l |As 2[5 + (p— 1) - B2 VA (@)=
=1

-2 2
L I

_ -2 2 _
<Op(p—1)-ab 2 (& - qlR) " (I2lR)* + (0 - 1) - 8222V f(q)= |
=p-(p—1)-a22 |z —q|{  Izl3 + (0 — 1) - B222 V2 f(q)z |

—1)-aP2
< wZTV{qq(m)z +(p-1)-B722'Vf(q)z , (15)
p

where in (a) we apply the upper bound from Lemma D.1, in (b) we pick «,, 3, > 1 such that
1/ay, 4+ 1/8, = 1 (we will choose them later), in (c) we apply the lower bound from Lemma D.1,
in (d) we use the choice of our weights in designing M and Theorem 2.3 and finally in (e) we use
the following calculations for the regularizer term for some z € R,

9q(x) = Cpllz —qllyy .
Vog(@) = pCy |1z — al}y” M(z — q) .
V2gq(x) = pCy & — [}y M+ p(p ~ 2)C; |1z — gllfs " M(z — q)(= — ) "M
2TV2gq(@)z = pC, |1z — a8 |21 + plp — 2, 1z — %" (& — @) TMz)” >022 ¢ .
Combining equation 15 with the definition of fq gives us,

2" Vif,(x)z = 2" V2f(x)z + 2" Vg4(z)2 |
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(p—1)-ab?

Susingequation 15 (p_ 1) . @afzvazf(q)z 4 (1 + =
p

) 2"V2g4(z)z .

Thus, in order to finish the proof for the upper bound we need to pick «,, 3,. We split the analysis
here into two cases: A.p > 2 and B. p = 2.

Case A. (p > 2) For simplicity we will just pick o, = p — 1 and 3, = p%; which implies,
1\ —1)-(p—1)r2

Sz < -1 (14505 ) STV @ (14 CEE PR ) e s
- 4

(p—1)P!
C

p

<(p-1) ez V?f(g)z + (1 ¥ ) STV g()%

_ w; (V2hg(@) — V?gq(x)) 2z + <1 + (p_l)p_l) 2 Vigq(x)z
S(PEQ) p- evath(w)z + (1 + (p _C})p—l _ (p _21) . €> ZTVQQQ(:E)Z s
(-1 (p—1)-e

=p-ez' Vihg(x)z + (1 + > 2"Vig,(x)z ,

epP 2
. T
S(LemmaD 10) p-ez V2hq(m)z ,
where in the final inequality we use Lemma D.10 which tell us that for p > 2 the constant in front

of 27 V?2g,4(z)z is negative along with the fact that z " V2g,(x)z is non-negative. To get the lower
bound we first exchange «, g in equation 15 (and use the values of a, and f3,,) to get,

— . _ _ p72
TV a)e < I g 1) (1415 ) 2TV @)
=z Vf(q)z < WZTVQQZ(QV +(p—1ez'V’f()z ,
—1)p—2
iﬁzj—v%f(q)z - %zTVng(q)z <2'"Vif(x)z .

We can finally lower bound,
2TV fo(x)z = 2"V f(z)z + 2" Vigy(x)2 |

ﬁzTVQf(q)z — MZTVQQm(q)z + vazgq(x)z :

e2pp
T (Vhy(e) - Vaye)) 2 - L e Ty?
= 31" (VZhg(z) — Vigq(x)) 2 T V200(q)z + 2 Vgq(z)z |

>

_ 1 1 (p—1)P=2
> (9¢(®)=9=(q)) Tv2p, 1— _ Ty2
2 Spc Vohg(z)z + 30— 1) o z' Vige(x)z |

> (Lemma D.11) LzTVth(w)z )
2pe

where in the final inequality we use Lemma D.11 and the fact that z " V2 gq(x)z is non-negative.
This finishes the proof for Case A.

We finally consider the corner case with p = 2.

Case B. (p = 2) In this case the proof is trivial, and follows from simply writing the quadratic
forms for f, and hq. We do so below,

2"V fo(x)z = 2" Vif(z)z + 2" Vigy(x)z |
=2 V2f(x)z + 20, ||z||12v[ ,
< 22" V2f(x)z + 20, ||zHi/I =2 V2hy(x)z ,
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which shows the relative smoothness with a constant of 1 which is smaller (and hence better) than
the claimed constant (for p = 2) of 2e in the lemma. Now for the relative strong convexity we do
the same,

2TV fy(x)z = 2T V2 ()2 + 20, |22
1
> (QzTV2f(a:)z +2C, ||Z||12v1) ;
= %ZTV2hq(w)z 9

which shows relative strong-convexity with a constant of % which is larger (and hence better) than
the claimed constant (for p = 2) of ﬁ in the lemma. This finishes the proof for Case B.

This completes the proof of Lemma D.9. O

We prove two small technical lemmas that we used in the above proof now.

Lemma D.10. Forallp > 2, g(p) = 1+ =07~ — =D <,

Proof. First note that at p = 2 the function takes a strictly negative value,

(1 e de+1-—2e
=14 o o=
92) =1+ 755~ 3 de

We will now show that the function is increasing in p for p > 2,

<0 .

iy =D pP(n(p)+1) | (p-DP'In(p-1)+1) e
J(r)=- 4 + - -2,
pep P 2
—1)r=11 -1
__ =D nbp/p-1) e _

PP 2
Thus, the function attains its maximum value at p = 2 in the range p > 2, implying it is strictly
negative in that range. O
Lemma D.11. Forallp > 2, g(p) = 1 — 5t — 20 >0,

Proof. First note that at p = 2 the function takes a strictly positive value,

1 19 1 1 4e?—2e—1
2)=1-——===1-—=—=—>0.
9(2) 2e €222 2¢  4e? 4e2 ~
We will now show that the function is increasing in p for p > 2,
T P S DP2pP(n(p) +1)  (p— 1P *(n(p— 1)+ (p—2)/(p— 1))

2(p—1)2e e2p?p e2pp ’

__ =M+ (e DD +1-1/(p - 1))
2(p—1)% e?pP e2pP ’

__ U o) Wp/p-D))+1e-1)
2(p—1)2e e2pp '

Thus, the function ¢ attains its minimum value at p = 2 in the range p > 2, implying that it is strictly
positive in that range. O

D.3.2 STRONG CONVEXITY OF THE PROXIMAL OBJECTIVE AND FRIENDS
We begin with showing that the proximal objective enjoys a form of strong convexity.

Lemma D.12. For all x,d € R, we have

ol +d) > fola) + (Viglw),d)+ o (IAdIS, +Cy ldIRy)
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Proof of Lemma D.12. Let K, := %.

The plan is to apply Lemma D.3 to fq(x + d). We start with the regularizer. Notice that
p

o +d—qlfy = | M2 (@ +d—q) =

M'?(z — q) + Ml/deZ ,

p

Z(LemmaDS) HMI/Z(:C _ q) , (16)

p—2

+ <p HM”Q(w —q)

p
i M1/2(a:q),M1/2d>+KpHM1/2dH2,

= |1z = qllts + (pllz — g% * M@ — 0).d) + K, || .
= llz = qlpg + (Ve (2 — gl - d) + Ky [dlly - amn
We combine this with the conclusion of Lemma D.2, giving
falw+d) = f+d)+ Cpllz+d -4y
>emme DD f (@) + (Vf(z),d) + K, |Adllg, + Cpllx +d - qliyy
Sewtion T f(x) +(Vf(z),d) + Ky [|Ad|[g, + Cy Iz — gllyy
+Cp (Vo (lz — qliyg) , d) + K Gy lldlyy
= f(@)+Cpllz — ql}y + (Vo (f (@) + Cp | — qliyy), d)
+ Ky [Adlg, + KpCy [l
= fal@) + (Vfo(@), d) + K, (| AdlG, +C, 1l ) -
completing the proof of Lemma D.12. O

We also show that the subproblems we solve in Line 3 of Algorithm 2 are strongly convex.

Lemma D.13. Fix z,q,d € R? and let L > 0. Consider the function

2
g(@) = (z.2) + L (|2~ alisyq + Cyllz— aly) -
Then,

40,

o+ d) 2 gla) + (Vata).d)+ L (1dsgq)+ 2 1)

In particular, if z is the minimizer for g, then for any d € R?, we have

2 (g(z+d) —g(x)\""
e < oy (151

Proof of Lemma D.13. This is pretty much the same proof as Lemma D.12. It is easy to check that

2 2 2
[(z+d) - q||V2f(q) = [l - ‘J||v2f(q) + <2V2f(q)(a: -q), d> + ||d||v2f(q) ) (18)

and using Lemma D.3 in the same way as in the proof of Lemma D.12, we have

uati — 4
(@ +d) — all%y =7 @ — gl + (p 2 - qlli” M(@ - q),d) + o |dI; -
Combining this with the definition of g gives the following,

glw+d)=(za+d)+L(le+d=qldeq+Cllz+d=—al) .
ZeQuationl&e(JuationW <Z,:13> 4 <Z,d> + L ch _ qH2V2f(q) +L<2V2f(q)(a: _ q),d>

2 p _2 4
# LI+ 26 (12— alf + (plle — alfa* Mie ) + 5 14IRs)
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= g(@) + (2 +2LV2f(a) (@ — @) + LC,p | — al{;* M(= — q), )
4C
1 (Il + 52 1R
4C,
—9(e) + (Ta(@hd) + L (Il + 52 1l )

which proves the first result of the lemma.
To get the second result, we observe that Vg(z) = 0 by the optimality of z. Ignoring the ||d|| 2 (4
O

terms and rearranging gives the conclusion of Lemma D.13.

D.3.3 SMOOTHNESS OF THE PROXIMAL OBJECTIVE
We first bound the operator norm of a matrix related to the Hessian of the proximal objective.

Lemma D.14. For all q,y € RY, we have

e ] o Gt 5l ai)

Proof of Lemma D.14. Recall from the proof of Lemma D.9 the definition of the regularization term
9q(y) = C, ||y — q||3 for Cp, = ep? as well as the following calculations,

) =Cy|ly — qll}
I”2

9q(y
ng@D pCplly — gl M(y —q)
9a(y) =pCy ly — |k * M+ p(p —2)C, |y — qlf; "My — q)(y — @) ™M .
By Lemma D.9, we know that
V2 fa(y) < ep (2V°f(q) + Vgq(v)) -
Observe that

M2 (V2gq(y)) M™Y/2 = pC, (Ily —qlB P+ —2) |y — allX MY (y — q)(y — q)TMm)

= pCylly — alfa” T+ (0= 2) lly — alliy" | M2y - a)(y — @) M2 T

9

op
p—2 p—4 1/2 2
= 0Cy ly — alfe” T+ (0= 2) Jy — alls* M2 - ) T

< p(p = )Gy lly — aly 1
and, applying Lemma D.1 (with M~1/2z as the vectors in the quadratic form) and Holder inequality
with norms | - ||,/ (p—2), || - [|p/2 for z € R we have

STM-1/2 (V2£(q)) M2z < p(p - HASiM—l/QZHQ

¥

p—2 2
m P m P P
§p<p—1>< ) (ZHA&M“%HQ)
i=1 =1
_2 _ 2 _2 2
= z =
Combining gives

M2 (V2 fo(y)) M2 < epM 2 (292 f(q) + Viggry)) M2
< 2ep’(p— 1) f ()7 +er’ (0= 1)C, lly —allfg”
<ep(p—1) (2(0)"F + Cylly —allf”) -

completing the proof of Lemma D.14. O
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Next, we show a bound on the norm of the gradient of any solution « that is approximately optimal
for fq.

Lemma D.15. Forall g,z € R? we have
_ _2 —2
MYy @)y < 20— 1) (£(@)'% + Cymax (e — allg 2 — allg}” ™) o = allyy -

Proof of Lemma D.15. We use a continuity argument. By Taylor’s theorem, we know for some y
along the line connecting x and x4 (minimizer of fg) that

Vig(®) = Via(xq) + V?fa(y) (@ — zq) = VZfo(y)(@ — 24) .
Taking M~ !-norm of both sides gives,

IV fa(@)lhg+ = M2V (@)

= [M v )@ - 20 -

_ M_1/2V2fq(y)M_1/2M1/2(m—:I:q)H2 ’

IN

M (P fy()) M2l gl

The rest of the proof involves bounding the operator norm term. This follows directly from
Lemma D.14, from which we get (using convexity of || - ||m),

<’ —1) (2@ + Gy lly - aliks”?)
P

<er?(p-1) (2f(0)' 77 + Cymax {2 — allyg Iz — allyg}" ™).
Putting everything together, we get
M7V fo(@) [y = IV fa(@)Ipg-1
<er(p-1) (2()' 77 + Cymax {2 — allyg I2q — allyg}" ) 2 = gllyg

completing the proof of Lemma D.15. O

HM71/2V2fq(y)M71/2

o

D.3.4 SOLVING THE PROXIMAL SUBPROBLEMS

We begin by showing that the optimal solution to the proximal problem x4, = argmin fq, () is
xR
not too far from x*.

Lemma D.16. For all proximal queries q;, we have
g, — @y < ab 5 (28 f(@0) +4).
Proof. In the rest of this proof, we omit the subscript ¢ wherever it is clear which iterates we are
working with.
We first show that
[2g = gllpg < 127 —allyg -
To see this, suppose this is not the case. Then, we have
f@) + Cplle” — qllyy < fzq) + Cpllzg —allyy
which contradicts the optimality of x4 for fq.

‘We now write

g, — "y < [lzg, — @illyg + 127 — @iy

<2|lz" —qillyy
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<2(|ler — @[y + llor — 2" [pg)

where in the last inequality, we used the definition of g; from Line 6 in Algorithm 3 and the convexity
of || - |[m. The required control on ||v; — «*||,; comes from Lemma B.5 and Lemma E.5 (along

with re-scaling assumption to make the optimal value 1) — we have
o — @ g < V210 — 2" |lyy < 4d* 77

For the other term, we apply Lemma D.2 and get

S
s =

e — @l < 23037 (f() — f(@*))7 < 28dh

Adding gives us the conclusion of Lemma D.16.

f(@)?.

O

The next few lemmas are targeted at solving the proximal subproblems. We begin with a calculation
that we will use in showing that the initial Bregman divergence between our initialization and the

optimum is small.

Lemma D.17. In the same setting as Lemma D.9, for all €,y € R%, we have

hq(zq) < p(p — 1)f(q)17% g — q”?\/[ +Cp [lzq — q”i/[ < f(@) + Cpllzg — qHIﬁ/I <2f(q).

Proof of Lemma D.17. By optimality of & for the subproblem, we have
f(@q) + Cpllzg — qliyg < (@) + Crllg — ally = f(@)-
Rearranging gives,

fla) — f(zq) _ ()
CP B Cp .

|zq — qu/[ <
We now use the definition of A4 and Lemma D.1 to write
2
hq(xq) = [l@q — QHsz(q) +Cpllzg —qllyy

<hemmabDlp(p—1) ) | As,q — bs,

i=1

P

—2 2
127 HASi(wq - ‘I)Hz +Cp qu - Q||§/[ )

19)

m 17% m
<@ p(p-1) (Z |As,q - bs, ||§’> <Z [As,(zq — q)llﬁ) +GCpllzg —aliyg
i=1 i=1

1-2 2
<" plp—=1)f(@) 77 g — gl + Cpllzg —all}y

Sequation 19 p(p— 1)f(q)1—% <féq)
p

2

P

) L Cyllg —ally .
_ —1

_(Cp = ep") (pep)f(q) £ Cylleq -l |

< f@)+Cpllwg —qllyy
<equation 19 Qf(Q) ,

where in (a) we used Holder inequality with norms || - ||, /(,—2), || - [|,/2 and in (b) we used Theo-

rem 2.3 .

This completes the proof for the series of inequalities in Lemma D.17.

O

We now have the tools to show how to approximately solve problems in Line 3 of Algorithm 2 when
applied in our setting. Although this and future complexity bounds depend on f(x), we will later

be able to use Theorem B.3 to “bootstrap” and get an unconditional upper bound below.
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Lemma D.18. Let o < 1/2. In the context of Algorithm 5, there exists an algorithm that approxi-
mately solves subproblems of the form (for p > 2 and L = pe),

. 2
2 = argmin (9,) + L (|2 = a3z + Cp e — allky)
AN

in the sense that we output x for which,

M™'g +2L (M*1V2f(Q)(w — @)+ Gyl —qll}s” (=~ q)) HM} s

max { & — 2|y,

The algorithm takes p°™) log (%@) linear-system-solves in matrices of the form ATBA for
block-diagonal B, where each block in B has size |S;| x |S;].

Proof of Lemma D.18. This proof is lengthy, and splitting it into lemmas would disrupt the intended
reading flow. So we break it up into several key components here.

Motivation for the lemma. First, let us see why this lemma is even useful. In each iteration of
Algorithm 4, which in turn calls Algorithm 2, the main primitive is computing

x; = argmin fq, (T;-1) + (Vg (Ti-1), T — Ti—1) + peDp, (T, Ti-1) ,
xR

= argmin fg, (i—1) + (Vfq, (®i1), T — Ti_1) + pe (hq, (T) — hq,(Xi—1) — (Vhe, (Xi1), & —Xi—1))
TcRd

= argmin fg, (%i-1) = pehq, (Fi-1) + (Vg (i-1) — peVhe, (Ti-1), & — Ti-1) + pehq, (2)
FASIN

= argmjn (Vfq, (Xiz1) — peVhg, (Ti—1),Z) + pehq, (T) .
zER

Observe that the subproblem is of the form

= = argmin (g,2) + pehq(z) |
zERY

= argmin {g,2) + pe (|12~ a3y + Oy o~ all) - 20)
xTeE

and so our goal is to show how to solve these types of problems.

The general algorithm. Consider solving the related subproblem (instead of equation 20),
. 2 2
argmin (g,2) + L (Il = alite ) + Co7 2 — all)
xzeR

for some fixed 7 > 0. This is a quadratic problem, and we can therefore solve it in 1 linear-system-
solve. It is easy to check that at optimality, we have

g+2pe (V2 f(q)(x — q) + CprM(z — q)) =0,

which rearranges to’

1 -1
—q=—5—(V* C,™™ :
z—q 2pe( fl@)+Cpt™M) g
Note that at optimality for our original subproblem equation 20, we have 7* := ||z — q H{GQ where

z is the solution of subproblem equation 20. Also note that ||« — g||, is a decreasing function in 7
because,

2 2
Iz = alln = 7523190092 @)+t mcv2 (@) 10
and for 7y < 1o,

(V2£(q) + CoriM) ' M (V2 £(q) + CorM) " = (V2f(q) + CpraM) ' M (V£ (q) + C,raM)

"Recall that V> f(q) = AT B A for block-diagonal B; and by construction, M = ATW'"7 A where

W consists of the block Lewis weights on the diagonal. Thus, V2 f(q) + C,7M = ATB2A for block-
diagonal Bs.
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We therefore see that if 7 > || — ][5> — where  is the optimal solution for a fixed 7 — then
we are over-regularizing and need to decrease 7 and vice-versa. This means we can binary search
for the appropriate value of 7. To execute this, we first need to establish the accuracy up to which
we have to identify 7.

Convergence in Argument. By Lemma D.13 (setting d = x — z), recall that it is enough to
solve sub-problem equation 20 up to additive accuracy (p/2)P Lo® to get ||x — z||,; < . Suppose
we find 7 for which 7* < 7 < 7* 4 §. By writing the objectives and comparing, we see that the «
we find from using 7 gives us at most a ¢ - d-suboptimal solution compared to z. Plugging this into
the bound from Lemma D.13 tells us that we should choose § = (p/2)? LaP /d, and plugging this

into the binary search over 7 € [0, d”(1 + f(q))] gives us p°) log (%(qv steps, as needed.

First-order stationary point. ~ We first claim that it is enough to get

IM~ Vhg(@) = M~ Vhg(2)y < T

Indeed, let z be the optimal solution for the subproblem. This means that it must satisfy the first
order stationary condition, namely,

g+ LVhge(z)=0.

Multiplying both sides by M~!, subtracting, and dividing both sides by L gives us the expression
we are interested in.

Writing first order stationary conditions gives both
g+2L(V*f(q)(x — q) + C,rM(z — q)) =0
g+2L (V3 f(q)(z — q) + C,r"M(z —q)) = 0
Multiplying both sides of both equalities by M~! and subtracting these gives
2L (M™'V2f(g)(x — 2) + G (T(x — @) — 7" (2 — q))) = 0.

Expanding out L(M~!Vhg(x) — M~ h4(2)) and subtracting the above gives the desired condition
?
2L |r =~ |z~ al%?| - Iz~ gl < o

Next, let us run the binary search from above so that we get argument convergence, i.e. |z — 2|/, <

a® < 0.1 for some constant C. Using the fact that the approximate mirror descent step using z
decreases the objective value (Lemma A.4), observe that

Iz~ allp < 112 = allpg + 1z = 2l < llg = 2l +0.1or S V(1 + f(a)).

It then follows that binary searching 7 to additive accuracy a(v/d(1 + f(q)))~!/L is sufficient.
By the same argument as above, this takes p©(!) log (%(q‘)) steps, completing the proof of

Lemma D.18. O

We now combine Lemma D.18 with Theorem A.1 and Algorithm 2 to obtain approximate argument
optimality for each proximal subproblem.

Lemma D.19. Let v > 0 and x4 = argmin fq(x). There exists an algorithm that returns x for

xcRd
which
[z —zqllpg <7

P
The algorithm takes at most O (po(l) log (phq(wq) ( 4 ) )) iterations of solving subproblems of

Py
the form argmin (g, x) + ephgq () for fixed vectors g and q.
zERY
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Proof of Lemma D.19. This proof resembles (Jambulapati et al., 2022, Lemma 4.5), which uses an
exact version of mirror descent arising from Lu et al. (2018). The main difference between our
argument and that of (Jambulapati et al., 2022, Lemma 4.5) is that we rigorously identify a concrete
upper bound on the complexity needed to satisfy the MS condition and argue that the mirror descent
algorithm can handle the inexact Bregman proximal problem solves.

First, we use Lemma D.12 on the approximate solution & and true solution x4 and get,

fal@) > folwa) + oy (1A — 25, +Cy llzg — o)

4C
> fol@) + 52 g — @iy

Rearranging, we get

Iq — 2l (fc) (@) — falwa)” |
- (fp)/ (@)~ falea)"
2

~ (fa(@) - falzg)'? .

Using the notation from Lu et al. (201 8), for convex h: RY — R, let
Du(z,y) = h(z) = h(y) — (Vh(y),z —y).
Recall the conclusion of Lemma D.9 — we have for p = 1/(2pe) and L = pe that
uV2hg(x) 2 V2 fe(x) < LV?hge(z).

By Theorem A.1 and Lemma D.9, using the same notation from Lemma D.9, we have for all itera-
tions ¢ of Algorithm 2 (with f = fq and h = hg) that,

t
Jq(®t) — fq(xg) < L (1 - %) Dy (g, q) + max (Ai, @ — 2q)

- _ By o,
=2L (1 L) hq(:nq)—i—lrg?%(t (D e —xzq) -

p
Hence, for t > % log (th(scq) (%) ), it is easy to check that for p > 2,

os(Lha(ea)(£)7)
fa(®t) — fq(xq) < 2L (1)

- hg(xq) + max (A, @, — xq)

1<i<t

=2 (m) + max (A, @ — xq)

4 1<i<t
pY
< -
<(3)"+ max bom—ag)

and combining this with Lemma D.18 to make the error term on the order of our accuracy, we get
lxg — ||y S v We thus conclude the proof of Lemma D.19.
The last step is to use our proximal problem solver to build a valid MS oracle.

Lemma D.20. In the context of Algorithm 3, there exists an algorithm (X411, i+1) = Oprox(qt)
that approximately solves

argmin f(Z) + ep” | — q:||};
TER

using O (po(l) log (%@”)) linear-system-solves in ATBA, in the sense that

1
5 Zes1 — QtHM-

1 _ ~ ~
— _2M 1Vf($t+1) + (:Bt+1 — qt)
+1 _
epP T |1 — qillyg

(\o}

M

47



Under review as a conference paper at ICLR 2026

Proof of Lemma D.20. The point of this proof is to give an analysis of Algorithm 4.

For notational simplicity, let € = ;11 and A = Ay 1. We will reintroduce the indices when it is
essential to clarify the iterations we are discussing.

First, it is helpful to see why the stated notion of approximation is useful. Let C), := ep?. Observe
that at exact optimality, we have

Vi(xg) +ep’ ! lzg — qlf° M(z —q) =0 . 1)

A*

This motivates the approximation in our lemma statement, with us asking for a %-approximate MS
oracle (Definition B.1) for f. This also tells us that at optimality in equation 21, we have,

Vi(@e) + et zg — al}y* Mz~ q) =0,
< M71/2f(mq) = —pCy [|[zq — Q||§/;2 Ml/z(m -q) ,
= M2 ()| = 06y g — ally? M@ - q)|

M-V f(x w1
p

We now break up our analysis into two cases. In the first, suppose that ||M™'V f(zg)||,, <
g/ ||lxg — x*||y;- Then, by convexity, we have

f(mq) - flz¥) < <Vf(mq)vmq —x*) < ||M71vf(mq)HM qu - m*HM <e.

Hence, for the rest of the proof, assume that | M~'V f(z4)|| > ¢/ [|q — @*||y; (because if this is
not the case, in the algorithm we can simply check whether the MS condition is satisfied — if not,
then we know this assumption was violated and we are done anyway). We run the algorithm implied
by Lemma D.19 and obtain an approximate solution x for which

-2
1 ¢ g — 4l
r—x <alxrg—q for « = — min P M 1 000 (22)
&~ @qlly < all@g — gl : ep(p_1)< FPE

Since o < 1 the guarantee in equation 22 gives us,
o
& = @qllng < 0 llz = allyg < T 1o~ ally 23)

and further applying triangle inequality gives us

2 — allpg < 1o —qllyg + llzg — 2l
1-— o
< 1,a”$_q“M+1,a”$_qHM )
1
< — . 24
< le - aly 24

Hence, we get

ep<p1>f<q>1—i,”w_mq”M_ep<p1>.< fla)? )p2-||m—mq||M

Cp‘@“]”%ﬁ Cp lz - alln
Sequation 22 % qu _ qHM ,
Sequatian 24 % . . i - ||IL’ _ q”M ,
1
< gl —ally (25)
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where in the last inequality, we used that o < % due to our choice in equation 22. We now call
Lemma D.15, divide both sides by A, and get

1
M 'Vf(z)+ (z—
6pp+1 ||ZB o qH;zl(/IZ f( ) ( q)

M

Lemma D.15 f(Q)l_% lzq — 4l r
< (Lemma D.15) ep(p — 1) — +max< 1, <M> |l — CCqHM )
CHm*ﬂm |z — gl

i 1
< equation 24 + Hm —x ||
= 2 — qlivM
IIw—Q\Ip (1 -ajp2
Do

<equatwn 23 ep( ) ( ) ||(I: _x ” ep(p ” _ q”

> allm + 1 M >
Gyl ||M (1= a)r”

, B | —1)5r—2
Sequatzon 24, equation 22 Z HCB _ q”M ep(p4p_3 ”w _ q”]\/[ ,

<sle—aly -
giving us the approximation guarantee.

It remains to understand the complexity of solving the proximal subproblem to the accuracy required
in equation 22. Plugging in v = « ||x4 — ql|,, into Lemma D.19 and using our bound on hg(x4)
from Lemma D.17 gives an iteration complexity of (ignoring the constant in front of the big-O)

2 P
P log (ph"(””“ (W —a ) )
q M

_2 2 ’
< p2W log <p (po = 1@ llzq — allag + Cy g — aliy) (—q||> )
M

pa|lzg

_2 4

o, ((2) (2= D@ 2g — allyy + Cy llzg — alls
=p7 - log | (~) p ST 1P
» or g — alig

P _ 1-2
= pPW jog <<2> » <p(p 1)f(q)p72 . C;:))
p a? |zg — (IHM o

We have two cases to analyze for the value of . In the first, suppose we get o = % By the definition

of o, this means we have
p—2
¢ (lza—aly " |
er(p =1\ f(q)» -

which means the complexity we get is p°") logp. We now handle the other case, ie., @ =

p—2
56;;_1) ( Hm"*qﬂM ) . Here, it will be useful to keep track of the timestep ¢ that we are working
fla)r

with. Recall that

M-Vf(z 7 o1
g, — qillng = ” (@)l > ( S— ) , (26)
pCyp pCy ||leg, — HM

so the complexity we want to control is given by

pO(l) log <(2>pp< 2f(q:) . ))
p aprQt _qt”M

< equation 22 pO(l) log g pp 2 (5€p(p - 1))27 f(qt)pil
~ p CF g, — ael3F ™ g, — aully ’
p qt tiinv q ALY
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P |zq, — arlng
. 2 (10e(p — 1))? prlp+1) p—1
Sequatz(m 26 pO(l) log (p ( ( 6(]) )) pp f(qt) ) qut _ w*ni/[) ,

pp2 €pP

; 2 (10e(p — 1))P pptt p—1
Sequatzon 26 pO(l) IOg (( ( e(p )) p f(qt) ) qut _ w*|11</[> ,

P

< )90 Iog <p (2 (10(p — 1)) f(qt)”l)> |

g

(pf(qt)gdf(wt) )

< W 10g (pf(Qt) g, — w*M>

S(Lemma D.16) pO(l) log

S(Lemma D.8) pO(l) log (pf(;&‘)) ’

completing the proof of Lemma D.20. O

D.4 THE ALGORITHM

We are now ready to combine the results from the previous two subsections to build our algorithm
for G,-regression and prove Theorem 2. The main algorithmic object here is Algorithm 5.

Algorithm 5 GpRegression: Optimizes equation 4 up to (1 + ¢)-multiplicative error

Require: Regression problems (Ag,,bs,),...,(Ag,, ,bs,, ), accuracy € > 0
1: Using (Manoj & Ovsiankin, 2025, Algorithm 2) with input [A |b], find nonnegative diagonal W
such that for all € R? and ¢ € R,

|Az — cb|l;_ < HW%’%A:C - cwl/2bH2 < (2(d+1))* 5 Az — cb]g_.

_z2 \! _z .
2: Letxy = (ATVV1 P ) ATW! b, > x( = argmin

xcRd

‘Wi’%Am—W?}”fb

R

w

Using Algorithm 4 and Lemma D.20, implement a %-MS oracle for f (Definition B.1)
4: Run Algorithm 3 with the oracle from the previous line and with x( as the initialization for

0 (poly(p) min {rank (A) ,m}“’*ppii22 log (g)3) iterations.
5: return Z the output of the previous step.

Proof of Theorem 2. By writing the stationary condition of the proximal problem, it makes sense to
~ -2

choose A\i1 = epP ||Z1 — qul|Rg -

It is easy to check that

1
(p—1)—1

~ —2
ep" ! |1 — i}y
1 p—1
((6pp“)pj)

and therefore the triple (¢4 1, g, ep? ! || Ti1 — q; ||’1i22) always satisfies a (p—1, (eppﬂ)l/(lkl))_
movement bound (Definition B.2).

H%Hl - Qt||M =

Next, we calculate the iteration complexity we need to reduce the error to half of what we started
with. For an arbitrary initial iterate , let 6 = 0.5(f(x) — f(z*)). By Lemma D.2, we have

lo— a5 = o — 27| < 27202 (f() — f(2*)),

so combining this along with the fact that ¢* = ep?*! and applying Theorem B.3 with our proximal
solver Lemma D.20 yields

_2
Tin = p%l (pCp . 23p/2+1dp/2—1> 3p—2 S p5/3d3pp77_22.
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Next, we initialize zo == (ATW!=2/PA) L ATWI2/pp, Using Theorem E.3 and Theorem E.4,
we have

flo) < (2d)P/271 f(a"),
so reaching an iterate x for which f(z) — f(z*) < cf(z*) takes T - log (dP/?71/e)
p8/3d3%22 log () calls to Opox.

We now resolve the full iteration complexity, including the bootstrapping step to show that f(x;) is
reasonably bounded so that we get an unconditional upper bound from Lemma D.20. At the end of
iteration ¢, from (loosely) inverting the bound in Theorem B.3, we know that

(Cp*) "= (2d)5~"

3p—2
t™ 2

3p—2
2

flay) = f(2") <

Since ;1 only depends on g, which in turn only depends on x; and v, it suffices to use the above
bound for f(a;), which gives us an iteration complexity of p°W log (%d> to compute &; 1 (which

we get from plugging into Lemma D.20).

Combining this with the iteration complexity of Oprox gives us the result of Theorem 2. O

E BLOCK LEWIS WEIGHTS AND PROPERTIES

In this section, we introduce block Lewis weights and explore some of their properties. Several of
these statements can be found in Jambulapati et al. (2023a); Manoj & Ovsiankin (2025), but we
include definitions and proofs here for self-completion.

We first need to define leverage scores.

Definition E.1 (Leverage scores). For a matrix A € R™"*? with rows a,, . .., a,, let 7; denote the
jth leverage score of A, which we define to be

<ajam>2 —al (ATA)fla.
J J

i(A) = =
A B a2

We now introduce the main object of interest in this section, Definition E.2. Our version of the
definition is adapted from (Manoj & Ovsiankin, 2025, Definition 1.2) (there, we set p; = .-+ =
DPm = 2, let their W = I, replace A with w/ ||w||,, and rescale F'* appropriately).

Definition E.2 (Adapted from (Manoj & Ovsiankin, 2025, Definition 1.2)). Let w € Rgbo and
W ¢ Rgé" be a diagonal matrix for which for all j € S;, we have W j; = w;. Let p > 0. We say
that w is a block Lewis overestimate if for all i € [m], we have

Zjesi Tj (Wéi%A)

w;

<1.

The main reason that Definition E.2 is interesting is that it gives us a formula with which we can
relate the level sets of the group norm ||-[|5 to £2. See Theorem E.3.

Theorem E.3 (Block Lewis weights give us ellipsoidal approximations to Hng ). Letp > 2. If w

is a block Lewis overestimate, then for all x € R<, we have

Wi |
—2 < ||Az|, < HWE PAmH
3% 2

wl *

We prove Theorem E.3 in Appendix E. An analogous statement can also be shown for p < 2, but
since we do not use it in this paper, we do not write it here.

Observe that if we can get w that satisfies Definition E.2 and for which ||w|; = rank (A), then
Theorem E.3 gives us the optimal relationship between ¢o and ||||gp whenever rank (A) < m.
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Furthermore, for intuition, suppose p = oco. By John’s theorem, we know that for any symmetric
convex body, there exists an ellipsoid such that the ellipsoid approximates the convex body up to

a v/d distortion. Moreover, this is worst-case tight (e.g. the best distortion we can get when we
approximate ¢§ with ¢5 is v/d). Thus, assuming we can find ||w||, = rank (A), in this case, we get
a guarantee that is similar to what John’s theorem tells us.

Now, assuming we can find a low-distortion ellipsoidal approximation to the level sets of our loss,

we get that the “effective” diameter of our problem is ~ v/d. Combining this and the discussion
in Section 2.3 (or, more formally, Theorem B.3), we can see why we should expect an iteration
complexity of ~ d'/? (or better, if we can find a better ellipsoid).

What is left is whether weights w satisfying Definition E.2 with small sum can be found. To this
end, we invoke (Manoj & Ovsiankin, 2025, Algorithm 2).

Theorem E.4 (Manoj & Ovsiankin, 2025, Algorithm 2 and Lemma 5.6)). There exists an algorithm
that returns a block Lewis overestimate w for which ||w|, < 2rank (A). The algorithm runs in

O(logm) linear system solves with matrices of the form AT DA for nonnegative diagonal D.

Thus, by applying Theorem E.4 as a preprocessing step, we get an {5 geometry under which we can
run the accelerated proximal algorithms. As an example of the power of this, observe the following.

Lemma E.5. Consider the matrix A := A|b € R™* (@+1) that is formed by appending the column
vector b to the right of the matrix A. If we have a vector w of block Lewis overestimates for the

matrix A, then there exists an algorithm that finds an initialization x for which

o — @, 3y, <2(2rank (A)F 7 Az* — bllg,

ATW?
11
[[Axy — ngp < (2rank (A))27 7 |[Az* — b||gp

The algorithm runs in 1 linear system solve in ATDA.

Proof of Lemma E.5. By Theorem E.3, our weights w are such that for all x € R™ and reals c € R,
W2 v Az — cWéf%bH

2 Az o), < Hw%—%Am—cwé—%bH .
(2(d+1))2" % i 2

Let ¢ be the solution to the least squares regression problem

11 1.1
o = argmin HW? rAx —W2"7b
xERY

2 71 1 1
’ :(ATwlfz ) ATWE 5b.
2

It is easy to see that computing o amounts to 1 linear system solve in A T DA
Next, let M := ATW'~% A and observe that
o — * ||y = H (W%*%Amo - W%’%b) - (W%’%Aw* WS

=

o)
).,
<2 HW%—%Am* - W%—%bH <2(2d)F77 |Az* — b .

2

Finally, write

1

|Azy — b < HW%’%AmO - Wf’%bH
P 2

11, & i1
<||W2 rAz* — W3 7b

1 1
<(2d)27 7 |[Az* - b
L <D AT~ b, .

giving us the conclusion of Lemma E.5. O

Proof of Theorem E.3. Let A = w/||w|; and A := W/ ||w]||;. It is easy to check that X is a
probability measure on [m]. When p > 2, using monotonicity of L, norms taken under probability

measures, we get
m % m N D % m 1 2 1/2
(ZHASM) :(ZAi A "Agx ) ><ZAZ- A A, ) .
i=1 i=1 2 i=1 2
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Expanding the RHS and substituting \; = w;/ [|w||, gives

i
lAz|lg, > "———=.
wllf *

For the “hard” direction, we will use Definition E.2 in a nontrivial way. Notice that

1
m a1 p\ P m 1 2 1 p—2\ P
g w; ||w; ¥ Ag, T = g w; ||lw; P Ag,® w;, "Ag,x
i=1 2 i=1 2 2
1
1 P—2\ »
m . 2 ‘wi "Ag, T
< g w; ||lw; PAg,x|| - max 272
. 5 ®ERI\{0} 1_1 p
i=1 Wa2"rAx
2
_1 2\ 571
m . 2 le "Ag,x .
= g w; ||w; P Ag, x| - max —22 HWZfﬁAa:H
; 5 | zera\{0} 11
i=1 W2"rAx
2
P __
9 lA 2 1
m .
_% ZjeSi Tj (W P ) 11 p—2
< E w; ||w; " Ag, T Wa2"rAx
i=1 2 Wi 2
.. m 2 P
Definition E.2 _1 11 p—2 11
< S w; |w; P As,@ HW pAa:H :HW2 prH :
' 2 2
i=1 2

so combining our upper and lower bounds gives the conclusion of Theorem E.3.
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