
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DISTRIBUTIONALLY ROBUST LINEAR REGRESSION
WITH BLOCK LEWIS WEIGHTS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present an algorithm for the empirical group distributionally robust (GDR)
least squares problem. Given m groups, a parameter vector in Rd, and stacked de-
sign matrices and responses A and b, our algorithm obtains a (1+ε)-multiplicative
optimal solution using Õ(min{rank(A),m}1/3ε−2/3) linear-system-solves of
matrices of the form A⊤BA for block-diagonal B. Our technical methods fol-
low from a recent geometric construction, block Lewis weights, that relates the
empirical GDR problem to a carefully chosen least squares problem and an ap-
plication of accelerated proximal methods. Our algorithm improves over known
interior point methods for moderate accuracy regimes and matches the state-of-
the-art guarantees for the special case of ℓ∞ regression. We also give algorithms
that smoothly interpolate between minimizing the average least squares loss and
the distributionally robust loss.

1 INTRODUCTION

Machine learning algorithms and their training datasets have grown tremendously in the past decade,
both in size and complexity. This increased model complexity has made it challenging to interpret
and predict their behavior in unobserved scenarios. Hence, many applications that involve soci-
etal decisions still rely on simple, interpretable models like linear regression, often after feature
engineering. Examples of such applications are predicting housing prices across cities, estimating
wages across industries, forecasting loan amounts across banks, predicting life insurance premiums
for different groups, and projecting energy consumption in various communities (Cohen-Addad
et al., 2024).

A shared safety and sometimes legal concern across the above applications is the potential for wildly
different model qualities for different distributions, i.e., outputting a notably worse model for some
source data distributions (Data, 2014; Barocas & Selbst, 2016; Hardt et al., 2016; Veale et al., 2018;
Selbst et al., 2019; Berk et al., 2021; Corbett-Davies et al., 2023; Chouldechova, 2016; Kleinberg
et al., 2018; Agarwal et al., 2019; Cohen-Addad et al., 2024; Song et al., 2024). Specifically, consider
fitting a linear model x ∈ Rd to make real predictions on some task over m groups where group
i’s dataset consists of ni entries and is denoted by Si = {(aj

i , b
j
i)}j∈[ni]. The utilitarian or the

total-cost-minimizing objective minimizes the average squared prediction error across groups, i.e.,

min
x∈Rd

1

m

∑
i∈[m]

1

ni
∥ASi

x− bSi
∥22 , (1)

where ASi
:= [a1

i . . .a
ni
i]⊤ ∈ Rni×d is the feature matrix and bSi

:= [b1i . . . b
ni
i]⊤ ∈ Rni is the

label vector for group i ∈ [m].

Due to the inherent heterogeneity of the datasets, the model derived from optimizing objective equa-
tion 1 may be particularly detrimental for some groups, as the prediction error could be dispropor-
tionately higher for these groups. To overcome these limitations, the following egalitarian or group
Distributionally Robust Optimization (DRO) objective has been considered in several recent works
(Ben-Tal et al., 2013; Duchi et al., 2016; Sagawa et al., 2019; Levy et al., 2020; Soma et al., 2022;
Abernethy et al., 2022; Song et al., 2024),

min
x∈Rd

max
i∈[m]

1

ni
∥ASi

x− bSi
∥22 . (2)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Objective 2 is the “fairest” objective among all objectives that balance utility and distributional ro-
bustness by ensuring that no one group has a loss that is too high (Kleinberg et al., 2018; Choulde-
chova & Roth, 2018; Asadpour et al., 2022; Chen et al., 2022; Rahmattalabi et al., 2019; Golrezaei
et al., 2024)

Since objective 2 is a convex problem, it is natural to apply standard black-box optimization tech-
niques to solve it. However, we identify several challenges in applying existing methods:

Efficient first-order algorithms have geometry-dependent rates. To our knowledge, using an
efficient first-order method (such as sub-gradient descent) will incur a geometry-dependent runtime.
In particular, if the matrices ASi

or if the stacked matrix A := [A⊤
S1

. . .A⊤
SM

]⊤ are poorly condi-
tioned, then this will be reflected accordingly in the convergence rates. This is a drawback of the
existing results by Abernethy et al. (2022) and Song et al. (2024).

Objective equation 2 is not smooth. Since the objective is the pointwise maximum of several
continuous functions, the derivative is not well-defined at the points at which the maximizing func-
tion changes. Thus, applying subgradient descent to this objective without a customized analysis
will result in a rather unimpressive 1/ε2 dependence in the iteration complexity.

Min-max optimization/regret minimization approaches have a 1/ε2 dependence on iteration
complexity. Since problem 2 is a min-max optimization objective, it is also natural to try to use
game theory-inspired approaches that use some oracle (such as gradients) for each group as a black
box. For instance, we can cast objective 2 as a repeated game between a min player (equipped
with a no-regret algorithm) and a max player (equipped with the best response oracle). The main
shortcoming of this approach is that even though the function for each group is smooth, the iteration
complexity (to get ε average regret) for smooth online convex optimization still has an unimpressive
1/ε2 dependence (as opposed to 1/ε for smooth convex optimization) (Soma et al., 2022; Zhang
et al., 2024a). Thus, this approach is no better than directly applying sub-gradient descent to objec-
tive equation 2.

Interior point methods have a poor iteration complexity for large m. Another natural approach
(that can partially address the previous two issues), following the discussion by Boyd & Vanden-
berghe (2004, Section 6.4), is to rewrite problem 2 in its epigraph form and use an interior point
method (IPM) to solve the resulting problem (which, in this case, is a quadratically constrained lin-
ear program). Unfortunately, this will give an algorithm whose analysis is only known to yield an
iteration complexity of O(

√
m), where each iteration solves a linear system in matrices of the form

A⊤BA for a block-diagonal B (see Remark 1.1). A naïve implementation of this algorithm will
thus have a superlinear runtime in the number of groups, which is undesirable when the number of
groups is large. Alternately, consider an example in which we copy each group k times in the ob-
jective. The new objective value does not change from the original objective value, but the iteration
complexity from the IPM now blows up to

√
mk. This also signals to us that we should search for

an algorithm whose iteration complexity is mostly independent from m.

Hence, designing an algorithm without these shortcomings requires novel ideas.

1.1 OUR RESULTS

In this paper, we present a new algorithm (Algorithm 1) to approximately optimize objective 2,
which addresses the aforementioned difficulties. We state the iteration complexity of our algorithm
in the following theorem.

Theorem 1 (Robust regression). Let ASi
∈ Rni×d and bSi

∈ Rni for all i ∈ [m]. Denote their
concatenations by A := [A⊤

S1
. . .A⊤

SM
]⊤ ∈ Rn×d and b := [b⊤S1

. . . b⊤SM
]⊤ ∈ Rn where n :=∑

i∈[m] ni. Let ε > 0. Then Algorithm 1 returns x̂ such that,

max
i∈[m]

1
√
ni

∥ASi
x̂− bSi

∥2 ≤ (1 + ε) · min
x∈Rd

max
i∈[m]

1
√
ni

∥ASi
x− bSi

∥2 , (3)

and it runs in

O

min {rank(A),m}1/3
(
log
(

n logm
ε

)14/3
+ log (m)

)
ε2/3


2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

linear-system-solves in matrices of the form A⊤BA, where B is a block-diagonal matrix for which
block i has size ni × ni.

We prove Theorem 1 in Appendix C. We compare the guarantee of Theorem 1 against the other
baselines in Table 1.

Algorithm Iteration Complexity Each Iteration

Subgradient descent ∥x⋆∥2 max1≤i≤m
1√
ni
∥ASi∥op

ε2
Evaluate ∇f(x)

Nesterov acceleration
on smoothened objective

∥x⋆∥2

(
max1≤i≤m

1√
ni
∥ASi∥op

)1/2

ε

Evaluate ∇f̃β,δ(x)

Abernethy et al. (2022) ∥x⋆∥2 max1≤i≤m
1√
ni
∥ASi∥op

ε
Evaluate ∇f̃β,δ(x)

Interior point with log barrier
(Boyd & Vandenberghe, 2004) m1/2 log

(
1
ε

) Linear-system-solve
in A⊤BA

This paper
(naïve geometry)

m1/3

ε2/3

Linear-system-solve
in A⊤BA

ℓ∞ regression with Lewis
weights (Jambulapati et al., 2022)

rank(A)1/3

ε2/3

Linear-system-solve
in A⊤DA

ℓ∞ regression with IPM
(Lee & Sidford, 2019) rank (A)

1/2
log
(
1
ε

) Linear-system-solve
in A⊤DA

This paper (Theorem 1) min{rank(A),m}1/3

ε2/3

Linear-system-solve
in A⊤BA

Table 1: The complexities of algorithms for optimizing equation 2 or for the special case of ℓ∞
regression, assuming OPT = 1 (the first three guarantees are additive approximations) and ignoring
polylog(n,m) terms. We write D to be a diagonal matrix and B to be a block-diagonal matrix
where each block has size (ni + o(1)) × (ni + o(1)). We remark that in the special case where
ni = 1, our algorithm exactly recovers guarantees of Jambulapati et al. (2022). We stress that we
include the references to ℓ∞ regression only to show that our algorithm is no worse than that of
Jambulapati et al. (2022) in this special case of ni = 1 for all i, and none of their algorithms apply
to our general setting.

Unlike the aforementioned first-order methods, our algorithm has no geometry-dependent terms.
Additionally, our algorithm improves over the standard log-barrier IPM when the desired accuracy
ε ≥ m−1/4 — this improvement is more pronounced when m ≫ rank (A), i.e. when the number
of data sources is much larger than the dimension of the parameter vector x. Additionally, for
ε ≥ rank (A)

−1/4, our guarantee matches the best known guarantee for ℓ∞ regression (Lee &
Sidford, 2019; Jambulapati et al., 2022).

Remark 1.1 (Why use linear-system-solve complexity?). We benchmark our algorithms using the
number of linear-system-solves for a few reasons. First, this is typically how second-order algo-
rithms are compared, such as interior point methods for linear programming (Lee & Sidford, 2019).
Second, the particular structure of the linear-system-solves presents the possibility of a faster amor-
tized runtime for the systems over the algorithm’s run. This observation, combined with an under-
standing of how the linear systems changed between iterations, was used recently used to achieve
fast runtimes for linear programming (Lee & Sidford, 2019) and ℓ∞ regression (Adil et al., 2024).

Interpolating between robust and nonrobust optimization. We also study the following family
of objectives that interpolate between objectives 1 and 2 for different values of p ≥ 2,

min
x∈Rd

1

m

∑
i∈[m]

(
1

ni
∥ASix− bSi∥

2
2

)p/2

. (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

In particular, note that choosing p = 2 in the above objective gives us the average least-squares
problem in objective 1, while p → ∞ recovers objective 2. Varying p from 2 to ∞ and minimizing
gives solutions that interpolate between utilitarian and egalitarian approaches, allowing for a smooth
trade-off between utility and robustness. To this end, we give Algorithm 5 to approximately optimize
objective 4 and prove the following guarantee about its iteration complexity.

Theorem 2 (Trading off utility and robustness). Let ASi ∈ Rni×d and bSi ∈ Rni for all i ∈ [m].
Denote their concatenations by A := [A⊤

S1
. . .A⊤

SM
]⊤ ∈ Rn×d and b := [b⊤S1

. . . b⊤SM
]⊤ ∈ Rn

where n :=
∑

i∈[m] ni. Let p ≥ 2 and ε > 0. Then Algorithm 5 returns x̂ such that,(
m∑
i=1

(
1

√
ni

∥ASi
x̂− bSi

∥2

)p
)1/p

≤ (1 + ε) · min
x∈Rd

(
m∑
i=1

(
1

√
ni

∥ASi
x− bSi

∥2

)p
)1/p

(5)

and runs in

O

(
pO(1) min {rank (A) ,m}

p−2
3p−2 log

(
pd

ε

)3
)

linear-system-solves in matrices of the form A⊤BA, where B is a block-diagonal matrix for which
block i has size ni × ni.

We prove Theorem 2 in Appendix D.

In the special case where ni = 1 for all i (and therefore the problem is ℓp regression for p ≥ 2), the
complexity promised by Theorem 2 is comparable to that promised by Jambulapati et al. (2022) for
ℓp regression. The main difference is that our iteration complexity is unconditionally polynomial in
p. In contrast, the comparable result from Jambulapati et al. (2022) seems to require mild assump-
tions on the problem parameters (see the “Discussion on numerical stability” by Jambulapati et al.
(2022, Section 4)).

Remark 1.2 (Large values of p). Note that for values of p larger than log(m), solving equation 2 is
almost equivalent to solving equation 4. To intuitively see this, first recall that for any vector x ∈ Rd

and p = log2(m) we have, ∥x∥∞ ≤ ∥x∥p ≤ 2 · ∥x∥∞. This implies that for all i ∈ [m] we have
the following for objective equation 4 (for p = log2(m)) for any x ∈ Rd,

max
i∈[m]

∥ASi
x− bSi

∥2 ≤

∑
i∈[m]

∥ASi
x− bSi

∥p2

1/p

≤ 2 · max
i∈[m]

∥ASi
x− bSi

∥2 .

In particular, this means that minimizing the interpolating objective equation 4 also minimizes the
robust objective equation 2 (up to numerical constants) and vice versa. Thus, for p = Ω(log2(m)),
for our intended applications, it makes sense to minimize the robust objective instead. This is why, in
Theorem 2, we do not care too much about the exponent on p in the iteration complexity. Our main
goal is to show that we can get a O(poly(p, log

(
1
ε

)
)min {rank (A) ,m}1/3) iteration complexity.

1.2 PRIOR RESULTS, CONNECTIONS, AND OPEN PROBLEMS

Here, we discuss prior work that conceptually and technically relates to ours. We then suggest
natural directions for future work.

Multi-distribution learning. Many learning problems involve multiple data sources, for instance,
when multiple agents generate their data independently. One can formulate these multi-distribution
problems as standard learning/optimization problems by considering a mixture of their distributions,
as in objective 1. However, this approach often biases solutions toward dominant data sources,
leading to poor performance on outliers—an issue stemming from statistical heterogeneity. This
limitation motivates the study of multi-objective optimization problems (Miettinen, 1999; Ehrgott,
2005), where each agent m has a distribution Dm that defines its objective as Ez∼Dm

[f(xm; z)],
and where models xm can vary across agents—a framework known as personalization.

One of the earliest algorithms for such problems was introduced by Blum et al. (2017), where each
agent’s objective must be minimized to a pre-specified threshold ϵ with high probability, framed
within a PAC learning framework (Valiant, 1984; Vapnik, 2013). Subsequent research has refined

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

these algorithms, achieving optimal sample complexity guarantees for learning from multiple dis-
tributions (Chen et al., 2018; Nguyen & Zakynthinou, 2018; Hanneke & Kpotufe, 2019; Haghta-
lab et al., 2022; Zhang et al., 2024b). Our objectives 2 and 4 offer different approaches to multi-
distribution learning, where data distributions correspond to empirical agent distributions. In par-
ticular, Mohri et al. (2019) analyzed objective 2 to establish generalization bounds for unknown
mixtures of agents’ distributions.

Beyond sample efficiency, researchers have also examined other challenges, such as communication
costs in large-scale distributed optimization (McMahan et al., 2016). A particularly relevant study is
that of Bullins et al. (2021), which employs an efficient distributed quadratic sub-solver (Woodworth
et al., 2020; Patel et al., 2024) to implement an inexact Newton method for optimizing quasi-self-
concordant functions (see Definition 2.1).

Group fairness. Recently, interest in algorithmic fairness has intensified (Barocas & Selbst, 2016;
Abebe et al., 2020; Kasy & Abebe, 2021) with researchers exploring fairness across various do-
mains, including supervised learning (Calders et al., 2009; Dwork et al., 2012; Hardt et al., 2016;
Kusner et al., 2017; Goel et al., 2018; Ustun et al., 2019), resource allocation (Bertsimas et al., 2011;
2012; Hooker & Williams, 2012; Donahue & Kleinberg, 2020; Manshadi et al., 2021), schedul-
ing (Mulvany & Randhawa, 2021), online matching (Chierichetti et al., 2019; Ma et al., 2023),
assortment planning (Singh & Joachims, 2018; Biega et al., 2018; Singh & Joachims, 2019; Chen
et al., 2022), and facility location (Gupta et al., 2022). The extensive literature on algorithmic fair-
ness falls into three main categories: (1) individual fairness, which ensures that similar individuals
receive comparable predictions (Dwork et al., 2012; Loi et al., 2019; Chen et al., 2022), (2) group
fairness, which aims for equal treatment of different demographic groups, often in terms of resource
allocation or performance parity (Singh & Joachims, 2018; Balseiro et al., 2021), and (3) subgroup
fairness, which blends aspects of both individual and group fairness (Kearns et al., 2018; 2019).

This paper focuses on a well-studied group fairness notion in machine learning literature: the group
DRO problem (Ben-Tal et al., 2013; Duchi et al., 2016; Sagawa et al., 2019). The idea of inter-
polating between robustness and utility is also common (Golrezaei et al., 2024) and closely related
to multi-objective optimization, where scalarization (Miettinen, 1999; Ehrgott, 2005) helps recover
desired solutions along the Pareto frontier.

Linear programming and ℓp regression. In the last several years, there has been a surge of
work in obtaining second-order, condition-free algorithms for linear programming and ℓp regression
(Bubeck et al., 2018; Lee & Sidford, 2019; Adil et al., 2019; Jambulapati et al., 2022). Observe
that ℓp regression is a special case of the problem we study in objective equation 4, which is re-
covered when all ni = 1, and ℓ∞ regression is captured by linear programming. Note that neither
of these problem families is expressive enough to capture the objectives we study. In general, to
achieve iteration complexities in the smaller of the two dimensions for these problems, it appears
that a geometric understanding of the solution space is required — these ideas were central to the
improvements obtained by Lee & Sidford (2019); Jambulapati et al. (2022) as well as our work.

Open problems. Our work raises several open questions. One limitation of Theorem 1 is that
its iteration complexity is not high-accuracy, meaning its dependence on ε is not polylog(1/ε).
Designing a high-accuracy solver under the same conditions as Theorem 2 with iteration complexity
Õ
(
poly(min {rank (A) ,m} , log

(
1
ε

)
)
)

remains an open problem.

A more ambitious general goal is to design algorithms for convex quadratic programs with the afore-
mentioned iteration complexity. This would generalize analogous results for linear programming
(Lee & Sidford, 2019). We view the current work as a first step towards this goal, as the objective
equation 2 is a structured convex quadratic program for which we get an iteration complexity inde-
pendent of m. It would also be interesting to consider other complexity measures beyond rank (A),
for instance, assumptions about the ground-truth labeling vector x⋆

i for each group’s data Si.

Finally, our results suggest that optimizing for “ℓp-interpolants” between non-robust and robust ob-
jectives may be computationally easier than optimizing for the robust objective alone. A more pre-
cise statistical characterization of how robustness and utility trade-off as p varies in collaborative,
fair, or multi-distributional learning settings would be valuable. Additionally, exploring interpola-
tions or solution concepts along the Pareto frontier of the m-dimensional multi-objective optimiza-
tion problem or other DRO notions (eg Wasserstein DRO (Blanchet et al., 2019; Cisneros-Velarde
et al., 2020)) could yield further insights.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

1.3 PAPER OUTLINE

In the remainder of this paper, we will outline the key details of our approach and provide a proof
outline for our theoretical results. In Section 2, we give proof sketches of our main results. In
Appendix A, we give an analysis of mirror descent under inexact subproblem solves – we will need
this in the proof of Theorem 2. In Appendix B, we modify an acceleration scheme due to Carmon
et al. (2022), which we will use to iterate calls to the proximal subproblem solver equation 8 for the
proof of Theorem 2. In Appendix C, we prove Theorem 1. In Appendix D, we prove Theorem 2.
Finally, in Appendix E, we prove some background results that appear in the main body, particularly
about block Lewis weights.

2 TECHNICAL OVERVIEW

In this section, we sketch our proofs for Theorem 1 and Theorem 2.

Notation. Here and in the rest of the paper, we ignore the dataset size normalization factors 1/
√
ni

as we can fold this into ASi
and bSi

. Additionally, let f(x) :=
∑m

i=1 ∥ASi
x− bSi

∥p2 if 2 ≤ p < ∞
and let f(x) := max1≤i≤m ∥ASi

x− bSi
∥2 if p = ∞. Note that in the 2 ≤ p < ∞ case, we let

f(x) be the pth power of the objective written in Theorem 2; this is to make future calculations
easier and makes a difference of only polynomial factors in p in the iteration complexity. Without
loss of generality (by rescaling), let OPT = 1, where OPT := f(x⋆). So, it is enough to get an
ε-additive optimal solution x̂. Also without loss of generality, let A be such that rank (A) = d.
For a positive semidefinite M ∈ Rd×d, denote ∥x∥M :=

√
x⊤Mx. As shorthand, for y ∈ Rn,

we will often refer to the norm ∥y∥Gp
:= (

∑m
i=1 ∥ySi

∥p2)
1/p for p ≥ 1, where with a slight abuse

of notation ySi denotes the coordinates of y indexed by Si. Finally, in an abuse of notation, for
symmetric matrices M, let M−1 denote the pseudoinverse of M.

Recall that many iterative methods for convex optimization can be seen as decomposing a com-
plex problem into a series of simpler subproblems (Nocedal & Wright, 2006). Our algorithms for
distributionally robust linear regression follow this pattern, where the simple subproblem resembles

O(q) := min
∥x−q∥M≤rq

f(x) , (6)

for some positive semidefinite M and for some ball radius rq which may depend on the query q.
Sub-routines like equation 6 are central to many trust-region methods (Conn et al., 2000; Nocedal
& Wright, 2006), and, importantly when f is the sum of a linear function and a self-concordant
barrier, interior point methods derived from the self-concordant barrier framework * (Nesterov &
Nemirovskii, 1994).

With such a subproblem structure in hand, three questions arise. (1) How do we solve the subprob-
lems efficiently? (2) How do we combine our subproblem solutions to arrive at our final answer?
(3) How do we choose the “local geometry” M to optimize the iteration complexity we get from the
previous two parts? We address these concerns in order in the following discussion.

2.1 SOLVING PROXIMAL SUBPROBLEMS

For this discussion, let M be any positive semidefinite matrix, as the arguments apply for any ge-
ometry M. It will be helpful to assume that ∥·∥M is a good approximation to our objective function
in the sense that for some distortion △ that is as close to 1 as possible, we have

for all x ∈ Rd : ∥x− b∥M ≤

(
m∑
i=1

∥ASi
x− bSi

∥p2

) 1
p

≤ △∥x− b∥M .

Here, we discuss how to solve problems of the form equation 6 for a fixed query q. Our strat-
egy follows two general steps. First, we establish some form of local stability for ∇2f(x)
within the ball we are solving in, i.e., we want ∇2f(x) to not change too much inside the ball{
x ∈ Rd : ∥x− q∥M ≤ rq

}
. Second, we use this to demonstrate that an appropriate second-order

algorithm exhibits a favorable convergence rate to an approximate solution for our subproblem. We
handle the p = ∞ and 2 ≤ p < ∞ cases separately below.

*In this case, the matrix M is given by the Hessian of the barrier function evaluated at the subproblem’s
solution.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

2.1.1 THE ROBUST CASE (p = ∞).
Unfortunately, since f is not even differentiable (it is the pointwise maximum of Euclidean norms,
each of which is also not differentiable), we cannot directly argue about the stability of ∇2f(x). We
therefore first need to find some surrogate objective f̃ so that:

1. The approximation error
∥∥∥f̃ − f

∥∥∥
∞

is small;

2. The surrogate objective f̃ is smooth in ∥·∥M in such a way that we can solve the proximal
subproblems fast.

To smoothen f(x), we use the family of objectives parameterized by β, δ

f̃β,δ(x) := β log

 m∑
i=1

exp


√
δ2 + ∥ASi

x− bSi
∥22 − δ

β

 . (7)

This can be seen as composing the softmax function with temperature β with “inner functions”√
δ2 + ∥ASix− bSi∥

2
2 − δ. It is straightforward to show that for all x ∈ Rd,

∣∣∣f̃β,δ(x)− f(x)
∣∣∣ ≤

β logm + δ. So, setting β = ε/4 logm and δ = ε/4, it is sufficient to optimize f̃β,δ up to ε/2
additive error to get an ε-additive suboptimal solution to our original objective. Furthermore, we
prove that f̃β,δ is O(1/β + 1/δ)-smooth in the norm ∥Ax∥G∞

:= max1≤i≤m ∥Ax∥2. Thus, if
∥·∥M is a good approximation to ∥Ax∥G∞

, we will get that f̃β,δ is also smooth in the norm ∥x∥M.

Next, Carmon et al. (2020) show that if f̃β,δ satisfies a higher-order smoothness condition called
quasi-self-concordance with respect to the norm ∥·∥M, then we can get the required Hessian stability
for a fixed rq = Θ(1/ε) (in particular, rq does not depend on q here). To clarify, we define quasi-
self-concordance as follows.

Definition 2.1 (Quasi-self-concordance, adapted from (Karimireddy et al., 2018, Appendix A)). Let
f : Rk → R. We say that f is ν-quasi-self-concordant in the norm ∥·∥ if for all vectors y ∈ Rk,
directions d ∈ Rk, and t ∈ R, we have∣∣∣∣∣

(
d

dt

)3

f(y + td)

∣∣∣∣∣ ≤ ν ∥d∥
(

d

dt

)2

f(y + td) .

Then, Carmon et al. (2020) shows how to leverage this Hessian stability to implement equation 6
with low linear-system-solve iteration complexity. However, previously, it was only shown that
the composition of the softmax function with linear functions is quasi-self-concordant. So, it was
unknown whether composing softmax with other functions could also be quasi-self-concordant.

To resolve this, we prove a much more general composition result, which to the best of our knowl-
edge was not known prior to this work and may be of independent interest. It essentially states that
if we compose the softmax function with any combination of “inner” functions that are quasi-self-
concordant, the resulting function is also quasi-self-concordant. For a more formal statement, see
Lemma C.3.

Lemma C.3 (Composing softmax with quasi-self-concordant functions). Let ∥·∥ be an arbitrary
norm and h1, . . . , hm be such that hi : Rd → R. Let h be the vector formed by concatenating the
results of h1, . . . , hm. Additionally, let h1, . . . , hm be such that for all 1 ≤ i ≤ m and for all
y,d ∈ Rm and t ∈ R,(

d

dt

)
hi(y + td) ≤ ∥d∥ (Lipschitzness)∣∣∣∣∣

(
d

dt

)3

hi(y + td)

∣∣∣∣∣ ≤ ν ∥d∥
(

d

dt

)2

hi(y + td) (quasi-self-concordance).

Then, for all y,d ∈ Rm and all t ∈ R, we have∣∣∣∣∣
(

d

dt

)3

β log

(
m∑
i=1

exp

(
hi(y + td)

β

))∣∣∣∣∣ ≤
(
16

β
+ ν

)
∥d∥

(
d

dt

)2

lseβ(h(y + td)).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Hence, to show the requisite Hessian stability, we use the following steps. We show that the “inner”

functions for equation 7,
√
δ2 + ∥ASi

x− bSi
∥22 − δ, are each O(1/δ)-quasi-self-concordant in

the norm ∥ASi
x∥2. So, we can apply our composition result Lemma C.3 to prove that f̃β,δ is

O(1/β + 1/δ)-quasi-self-concordant in the norm maxi∈[m] ∥ASi
x∥2. Again, assuming that ∥·∥M

is a good approximation to ∥·∥G∞
, we will get that f̃β,δ is quasi-self-concordant in ∥x∥M as well.

With these analytic inequalities in hand, we can finally apply the recipe given in Carmon et al. (2020)
and get our subproblem solver for the p = ∞ case.

2.1.2 THE INTERPOLATING CASE (2 ≤ p < ∞).
Instead of explicitly constraining rq like in the p = ∞ case, we regularize our movement from q in
the norm ∥·∥M. Specifically, the subproblem we solve for any query q is

argmin
x∈Rd

f(x) + epp ∥x− q∥pM . (8)

This is the natural generalization of the proximal problem that Jambulapati et al. (2022) use to get
their results for ℓp regression, and the outline of our solver for these subproblems is similar to what
Jambulapati et al. (2022) use for this special case (see their Section 4).

However, we go a step further and show how to obtain approximate stationary points to equation 8
instead of just getting a small objective value. This is because the acceleration scheme we use to
iterate subproblem solutions to get our final answer x̂ requires us to obtain an approximate stationary
point for equation 8. The main new technical tool we develop for this purpose is a form of strong
convexity for functions of the form ∥y∥p2 for y ∈ Rk for any k ≥ 1. See Lemma D.3.

Lemma D.3 (Strong convexity of ∥y∥p2). Let v ∈ Rk for k ≥ 1. For any △ ∈ Rk, we have

∥v +△∥p2 ≥ ∥v∥p2 + p ∥v∥p−2
2 ⟨v,△⟩+ 4

2p
∥△∥p2 .

With Lemma D.3, we can argue about the strong convexity of ∥x− q∥pM, which means that we can
convert an approximately optimal solution to equation 8 in function value to one that is approxi-
mately optimal in parameter space as well. We combine this with a local gradient Lipschitzness
property of the objective equation 8 to get our approximate stationary point, which is enough for our
purposes. The local gradient Lipschitzness property itself follows from a form of Hessian stability
that we show for the objective equation 8. See Lemma D.9.

Finally, to obtain an approximately optimal solution to equation 8 in function value, we again apply
the Hessian stability property to conclude that equation 8 is relatively smooth and relatively strongly
convex in a simpler reference function. We show how to solve optimization problems in this refer-
ence function up to an approximate optimality that is sufficient for the rest of our applications – this
requires a mild modification of the standard mirror descent analysis, and we do this in Appendix A.
Combining all of these building blocks gives us our subproblem solver for the 2 ≤ p < ∞ case.

2.2 ITERATING PROXIMAL CALLS

We now discuss the second item. Recall that we think of O(q) as answering a proximal problem for
the query q. It is not hard to show that under reasonable conditions on f and on the structure of the
subproblems, we can iterate calls to O(q) to optimize f (see, e.g., (Carmon et al., 2020, Appendix
A)). This conceptually simple approach will already give us guarantees of the form ∥x0 − x⋆∥M/ε
for the problems we study.

But we can do better. An acceleration framework originally due to Monteiro & Svaiter (2013) and
generalized/refined in subsequent works (Bubeck et al., 2019; Carmon et al., 2020; 2022) gives a
recipe to iterate calls of O(q) to optimize the original function f . From these, the iteration com-
plexity we need for an ε-additive solution with an initialization x0 and optimum x⋆ is roughly
(∥x0 − x⋆∥M/ε)

2/3 (see Theorem B.3 for a more formal statement). This cosmetically resembles
the rate we get in Theorem 1. To get something that looks like our rate for Theorem 2, we use our
new strong convexity lemma (Lemma D.3). With this, we can demonstrate that after a sufficient
number of iterations, we have ∥xt − x⋆∥M ≤ 0.5 ∥x0 − x⋆∥M. Therefore, repeating this argument
yields a high-accuracy solution, as required.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Interestingly, our algorithm for the 2 ≤ p < ∞ case employs a form of the accelerated scheme
developed in Carmon et al. (2022), which does not require solving an implicit equation for the query
point, thereby improving upon the results from Jambulapati et al. (2022) for ℓp regression. It would
be practically relevant to obtain this for the p = ∞ case (in Appendix B, we discuss a technical
challenge in obtaining this).

2.3 THE GEOMETRY OF THE PROXIMAL SUBPROBLEMS AND BLOCK LEWIS WEIGHTS

At this point, we have the tools we need to get rates of the form O
(
(∥x0 − x⋆∥M/ε)

2/3
)

for the

robust objective (Theorem 1) and of the form O
(
∥x0 − x⋆∥M

(p−2)/(3p−2)
)

for the interpolating
objective (Theorem 2). From this, we see that the rates depend on the geometry M that we impose
on our problem. Our goal in this section is to choose this geometry M.

Observe that when we solve equation 6, we are solving an optimization problem over the sublevel
sets {x : ∥x∥M ≤ rq} – these are ellipsoids. Now, consider choosing the ℓ2 geometry that best
approximates our loss function. Specifically, recall that earlier in the section, we stated that for some
distortion △ ≥ 1 that is as close to 1 as possible, we want

for all x ∈ Rd : ∥x− b∥M ≤

(
m∑
i=1

∥ASi
x− bSi

∥p2

) 1
p

≤ △∥x− b∥M .

To see what kinds of distortion guarantees we can hope for, let us see what happens when we choose
the most “obvious” geometry. By relating ℓm2 to ℓmp , we get(

m∑
i=1

∥ASix− bSi∥
2
2

) 1
2

≤

(
m∑
i=1

∥ASix− bSi∥
p
2

) 1
p

≤ m
1
2−

1
p

(
m∑
i=1

∥ASix− bSi∥
2
2

) 1
2

,

and notice that
(∑m

i=1 ∥ASi
x− bSi

∥22
)2

= ∥Ax− b∥2. Thus, setting M = A⊤A (which is

what we call the naïve geometry in Table 1) gives us our basic rate of m1/3ε−2/3 in the setting of
Theorem 1 and m(p−2)/(3p−2) in the setting of Theorem 2.

But, there exists an improvement over above naïve geometry. Note our loss function is a norm on
Rd – in particular, we can check that for y ∈ Rn, the functions ∥y∥Gp

= (
∑m

i=1 ∥ySi∥
p
2)

1/p for
1 ≤ p ≤ ∞ are norms. Now, recall John’s theorem, a fundamental result in high-dimensional
convex geometry.

Theorem 2.2 (John’s theorem, John (1948)). For any symmetric convex body K ⊂ Rd, let E(K)
denote the ellipsoid of maximum volume contained within K. Then, we have

E(K) ⊆ K ⊆
√
d · E(K) .

Moreover, the
√
d is worst-case optimal (e.g. let K be the unit ℓ∞ ball).

It is easy to see that sublevel sets of norms, i.e., sets of the form
{
x ∈ Rd : ∥x∥ ≤ 1

}
, are sym-

metric convex bodies. Hence, using John’s theorem, we see that for our normed losses, there exists
M that achieves distortion △ ≤

√
d. From this, it is easy to see that there exists M for which we

can guarantee ∥x0 − x⋆∥M ≲
√
d. Plugging this into the guarantees from the previous subsections,

we get that if we choose the M from John’s theorem, and then switch based on whether m ≤ d, we
get exactly the rates quoted in Theorem 1 and Theorem 2.

However, as written, this is only an existence result. To make this useful for us and actually find
M, we need an algorithm to calculate John’s ellipsoid for the level sets of our losses (or some other
ellipsoid that gets an even better approximation factor). To this end, a result of Manoj & Ovsiankin
(2025) gives us an efficient algorithm to find this ℓ2 geometry for the loss families we consider.

Theorem 2.3 (Combining Lemmas 5.6, 5.8, Equation (1.8) from Manoj & Ovsiankin (2025)). Let
p ≥ 2. There exists an algorithm that finds a positive diagonal matrix W ∈ Rn×n such that for all
x ∈ Rd and all c ∈ R, we have∥∥∥W 1

2−
1
p (Ax− cb)

∥∥∥
2

(2(rank (A) + 1))
1
2−

1
p

≤

(
m∑
i=1

∥ASi
x− cbSi

∥p2

) 1
p

≤
∥∥∥W 1

2−
1
p (Ax− cb)

∥∥∥
2

.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

The algorithm runs in O(logm) linear-system-solves in matrices of the form A⊤DA for positive
diagonal matrices D.

The diagonal entries of matrix W are called block Lewis weights. This is a generalization of Lewis
weights, and both objects have been used previously for various matrix approximation problems
(Bourgain et al., 1989; Musco et al., 2022; Jambulapati et al., 2023b;a; Manoj & Ovsiankin, 2025).
Furthermore, Lewis weights are central to improvements in the iteration complexities for linear
programming and vanilla ℓp regression (Lee & Sidford, 2019; Jambulapati et al., 2022). We go into
greater detail about block Lewis weights in Appendix E.

Additionally, notice that the distortion of O(rank (A)
1/2−1/p

) guaranteed by Theorem 2.3 is opti-
mal. To see this, let A ∈ Rn×d be such that for i ∈ [d], row ai = ei, where ei is the ith standard
basis vector. Then, for all d + 1 ≤ i ≤ n, let ai = 0. In words, A is the d-dimensional identity
matrix atop a large matrix of all 0s. It is easy to see that for any p, we have ∥Ax∥p = ∥x∥p, and the
best distortion we can get for relating ∥x∥p to any d-dimensional ℓ2 norm is d|1/2−1/p|.

With Theorem 2.3 and its near optimality in hand, we choose M = A⊤W1− 2
pA if rank (A) ≤ m

and M = A⊤A if rank (A) ≥ m (recall that in the latter case, we get a
√
m distortion for free

from relating ℓm2 to ℓm∞). Combining this with the results from the previous two subsections gives
us Theorem 1 and Theorem 2.

2.4 ALGORITHM FOR DISTRIBUTIONALLY ROBUST REGRESSION

In this section, we produce pseudocode of the algorithm that yields the guarantee of Theorem 1. See
Algorithm 1.

Algorithm 1 MinMaxRegression: optimizes equation 2 to (1 + ε)-multiplicative error
Require: Regression problems (AS1

, bS1
), . . . , (ASm

, bSm
), accuracy ε > 0

1: Using (Manoj & Ovsiankin, 2025, Algorithm 2) with input [A|b], find nonnegative diagonal W
and weights w1, . . . , wm such that for all j ∈ Si, W[j][j] = wi and for all x ∈ Rd and c ∈ R,

∥Ax− cb∥G∞
≤
∥∥∥W1/2Ax− cW1/2b

∥∥∥
2
≤
√
2(rank (A) + 1) ∥Ax− cb∥G∞

.

2: if
∑m

i=1 wi ≥ m then ▷ rank (A) + 1 ≤
∑m

i=1 wi ≤ 2(rank (A) + 1)
3: Reset W = In.
4: Let x0 =

(
A⊤WA

)−1
A⊤Wb. ▷ x0 := argmin

x∈Rd

∥∥W1/2Ax−W1/2b
∥∥
2
.

5: Let

f̃β,δ(x) := β log

 m∑
i=1

exp


√
δ2 + ∥ASi

x− bSi
∥22 − δ

β


where β = ε

4 logm and δ = ε
4 . ▷ A family of smoothenings of the objective.

6: Let f̂(x) := f̃ε/4 logm,ε/4(x) +
ε

1000min{rank(A),m}
∥∥W1/2A(x− x0)

∥∥2
2
.

7: Using (Carmon et al., 2020, Algorithm 3), implement a
(

C
min{rank(A),m} ,

C
ε

)
-ball optimization

oracle for f̂ , where C is a universal constant. ▷ Iteration complexity guaranteed by Lemma C.5
8: Using (Carmon et al., 2020, Algorithm 2), implement a 1

2 -MS oracle for f̂ .

9: Run (Carmon et al., 2020, Algorithm 1) for Õ
(

min{rank(A),m}1/3 log(d
ε)

ε2/3

)
iterations using the

MS oracle from the previous line and with initial point x0 and final point x̂.
10: return x̂

REFERENCES

Rediet Abebe, Solon Barocas, Jon Kleinberg, Karen Levy, Manish Raghavan, and David G Robin-
son. Roles for computing in social change. In Proceedings of the 2020 conference on fairness,

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

accountability, and transparency, pp. 252–260, 2020.

Jacob D Abernethy, Pranjal Awasthi, Matthäus Kleindessner, Jamie Morgenstern, Chris Russell,
and Jie Zhang. Active sampling for min-max fairness. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th In-
ternational Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pp. 53–65. PMLR, 07 2022. URL https://proceedings.mlr.press/v162/
abernethy22a.html.

Deeksha Adil, Rasmus Kyng, Richard Peng, and Sushant Sachdeva. Iterative Refinement for ℓp-
norm Regression, pp. 1405–1424. 2019. doi: 10.1137/1.9781611975482.86. URL https:
//epubs.siam.org/doi/abs/10.1137/1.9781611975482.86.

Deeksha Adil, Shunhua Jiang, and Rasmus Kyng. Acceleration meets inverse maintenance: Faster
ℓ∞-regression, 2024. URL https://arxiv.org/abs/2409.20030.

Alekh Agarwal, Miroslav Dudík, and Zhiwei Steven Wu. Fair regression: Quantitative definitions
and reduction-based algorithms. In International Conference on Machine Learning, pp. 120–129.
PMLR, 2019.

Arash Asadpour, Rad Niazadeh, Amin Saberi, and Ali Shameli. Sequential submodular maximiza-
tion and applications to ranking an assortment of products. Operations Research, 2022.

Santiago Balseiro, Haihao Lu, and Vahab Mirrokni. Regularized online allocation problems: Fair-
ness and beyond. In International Conference on Machine Learning, pp. 630–639. PMLR, 2021.

Solon Barocas and Andrew D Selbst. Big data’s disparate impact. Calif. L. Rev., 104:671, 2016.

Aharon Ben-Tal, Dick Den Hertog, Anja De Waegenaere, Bertrand Melenberg, and Gijs Rennen.
Robust solutions of optimization problems affected by uncertain probabilities. Management Sci-
ence, 59(2):341–357, 2013.

Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth. Fairness in criminal
justice risk assessments: The state of the art. Sociological Methods & Research, 50(1):3–44,
2021.

Dimitris Bertsimas, Vivek F Farias, and Nikolaos Trichakis. The price of fairness. Operations
research, 59(1):17–31, 2011.

Dimitris Bertsimas, Vivek F Farias, and Nikolaos Trichakis. On the efficiency-fairness trade-off.
Management Science, 58(12):2234–2250, 2012.

Asia J Biega, Krishna P Gummadi, and Gerhard Weikum. Equity of attention: Amortizing individual
fairness in rankings. In The 41st international acm sigir conference on research & development
in information retrieval, pp. 405–414, 2018.

Jose Blanchet, Yang Kang, and Karthyek Murthy. Robust wasserstein profile inference and applica-
tions to machine learning. Journal of Applied Probability, 56(3):830–857, 2019.

Avrim Blum, Nika Haghtalab, Ariel D Procaccia, and Mingda Qiao. Collaborative pac learning.
Advances in Neural Information Processing Systems, 30, 2017.

Jean Bourgain, Joram Lindenstrauss, and Vitali Milman. Approximation of zonoids by zonotopes.
1989.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, and Yuanzhi Li. An homotopy method for lp
regression provably beyond self-concordance and in input-sparsity time. In Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, pp. 1130–1137,
New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450355599.

Sébastien Bubeck, Qijia Jiang, Yin Tat Lee, Yuanzhi Li, and Aaron Sidford. Complexity of highly
parallel non-smooth convex optimization. Curran Associates Inc., Red Hook, NY, USA, 2019.

11

https://proceedings.mlr.press/v162/abernethy22a.html
https://proceedings.mlr.press/v162/abernethy22a.html
https://epubs.siam.org/doi/abs/10.1137/1.9781611975482.86
https://epubs.siam.org/doi/abs/10.1137/1.9781611975482.86
https://arxiv.org/abs/2409.20030

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Brian Bullins, Kshitij Patel, Ohad Shamir, Nathan Srebro, and Blake E Woodworth. A stochastic
newton algorithm for distributed convex optimization. Advances in Neural Information Process-
ing Systems, 34:26818–26830, 2021.

Toon Calders, Faisal Kamiran, and Mykola Pechenizkiy. Building classifiers with independency
constraints. In 2009 IEEE international conference on data mining workshops, pp. 13–18. IEEE,
2009.

Yair Carmon, Arun Jambulapati, Qijia Jiang, Yujia Jin, Yin Tat Lee, Aaron Sidford, and Kevin
Tian. Acceleration with a ball optimization oracle. In Proceedings of the 34th International
Conference on Neural Information Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020.
Curran Associates Inc. ISBN 9781713829546.

Yair Carmon, Danielle Hausler, Arun Jambulapati, Yujia Jin, and Aaron Sidford. Optimal and
adaptive monteiro-svaiter acceleration. In Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates
Inc. ISBN 9781713871088.

Jiecao Chen, Qin Zhang, and Yuan Zhou. Tight bounds for collaborative pac learning via multi-
plicative weights. Advances in neural information processing systems, 31, 2018.

Qinyi Chen, Negin Golrezaei, Fransisca Susan, and Edy Baskoro. Fair assortment planning. arXiv
preprint arXiv:2208.07341, 2022.

Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvtiskii. Matroids, matchings,
and fairness. In The 22nd International Conference on Artificial Intelligence and Statistics, pp.
2212–2220. PMLR, 2019.

Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism
prediction instruments. big data, 5 (2), 153-163, 2016.

Alexandra Chouldechova and Aaron Roth. The frontiers of fairness in machine learning. arXiv
preprint arXiv:1810.08810, 2018.

Pedro Cisneros-Velarde, Alexander Petersen, and Sang-Yun Oh. Distributionally robust formulation
and model selection for the graphical lasso. In Silvia Chiappa and Roberto Calandra (eds.),
Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics,
volume 108 of Proceedings of Machine Learning Research, pp. 756–765. PMLR, 08 2020.

Vincent Cohen-Addad, Surya Teja Gavva, CS Karthik, Claire Mathieu, and Namrata. Fairness of
linear regression in decision making. International journal of data science and analytics, 18(3):
337–347, 2024.

Andrew R Conn, Nicholas IM Gould, and Philippe L Toint. Trust region methods. SIAM, 2000.

Sam Corbett-Davies, Johann D Gaebler, Hamed Nilforoshan, Ravi Shroff, and Sharad Goel. The
measure and mismeasure of fairness. The Journal of Machine Learning Research, 24(1):14730–
14846, 2023.

Big Data. Seizing opportunities, preserving values. The White House Report Washington, 2014.

Kate Donahue and Jon Kleinberg. Fairness and utilization in allocating resources with uncertain
demand. In Proceedings of the 2020 conference on fairness, accountability, and transparency,
pp. 658–668, 2020.

J Duchi, P Glynn, and Hongseok Namkoong. Statistics of robust optimization: A generalized em-
pirical likelihood approach. arxiv. Machine Learning, 2016.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness
through awareness. In Proceedings of the 3rd innovations in theoretical computer science confer-
ence, pp. 214–226, 2012.

Matthias Ehrgott. Multicriteria optimization, volume 491. Springer Science & Business Media,
2005.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Davide Giraudo. Bound the variance of the product of two random varables. Mathematics Stack
Exchange, 11 2014. URL https://math.stackexchange.com/q/1044864.

Naman Goel, Mohammad Yaghini, and Boi Faltings. Non-discriminatory machine learning through
convex fairness criteria. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and
Society, pp. 116–116, 2018.

Negin Golrezaei, Rad Niazadeh, Kumar Kshitij Patel, and Fransisca Susan. Online combinatorial
optimization with group fairness constraints. Available at SSRN 4824251, 2024.

Swati Gupta, Jai Moondra, and Mohit Singh. Socially fair and hierarchical facility location prob-
lems. arXiv preprint arXiv:2211.14873, 2022.

Nika Haghtalab, Michael Jordan, and Eric Zhao. On-demand sampling: Learning optimally from
multiple distributions. Advances in Neural Information Processing Systems, 35:406–419, 2022.

Steve Hanneke and Samory Kpotufe. On the value of target data in transfer learning. Advances in
Neural Information Processing Systems, 32, 2019.

Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. Advances
in neural information processing systems, 29, 2016.

John N Hooker and H Paul Williams. Combining equity and utilitarianism in a mathematical pro-
gramming model. Management Science, 58(9):1682–1693, 2012.

Arun Jambulapati, Yang P Liu, and Aaron Sidford. Improved iteration complexities for overcon-
strained p-norm regression. In Proceedings of the 54th Annual ACM SIGACT Symposium on
Theory of Computing, pp. 529–542, 2022.

Arun Jambulapati, James R Lee, Yang P Liu, and Aaron Sidford. Sparsifying sums of norms. In
2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pp. 1953–
1962. IEEE, 2023a.

Arun Jambulapati, Yang P Liu, and Aaron Sidford. Chaining, group leverage score overestimates,
and fast spectral hypergraph sparsification. In Proceedings of the 55th Annual ACM Symposium
on Theory of Computing, pp. 196–206, 2023b.

Fritz John. Extremum problems with inequalities as subsidiary conditions. In Studies and Essays
Presented to R. Courant on his 60th Birthday, pp. 187–204. Interscience Publishers, Inc, 1948.

Sai Praneeth Karimireddy, Sebastian U. Stich, and Martin Jaggi. Global linear convergence of new-
ton’s method without strong-convexity or lipschitz gradients, 2018. URL https://arxiv.
org/abs/1806.00413.

Maximilian Kasy and Rediet Abebe. Fairness, equality, and power in algorithmic decision-making.
In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pp.
576–586, 2021.

Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. Preventing fairness gerryman-
dering: Auditing and learning for subgroup fairness. In International conference on machine
learning, pp. 2564–2572. PMLR, 2018.

Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. An empirical study of rich sub-
group fairness for machine learning. In Proceedings of the conference on fairness, accountability,
and transparency, pp. 100–109, 2019.

Jon Kleinberg, Jens Ludwig, Sendhil Mullainathan, and Ashesh Rambachan. Algorithmic fairness.
In Aea papers and proceedings, volume 108, pp. 22–27, 2018.

Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness. Advances
in neural information processing systems, 30, 2017.

Yin Tat Lee and Aaron Sidford. Solving linear programs with sqrt(rank) linear system solves, 2019.

13

https://math.stackexchange.com/q/1044864
https://arxiv.org/abs/1806.00413
https://arxiv.org/abs/1806.00413

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Daniel Levy, Yair Carmon, John C Duchi, and Aaron Sidford. Large-scale methods for distribution-
ally robust optimization. Advances in Neural Information Processing Systems, 33:8847–8860,
2020.

Michele Loi, Anders Herlitz, and Hoda Heidari. A philosophical theory of fairness for prediction-
based decisions. Available at SSRN 3450300, 2019.

Haihao Lu, Robert M Freund, and Yurii Nesterov. Relatively smooth convex optimization by first-
order methods, and applications. SIAM Journal on Optimization, 28(1):333–354, 2018.

Will Ma, Pan Xu, and Yifan Xu. Fairness maximization among offline agents in online-matching
markets. ACM Transactions on Economics and Computation, 10(4):1–27, 2023.

Naren Sarayu Manoj and Max Ovsiankin. The Change-of-Measure Method, Block Lewis Weights,
and Approximating Matrix Block Norms. 2025.

Vahideh Manshadi, Rad Niazadeh, and Scott Rodilitz. Fair dynamic rationing. In Proceedings of
the 22nd ACM Conference on Economics and Computation, pp. 694–695, 2021.

HB McMahan, E Moore, and D Ramage. S. hampsonet al.,“communication-efficient learning of
deep networks from decentralizeddata,”. arXiv preprint arXiv:1602.05629, 2016.

Kaisa Miettinen. Nonlinear multiobjective optimization, volume 12. Springer Science & Business
Media, 1999.

Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning. In Interna-
tional conference on machine learning, pp. 4615–4625. PMLR, 2019.

Renato D. C. Monteiro and B. F. Svaiter. An accelerated hybrid proximal extragradient method
for convex optimization and its implications to second-order methods. SIAM Journal on Opti-
mization, 23(2):1092–1125, 2013. doi: 10.1137/110833786. URL https://doi.org/10.
1137/110833786.

Justin Mulvany and Ramandeep S Randhawa. Fair scheduling of heterogeneous customer popula-
tions. Available at SSRN 3803016, 2021.

Cameron Musco, Christopher Musco, David P Woodruff, and Taisuke Yasuda. Active linear re-
gression for ℓp norms and beyond. In 2022 IEEE 63rd Annual Symposium on Foundations of
Computer Science (FOCS), pp. 744–753. IEEE, 2022.

Y. Nesterov and A. Nemirovskii. Interior Point Polynomial Algorithms in Convex Programming.
SIAM studies in applied and numerical mathematics: Society for Industrial and Applied Mathe-
matics. Society for Industrial and Applied Mathematics, 1994. ISBN 9780898715156.

Huy Nguyen and Lydia Zakynthinou. Improved algorithms for collaborative pac learning. Advances
in Neural Information Processing Systems, 31, 2018.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 2006.

Dmitrii Ostrovskii and Francis Bach. Finite-sample analysis of m-estimators using self-
concordance, 2020. URL https://arxiv.org/abs/1810.06838.

Kumar Kshitij Patel, Margalit Glasgow, Ali Zindari, Lingxiao Wang, Sebastian U Stich, Ziheng
Cheng, Nirmit Joshi, and Nathan Srebro. The limits and potentials of local sgd for distributed het-
erogeneous learning with intermittent communication. arXiv preprint arXiv:2405.11667, 2024.

Aida Rahmattalabi, Phebe Vayanos, Anthony Fulginiti, Eric Rice, Bryan Wilder, Amulya Yadav,
and Milind Tambe. Exploring algorithmic fairness in robust graph covering problems. Advances
in neural information processing systems, 32, 2019.

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
neural networks for group shifts: On the importance of regularization for worst-case generaliza-
tion. arXiv preprint arXiv:1911.08731, 2019.

14

https://doi.org/10.1137/110833786
https://doi.org/10.1137/110833786
https://arxiv.org/abs/1810.06838

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Andrew D Selbst, Danah Boyd, Sorelle A Friedler, Suresh Venkatasubramanian, and Janet Vertesi.
Fairness and abstraction in sociotechnical systems. In Proceedings of the conference on fairness,
accountability, and transparency, pp. 59–68, 2019.

Ashudeep Singh and Thorsten Joachims. Fairness of exposure in rankings. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
2219–2228, 2018.

Ashudeep Singh and Thorsten Joachims. Policy learning for fairness in ranking. Advances in neural
information processing systems, 32, 2019.

Tasuku Soma, Khashayar Gatmiry, and Stefanie Jegelka. Optimal algorithms for group distribution-
ally robust optimization and beyond. arXiv preprint arXiv:2212.13669, 2022.

Zhao Song, Ali Vakilian, David Woodruff, and Samson Zhou. On socially fair regression and low-
rank approximation, 2024. URL https://openreview.net/forum?id=KJHUYWviZ6.

Suvrit Sra, Adams Wei Yu, Mu Li, and Alex Smola. Adadelay: Delay adaptive distributed stochastic
optimization. In Arthur Gretton and Christian C. Robert (eds.), Proceedings of the 19th Interna-
tional Conference on Artificial Intelligence and Statistics, volume 51 of Proceedings of Machine
Learning Research, pp. 957–965, Cadiz, Spain, 05 2016. PMLR.

Berk Ustun, Yang Liu, and David Parkes. Fairness without harm: Decoupled classifiers with pref-
erence guarantees. In International Conference on Machine Learning, pp. 6373–6382. PMLR,
2019.

Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media,
2013.

Michael Veale, Max Van Kleek, and Reuben Binns. Fairness and accountability design needs for
algorithmic support in high-stakes public sector decision-making. In Proceedings of the 2018 chi
conference on human factors in computing systems, pp. 1–14, 2018.

Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins, Brendan Mcma-
han, Ohad Shamir, and Nathan Srebro. Is local sgd better than minibatch sgd? In International
Conference on Machine Learning, pp. 10334–10343. PMLR, 2020.

Lijun Zhang, Peng Zhao, Zhen-Hua Zhuang, Tianbao Yang, and Zhi-Hua Zhou. Stochastic approxi-
mation approaches to group distributionally robust optimization. Advances in Neural Information
Processing Systems, 36, 2024a.

Zihan Zhang, Wenhao Zhan, Yuxin Chen, Simon S Du, and Jason D Lee. Optimal multi-distribution
learning. In The Thirty Seventh Annual Conference on Learning Theory, pp. 5220–5223. PMLR,
2024b.

15

https://openreview.net/forum?id=KJHUYWviZ6

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A MIRROR DESCENT WITH INEXACT UPDATES

Notation warning. This section is meant to be a self-contained, standalone analysis of mirror
descent under inexact updates. The notation is chosen to be consistent with most material we could
find on mirror descent and therefore conflicts with the notation used in the rest of the paper.

In this section, we give an analysis of unconstrained mirror descent when each Bregman proximal
problem is solved only approximately (Algorithm 2). Although we expect that this is a standard fact
about mirror descent, we could not find an appropriate reference. Hence, we produce it here.

Algorithm 2 ApproximateMirrorDescent: Implements mirror descent to optimize convex and dif-
ferentiable f given L-relative smoothness and µ-relative strong convexity in the reference h when
we may not be able to solve each proximal problem exactly.
Require: Initial point x0, iteration count T .

1: Define
Dh(x,y) := h(x)− h(y)− ⟨∇h(y),x− y⟩

x⋆ := argmin
x∈Rd

f(x) .

2: for i = 1, . . . , T do
3: x⋆

i = argmin
x̃∈Rd

f(xi−1) + ⟨∇f(xi−1), x̃− xi−1⟩+ LDh(x̃,xi−1) ▷ We may only be able

to approximate x⋆
i – see the next line.

4: Let xi be an approximate stationary point for the above objective.
return argmin

0≤i≤T
f(xi)

In Algorithm 2, we assume that the function f is µ-relatively strongly convex and L-smooth in a
reference function h. This means that for all x,y ∈ Rd, we have

µDh(x,y) ≤ f(x)− f(y)− ⟨∇f(y),x− y⟩ ≤ LDh(x,y).

Using (Lu et al., 2018, Proposition 1.1), when f is twice-differentiable, this condition is equivalent
to asking for all x ∈ Rd,

µ∇2h(x) ⪯ ∇2f(x) ⪯ L∇2h(x).

We are now ready to state the performance guarantee of Algorithm 2. See Theorem A.1.

Theorem A.1. Let index j be the index output by Algorithm 2. Let △i be defined such that

△i := ∇f(xi−1) + L (∇h(xi)−∇h(xi−1)) .

Then, we have

f(xj)− f(x⋆) ≤ L
(
1− µ

L

)T
Dh(x

⋆,x0) + max
1≤i≤n

⟨△i,xi − x⋆⟩ .

To prove Theorem A.1, we begin with a few standard facts about the mirror descent iterations.

Lemma A.2. Let y ∈ Rd be arbitrary. We have

⟨∇f(xi−1),xi − y⟩ = L (Dh(y,xi−1)−Dh(y,xi)−Dh(xi,xi−1)) + ⟨△i,xi − y⟩ .

Proof of Lemma A.2. By the three point identity (see, e.g., (Sra et al., 2016, Equation (A.9))), we
have

Dh(y,xi−1)−Dh(y,xi)−Dh(xi,xi−1) = −⟨∇h(xi)−∇h(xi−1),xi − y⟩

=
1

L
⟨∇f(xi−1)−△i,xi − y⟩ ,

completing the proof of Lemma A.2.

Lemma A.3 (Mirror descent lemma under approximate stationary point updates). Let y ∈ Rd be
arbitrary. For every iteration i, we have

f(xi)− f(y) ≤ (L− µ)Dh(y,xi−1)− LDh(y,xi) + ⟨△i,xi − y⟩ .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof of Lemma A.3. The definition of µ-relative strong convexity tells us that

f(xi−1)− f(y) ≤ ⟨∇f(xi−1),xi−1 − y⟩ − µDh(y,xi−1).

We now write

f(xi)− f(y) ≤ f(xi−1)− f(y) + ⟨∇f(xi−1),xi − xi−1⟩+ LDh(xi,xi−1) (L-RS)
≤ ⟨∇f(xi−1),xi − y⟩ − µDh(y,xi−1) + LDh(xi,xi−1) (µ-RSC)
≤ (L− µ)Dh(y,xi−1)− LDh(y,xi) + ⟨△i,xi − y⟩ , (Lemma A.2)

completing the proof of Lemma A.3.

We now have the tools to complete the proof of Theorem A.1.

Proof of Theorem A.1. Let Ei := f(xi) − f(x⋆) − ⟨△i,xi − x⋆⟩. Substituting y = x⋆ and rear-
ranging the conclusion of Lemma A.3 gives

Ei ≤ (L− µ)Dh(x
⋆,xi−1)− LDh(x

⋆,xi).

We multiply both sides by
(

L
L−µ

)i
and write(

L

L− µ

)i

Ei ≤
Li

(L− µ)i−1
Dh(x

⋆,xi−1)−
Li+1

(L− µ)i
Dh(x

⋆,xi).

Adding over all T iterations yields

T∑
i=1

(
L

L− µ

)i

Ei ≤ LDh(x
⋆,x0)−

(
L

L− µ

)T

LDh(x
⋆,xT) ≤ LDh(x

⋆,x0).

Expanding out the definition of Ei and rearranging gives

T∑
i=1

(
L

L− µ

)i

(f(xi)− f(x⋆)) ≤ LDh(x
⋆,x0) +

T∑
i=1

(
L

L− µ

)i

⟨△i,xi − x⋆⟩ .

By the geometric series summation formula, we define and have

CT :=

T∑
i=1

(
L

L− µ

)i

=
L

µ

((
1 +

µ

L− µ

)T

− 1

)
.

Let j be the index that Algorithm 2 returns. It is easy to check that

T∑
i=1

(
L

L− µ

)i

(f(xi)− f(x⋆)) ≥ CT (f(xj)− f(x⋆))

and
T∑

i=1

(
L

L− µ

)i

⟨△i,xi − x⋆⟩ ≤ CT max
1≤i≤n

⟨△i,xi − x⋆⟩ .

This gives us

f(xj)− f(x⋆) ≤ L

CT
Dh(x

⋆,x0) + max
1≤i≤n

⟨△i,xi − x⋆⟩ .

Finally, notice that

L

CT
=

µ(
1 + µ

L−µ

)T
− 1

≤ L
(
1− µ

L

)T
.

Combining everything completes the proof of Theorem A.1.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Finally, we add another useful lemma that quantifies the descent, if any, in the objective value
between iterations.

Lemma A.4. For every iteration i, we have

f(xi)− f(xi−1) ≤ −LDh(xi−1,xi) + ⟨△i,xi − xi−1⟩ .

In particular, if ⟨△i,xi − xi−1⟩ ≤ LDh(xi−1,xi), then iteration i is a descent step.

Proof of Lemma A.4. We substitute y = xi−1 in the conclusion of Lemma A.3. This gives

f(xi)− f(xi−1) ≤ −LDh(xi−1,xi) + ⟨△i,xi − xi−1⟩ ,

completing the proof of Lemma A.4.

B OPTIMAL MS ACCELERATION UNDER CUSTOM EUCLIDEAN GEOMETRY

In this section, we adapt the bisection-free Monteiro-Svaiter acceleration framework developed in
Carmon et al. (2022) to handle custom Euclidean geometries. The object of interest here is Algo-
rithm 3, which we will call with different choices of the oracle OMS for our algorithms.

Algorithm 3 OptimalMSAcceleration: optimizes function f given MS oracle OMS.
Require: Initial x0, function f , oracle OMS, initial λ′

0, multiplicative adjustment factor α > 1,
iteration count T

1: Set v0 = x0, A0 = 0, A′
0 = 0.

2: Set x̃1, λ1 = O(x0;λ
′
0) and λ′

1 = λ1.
3: for t = 0, . . . , T do
4: a′t+1 = 1

2λ′
t+1

(
1 +

√
1 + 4λ′

t+1At

)
5: A′

t+1 = At + a′t+1

6: qt =
At

A′
t+1

xt +
a′
t+1

A′
t+1

vt

7: if t > 0 then x̃t+1, λt+1 = OMS(qt;λ
′
t+1)

8: γt+1 = min
{
1,

λ′
t+1

λt+1

}
9: at+1 = γt+1a

′
t+1 and At+1 = At + at+1 ▷ At+1 = A′

t+1 − (1− γt+1)a
′
t+1

10: xt+1 = (1−γt+1)At

At+1
xt +

γt+1A
′
t+1

At+1
x̃t+1

11: if γt+1 = 1 then
12: λ′

t+2 = 1
αλ

′
t+1

13: else
14: λ′

t+1 = αλ′
t+1

15: vt+1 = vt − at+1M
−1∇f(x̃t+1)

In order to state the performance guarantee of Algorithm 3, we require the notions of an MS oracle
and a movement bound. See Definition B.1 and Definition B.2.

Definition B.1 (MS oracle, generalization of (Carmon et al., 2022, Definition 1)). Let M ∈ Rd×d

be a positive semidefinite matrix. An oracle O : Rd × R≥0 → Rd × R≥0 is a σ-MS oracle for
function f : Rd → R if for every q ∈ Rd and λ′ > 0, the points (x, λ) = O(q;λ′) satisfy∥∥∥∥x− q +

1

λ
M−1∇f(x)

∥∥∥∥
M

≤ σ ∥x− q∥M .

Definition B.2 (Movement bound (Carmon et al., 2022, Definition 2)). For a norm ∥·∥M induced
by positive semidefinite M ∈ Rd×d, numbers s ≥ 1, c, λ > 0, and x,y ∈ Rd, we say that (x,y, λ)
satisfies a (s, c)-movement bound if

∥x− y∥M ≥

{(
λ
cs

) 1
s−1 if s < ∞

1
c if s = ∞

.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

With these in hand, we are ready to state the convergence guarantee we get with Algorithm 3. See
Theorem B.3.

Theorem B.3 (Modification of (Carmon et al., 2022, Theorem 1)). Let f : Rd → R be convex and
differentiable. Consider running Algorithm 3 with parameters α = exp

(
3− 2

s+1

)
and a σ-MS

oracle with 0 ≤ σ < 0.99 (Definition B.1). Let s ≥ 1 and c > 0 and suppose that for all t such that
λt > λ′

t or t = 1, the iterates (x̃t, qt−1, λt) satisfy an (s, c)-movement bound (Definition B.2). Let
C be a universal constant. For any iteration count T satisfying

T ≥ C

s
(

cs∥x0−x⋆∥s+1
M

ε

) 2
3s+1

if s < ∞

(c ∥x0 − x⋆∥M)
2/3

log
(

λ1∥x0−x⋆∥2
M

ε

)
if s = ∞

,

we have

f(xT)− f(x⋆) ≤ ε.

The proof of Theorem B.3 follows the same recipe as the proof of (Carmon et al., 2022, Theorem
1). The only modification needed is that stated in Lemma B.4.

Lemma B.4 (Replaces (Carmon et al., 2022, Proposition 1)). In the context of Theorem B.3, let
Et := f(xt) − f(x⋆), Dt := 1

2 ∥vt − x⋆∥2M , Nt+1 := 1
2 ∥x̃t+1 − qt∥2M. Then, for all t ≥ 0, we

have

At+1Et+1 +Dt+1 + (1− σ2)A′
t+1 min

{
λt+1, λ

′
t+1

}
Nt+1 ≤ AtEt +Dt.

Consequently, for all T ≥ 1,
√
AT ≥ 1

2

∑
t∈S≤

T

1√
λ′
t

,

ET ≤ D0

AT
and (1− σ2)

∑
t∈S≥

T

Atλ
′
tNt ≤ D0 −ATET .

Proof of Lemma B.4. This proof is a straightforward modification of (Carmon et al., 2022, Proposi-
tion 1). We have

Dt+1 =
1

2
∥vt+1 − x⋆∥2M =

1

2

∥∥vt − at+1M
−1∇f(x̃t+1)− x⋆

∥∥2
M

= Dt + at+1

〈
M−1∇f(x̃t+1),x

⋆ − vt

〉
M

+
a2t+1

2

∥∥M−1∇f(x̃t+1)
∥∥2
M

.

By definition of qt and A′
t+1 = At + a′t+1, we have

a′t+1vt = A′
t+1qt −Atxt = a′t+1x̃t+1 +A′

t+1 (qt − x̃t+1)−At (xt − x̃t+1) .

Subtracting a′t+1x
⋆ and taking the inner product with M−1∇f(x̃t+1) gives

a′t+1

〈
M−1∇f(x̃t+1),x

⋆ − vt

〉
M

=
〈
M−1∇f(x̃t+1), a

′
t+1(x

⋆ − x̃t+1) +A′
t+1 (x̃t+1 − qt) +At (xt − x̃t+1)

〉
M

≤ a′t+1 (f(x
⋆)− f(x̃t+1)) +A′

t+1

〈
M−1∇f(x̃t+1), x̃t+1 − qt

〉
M

+At (f(xt)− f(x̃t+1))

≤ AtEt −A′
t+1 (f(x̃t+1)− f(x⋆)) +A′

t+1

〈
M−1∇f(x̃t+1), x̃t+1 − qt

〉
M

.

Rearranging gives

A′
t+1 (f(x̃t+1)− f(x⋆)) ≤ AtEt + a′t+1

〈
M−1∇f(x̃t+1),vt − x⋆

〉
M

+A′
t+1

〈
M−1∇f(x̃t+1), x̃t+1 − qt

〉
M

.

Next, recall that by Definition B.1, we have∥∥M−1∇f(x̃t+1) + λt+1 (x̃t+1 − qt)
∥∥2
M

≤ λ2
t+1σ

2 ∥x̃t+1 − qt∥2M .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

We use this to write
λt+1

〈
M−1∇f(x̃t+1), x̃t+1 − qt

〉
M

=
1

2

∥∥M−1∇f(x̃t+1) + λt+1(x̃t+1 − qt)
∥∥2
M

− 1

2

∥∥M−1∇f(x̃t+1)
∥∥2
M

−
λ2
t+1

2
∥x̃t+1 − qt∥2M

≤ −λ2
t+1(1− σ2)Nt+1 −

1

2

∥∥M−1∇f(x̃t+1)
∥∥2
M

,

from which we conclude〈
M−1∇f(x̃t+1), x̃t+1 − qt

〉
M

≤ −λt+1(1− σ2)Nt+1 −
1

2λt+1

∥∥M−1∇f(x̃t+1)
∥∥2
M

.

Substituting back gives
A′

t+1 (f(x̃t+1)− f(x⋆)) ≤ AtEt + a′t+1

〈
M−1∇f(x̃t+1),vt − x⋆

〉
M

+A′
t+1

〈
M−1∇f(x̃t+1), x̃t+1 − qt

〉
M

≤ AtEt + a′t+1

〈
M−1∇f(x̃t+1),vt − x⋆

〉
M

−A′
t+1λt+1(1− σ2)Nt+1 −

A′
t+1

2λt+1

∥∥M−1∇f(x̃t+1)
∥∥2
M

.

Next, recall that γt+1a
′
t+1 = at+1 and γt+1λt+1 = min

{
λt+1, λ

′
t+1

}
, by construction. Let λ̂t+1 :=

min
{
λt+1, λ

′
t+1

}
We multiply both sides by γt+1 and conclude

γt+1A
′
t+1 (f(x̃t+1)− f(x⋆)) ≤ γt+1AtEt + at+1

〈
M−1∇f(x̃t+1),vt − x⋆

〉
M

−A′
t+1λ̂t+1(1− σ2)Nt+1 −

γt+1A
′
t+1

2λt+1

∥∥M−1∇f(x̃t+1)
∥∥2
M

.

Now, by convexity of f and from the definition of xt+1, we have

f(xt+1)− f(x⋆) ≤ (1− γt+1)At

At+1
(f(xt)− f(x⋆)) +

γt+1A
′
t+1

At+1
(f(x̃t+1)− f(x⋆)) .

Recall the definition of Et, multiply both sides by At+1, apply our bound on
γt+1A

′
t+1 (f(x̃t+1)− f(x⋆)), and we get

At+1Et+1 ≤ (1− γt+1)AtEt + γt+1A
′
t+1 (f(x̃t+1)− f(x⋆))

≤ AtEt + at+1

〈
M−1∇f(x̃t+1),vt − x⋆

〉
M

−A′
t+1λ̂t+1(1− σ2)Nt+1 −

γt+1A
′
t+1

2λt+1

∥∥M−1∇f(x̃t+1)
∥∥2
M

After shifting terms around, we see that it remains to show

at+1

〈
M−1∇f(x̃t+1),vt − x⋆

〉
M

−
γt+1A

′
t+1

2λt+1

∥∥M−1∇f(x̃t+1)
∥∥2
M

?
≤ Dt −Dt+1.

In fact, by the choice of a′t+1 and the definition of A′
t+1, we have

λ′
t+1(a

′
t+1)

2 = a′t+1 +At = A′
t+1.

Multiply both sides by γ2
t+1/(2λ

′
t+1) and we get

a2t+1

2
=

γ2
t+1A

′
t+1

2λ′
t+1

=
min

{
1,

λ′
t+1

λt+1

}
γt+1A

′
t+1

2λ′
t+1

≤
γt+1A

′
t+1

2λt+1
.

We recycle an earlier computation and know that

Dt −Dt+1 = at+1

〈
M−1∇f(x̃t+1),vt − x⋆

〉
M

−
a2t+1

2

∥∥M−1∇f(x̃t+1)
∥∥2
M

≥ at+1

〈
M−1∇f(x̃t+1),vt − x⋆

〉
M

−
γt+1A

′
t+1

2λt+1

∥∥M−1∇f(x̃t+1)
∥∥2
M

,

which completes the proof of the potential decrease.

The remaining statements follow as written in (Carmon et al., 2022, Proof of Proposition 1), and we
conclude the proof of Lemma B.4.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Now that we have shown Lemma B.4, we refer the reader to (Carmon et al., 2022, Appendix A) for
the proof of Theorem B.3, as it now follows exactly as written there.

We also give additional bounds on the movement of the iterates in ∥·∥M, which is a straightforward
adaptation of (Carmon et al., 2020, Lemma 31) to the improved framework from Carmon et al.
(2022).

Lemma B.5. For all t ≥ 1, we have both

∥vt − x⋆∥M ≤
√
2 ∥x0 − x⋆∥M

∥xt − x⋆∥M ≤

(
√
2 + max

1≤i≤t

λ′
i

λi
·
√

2

1− σ2

)
∥x0 − x⋆∥M

.

In the statement of Lemma B.5, the cost of overshooting the guess λ′
i becomes evident – without

an additional strong convexity guarantee, it is challenging to ensure that each iterate remains in a
small ball around x⋆. This is the main reason we are unable to apply the framework of Carmon et al.
(2022) to the p = ∞ case.

Proof of Lemma B.5. Using the same notation as in Lemma B.4 and in that proof, we define

Pt := AtEt +Dt

λ̂t := min {λt, λ
′
t} .

By induction on the conclusion of Lemma B.4, for t ≥ 1 we have

1

2
∥vt − x⋆∥2M = Dt ≤ Pt + (1− σ2)

t∑
k=1

A′
kλ̂kNk ≤ P0 = ∥x0 − x⋆∥2M .

Thus,

∥vt − x⋆∥M ≤
√
2 ∥x0 − x⋆∥M .

For the second conclusion, we introduce the following notation.

αt+1 :=
(1− γt+1)At

At+1

βt+1 :=
At

A′
t+1

δt+1 := 1− (1− αt+1)(1− βt+1) = 1−
γt+1A

′
t+1

At+1
·
a′t+1

A′
t+1

=
At

At+1

We also establish for any i,

γiA
′
i

λia2i
=

A′
i

λiγi(a′i)
2
=

1

γi
· λ

′
i

λi
= max

{
λ′
i

λi
, 1

}
,

which implies

γiA
′
i

λi
= a2i max

{
λ′
i

λi
, 1

}
.

Notice that

∥xt+1 − x⋆∥M ≤ αt+1 ∥xt − x⋆∥M + (1− αt+1) ∥x̃t+1 − x⋆∥M
≤ αt+1 ∥xt − x⋆∥M + (1− αt+1) (∥qt − x⋆∥M + ∥x̃t+1 − qt∥M)

≤ αt+1 ∥xt − x⋆∥M
+ (1− αt+1) (βt+1 ∥xt − x⋆∥M + (1− βt+1) ∥vt − x⋆∥M + ∥x̃t+1 − qt∥M)

= (βt+1 + αt+1 − αt+1βt+1) ∥xt − x⋆∥M
+ (1− αt+1) (1− βt+1) ∥vt − x⋆∥M + (1− αt+1) ∥x̃t+1 − qt∥M

= δt+1 ∥xt − x⋆∥M + (1− δt+1) ∥vt − x⋆∥M + (1− αt+1) ∥x̃t+1 − qt∥M

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

≤
t∏

i=0

δi+1 ∥x0 − x⋆∥M +

(
1−

t∏
i=0

δi+1

)
∥vt − x⋆∥M

+

t+1∑
i=1

t+1∏
j=i+1

δj(1− αi) ∥x̃i − qi−1∥M

≤
√
2 ∥x0 − x⋆∥M +

t+1∑
i=1

t+1∏
j=i+1

δj(1− αi) ∥x̃i − qi−1∥M

=
√
2 ∥x0 − x⋆∥M +

t+1∑
i=1

Ai

At+1
(1− αi) ∥x̃i − qi−1∥M

=
√
2 ∥x0 − x⋆∥M +

t+1∑
i=1

Ai

At+1
· γiA

′
i

Ai
∥x̃i − qi−1∥M

=
√
2 ∥x0 − x⋆∥M +

1

At+1

t+1∑
i=1

√
γiA′

i

λi
·
√

λiγiA′
i ∥x̃i − qi−1∥M

≤
√
2 ∥x0 − x⋆∥M +

(∑t+1
i=1

γiA
′
i

λi

)1/2
At+1

·

(
t+1∑
i=1

λiγiA
′
i ∥x̃i − qi−1∥2M

)1/2

≤
√
2 ∥x0 − x⋆∥M +

(∑t+1
i=1

γiA
′
i

λi

)1/2
At+1

·
√

2

1− σ2
∥x0 − x⋆∥M

≤
√
2 ∥x0 − x⋆∥M +

∑t+1
i=1 ai max

{
1,

λ′
i

λi

}
At+1

·
√

2

1− σ2
∥x0 − x⋆∥M

≤
√
2 ∥x0 − x⋆∥M + max

1≤i≤t+1

λ′
i

λi
·
√

2

1− σ2
∥x0 − x⋆∥M

=

(
√
2 + max

1≤i≤t+1

λ′
i

λi
·
√

2

1− σ2

)
∥x0 − x⋆∥M ,

completing the proof of Lemma B.5.

C MINIMIZING THE DISTRIBUTIONALLY ROBUST LOSS

The goal of this section is to prove Theorem 1. We break up the proof into parts as described in
Section 2. We structure the section as follows. In the rest of this subsection, we present Algorithm 1,
our algorithm that minimizes the distributionally robust loss. In Appendix C.1, we introduce our
smooth approximation for the objective equation 2 and show that it is a good additive approximation
(this is a standard argument, but we include it as it provides crucial intuition).

As the main difficulty of the proof in Theorem 1 is to establish a Hessian stability for our surrogate
loss, we devote the bulk of this section to proving this. Recall that in Section 2.1.1, we claimed
that a higher-order smoothness condition called quasi-self-concordance gives us the needed Hessian
stability – in fact, this follows from (Carmon et al., 2020, Lemma 11). In light of this, it suffices to
demonstrate that our surrogate loss is quasi-self-concordant.

In Appendix C.2, we work out some calculus facts related to the softmax function. In particular,
it is in Appendix C.2 that we prove the general composition result Lemma C.3 that states that if
we take the softmax of several quasi-self-concordant functions, then the resulting function is also
quasi-self-concordant. In Appendix C.3, we apply this composition fact to prove that our surrogate
objective is quasi-self-concordant. Finally, in Appendix C.4, we combine these building blocks with
the acceleration framework in Carmon et al. (2020) and complete the proof of Theorem 1.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C.1 SMOOTHLY APPROXIMATING THE OBJECTIVE

Recall that for y ∈ Rn, let ∥y∥G∞
:= max1≤i≤m ∥ySi

∥2, where for y ∈ Rn we let ySi
refer to the

vector in Rni indexed by the indices in Si. Also, for y ∈ Rm, let lseβ(y) refer to the function

lseβ(y) := β log

(
m∑
i=1

exp

(
yi
β

))
.

At a high level, our algorithm will minimize the function

f̃β,δ(x) := β log

 m∑
i=1

exp


√

δ2 + ∥ASi
x− bSi

∥22 − δ

β


for appropriate choices of the parameters β and δ. This choice of smoothening is natural because of
the following approximation statement – see Lemma C.1.

Lemma C.1. For all x ∈ Rd, we have∣∣∣f̃β,δ(x)− ∥Ax− b∥G∞

∣∣∣ ≤ β logm+ δ.

Proof of Lemma C.1. These guarantees are well-known, but we prove them anyway for the sake of
self-containment. We first prove that for any v ∈ Rm, we have

max
1≤i≤m

vi ≤ lseβ(v) ≤ max
1≤i≤m

vi + β logm.

In one direction, we have

lseβ(v) ≤ β log

(
m∑
i=1

exp

(
max1≤i≤m vi

β

))
= β logm+ max

1≤i≤m
vi,

and in the other, we have

lseβ(v) ≥ β log

(
exp

(
max1≤i≤m vi

β

))
= max

1≤i≤m
vi.

Next, for v ∈ Rm, we will show that

∥v∥2 − δ ≤
√
δ2 + ∥v∥22 − δ ≤ ∥v∥2 .

Indeed, we have √
δ2 + ∥v∥22 − δ ≤

√
δ2 +

√
∥v∥22 − δ = ∥v∥2 ,

and √
δ2 + ∥v∥22 − δ ≥

√
∥v∥22 − δ = ∥v∥2 − δ.

From this, we get

f̃β,δ(x) ≤ max
1≤i≤m

(√
δ2 + ∥ASi

x− bSi
∥22 − δ

)
+ β logm ≤ ∥Ax− b∥G∞

+ β logm

and

f̃β,δ(x) ≥ β log

(
m∑
i=1

exp

(
∥ASix− bSi∥2 − δ

β

))
≥ ∥Ax− b∥G∞

− δ.

Putting these together gives∣∣∣f̃β,δ(x)− ∥Ax− b∥G∞

∣∣∣ ≤ max (β logm, δ) ≤ β logm+ δ,

completing the proof of Lemma C.1.

Eventually, we will choose β = ε/(4 logm) and δ = ε/4 and then minimize f̃β,δ to ε/2 additive
error. In light of Lemma C.1, this will be enough to get an ε-additive approximation to the optimum
for ∥Ax− b∥G∞

.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

C.2 CALCULUS FOR LOGSUMEXP

We investigate certain properties of lseβ(y) when each entry [y]i is a function hi(t) for t ∈ R for
all i ∈ [m]. Let h(t) ∈ Rm denote the vector where its ith entry is given by hi(t). We treat each hi

as a one-dimensional restriction of a function gi : Rm → R, so hi(t) = gi(y + td) for center y and
direction d (we omit the parameters y,d in the notation hi as it will be clear from context). Finally,
recall the definition of quasi-self-concordance (Definition 2.1).

We begin with calculating the first two derivatives of lseβ(h(t)) with respect to t in Lemma C.2.

Lemma C.2. Let λi(t) := exp (hi(t)/β). Then, we have(
d

dt

)
lseβ(h(t)) =

∑m
i=1 (λi(t) · h′

i(t))∑m
i=1 λi(t)(

d

dt

)2

lseβ(h(t)) =
1

β

(∑m
i=1 λi(t)h

′
i(t)

2∑m
i=1 λi(t)

−
(∑m

i=1 λi(t)h
′
i(t)∑m

i=1 λi(t)

)2
)

+

∑m
i=1 λi(t)h

′′
i (t)∑m

i=1 λi(t)
.

Proof of Lemma C.2. The first derivative follows from the chain rule. Indeed, we have

lse′β(h(t)) = β ·
∑m

i=1 λ
′
i(t)∑m

i=1 λi(t)
= β ·

∑m
i=1

(
λi(t) · h′

i(t)
β

)
∑m

i=1 λi(t)
=

∑m
i=1 (λi(t) · h′

i(t))∑m
i=1 λi(t)

≤ max
i

h′
i(t).

For the second derivative, we use the differentiation rule for multiplication and division and the
chain rule, giving

lse′′β(h(t)) =
[(
∑m

i=1 λ
′
i(t)h

′
i(t) + λi(t)h

′′
i (t)) (

∑m
i=1 λi(t))]− 1

β (
∑m

i=1 λi(t)h
′
i(t))

2

(
∑m

i=1 λi(t))
2

=

[
1
β

(∑m
i=1 λi(t)h

′
i(t)

2 + βλi(t)h
′′
i (t)

)
(
∑m

i=1 λi(t))
]
− 1

β (
∑m

i=1 λi(t)h
′
i(t))

2

(
∑m

i=1 λi(t))
2

=
1

β

(∑m
i=1 λi(t)h

′
i(t)

2∑m
i=1 λi(t)

−
(
∑m

i=1 λi(t)h
′
i(t))

2

(
∑m

i=1 λi(t))
2

)
+

∑m
i=1 λi(t)h

′′
i (t)∑m

i=1 λi(t)
.

This completes the proof of Lemma C.2.

Next, we prove a general fact regarding composing lse with a vector formed by functions that are
themselves quasi self concordant. See Lemma C.3.

Lemma C.3 (Composing softmax with quasi-self-concordant functions). Let ∥·∥ be an arbitrary
norm and h1, . . . , hm be such that hi : Rd → R. Let h be the vector formed by concatenating the
results of h1, . . . , hm. Additionally, let h1, . . . , hm be such that for all 1 ≤ i ≤ m and for all
y,d ∈ Rm and t ∈ R,(

d

dt

)
hi(y + td) ≤ ∥d∥ (Lipschitzness)∣∣∣∣∣

(
d

dt

)3

hi(y + td)

∣∣∣∣∣ ≤ ν ∥d∥
(

d

dt

)2

hi(y + td) (quasi-self-concordance).

Then, for all y,d ∈ Rm and all t ∈ R, we have∣∣∣∣∣
(

d

dt

)3

β log

(
m∑
i=1

exp

(
hi(y + td)

β

))∣∣∣∣∣ ≤
(
16

β
+ ν

)
∥d∥

(
d

dt

)2

lseβ(h(y + td)).

As far as we are aware, this type of composition result was not previously known and may be of
independent interest.

To prove Lemma C.3, we need Lemma C.4.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Lemma C.4. For any two random variables X,Y , we have

Var [XY] ≤ 2 ∥Y ∥2∞ Var [X] + 2 ∥X∥2∞ Var [Y] .

Proof of Lemma C.4. The proof follows that of Giraudo (2014), but we reproduce it here for com-
pleteness. First, notice that for random variables U, V , we have

2Var [U] + 2Var [V]− Var [U + V] = Var [U] + Var [V]− 2Cov [U, V] = Var [U − V] ≥ 0.

Let U = (X − E [X])Y and V = E [X]Y . Then, U + V = XY , and we have

Var [XY] ≤ 2Var [(X − E [X])Y] + 2Var [E [X]Y] = 2Var [(X − E [X])Y] + 2E [X]
2 Var [Y] .

It remains to bound Var [(X − E [X])Y]. By Hölder’s inequality, we have

Var [(X − E [X])Y] ≤ E
[
((X − E [X])Y)2

]
≤ E

[
(X − E [X])2

]
∥Y ∥2∞ = Var [X] ∥Y ∥2∞ .

Combining everything gives us the conclusion of Lemma C.4.

We are now ready to prove Lemma C.3.

Proof of Lemma C.3. Let λi(t) := exp (hi(t)/β).

In this proof, we will encounter many weighted averages of vectors z ∈ Rm of the form∑m
i=1 λi(t)zi∑m
i=1 λi(t)

.

Let D be the distribution over [m] whose entries are given by Dj = λj(t)/
∑m

i=1 λi(t). In the rest
of this proof, all expected values, variances, and covariances will be taken with respect to this distri-
bution. In an abuse of notation, let h(t) denote the “random” variable that is hi(t) with probability
Di. Define h′(t), h′′(t), h′′′(t) analogously.

To find the third derivative of lseβ(h(t)), we start with its second derivative. By Lemma C.2, it is
given by

lse′′β(h(t)) =
1

β

(∑m
i=1 λi(t)h

′
i(t)

2∑m
i=1 λi(t)

−
(∑m

i=1 λi(t)h
′
i(t)∑m

i=1 λi(t)

)2
)

︸ ︷︷ ︸
T1

+

∑m
i=1 λi(t)h

′′
i (t)∑m

i=1 λi(t)︸ ︷︷ ︸
T2

=
1

β
Var [h′(t)] + E [h′′(t)] .

We now differentiate the above term by term. First, we have

T ′
2(t) =

∑m
i=1 λi(t)

((
h′
i(t)h

′′
i (t)

β

)
+ h′′′

i (t)
)

∑m
i=1 λi(t)

− 1

β
·
(
∑m

i=1 λi(t)h
′
i(t)) (

∑m
i=1 λi(t)h

′′
i (t))

(
∑m

i=1 λi(t))
2

=
1

β

(∑m
i=1 λi(t)h

′
i(t)h

′′
i (t)∑m

i=1 λi(t)
−

(
∑m

i=1 λi(t)h
′
i(t)) (

∑m
i=1 λi(t)h

′′
i (t))

(
∑m

i=1 λi(t))
2

)
+

∑m
i=1 λi(t)h

′′′
i (t)∑m

i=1 λi(t)

=
1

β
Cov [h′(t), h′′(t)] + E [h′′′(t)] .

Next, we have

d

dt
E [h′(t)]

2
= 2E [h′(t)] · d

dt
E [h′(t)] = 2E [h′(t)]

(
1

β
Var [h′(t)] + E [h′′(t)]

)
and

d

dt
E
[
h′(t)2

]
25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

=

(∑m
i=1 λ

′
i(t)h

′
i(t)

2 + 2h′
i(t)h

′′
i (t)λi(t)

)
(
∑m

i=1 λi(t))− 1
β (
∑m

i=1 λi(t)h
′
i(t))

(∑m
i=1 λi(t)h

′
i(t)

2
)

(
∑m

i=1 λi(t))
2

=

(∑m
i=1 λ

′
i(t)h

′
i(t)

2 + 2h′
i(t)h

′′
i (t)λi(t)

)∑m
i=1 λi(t)

− 1

β
·
(
∑m

i=1 λi(t)h
′
i(t))

(∑m
i=1 λi(t)h

′
i(t)

2
)

(
∑m

i=1 λi(t))
2

=

∑m
i=1 λi(t)

(
h′
i(t)

3

β + 2h′
i(t)h

′′
i (t)

)
∑m

i=1 λi(t)
− 1

β
·
(
∑m

i=1 λi(t)h
′
i(t))

(∑m
i=1 λi(t)h

′
i(t)

2
)

(
∑m

i=1 λi(t))
2

=
1

β
Cov

[
h′(t), h′(t)2

]
+ 2E [h′(t)h′′(t)] .

Combining everything gives us

lse′′′β (h(t))

=
1

β

(
1

β
Cov

[
h′(t), h′(t)2

]
+ 2E [h′(t)h′′(t)]− 2E [h′(t)]

(
1

β
Var [h′(t)] + E [h′′(t)]

))
+

1

β
Cov [h′(t), h′′(t)] + E [h′′′(t)]

=
1

β2
Cov

[
h′(t), h′(t)2

]
− 2

β2
E [h′(t)]Var [h′(t)] +

3

β
Cov [h′(t), h′′(t)] + E [h′′′(t)] .

We first analyze the terms that only depend on h′(t). To do so, we use Lemma C.4 to write∣∣Cov [h′(t), h′(t)2
]∣∣ ≤√Var [h′(t)]

√
Var [h′(t)2] ≤ 2 ∥d∥Var [h′(t)] .

Now, we have
1

β2

∣∣Cov [h′(t), h′(t)2
]
− 2E [h′(t)]Var [h′(t)]

∣∣
≤ 1

β2

∣∣Cov [h′(t), h′(t)2
]∣∣+ 2

β2
|E [h′(t)]Var [h′(t)]|

≤ 4

β2
∥d∥Var [h′(t)] ≤ 4

β
∥d∥ lse′′β(h(t)).

Next, we take care of the remaining terms. We have

3

β
|Cov [h′(t), h′′(t)]|+ |E [h′′′(t)]| ≤ 6

β

(
max

i
h′
i(t)
)
E [|h′′(t)− E [h′′(t)]|] + |E [h′′′(t)]|

≤ 12

β
∥d∥ lse′′β(h(t)) + E [|h′′′(t)|]

≤ 12

β
∥d∥ lse′′β(h(t)) + ν ∥d∥E [h′′(t)]

≤
(
12

β
+ ν

)
∥d∥ lse′′β(h(t)),

where the penultimate line follows from Lemma C.7. Combining these conclusions yields∣∣lse′′′β (h(t))
∣∣ ≤ (16

β
+ ν

)
∥d∥ lse′′β(h(t)),

completing the proof of Lemma C.3.

C.3 SMOOTHNESS AND QUASI-SELF-CONCORDANCE OF THE MODIFIED OBJECTIVE

The main result of this subsection is Lemma C.5.

Lemma C.5. Let W be such that for all z ∈ Rd, we have ∥Az∥G∞
≤
∥∥W1/2Az

∥∥
2
. For all

x, z ∈ Rd and t ∈ R, we have(
d

dt

)2

f̃β,δ(x+ tz) ≤
(
1

δ
+

1

β

)∥∥∥W1/2Az
∥∥∥2
2

(smoothness)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

∣∣∣∣∣
(

d

dt

)3

f̃β,δ(x+ tz)

∣∣∣∣∣ ≤
(
16

δ
+

3

β

)∥∥∥W1/2Az
∥∥∥
2

(
d

dt

)2

f̃β,δ(x+ tz) (quasi-self-concordance).

Our goal in the rest of this section is to prove Lemma C.5.

We begin with defining hi(t) as (absorb the δ,y,d parameters into the definition of hi)

hi(t) :=

√
δ2 + ∥ySi

+ tdSi
∥22.

Let h(t) denote the vector whose ith entry is hi(t). Then, observe that

lseβ(h(t)) = β log

(
m∑
i=1

exp

(
hi(t)

β

))
= β log

 m∑
i=1

exp


√

δ2 + ∥ySi
+ tdSi

∥22
β

 .

It is easy to see that every one-dimensional restriction of f̃β,δ can be obtained by an affine transfor-
mation of lseβ(h(t)) after appropriate choices of y,d ∈ Rm. Hence, we first analyze lseβ(h(t)) for
all y,d ∈ Rm.

We begin with proving the smoothness of lseβ(h(t)) with respect to ∥·∥G∞
.

Lemma C.6. For all y,d ∈ Rm and all t ∈ R, we have(
d

dt

)2

lseβ(h(t)) ≤
(
1

δ
+

1

β

)
∥d∥2G∞

.

Proof of Lemma C.6. By direct calculation, it is easy to see that

h′
i(t) =

⟨ySi
+ tdSi

,dSi
⟩

hi(t)

h′′
i (t) =

∥dSi
∥22 hi(t)− h′

i(t)
2hi(t)

hi(t)2
=

∥dSi
∥22 − h′

i(t)
2

hi(t)
.

(9)

We plug this into the result of Lemma C.2 and get

lse′′β(h(t)) ≤
1

β
max

i
h′
i(t)

2 +max
i

h′′
i (t)

=
1

β
max

i

 ⟨ySi
+ tdSi

,dSi
⟩√

δ2 + ∥ySi
+ tdSi

∥22

2

+max
i

∥dSi∥
2
2 − h′

i(t)
2√

δ2 + ∥ySi
+ tdSi

∥22

≤ 1

β
max

i
∥dSi

∥22 +
1

δ
max

i
∥dSi

∥22 =

(
1

β
+

1

δ

)
∥d∥2G∞

,

completing the proof of Lemma C.6.

Our next task is to show that lseβ(h(t)) is O(1/β + 1/δ)-quasi-self-concordant in ∥·∥G∞
. To do so,

we will appeal to Lemma C.3. To be able to do this, we first have to prove the quasi-self-concordance
of each component function in lseβ(h(t)).

Lemma C.7. For all y,d ∈ Rm and all t ∈ R, we have∣∣∣∣∣
(

d

dt

)3√
δ2 + ∥ySi + tdSi∥

2
2

∣∣∣∣∣ ≤ 3

δ
∥dSi∥2

((
d

dt

)2√
δ2 + ∥ySi + tdSi∥

2
2

)
.

Proof of Lemma C.7. Although a similar fact appears in (Ostrovskii & Bach, 2020, Section 2.1.2),
it is not in the exact form we need. So, we prove the required statement here.

Recycling the computation from equation 9, recall

h′′
i (t) =

∥dSi
∥22 − h′

i(t)
2

hi(t)
,

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

which gives

h′′′
i (t) =

−2h′
i(t)h

′′
i (t)hi(t)− h′

i(t)(hi(t)h
′′
i (t))

hi(t)2
= −3h′

i(t)h
′′
i (t)

hi(t)
.

Finally, again recalling equation 9, notice that∣∣∣∣h′
i(t)

hi(t)

∣∣∣∣ = ∣∣∣∣ ⟨ySi
+ tdSi

,dSi
⟩

hi(t)2

∣∣∣∣ =
∣∣∣∣∣∣
〈

ySi
+ tdSi√

δ2 + ∥ySi + tdSi∥
2
2

,
dSi√

δ2 + ∥ySi + tdSi∥
2
2

〉∣∣∣∣∣∣ ≤ ∥dSi
∥2

δ
.

Combining everything completes the proof of Lemma C.7.

We are now ready to prove the quasi-self-concordance of lseβ(h(t)) in ∥·∥G∞
.

Lemma C.8. For all y,d ∈ Rm and t ∈ R, we have∣∣∣∣∣
(

d

dt

)3

lseβ(h(t))

∣∣∣∣∣ ≤
(
16

β
+

3

δ

)
∥d∥G∞

(
d

dt

)2

lseβ(h(t)).

Proof of Lemma C.8. In the statement of Lemma C.3, let ∥·∥ = ∥·∥G∞
. By the definition of ∥·∥G∞

and hi, we have for all i and t that h′
i(t) ≤ ∥d∥G∞

. Additionally, from Lemma C.7, we have
that the hi(t) are 3/δ-quasi-self-concordant in the norm ∥d∥G∞

for all i. Lemma C.8 now follows
immediately from Lemma C.3.

Finally, we can prove Lemma C.5.

Proof of Lemma C.5. By the conclusion of Lemma C.6, we know that for all y,d ∈ Rm and t ∈ R
that (

d

dt

)2

lseβ(h(t)) ≤
(
1

δ
+

1

β

)
∥z∥2G∞

.

Let y = Ax− b for some x and d = Az for some z. Let

g(y) := β log

 m∑
i=1

exp


√
δ2 + ∥ySi

∥22 − δ

β

 .

Then, (
d

dt

)2

f̃β,δ(x+ tz) =

(
d

dt

)2

g(Ax− b+ tAz) ≤
(
1

δ
+

1

β

)
∥Az∥2G∞

.

With the exact same reasoning applied to the conclusion of Lemma C.8, we also see that∣∣∣∣∣
(

d

dt

)3

f̃β,δ(x+ tz)

∣∣∣∣∣ ≤
(
16

δ
+

3

β

)
∥Az∥G∞

(
d

dt

)2

f̃β,δ(x+ tz).

The conclusion of Lemma C.5 then follows from remembering that we have W such that for all
z ∈ Rd, ∥Az∥G∞

≤
∥∥W1/2Az

∥∥
2

(following from Theorem 2.3).

C.4 ANALYSIS OF ALGORITHM 1
In this subsection, we use the calculus facts from the previous two subsections to analyze Algo-
rithm 1. The outline of this proof follows that of (Jambulapati et al., 2022, Theorem 2), which in
turn builds up to using the proof used in (Carmon et al., 2020, Corollary 12). The main idea is to
define the algorithm based on the norm given by a good choice of positive semidefinite M, given by
Theorem 2.3.

In the rest of this section, let W be factor-2 block Lewis weight overestimates for [A|b]. As in
Line 1 of Algorithm 1 and from the corresponding guarantee given in (Manoj & Ovsiankin, 2025,

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Lemmas 5.6, 5.8), this means that within 2 logm linear-system-solves in A⊤DA for diagonal D,
we can find W such that for all x ∈ Rd and c ∈ R we have

∥Ax− cb∥G∞
≤
∥∥∥W1/2Ax− cW1/2b

∥∥∥
2
≤
√

2(rank (A) + 1) ∥Ax− cb∥G∞
.

Note that choosing c = 1 yields our original objective on either side of the above inequality. Moti-
vated by the above, it is natural to use the norm given by M := A⊤WA to give the geometry for
the ball optimization oracle and for the analysis. Additionally, without loss of generality and for the
sake of the analysis, let us rescale the problem so that

1 = OPT := ∥Ax⋆ − b∥G∞
.

Also, as mentioned earlier, assume without loss of generality that rank (A) = d.

We begin with Lemma C.9, which bounds our initial suboptimality in f̃ and in ∥·∥M.

Lemma C.9. Let x̃β,δ := argmin
x∈Rd

f̃β,δ(x). Then,

∥x̃β,δ − x0∥M ≤ (2 + 2(β logm+ δ))
√

2(d+ 1)

f̃β,δ(x0)− f̃β,δ(x̃β,δ) ≤
√

2(d+ 1)− 1 + 2(β logm+ δ)
.

Proof of Lemma C.9. It is easy to check that

x0 :=
(
A⊤WA

)−1
A⊤Wb = argmin

x∈Rd

∥∥∥W1/2Ax−W1/2b
∥∥∥
2
.

By Lemma C.1, for all x ∈ Rd,∣∣∣f̃β,δ(x)− ∥Ax− b∥G∞

∣∣∣ ≤ β logm+ δ,

implying ∣∣∣∥Ax⋆ − b∥G∞
− f̃β,δ(x̃β,δ)

∣∣∣ ≤ β logm+ δ.

Combining this with Theorem E.3, we get

1 ≤ ∥Ax⋆ − b∥G∞
≤ ∥Ax0 − b∥G∞

≤
∥∥∥W1/2Ax0 −W1/2b

∥∥∥
2

and ∥∥W1/2Ax0 −W1/2b
∥∥
2√

2(d+ 1)
≤
∥∥W1/2Ax⋆ −W1/2b

∥∥
2√

2(d+ 1)
≤ ∥Ax⋆ − b∥G∞

= 1.

Combining these gives

1 ≤
∥∥∥W1/2Ax0 −W1/2b

∥∥∥
2
≤
√

2(d+ 1).

Additionally,∥∥∥W1/2Ax̃β,δ −W1/2b
∥∥∥
2
≤
√
2(d+ 1) ∥Ax̃β,δ − b∥G∞

≤
√
2(d+ 1)

(
f̃β,δ(x̃β,δ) + β logm+ δ

)
≤
√
2(d+ 1)

(
∥Ax⋆ − b∥G∞

+ 2(β logm+ δ)
)

=
√
2(d+ 1)(1 + 2(β logm+ δ)).

Then,

∥x̃− x0∥M =
∥∥∥(W1/2Ax̃β,δ −W1/2b

)
−
(
W1/2Ax0 −W1/2b

)∥∥∥
2

≤
∥∥∥W1/2Ax̃β,δ −W1/2b

∥∥∥
2
+
∥∥∥W1/2Ax0 −W1/2b

∥∥∥
2

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

≤ (2 + 2(β logm+ δ))
√
2(d+ 1),

and

f̃β,δ(x0)− f̃β,δ(x̃β,δ) ≤ ∥Ax0 − b∥G∞
− ∥Ax⋆ − b∥G∞

+ 2(β logm+ δ)

≤
∥∥∥W1/2Ax0 −W1/2b

∥∥∥
2
− OPT+ 2(β logm+ δ)

≤
√
2(d+ 1)− 1 + 2(β logm+ δ).

This completes the proof of Lemma C.9.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Algorithm 1 optimizes the regularization of f̃ given by

f̂(x) := f̃β,δ(x) +
ε

110R2

∥∥∥W1/2A(x− x0)
∥∥∥2
2
,

where R is such that ∥x0 − x̃β,δ∥M ≤ R. Let x̂ := argmin
x∈Rd

f̂(x). Using (Carmon et al., 2020,

Proof of Corollary 12), we know that for every iterate x of Algorithm 1,∣∣∣f̂(x)− f̃β,δ(x)
∣∣∣ ≤ ε

4
.

We now choose β = ε/(4 logm) and δ = ε/4, so that f̃β,δ approximates f up to error ε/2 on every
point. Using Lemma C.9, this gives R = (2 + ε)

√
2(d+ 1). It is therefore sufficient to optimize f̂

up to ε/4 additive error.

Next, using Lemma C.5 and (Carmon et al., 2020, Lemmas 11, 43), we have that f̂ is (1/ν, e)-
Hessian stable in ∥·∥M for ν = Ω(1/(ε logm)). We now invoke (Carmon et al., 2020, Theo-
rem 9), which tells us that we can implement a (C/

√
d,C/ε)-ball optimization oracle for f with

O
(
log
(
d
ε

)2)
linear-system-solves.

The next step is to turn the ball optimization oracle into a 1
2 -MS oracle (Definition B.1). Using

(Carmon et al., 2020, Proposition 5), we get a ball oracle complexity of O
(
log
(
d
ε

))
to implement

the MS oracle. In total, our linear-system-solve complexity for implementing the MS oracle for
iteration t is O

(
log
(
d
ε

)3)
.

Finally, using (Carmon et al., 2020, Theorem 6), we get that Algorithm 1 has a Newton iteration
complexity of

O

((1 + ε)
√
d logm

ε

)2/3

log

(√
d+ ε

ε

)(
log

(
(logm/ε)d(1 + (1 + ε)

√
d logm/ε)

ε

))3


= O

(
d1/3

ε2/3
log

(
d logm

ε

)14/3
)
,

as promised.

Next, we analyze what happens if we fall in the case where W = Im. Here, by using the
√
m

distortion from approximating ℓm∞ with ℓm2 , we have for all x ∈ Rd,

∥Ax− b∥2√
m

≤ ∥Ax− b∥G∞
≤ ∥Ax− b∥2 .

Using this and repeating the previous analysis with this choice of M gives us a rate of

O

(
m1/3

ε2/3
log

(
m logm

ε

)14/3
)
,

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

as required.

It remains to determine the form of the Newton steps. For this, it is sufficient to understand the
Hessian of f̂ . A straightforward calculation shows that it is of the form A⊤BA where B is a block-
diagonal matrix where each block has size |Si|×|Si|. Thus, each Newton step solves a linear system
of the form A⊤BAz = v.

Combining this with the iteration complexity guarantee to find W (see Theorem 2.3) completes the
proof of Theorem 1.

D INTERPOLATING BETWEEN AVERAGE AND ROBUST LOSSES

In this section, we prove Theorem 2. As before, our proof follows the outline in Section 2. The main
technical challenges are to establish a form of strong convexity for our objective f and then to build
a solver for the proximal problem equation 8.

The rest of this section is organized as follows. In Appendix D.1, we derive calculus facts about
our objective f , including bounds on its Hessian and the promised strong convexity (particularly
Lemma D.2 and the more general result it builds on, Lemma D.3). In Appendix D.2, we prove
some facts about the iterates of Algorithm 3 when applied to our setting. In Appendix D.3, we
more precisely define and analyze our solver for proximal sub-problems. This section is fairly
technical and we give a more detailed outline there. Finally, in Appendix D.4, we assemble all these
components and analyze Algorithm 5, thereby proving Theorem 2.

Throughout this analysis, we rescale the problem so that f(x⋆) = 1. It is now sufficient to solve for
an ε-additive error solution.

D.1 CALCULUS FOR THE OBJECTIVE

In this section, we work out some calculus facts related to our objective ∥Ax− b∥pGp
. Throughout

this discussion, let f(x) := ∥Ax− b∥pGp
.

Lemma D.1. For any z ∈ Rd, we have

p

m∑
i=1

∥ASix− bSi∥
p−2
2 ∥ASiz∥

2
2 ≤ z⊤ (∇2f(x)

)
z ≤ p(p− 1)

m∑
i=1

∥ASix− bSi∥
p−2
2 ∥ASiz∥

2
2 .

Proof of Lemma D.1. Let us first calculate the derivative and hessian for f(·) using the chain rule
and usual matrix differentiation rules:

f(x) =

m∑
i=1

∥ASi
x− bSi

∥p2 ,

∇f(x) = p

m∑
i=1

∥ASix− bSi∥
p−2
2 A⊤

Si
(ASix− bSi) , (10)

∇2f(x) = p

m∑
i=1

∥ASix− bSi∥
p−2
2 A⊤

Si
ASi

+ p(p− 2)

m∑
i=1

∥ASi
x− bSi

∥p−4
2

(
A⊤

Si
(ASi

x− bSi
)(ASi

x− bSi
)⊤ASi

)
. (11)

Using this formula, we take the quadratic form with respect to a vector z. By Cauchy-Schwarz,
notice that

z⊤ ∥ASix− bSi∥
p−4
2

(
A⊤

Si
(ASix− bSi)(ASix− bSi)

⊤ASi

)
z

= ∥ASi
x− bSi

∥p−4
2 ⟨ASi

z,ASi
x− bSi

⟩2 ≤ ∥ASi
x− bSi

∥p−2
2 ∥ASi

z∥22 .

With that, we have

z⊤ (∇2f(x)
)
z ≤ p

m∑
i=1

∥ASi
x− bSi

∥p−2 ∥ASi
z∥22 + (p− 2) ∥ASi

x− bSi
∥p−2 ∥ASi

z∥22 ,

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

= p(p− 1)

m∑
i=1

∥ASi
x− bSi

∥p−2
2 ∥ASi

z∥22 . (12)

For the lower bound, we use our calculation for ∇2f(x) to write

z⊤ (∇2f(x)
)
z ≥ p

m∑
i=1

∥ASix− bSi∥
p−2
2 ∥ASiz∥

2
2 ,

completing the proof of Lemma D.1.

D.1.1 STRONG CONVEXITY OF THE OBJECTIVE

The main pair of results of this section are Lemma D.2 and Lemma D.3. We can think of Lemma D.2
as a form of strong convexity for our objective.

Lemma D.2 (Strong convexity of f). Let f(x) := ∥Ax− b∥pGp
. For all d ∈ Rd, we have

f(x+ d) ≥ f(x) + ⟨∇f(x),d⟩+ 4

2p
∥Ad∥pGp

,

and therefore

∥x− x⋆∥M ≤ 23/2−3/pd1/2−1/p(f(x)− f(x⋆))1/p .

Lemma D.3 (Strong convexity of ∥y∥p2). Let v ∈ Rk for k ≥ 1. For any △ ∈ Rk, we have

∥v +△∥p2 ≥ ∥v∥p2 + p ∥v∥p−2
2 ⟨v,△⟩+ 4

2p
∥△∥p2 .

To motivate Lemma D.3, let us see how Lemma D.3 implies Lemma D.2.

Proof of Lemma D.2. Note that

∇f(x) =

m∑
i=1

p ∥ASix− bSi∥
p−2
2 A⊤

Si
(ASix− bSi) .

This implies
m∑
i=1

p ∥ASi
x− bSi

∥p−2
2 ⟨ASi

x− bSi
,ASi

d⟩ = ⟨∇f(x),d⟩ .

Combining this and applying Lemma D.3 (which is a strong convexity lemma for ∥ · ∥p2 that we
prove subsequently in this section), we get
f(x+ d) = ∥A(x+ d)− b∥pGp

= ∥Ad+ (Ax− b)∥pGp
,

=
m∑
i=1

∥ASi
d+ (ASi

x− bSi
)∥p2 ,

≥(Lemma D.3)
m∑
i=1

∥ASi
x− bSi

∥p2 + p∥ASi
x− bSi

∥p−2
2 ⟨(ASi

x− bSi
),ASi

d⟩+ 4

2p
∥ASi

d∥p2 ,

=

m∑
i=1

∥ASi
x− bSi

∥p2 +
〈
p∥ASi

x− bSi
∥p−2
2 A⊤

Si
(ASi

x− bSi
),d
〉
+

4

2p
∥ASi

d∥p2 ,

=equation 10 ∥Ax− b∥pGp
+ ⟨∇f(x),d⟩+ 4

2p
∥Ad∥pGp

= f(x) + ⟨∇f(x),d⟩+ 4

2p
∥Ad∥pGp

.

We now take care of the second statement. Observe that at optimality, we have ∇f(x⋆) = 0.
Plugging this in (replace x by x⋆ and d by x− x⋆ above), rearranging, and taking pth roots gives

∥A(x− x⋆)∥Gp
≤
(

4

2p

)−1/p

(f(x)− f(x⋆))1/p =
2

41/p
(f(x)− f(x⋆))1/p .

Next, recall that by Theorem 2.3,

∥x− x⋆∥M =
∥∥∥W1/2−1/pA(x− x⋆)

∥∥∥
2
≤ (2d)1/2−1/p ∥A(x− x⋆)∥Gp

.

Stitching the inequalities together completes the proof of Lemma D.2.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

In the rest of this subsection, we prove Lemma D.3. We begin with a few numerical inequalities.

Lemma D.4. For α ≤ −1/2 and p ≥ 2, g(α) := 1+pα
(−(2α+1))p/2

is nonincreasing in α.

Proof of Lemma D.4. We first take the derivative of g with respect to α,

g′(α) =
p(−(2α+ 1))p/2 −

(
(−2)p2 (−(2α+ 1))

p/2−1
)
(1 + pα)

(−(2α+ 1))p
,

=
p(−(2α+ 1)p/2) + p (−(2α+ 1))

p/2−1
(1 + pα)

(−(2α+ 1))p
,

= p · (−(2α+ 1)) + (1 + pα)

(−(2α+ 1))p/2+1
,

= p · (p− 2)α

(−(2α+ 1))p/2+1
≤ 0 ,

where in the final inequality we used that p ≥ 2 and α ≤ −1/2. This completes the proof of the
lemma.

We also need the following lemma, which is similar to a result due to Adil et al. (Adil et al., 2019,
Lemma 4.5). It amounts to proving Lemma D.3 when the dimension k = 1.

Lemma D.5 (Case A. of Lemma D.6). For any α ∈ R and p ≥ 2,

|1 + α|p ≥ 1 + pα+
4

2p
|α|p .

Proof of Lemma D.5. Note that the inequality is true when p = 2 and becomes an equality. We
consider the case when p > 2 and use h(α) to denote the error function,

h(α) := |1 + α|p −
(
1 + pα+

4

2p
|α|p

)
.

We aim to show h(α) ≥ 0 for all α ∈ R. Let us first write the derivatives of h.

h′(α) = p

(
|1 + α|p−2

(1 + α)−
(
1 +

4

2p
|α|p−2

α

))
,

h′′(α) = p(p− 1)

(
|1 + α|p−2 − 4

2p
|α|p−2

)
= p(p− 1)

(
|1 + α|p−2 −

∣∣∣α
2

∣∣∣p−2
)

.

It is now easy to verify the following statements about h,

I. h′(−2) = h′′(−2) = 0 and h′′(α) > 0 for α < −2, ⇒ within the range (−∞,−2] the
function h is minimized at −2;

II. h′(−2) = 0 and h′′(α) ≤ 0 for α ∈ (−2,−2/3] ⇒ h′(α) < 0 in the range (−2,−2/3],
i.e., in that range the function h is minimized at −2/3;

III. h′(−2/3) < 0 = h′(0) and h′′(α) > 0 for α > −2/3 ⇒ the function h is decreasing
in (−2/3, 0) and increasing in [0,∞), i.e., within the range (−2/3,∞) the function h is
minimized at 0.

As a result of the above observations, it is enough to check the inequality at the inputs α ∈
{−2,−2/3, 0}. We have for p > 2,

h(−2) = 1− (1− 2p+ 4) = 2p− 4 > 0 ,

h

(
−2

3

)
=

1

3p
−
(
1− 2p

3
+

4

2p

∣∣∣∣23
∣∣∣∣p) =

1

3p
− 1 +

2p

3
− 4

3p
= −1 +

2p

3
− 3

3p
> 0

h(0) = 1− 1 = 0 .

This implies that h(α) ≥ 0 for all values of α, concluding the proof of Lemma D.5.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Next, we prove a special case of Lemma D.3.

Lemma D.6. For any α ∈ R, β ≥ 0, and p ≥ 2, we have(
(1 + α)2 + β2

)p/2 ≥ 1 + pα+
4

2p
(
α2 + β2

)p/2
.

Proof of Lemma D.6. Let us study the difference of both sides of the inequality using the following
function,

h(α, β) :=
(
(1 + α)2 + β2

)p/2 − (1 + pα+
4

2p
(
α2 + β2

)p/2)
.

We want to show that for α ∈ R, β ≥ 0, and p ≥ 2, h(α, β) ≥ 0. We will break this proof into three
cases: A. α ∈ R and β = 0; B. α ∈ (−∞,−2] ∪ [−2/3,∞) and β > 0; and C. α ∈ (−2,−2/3)
and β > 0. These cases together cover of the entire range of α ∈ R and β ≥ 0.

Case A. When β = 0, the proof simply follows from the statement of Lemma D.5 by noting
|α|p = (

√
α2)p = (α2)p/2.

In the remaining two cases we will show that for any α ∈ R, increasing the value of β still maintains
h(α, β) ≥ 0. To see this, we first note that the derivative of h(α, β) w.r.t. β is given by,

∇βh(α, β) = pβ

((
(1 + α)2 + β2

)p/2−1 − 4

2p
(
α2 + β2

)p/2−1
)

.

For β > 0, ensuring this derivative is positive is equivalent to the following,

∇βh(α, β) > 0 ≡ pβ
(
(1 + α)2 + β2

)p/2−1
> pβ · 4

2p
(
α2 + β2

)p/2−1
,

≡(pβ>0) (1 + α)2 + β2 >

(
1

2p−2

)2/(p−2)

·
(
α2 + β2

)
,

≡ (1 + α)2 + β2 >
1

4
·
(
α2 + β2

)
,

≡ (3α2 + 8α+ 4) + 3β2 > 0 ,

≡ β2 > −
(
α2 +

8

3
α+

4

3

)
. (13)

Case B. Note that the roots of the quadratic function 3α2 + 8α + 4 are given by α1 = −2 and
α2 = −2/3. This means that for α ∈ (−∞,−2] ∪ [−2/3,∞) we have 3α2 + 8α+ 4 ≥ 0 which is
sufficient to ensure using equation 13 that ∇βh(α, β) > 0, and hence h(α, β) > 0. This takes care
of Case B.

Case C. Now we only need to consider the range α ∈ (−2,−2/3) with β > 0. In this range, the
recall the equivalence equation 13,

∇βh(α, β) > 0 ≡ β >

√
−
(
α2 +

8

3
α+

4

3

)
=: β0(α) .

Thus for all β > β0(α) we know that h(α, β) is increasing in β and vice-versa. This allows us for
any given α ∈ (−2,−2/3) to further break Case C into two sub-cases:

Case C.I For β ∈ [0, β0), since h(α, β) is decreasing in β its lowest value is attained at β = 0 and
we only need to verify that h(α, 0) ≥ 0. We get this directly from Lemma D.5.

Case C.II For β ∈ [β0,∞), since h(α, β) is increasing in β its lowest value is attained at β = β0

and we only need to verify that h(α, β0(α)) ≥ 0. We first simplify the expression for h(α, β0(α)),

h(α, β0(α)) =
(
(1 + α)2 + β2

0

)p/2 − (1 + pα+Kp

(
α2 + β2

0

)p/2)
,

=

(
−1

3
− 2

3
α

)p/2

−

(
1 + pα+

4

2p

(
−8

3
α− 4

3

)p/2
)

,

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

=

(
−1

3
− 2

3
α

)p/2

−

(
1 + pα+ 4

(
−2

3
α− 1

3

)p/2
)

,

= −1− pα− 3

(
−2

3
α− 1

3

)p/2

,

= −1− pα− 1

3p/2−1
(−2α− 1)p/2 ,

= −(−2α− 1)p/2
(

1 + pα

(−2α− 1)p/2
+

1

3p/2−1

)
.

Now since α ∈ (−2,−2/3) < −1/2 we can use Lemma D.4 to note that the first term is non-
decreasing in α which means that its lowest value in this range can be lower bounded by its value at
α = −2, i.e., for α ∈ (−2,−2/3),

h(α, β0(α)) ≥ h(−2, β0(−2)) ,

= −3p/2
(
1− 2p

3p/2
+

1

3p/2−1

)
,

= 2p− 1− 3 = 2(p− 2) > 0 ,

which finishes the proof of Case C.II and also Case C. Together Cases A, B and C complete the
proof of Lemma D.6.

We are now ready to prove Lemma D.3.

Proof of Lemma D.3. First, assume that ∥v∥2 = 1. We will later extend the result to all v.

Since ∥v∥2 = 1, we can write △ = αv + βw where ⟨v,w⟩ = 0 and ∥w∥2 = 1, so that we have
∥△∥22 = α2 + β2. Without loss of generality, we have β ≥ 0. Fixing w and α for now, it is enough
to show that for all β ≥ 0, we have

∥(1 + α)v + βw∥p2 =
(
(1 + α)2 + β2

)p/2 ?
≥ 1 + pα+

4

2p
∥△∥p2 = 1 + pα+

4

2p
(
α2 + β2

)p/2
.

This follows immediately by Lemma D.6.

We now extend the result for all v. Let v := v/ ∥v∥2 and note that

∥v +△∥p2 = ∥v∥p2

∥∥∥∥v +
△

∥v∥2

∥∥∥∥p
2

≥ ∥v∥p2

(
1 +

〈
v,

△
∥v∥2

〉
+

4

2p

∥∥∥∥ △
∥v∥2

∥∥∥∥p
2

)
= ∥v∥p2 + p ∥v∥p−2

2 ⟨v,△⟩+ 4

2p
∥△∥p2 ,

completing the proof of Lemma D.3.

D.1.2 SMOOTHNESS OF THE OBJECTIVE

The main result of this subsection is Lemma D.7.

Lemma D.7. For all x ∈ Rd, we have

f(x)− f(x⋆) ≤ p(p− 1)

2
f(x)1−

2
p ∥A(x− x⋆)∥2Gp

.

Proof of Lemma D.7. By Taylor’s/mean-value theorem, we can write for some y on the line con-
necting x⋆ and x,

f(x) = f(x⋆) + ⟨∇f(x⋆),x− x⋆⟩+ 1

2
(x− x⋆)⊤∇2f(y)(x− x⋆)

≤equation 12 f(x⋆) +
p(p− 1)

2

m∑
i=1

∥ASi
y − bSi

∥p−2
2 ∥ASi

(x− x⋆)∥22

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

≤ f(x⋆) +
p(p− 1)

2

(
m∑
i=1

∥ASiy − bSi∥
p
2

) p−2
p
(

m∑
i=1

∥ASi(x− x⋆)∥p2

) 2
p

≤ f(x⋆) +
p(p− 1)

2
f(x)1−

2
p ∥A(x− x⋆)∥2Gp

,

completing the proof of Lemma D.7.

D.2 FACTS ABOUT THE ITERATES

The main result of this section is Lemma D.8. In words, Lemma D.8 tells us that each proximal
query we make in Algorithm 3 (see Line 7 of Algorithm 3) has bounded objective value. We will
need this later when we argue about the convergence rates for the algorithms used to solve the
proximal subproblems.

Lemma D.8. For all queries qt, we have

f(qt) ≤ f(xt) + (9p(p− 1))
p
2 d

p
2−1.

Proof of Lemma D.8. We establish the following upper bound on f(vt)− f(x⋆) using the ingredi-
ents developed so far:

f(vt)− f(x⋆) ≤ p(p− 1)

2
f(vt)

1− 2
p ∥A(vt − x⋆)∥2Gp

(Lemma D.7)

≤ p(p− 1)

2
f(vt)

1− 2
p ∥vt − x⋆∥2M (Theorem 2.3)

≤ p(p− 1)f(vt)
1− 2

p ∥x0 − x⋆∥2M (Lemma B.5)

≤ p(p− 1)f(vt)
1− 2

p 22(2d)1−
2
p (Lemma E.5)

≤ 8d1−
2
p p(p− 1)f(vt)

1− 2
p .

Now, recall that we assume by rescaling that f(x⋆) = 1. From this, it trivially follows that
1 ≤ d1−

2
p p(p − 1)f(vt)

1− 2
p . Combining these and re-arranging the above inequality leads to

the following polynomial inequality in f(vt),

0 ≥ f(vt)− 8d1−
2
p p(p− 1)f(vt)

1− 2
p − 1 ,

= f(vt)− 9d1−
2
p p(p− 1)f(vt)

1− 2
p + d1−

2
p p(p− 1)f(vt)

1− 2
p − 1 ,

≥ f(vt)− 9d1−
2
p p(p− 1)f(vt)

1− 2
p , (14)

where in the last inequality we used the fact that the optimal value f(x⋆) = 1 (due to our rescaling),
which implies that for p ≥ 2,

1 ≤ f(vt) ≤ d1−
2
p p(p− 1)f(vt)

1− 2
p .

Solving for f(vt) in equation 14, we get

f(vt) ≤ (9p(p− 1))
p
2 d

p
2−1 .

Using the definition of qt from Algorithm 3 (Line 6) along with the convexity of f (Jensen’s in-
equality), and using our bound on f(vt) we note that,

f(qt) ≤ f(xt) + f(vt) ,

≤ f(xt) + (9p(p− 1))
p
2 d

p
2−1 ,

which completes the proof of Lemma D.8.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

D.3 PROXIMAL SUBPROBLEMS – CALCULUS, ALGORITHMS, PROOFS

Let

fqt
(x̃) := f(x̃) + epp ∥x̃− qt∥pM .

In this subsection, we design and analyze an algorithm (Algorithm 4) that approximately solves the
subproblem

argmin
x̃∈Rd

fqt
(x̃).

Specifically, we will output (x̃t+1, λt+1) that satisfy the 1
2 -MS oracle condition (Definition B.1) and

an appropriate movement bound (Definition B.2).

This subproblem is the workhorse of Algorithm 5, and once we implement and analyze the solver,
it is very straightforward to plug this into Algorithm 3 and Theorem B.3 to get our final iteration
complexity.

Algorithm 4 GpRegressionProxOracle: Implements 1
2 -MS oracle for ∥·∥Gp

regression (see
Lemma D.20 and Algorithm 2.
Require: Query qt, previous iterate xt, intended parameter distance γ.

1: Define
fqt

(x̃) := f(x̃) + epp ∥x̃− qt∥pM
hqt

(x̃) := ∥x̃− qt∥2∇2f(qt)
+ epp ∥x̃− qt∥pM

Dhqt
(x,y) := hqt(x)− hqt(y)− ⟨∇hqt(y),x− y⟩

x̃qt
:= argmin

x̃∈Rd

fqt(x̃)

.

2: Let T ≥ CpO(1)e log
(
dpehqt

(x̃qt
)
(

4
pγ

)p)
.

3: Run Algorithm 2 with input iteration count T , base function fqt , reference function hqt , and
initialization qt.

The goal of the rest of this section is to analyze Algorithm 4. The analysis follows several steps:

1. We find a reference function hqt
that depends on the query point qt for which the proxi-

mal objective fqt is relatively smooth and relatively strongly convex with O(pO(1)) con-
dition number (see Appendix A for a sense of why this is useful). The main result here is
Lemma D.9.

2. We show that fqt is strongly convex, following from Lemma D.3. This will help us un-
derstand the argument suboptimality for any point that approximately optimizes fqt in
function value. We also show that the reference function hqt is strongly convex, using the
same tools, for the same reason.

3. We show a form of smoothness for fqt . This helps us bound the gradient of any point
that approximately optimizes fqt . Combining these later will tell us that an approximate
solution to fqt in argument value is also an approximate stationary point, i.e., it satisfies
the 1

2 -MS condition (Definition B.1).

4. We solve the proximal subproblems. This solution itself follows a few steps:

(a) We apply Theorem A.1. This tells us that as long as we can approximately solve the
Bregman proximal problems (approximately implementing Line 3 in Algorithm 2),
we will be in good shape.

(b) This means we have to figure out how to approximately solve problems of the form
argmin
x∈Rd

⟨g,x⟩ + Lhqt(x), where L is the smoothness constant derived for fqt with

respect to hqt
. We do this up to an accuracy that approximate mirror descent can

handle (see Theorem A.1 for details on what we want this approximation to look
like). For the approximation to work, we need to approximately solve this problem up

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

to both argument accuracy and approximate stationarity. The main technical result of
interest here is Lemma D.18.

5. We use the smoothness and strong convexity guarantees to show that our solution from the
previous step satisfies the 1

2 -MS oracle (Definition B.1), which means we can plug-and-
play into Theorem B.3.

D.3.1 HESSIAN STABILITY

Throughout this section, we adopt the following notation:

Cp := epp

f(x) :=

m∑
i=1

∥ASi
x− bSi

∥p2

fq(x) := f(x) + Cp ∥x− q∥pM
hq(x) := ∥x− q∥2∇2f(q) + Cp ∥x− q∥pM

We begin with proving our Hessian stability fact, which should also be equivalently viewed as show-
ing that fqt

is relatively smooth and relatively strongly convex in hqt
with O(pO(1)) condition num-

ber. Our main result is Lemma D.9 which relies on analytical results Lemma D.10 and Lemma D.11
that we prove later.

Lemma D.9. For all x ∈ Rd and p ≥ 2, we have
1

2p · e
∇2hq(x) ⪯ ∇2fq(x) ⪯ p · e∇2hq(x) .

Proof of Lemma D.9. Using an arbitrary z ∈ Rd we can write the following quadratic form of the
hessian of f ,

z⊤∇2f(x)z ≤(a) p · (p− 1)

m∑
i=1

∥ASi
x− bSi

∥p−2
2 ∥ASi

z∥22 ,

= p · (p− 1)

m∑
i=1

∥ASi
(x− q) +ASi

q − bSi
∥p−2
2 ∥ASi

z∥22 ,

≤(b) p · (p− 1)

m∑
i=1

(
αp−2
p ∥ASi

(x− q)∥p−2
2 ∥ASi

z∥22 + βp−2
p ∥ASi

q − bSi
∥p−2
2 ∥ASi

z∥22
)

,

≤(c) p · (p− 1) · αp−2
p

m∑
i=1

∥ASi
(x− q)∥p−2

2 ∥ASi
z∥22 + (p− 1) · βp−2

p z⊤∇2f(q)z ,

≤(d) p · (p− 1) · αp−2
p (∥x− q∥pM)

(p−2)/p
(∥z∥pM)

2/p
+ (p− 1) · βp−2

p z⊤∇2f(q)z ,

= p · (p− 1) · αp−2
p ∥x− q∥p−2

M ∥z∥2M + (p− 1) · βp−2
p z⊤∇2f(q)z ,

≤(e)
(p− 1) · αp−2

p

Cp
z⊤∇2gq(x)z + (p− 1) · βp−2

p z⊤∇2f(q)z , (15)

where in (a) we apply the upper bound from Lemma D.1, in (b) we pick αp, βp ≥ 1 such that
1/αp + 1/βp = 1 (we will choose them later), in (c) we apply the lower bound from Lemma D.1,
in (d) we use the choice of our weights in designing M and Theorem 2.3 and finally in (e) we use
the following calculations for the regularizer term for some z ∈ Rd,

gq(x) := Cp ∥x− q∥pM ,

∇gq(x) = pCp ∥x− q∥p−2
M M(x− q) ,

∇2gq(x) = pCp ∥x− q∥p−2
M M+ p(p− 2)Cp ∥x− q∥p−4

M M(x− q)(x− q)⊤M ,

z⊤∇2gq(x)z = pCp ∥x− q∥p−2
M ∥z∥2M + p(p− 2)Cp ∥x− q∥p−4

M

(
(x− q)⊤Mz

)2 ≥(p≥2) 0 .

Combining equation 15 with the definition of fq gives us,

z⊤∇2fq(x)z = z⊤∇2f(x)z + z⊤∇2gq(x)z ,

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

≤using equation 15 (p− 1) · βp−2
p z⊤∇2f(q)z +

(
1 +

(p− 1) · αp−2
p

Cp

)
z⊤∇2gq(x)z .

Thus, in order to finish the proof for the upper bound we need to pick αp, βp. We split the analysis
here into two cases: A. p > 2 and B. p = 2.

Case A. (p > 2) For simplicity we will just pick αp = p− 1 and βp = p−1
p−2 which implies,

z⊤∇2fq(x)z ≤ (p− 1) ·
(
1 +

1

p− 2

)p−2

z⊤∇2f(q)z +

(
1 +

(p− 1) · (p− 1)p−2

Cp

)
z⊤∇2gq(x)z ,

≤ (p− 1) · ez⊤∇2f(q)z +

(
1 +

(p− 1)p−1

Cp

)
z⊤∇2gq(x)z ,

=
(p− 1) · e

2
z⊤ (∇2hq(x)−∇2gq(x)

)
z +

(
1 +

(p− 1)p−1

Cp

)
z⊤∇2gq(x)z ,

≤(p≥2) p · ez⊤∇2hq(x)z +

(
1 +

(p− 1)p−1

Cp
− (p− 1) · e

2

)
z⊤∇2gq(x)z ,

= p · ez⊤∇2hq(x)z +

(
1 +

(p− 1)p−1

epp
− (p− 1) · e

2

)
z⊤∇2gq(x)z ,

≤(Lemma D.10) p · ez⊤∇2hq(x)z ,

where in the final inequality we use Lemma D.10 which tell us that for p ≥ 2 the constant in front
of z⊤∇2gq(x)z is negative along with the fact that z⊤∇2gq(x)z is non-negative. To get the lower
bound we first exchange x, q in equation 15 (and use the values of αp and βp) to get,

z⊤∇2f(q)z ≤ (p− 1) · (p− 1)p− 2

epp
z⊤∇2gx(q)z + (p− 1)

(
1 +

1

p− 2

)p−2

z⊤∇2f(x)z ,

⇒ z⊤∇2f(q)z ≤ (p− 1)p−1

epp
z⊤∇2gx(q)z + (p− 1)ez⊤∇2f(x)z ,

⇒ 1

(p− 1)e
z⊤∇2f(q)z − (p− 1)p−2

e2pp
z⊤∇2gx(q)z ≤ z⊤∇2f(x)z .

We can finally lower bound,

z⊤∇2fq(x)z = z⊤∇2f(x)z + z⊤∇2gq(x)z ,

≥ 1

(p− 1)e
z⊤∇2f(q)z − (p− 1)p−2

e2pp
z⊤∇2gx(q)z + z⊤∇2gq(x)z ,

=
1

2(p− 1)e
z⊤ (∇2hq(x)−∇2gq(x)

)
z − (p− 1)p−2

e2pp
z⊤∇2gx(q)z + z⊤∇2gq(x)z ,

≥(gq(x)=gx(q))
1

2pe
z⊤∇2hq(x)z +

(
1− 1

2(p− 1)e
− (p− 1)p−2

e2pp

)
z⊤∇2gq(x)z ,

≥(Lemma D.11) 1

2pe
z⊤∇2hq(x)z ,

where in the final inequality we use Lemma D.11 and the fact that z⊤∇2gq(x)z is non-negative.
This finishes the proof for Case A.

We finally consider the corner case with p = 2.

Case B. (p = 2) In this case the proof is trivial, and follows from simply writing the quadratic
forms for fq and hq . We do so below,

z⊤∇2fq(x)z = z⊤∇2f(x)z + z⊤∇2gq(x)z ,

= z⊤∇2f(x)z + 2C2 ∥z∥2M ,

≤ 2z⊤∇2f(x)z + 2C2 ∥z∥2M = z⊤∇2hq(x)z ,

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

which shows the relative smoothness with a constant of 1 which is smaller (and hence better) than
the claimed constant (for p = 2) of 2e in the lemma. Now for the relative strong convexity we do
the same,

z⊤∇2fq(x)z = z⊤∇2f(x)z + 2C2 ∥z∥2M ,

≥ 1

2
·
(
2z⊤∇2f(x)z + 2C2 ∥z∥2M

)
,

=
1

2
z⊤∇2hq(x)z ,

which shows relative strong-convexity with a constant of 1
2 which is larger (and hence better) than

the claimed constant (for p = 2) of 1
4e in the lemma. This finishes the proof for Case B.

This completes the proof of Lemma D.9.

We prove two small technical lemmas that we used in the above proof now.

Lemma D.10. For all p ≥ 2, g(p) = 1 + (p−1)p−1

epp − (p−1)·e
2 ≤ 0.

Proof. First note that at p = 2 the function takes a strictly negative value,

g(2) = 1 +
(1

e22
− e

2
=

4e+ 1− 2e2

4e
< 0 .

We will now show that the function is increasing in p for p ≥ 2,

g′(p) = − (p− 1)p−1pp(ln(p) + 1)

p2p
+

(p− 1)p−1(ln(p− 1) + 1)

pp
− e

2
,

= − (p− 1)p−1 ln(p/(p− 1))

pp
− e

2
< 0 .

Thus, the function attains its maximum value at p = 2 in the range p ≥ 2, implying it is strictly
negative in that range.

Lemma D.11. For all p ≥ 2, g(p) = 1− 1
2(p−1)e − (p−1)p−2

e2pp ≥ 0.

Proof. First note that at p = 2 the function takes a strictly positive value,

g(2) = 1− 1

2e
− 10

e222
= 1− 1

2e
− 1

4e2
=

4e2 − 2e− 1

4e2
> 0 .

We will now show that the function is increasing in p for p ≥ 2,

g′(p) =
1

2(p− 1)2e
+

(p− 1)p−2pp(ln(p) + 1)

e2p2p
− (p− 1)p−2(ln(p− 1) + (p− 2)/(p− 1))

e2pp
,

=
1

2(p− 1)2e
+

(p− 1)p−2(ln(p) + 1)

e2pp
− (p− 1)p−2(ln(p− 1) + 1− 1/(p− 1))

e2pp
,

=
1

2(p− 1)2e
+

(p− 1)p−2 (ln(p/(p− 1)) + 1/(p− 1))

e2pp
> 0 .

Thus, the function g attains its minimum value at p = 2 in the range p ≥ 2, implying that it is strictly
positive in that range.

D.3.2 STRONG CONVEXITY OF THE PROXIMAL OBJECTIVE AND FRIENDS

We begin with showing that the proximal objective enjoys a form of strong convexity.

Lemma D.12. For all x,d ∈ Rd, we have

fq(x+ d) ≥ fq(x) + ⟨∇fq(x),d⟩+
4

2p

(
∥Ad∥pGp

+ Cp ∥d∥pM
)
.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Proof of Lemma D.12. Let Kp := 4
2p .

The plan is to apply Lemma D.3 to fq(x+ d). We start with the regularizer. Notice that

∥x+ d− q∥pM =
∥∥∥M1/2(x+ d− q)

∥∥∥p
2
=
∥∥∥M1/2(x− q) +M1/2d

∥∥∥p
2

,

≥(Lemma D.3)
∥∥∥M1/2(x− q)

∥∥∥p
2

(16)

+

〈
p
∥∥∥M1/2(x− q)

∥∥∥p−2

2
M1/2(x− q),M1/2d

〉
+Kp

∥∥∥M1/2d
∥∥∥p
2

,

= ∥x− q∥pM +
〈
p ∥x− q∥p−2

M M(x− q),d
〉
+Kp ∥d∥pM ,

= ∥x− q∥pM + ⟨∇x (∥x− q∥pM) ,d⟩+Kp ∥d∥pM . (17)

We combine this with the conclusion of Lemma D.2, giving

fq(x+ d) = f(x+ d) + Cp∥x+ d− q∥pM ,

≥(Lemma D.2) f(x) + ⟨∇f(x),d⟩+Kp ∥Ad∥pGp
+ Cp∥x+ d− q∥pM ,

≥equation 17 f(x) + ⟨∇f(x),d⟩+Kp ∥Ad∥pGp
+ Cp ∥x− q∥pM

+ Cp ⟨∇x (∥x− q∥pM) ,d⟩+KpCp ∥d∥pM ,

= f(x) + Cp ∥x− q∥pM + ⟨∇x (f(x) + Cp ∥x− q∥pM),d⟩
+Kp ∥Ad∥pGp

+KpCp ∥d∥pM ,

= fq(x) + ⟨∇fq(x),d⟩+Kp

(
∥Ad∥pGp

+ Cp ∥d∥pM
)

.

completing the proof of Lemma D.12.

We also show that the subproblems we solve in Line 3 of Algorithm 2 are strongly convex.

Lemma D.13. Fix z, q,d ∈ Rd and let L > 0. Consider the function

g(x) := ⟨z,x⟩+ L
(
∥x− q∥2∇2f(q) + Cp ∥x− q∥pM

)
.

Then,

g(x+ d) ≥ g(x) + ⟨∇g(x),d⟩+ L

(
∥d∥2∇2f(q) +

4Cp

2p
∥d∥pM

)
.

In particular, if z is the minimizer for g, then for any d ∈ Rd, we have

∥d∥M ≤ 2

p · (4e)1/p

(
g(z + d)− g(z)

L

)1/p

.

Proof of Lemma D.13. This is pretty much the same proof as Lemma D.12. It is easy to check that

∥(x+ d)− q∥2∇2f(q) = ∥x− q∥2∇2f(q) +
〈
2∇2f(q)(x− q),d

〉
+ ∥d∥2∇2f(q) , (18)

and using Lemma D.3 in the same way as in the proof of Lemma D.12, we have

∥(x+ d)− q∥pM ≥equation 17 ∥x− q∥pM +
〈
p ∥x− q∥p−2

M M(x− q),d
〉
+

4

2p
∥d∥pM .

Combining this with the definition of g gives the following,

g(x+ d) = ⟨z,x+ d⟩+ L
(
∥x+ d− q∥2∇2f(q) + Cp ∥x+ d− q∥pM

)
,

≥equation 18, equation 17 ⟨z,x⟩+ ⟨z,d⟩+ L ∥x− q∥2∇2f(q) + L
〈
2∇2f(q)(x− q),d

〉
+ L ∥d∥2∇2f(q) + LCp

(
∥x− q∥pM +

〈
p ∥x− q∥p−2

M M(x− q),d
〉
+

4

2p
∥d∥pM

)
,

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

= g(x) +
〈
z + 2L∇2f(q)(x− q) + LCpp ∥x− q∥p−2

M M(x− q),d
〉

+ L

(
∥d∥2∇2f(q) +

4Cp

2p
∥d∥pM

)
,

= g(x) + ⟨∇g(x),d⟩+ L

(
∥d∥2∇2f(q) +

4Cp

2p
∥d∥pM

)
,

which proves the first result of the lemma.

To get the second result, we observe that ∇g(z) = 0 by the optimality of z. Ignoring the ∥d∥∇2f(q)

terms and rearranging gives the conclusion of Lemma D.13.

D.3.3 SMOOTHNESS OF THE PROXIMAL OBJECTIVE

We first bound the operator norm of a matrix related to the Hessian of the proximal objective.

Lemma D.14. For all q,y ∈ Rd, we have∥∥∥M−1/2
(
∇2fq(y)

)
M−1/2

∥∥∥
op

≤ ep2(p− 1)
(
2f(q)1−

2
p + Cp ∥y − q∥p−2

M

)
.

Proof of Lemma D.14. Recall from the proof of Lemma D.9 the definition of the regularization term
gq(y) := Cp ∥y − q∥pM for Cp = epp as well as the following calculations,

gq(y) := Cp ∥y − q∥pM ,

∇gq(y) = pCp ∥y − q∥p−2
M M(y − q) ,

∇2gq(y) = pCp ∥y − q∥p−2
M M+ p(p− 2)Cp ∥y − q∥p−4

M M(y − q)(y − q)⊤M .

By Lemma D.9, we know that

∇2fq(y) ⪯ ep
(
2∇2f(q) +∇2gq(y)

)
.

Observe that

M−1/2
(
∇2gq(y)

)
M−1/2 = pCp

(
∥y − q∥p−2

M + (p− 2) ∥y − q∥p−4
M M1/2(y − q)(y − q)⊤M1/2

)
,

⪯ pCp ∥y − q∥p−2
M I+ (p− 2) ∥y − q∥p−4

M

∥∥∥M1/2(y − q)(y − q)⊤M1/2
∥∥∥
op

I ,

⪯ pCp ∥y − q∥p−2
M I+ (p− 2) ∥y − q∥p−4

M

∥∥∥M1/2(y − q)
∥∥∥2
2
I ,

⪯ p(p− 1)Cp ∥y − q∥p−2
M I ,

and, applying Lemma D.1 (with M−1/2z as the vectors in the quadratic form) and Hölder inequality
with norms ∥ · ∥p/(p−2), ∥ · ∥p/2, for z ∈ Rd we have

z⊤M−1/2
(
∇2f(q)

)
M−1/2z ≤ p(p− 1)

m∑
i=1

∥ASi
q − bSi

∥p−2
2

∥∥∥ASi
M−1/2z

∥∥∥2
2

≤ p(p− 1)

(
m∑
i=1

∥ASi
q − bSi

∥p2

) p−2
p
(

m∑
i=1

∥∥∥ASi
M−1/2z

∥∥∥p
2

) 2
p

≤ p(p− 1)f(q)1−
2
p

∥∥∥M−1/2z
∥∥∥2
M

= p(p− 1)f(q)1−
2
p ∥z∥22 .

Combining gives

M−1/2
(
∇2fq(y)

)
M−1/2 ⪯ epM−1/2

(
2∇2f(q) +∇2gq(y)

)
M−1/2 ,

⪯ 2ep2(p− 1)f(q)1−
2
p + ep2(p− 1)Cp ∥y − q∥p−2

M ,

⪯ ep2(p− 1)
(
2f(q)1−

2
p + Cp ∥y − q∥p−2

M

)
,

completing the proof of Lemma D.14.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Next, we show a bound on the norm of the gradient of any solution x that is approximately optimal
for fq .

Lemma D.15. For all q,x ∈ Rd, we have∥∥M−1∇fq(x)
∥∥
M

≤ ep2(p− 1)
(
f(q)1−

2
p + Cp max

{
∥x− q∥M , ∥xq − q∥M

}p−2
)
∥x− xq∥M .

Proof of Lemma D.15. We use a continuity argument. By Taylor’s theorem, we know for some y
along the line connecting x and xq (minimizer of fq) that

∇fq(x) = ∇fq(xq) +∇2fq(y)(x− xq) = ∇2fq(y)(x− xq) .

Taking M−1-norm of both sides gives,

∥∇fq(x)∥M−1 =
∥∥∥M−1/2∇fq(x)

∥∥∥
2

,

=
∥∥∥M−1/2∇2fq(y)(x− xq)

∥∥∥
2

,

=
∥∥∥M−1/2∇2fq(y)M

−1/2M1/2(x− xq)
∥∥∥
2

,

≤
∥∥∥M−1/2

(
∇2fq(y)

)
M−1/2

∥∥∥
op

· ∥x− xq∥M .

The rest of the proof involves bounding the operator norm term. This follows directly from
Lemma D.14, from which we get (using convexity of ∥ · ∥M),∥∥∥M−1/2∇2fq(y)M

−1/2
∥∥∥
op

≤ ep2(p− 1)
(
2f(q)1−

2
p + Cp ∥y − q∥p−2

M

)
≤ ep2(p− 1)

(
2f(q)1−

2
p + Cp max

{
∥x− q∥M , ∥xq − q∥M

}p−2
)
.

Putting everything together, we get∥∥M−1∇fq(x)
∥∥
M

= ∥∇fq(x)∥M−1 ,

≤ ep2(p− 1)
(
2f(q)1−

2
p + Cp max

{
∥x− q∥M , ∥xq − q∥M

}p−2
)
∥x− xq∥M ,

completing the proof of Lemma D.15.

D.3.4 SOLVING THE PROXIMAL SUBPROBLEMS

We begin by showing that the optimal solution to the proximal problem xqt
:= argmin

x∈Rd

fqt
(x) is

not too far from x⋆.

Lemma D.16. For all proximal queries qt, we have

∥xqt
− x⋆∥M ≤ d

1
2−

1
p

(
2

3
2 f(xt) + 4

)
.

Proof. In the rest of this proof, we omit the subscript t wherever it is clear which iterates we are
working with.

We first show that

∥xq − q∥M ≤ ∥x⋆ − q∥M .

To see this, suppose this is not the case. Then, we have

f(x⋆) + Cp ∥x⋆ − q∥pM < f(xq) + Cp ∥xq − q∥pM ,

which contradicts the optimality of xq for fq .

We now write

∥xqt
− x⋆∥M ≤ ∥xqt

− qt∥M + ∥x⋆ − qt∥M ,

≤ 2 ∥x⋆ − qt∥M ,

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

≤ 2 (∥xt − x⋆∥M + ∥vt − x⋆∥M) ,

where in the last inequality, we used the definition of qt from Line 6 in Algorithm 3 and the convexity
of ∥ · ∥M. The required control on ∥vt − x⋆∥M comes from Lemma B.5 and Lemma E.5 (along
with re-scaling assumption to make the optimal value 1) – we have

∥vt − x⋆∥M ≤
√
2 ∥x0 − x⋆∥M ≤ 4d

1
2−

1
p .

For the other term, we apply Lemma D.2 and get

∥xt − x⋆∥M ≤ 2
3
2 d

1
2−

1
p (f(xt)− f(x⋆))

1
p < 2

3
2 d

1
2−

1
p f(xt)

1
p .

Adding gives us the conclusion of Lemma D.16.

The next few lemmas are targeted at solving the proximal subproblems. We begin with a calculation
that we will use in showing that the initial Bregman divergence between our initialization and the
optimum is small.

Lemma D.17. In the same setting as Lemma D.9, for all x,y ∈ Rd, we have

hq(xq) ≤ p(p− 1)f(q)1−
2
p ∥xq − q∥2M + Cp ∥xq − q∥pM < f(q) + Cp ∥xq − q∥pM ≤ 2f(q).

Proof of Lemma D.17. By optimality of xq for the subproblem, we have

f(xq) + Cp ∥xq − q∥pM ≤ f(q) + Cp ∥q − q∥pM = f(q).

Rearranging gives,

∥xq − q∥pM ≤ f(q)− f(xq)

Cp
≤ f(q)

Cp
. (19)

We now use the definition of hq and Lemma D.1 to write

hq(xq) = ∥xq − q∥2∇2f(q) + Cp ∥xq − q∥pM ,

≤Lemma D.1 p(p− 1)

m∑
i=1

∥ASiq − bSi∥
p−2
2 ∥ASi(xq − q)∥22 + Cp ∥xq − q∥pM ,

≤(a) p(p− 1)

(
m∑
i=1

∥ASiq − bSi∥
p
2

)1− 2
p
(

m∑
i=1

∥ASi(xq − q)∥p2

) 2
p

+ Cp ∥xq − q∥pM ,

≤(b) p(p− 1)f(q)1−
2
p ∥xq − q∥2M + Cp ∥xq − q∥pM ,

≤equation 19 p(p− 1)f(q)1−
2
p

(
f(q)

Cp

) 2
p

+ Cp ∥xq − q∥pM ,

=(Cp = epp) (p− 1)

ep
f(q) + Cp ∥xq − q∥pM ,

< f(q) + Cp ∥xq − q∥pM ,

<equation 19 2f(q) ,

where in (a) we used Hölder inequality with norms ∥ · ∥p/(p−2), ∥ · ∥p/2 and in (b) we used Theo-
rem 2.3 .

This completes the proof for the series of inequalities in Lemma D.17.

We now have the tools to show how to approximately solve problems in Line 3 of Algorithm 2 when
applied in our setting. Although this and future complexity bounds depend on f(xt), we will later
be able to use Theorem B.3 to “bootstrap” and get an unconditional upper bound below.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Lemma D.18. Let α ≤ 1/2. In the context of Algorithm 5, there exists an algorithm that approxi-
mately solves subproblems of the form (for p ≥ 2 and L = pe),

z := argmin
x∈Rd

⟨g,x⟩+ L
(
∥x− q∥2∇2f(q) + Cp ∥x− q∥pM

)
,

in the sense that we output x for which,

max
{
∥x− z∥M ,

∥∥∥M−1g + 2L
(
M−1∇2f(q)(x− q) + Cp ∥x− q∥p−2

M (x− q)
)∥∥∥

M

}
≤ α .

The algorithm takes pO(1) log
(

pd·f(q)
α

)
linear-system-solves in matrices of the form A⊤BA for

block-diagonal B, where each block in B has size |Si| × |Si|.

Proof of Lemma D.18. This proof is lengthy, and splitting it into lemmas would disrupt the intended
reading flow. So we break it up into several key components here.

Motivation for the lemma. First, let us see why this lemma is even useful. In each iteration of
Algorithm 4, which in turn calls Algorithm 2, the main primitive is computing

x̃i = argmin
x̃∈Rd

fqt(x̃i−1) + ⟨∇fqt(x̃i−1), x̃− x̃i−1⟩+ peDhqt
(x̃, x̃i−1) ,

= argmin
x̃∈Rd

fqt
(x̃i−1) + ⟨∇fqt

(x̃i−1), x̃− x̃i−1⟩+ pe (hqt
(x̃)− hqt

(x̃i−1)− ⟨∇hqt
(x̃i−1), x̃− x̃i−1⟩) ,

= argmin
x̃∈Rd

fqt
(x̃i−1)− pehqt

(x̃i−1) + ⟨∇fqt
(x̃i−1)− pe∇hqt

(x̃i−1), x̃− x̃i−1⟩+ pehqt
(x̃) ,

= argmin
x̃∈Rd

⟨∇fqt(x̃i−1)− pe∇hqt(x̃i−1), x̃⟩+ pehqt(x̃) .

Observe that the subproblem is of the form

z = argmin
x∈Rd

⟨g,x⟩+ pehq(x) ,

= argmin
x∈Rd

⟨g,x⟩+ pe
(
∥x− q∥2∇2f(q) + Cp ∥x− q∥pM

)
, (20)

and so our goal is to show how to solve these types of problems.

The general algorithm. Consider solving the related subproblem (instead of equation 20),

argmin
x∈Rd

⟨g,x⟩+ L
(
∥x− q∥2∇2f(q) + Cpτ ∥x− q∥2M

)
for some fixed τ ≥ 0. This is a quadratic problem, and we can therefore solve it in 1 linear-system-
solve. It is easy to check that at optimality, we have

g + 2pe
(
∇2f(q)(x− q) + CpτM(x− q)

)
= 0 ,

which rearranges to†

x− q = − 1

2pe

(
∇2f(q) + CpτM

)−1
g .

Note that at optimality for our original subproblem equation 20, we have τ⋆ := ∥z − q∥p−2
M where

z is the solution of subproblem equation 20. Also note that ∥x− q∥M is a decreasing function in τ
because,

∥x− q∥2M =
1

4p2e2
∥g∥2

(∇2f(q)+CpτM)−1M(∇2f(q)+CpτM)−1 ,

and for τ1 ≤ τ2,(
∇2f(q) + Cpτ1M

)−1
M
(
∇2f(q) + Cpτ1M

)−1 ⪰
(
∇2f(q) + Cpτ2M

)−1
M
(
∇2f(q) + Cpτ2M

)−1
.

†Recall that ∇2f(q) = A⊤B1A for block-diagonal B1 and by construction, M = A⊤W
1− 2

pA where
W consists of the block Lewis weights on the diagonal. Thus, ∇2f(q) + CpτM = A⊤B2A for block-
diagonal B2.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

We therefore see that if τ > ∥x− q∥p−2
M — where x is the optimal solution for a fixed τ — then

we are over-regularizing and need to decrease τ and vice-versa. This means we can binary search
for the appropriate value of τ . To execute this, we first need to establish the accuracy up to which
we have to identify τ .

Convergence in Argument. By Lemma D.13 (setting d = x − z), recall that it is enough to
solve sub-problem equation 20 up to additive accuracy (p/2)pLαp to get ∥x− z∥M ≤ α. Suppose
we find τ for which τ⋆ ≤ τ ≤ τ⋆ + δ. By writing the objectives and comparing, we see that the x
we find from using τ gives us at most a δ · d-suboptimal solution compared to z. Plugging this into
the bound from Lemma D.13 tells us that we should choose δ = (p/2)pLαp/d, and plugging this
into the binary search over τ ∈ [0, dp(1 + f(q))] gives us pO(1) log

(
pd·f(q)

α

)
steps, as needed.

First-order stationary point. We first claim that it is enough to get∥∥M−1∇hq(x)−M−1∇hq(z)
∥∥
M

≤ α

L
.

Indeed, let z be the optimal solution for the subproblem. This means that it must satisfy the first
order stationary condition, namely,

g + L∇hq(z) = 0.

Multiplying both sides by M−1, subtracting, and dividing both sides by L gives us the expression
we are interested in.

Writing first order stationary conditions gives both

g + 2L
(
∇2f(q)(x− q) + CpτM(x− q)

)
= 0

g + 2L
(
∇2f(q)(z − q) + Cpτ

⋆M(z − q)
)
= 0

.

Multiplying both sides of both equalities by M−1 and subtracting these gives

2L
(
M−1∇2f(q)(x− z) + Cp (τ(x− q)− τ⋆(z − q))

)
= 0.

Expanding out L(M−1∇hq(x)−M−1hq(z)) and subtracting the above gives the desired condition

2L
∣∣∣τ − ∥x− q∥p−2

M

∣∣∣ · ∥x− q∥M
?
≤ α.

Next, let us run the binary search from above so that we get argument convergence, i.e. ∥x− z∥M ≤
αC ≪ 0.1α for some constant C. Using the fact that the approximate mirror descent step using z
decreases the objective value (Lemma A.4), observe that

∥x− q∥M ≤ ∥z − q∥M + ∥x− z∥M ≤ ∥q − z∥M + 0.1α ≲
√
d(1 + f(q)).

It then follows that binary searching τ to additive accuracy α(
√
d(1 + f(q)))−1/L is sufficient.

By the same argument as above, this takes pO(1) log
(

pd·f(qt)
α

)
steps, completing the proof of

Lemma D.18.

We now combine Lemma D.18 with Theorem A.1 and Algorithm 2 to obtain approximate argument
optimality for each proximal subproblem.

Lemma D.19. Let γ > 0 and xq := argmin
x∈Rd

fq(x). There exists an algorithm that returns x for

which

∥x− xq∥M ≤ γ.

The algorithm takes at most O
(
pO(1) log

(
phq(xq)

(
4
pγ

)p))
iterations of solving subproblems of

the form argmin
x∈Rd

⟨g,x⟩+ ephq(x) for fixed vectors g and q.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Proof of Lemma D.19. This proof resembles (Jambulapati et al., 2022, Lemma 4.5), which uses an
exact version of mirror descent arising from Lu et al. (2018). The main difference between our
argument and that of (Jambulapati et al., 2022, Lemma 4.5) is that we rigorously identify a concrete
upper bound on the complexity needed to satisfy the MS condition and argue that the mirror descent
algorithm can handle the inexact Bregman proximal problem solves.

First, we use Lemma D.12 on the approximate solution x and true solution xq and get,

fq(x) ≥ fq(xq) +
4

2p

(
∥A(x− xq)∥pGp

+ Cp ∥xq − x∥pM
)

,

≥ fq(x) +
4Cp

2p
∥xq − x∥pM .

Rearranging, we get

∥xq − x∥M ≤
(

2p

4Cp

)1/p

(fq(x)− fq(xq))
1/p

,

=

(
2p

4epp

)1/p

(fq(x)− fq(xq))
1/p

,

<
2

p
(fq(x)− fq(xq))

1/p
.

Using the notation from Lu et al. (2018), for convex h : Rd → R, let

Dh(x,y) := h(x)− h(y)− ⟨∇h(y),x− y⟩ .
Recall the conclusion of Lemma D.9 – we have for µ = 1/(2pe) and L = pe that

µ∇2hq(x) ⪯ ∇2fq(x) ⪯ L∇2hq(x).

By Theorem A.1 and Lemma D.9, using the same notation from Lemma D.9, we have for all itera-
tions t of Algorithm 2 (with f = fq and h = hq) that,

fq(xt)− fq(xq) ≤ L
(
1− µ

L

)t
Dhq (xq, q) + max

1≤i≤t
⟨△i,xt − xq⟩ ,

= 2L
(
1− µ

L

)t
hq(xq) + max

1≤i≤t
⟨△i,xt − xq⟩ .

Hence, for t ≥ L
µ log

(
Lhq(xq)

(
4
pγ

)p)
, it is easy to check that for p ≥ 2,

fq(xt)− fq(xq) ≤ 2L

(
1

e

)log(Lhq(xq)(4
pγ)

p
)
hq(xq) + max

1≤i≤t
⟨△i,xt − xq⟩ ,

= 2
(pγ

4

)p
+ max

1≤i≤t
⟨△i,xt − xq⟩ ,

≤
(pγ

2

)p
+ max

1≤i≤t
⟨△i,xt − xq⟩ ,

and combining this with Lemma D.18 to make the error term on the order of our accuracy, we get
∥xq − x∥M ≲ γ. We thus conclude the proof of Lemma D.19.

The last step is to use our proximal problem solver to build a valid MS oracle.

Lemma D.20. In the context of Algorithm 3, there exists an algorithm (x̃t+1, λt+1) = Oprox(qt)
that approximately solves

argmin
x̃∈Rd

f(x̃) + epp ∥x̃− qt∥pM

using O
(
pO(1) log

(
pd·f(xt)

ε

))
linear-system-solves in A⊤BA, in the sense that∥∥∥∥∥ 1

epp+1 ∥x̃t+1 − qt∥p−2
M

M−1∇f(x̃t+1) + (x̃t+1 − qt)

∥∥∥∥∥
M

≤ 1

2
∥x̃t+1 − qt∥M .

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Proof of Lemma D.20. The point of this proof is to give an analysis of Algorithm 4.

For notational simplicity, let x = x̃t+1 and λ = λt+1. We will reintroduce the indices when it is
essential to clarify the iterations we are discussing.

First, it is helpful to see why the stated notion of approximation is useful. Let Cp := epp. Observe
that at exact optimality, we have

∇f(xq) + epp+1 ∥xq − q∥p−2
M︸ ︷︷ ︸

λ⋆

M(x− q) = 0 . (21)

This motivates the approximation in our lemma statement, with us asking for a 1
2 -approximate MS

oracle (Definition B.1) for f . This also tells us that at optimality in equation 21, we have,

∇f(xq) + epp+1 ∥xq − q∥p−2
M M(x− q) = 0 ,

⇔ M−1/2f(xq) = −pCp ∥xq − q∥p−2
M M1/2(x− q) ,

⇒
∥∥∥M−1/2f(xq)

∥∥∥
2
= pCp ∥xq − q∥p−2

M

∥∥∥M1/2(x− q)
∥∥∥
2

,

⇔ ∥xq − q∥M =

(∥∥M−1∇f(xq)
∥∥
M

pCp

) 1
p−1

.

We now break up our analysis into two cases. In the first, suppose that
∥∥M−1∇f(xq)

∥∥
M

≤
ε/ ∥xq − x⋆∥M. Then, by convexity, we have

f(xq)− f(x⋆) ≤ ⟨∇f(xq),xq − x⋆⟩ ≤
∥∥M−1∇f(xq)

∥∥
M

∥xq − x⋆∥M ≤ ε.

Hence, for the rest of the proof, assume that
∥∥M−1∇f(xq)

∥∥ ≥ ε/ ∥xq − x⋆∥M (because if this is
not the case, in the algorithm we can simply check whether the MS condition is satisfied – if not,
then we know this assumption was violated and we are done anyway). We run the algorithm implied
by Lemma D.19 and obtain an approximate solution x for which

∥x− xq∥M ≤ α ∥xq − q∥M for α =
1

5
min

 Cp

ep(p− 1)

(
∥xq − q∥M

f(q)
1
p

)p−2

, 1

 . (22)

Since α < 1 the guarantee in equation 22 gives us,

∥x− xq∥M ≤ α ∥x− q∥M ≤ α

1− α
∥x− q∥M , (23)

and further applying triangle inequality gives us

∥xq − q∥M ≤ ∥x− q∥M + ∥xq − x∥M ,

≤ 1− α

1− α
∥x− q∥M +

α

1− α
∥x− q∥M ,

≤ 1

1− α
∥x− q∥M . (24)

Hence, we get

ep(p− 1)f(q)1−
2
p

Cp ∥x− q∥p−2
M

· ∥x− xq∥M =
ep(p− 1)

Cp
·

(
f(q)

1
p

∥x− q∥M

)p−2

· ∥x− xq∥M ,

≤equation 22 1

5
∥xq − q∥M ,

≤equation 24 1

5
· 1

1− α
∥x− q∥M ,

≤ 1

4
∥x− q∥M , (25)

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

where in the last inequality, we used that α ≤ 1
5 due to our choice in equation 22. We now call

Lemma D.15, divide both sides by λ, and get∥∥∥∥∥ 1

epp+1 ∥x− q∥p−2
M

M−1∇f(x) + (x− q)

∥∥∥∥∥
M

≤(Lemma D.15) ep(p− 1)

(
f(q)1−

2
p

Cp ∥x− q∥p−2
M

+max

{
1,

(
∥xq − q∥M
∥x− q∥M

)p−2
})

∥x− xq∥M ,

≤equation 24 ep(p− 1)

(
f(q)1−

2
p

Cp ∥x− q∥p−2
M

+
1

(1− α)p−2

)
∥x− xq∥M ,

≤equation 23 ep(p− 1)f(q)1−
2
p

Cp ∥x− q∥p−2
M

· ∥x− xq∥M +
ep(p− 1)α

(1− α)p−1
∥x− q∥M ,

≤equation 24, equation 22 1

4
∥x− q∥M +

ep(p− 1)5p−2

4p−1
∥x− q∥M ,

≤ 1

2
∥x− q∥M ,

giving us the approximation guarantee.

It remains to understand the complexity of solving the proximal subproblem to the accuracy required
in equation 22. Plugging in γ = α ∥xq − q∥M into Lemma D.19 and using our bound on hq(xq)
from Lemma D.17 gives an iteration complexity of (ignoring the constant in front of the big-O)

pO(1) log

(
phq(xq)

(
2

pα ∥xq − q∥M

)p)
≤ pO(1) log

(
p
(
p(p− 1)f(q)1−

2
p ∥xq − q∥2M + Cp ∥xq − q∥pM

)(2

pα ∥xq − q∥M

)p)
= pO(1) log

((
2

p

)p

p

(
p(p− 1)f(q)1−

2
p ∥xq − q∥2M + Cp ∥xq − q∥pM
αp ∥xq − q∥pM

))

= pO(1) log

((
2

p

)p

p

(
p(p− 1)f(q)1−

2
p

αp ∥xq − q∥p−2
M

+
Cp

αp

))

We have two cases to analyze for the value of α. In the first, suppose we get α = 1
5 . By the definition

of α, this means we have

Cp

ep(p− 1)

(
∥xq − q∥M

f(q)
1
p

)p−2

≥ 1,

which means the complexity we get is pO(1) log p. We now handle the other case, i.e., α =

Cp

5ep(p−1)

(
∥xq−q∥M

f(q)
1
p

)p−2

. Here, it will be useful to keep track of the timestep t that we are working

with. Recall that

∥xqt
− qt∥pM =

(∥∥M−1∇f(xqt)
∥∥
M

pCp

) p
p−1

≥
(

ε

pCp ∥xqt
− x⋆∥M

) p
p−1

, (26)

so the complexity we want to control is given by

pO(1) log

((
2

p

)p

p

(
2f(qt)

αp ∥xqt − qt∥pM

))
≲equation 22 pO(1) log

((
2

p

)p

p

(
2 (5ep(p− 1))

p
f(qt)

p−1

Cp
p ∥xqt − qt∥p(p−2)

M ∥xqt − qt∥pM

))
,

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

≲ pO(1) log

(
p

(
2 (10(p− 1))

p
f(qt)

p−1

pp2 ∥xqt
− qt∥p(p−1)

M

))
,

≲equation 26 pO(1) log

(
p

(
2 (10e(p− 1))

p
pp(p+1)f(qt)

p−1

pp2ϵp

)
∥xqt

− x⋆∥pM

)
,

≲equation 26 pO(1) log

((
2 (10e(p− 1))

p
pp+1f(qt)

p−1

ϵp

)
∥xqt

− x⋆∥pM

)
,

≲ pO(1) log

(
pf(qt) ∥xqt

− x⋆∥M
ε

)
,

≲(Lemma D.16) pO(1) log

(
pf(qt)df(xt)

ε

)
,

≲(Lemma D.8) pO(1) log

(
pf(xt)

ε

)
,

completing the proof of Lemma D.20.

D.4 THE ALGORITHM

We are now ready to combine the results from the previous two subsections to build our algorithm
for Gp-regression and prove Theorem 2. The main algorithmic object here is Algorithm 5.

Algorithm 5 GpRegression: Optimizes equation 4 up to (1 + ε)-multiplicative error
Require: Regression problems (AS1

, bS1
), . . . , (ASm

, bSm
), accuracy ε > 0

1: Using (Manoj & Ovsiankin, 2025, Algorithm 2) with input [A|b], find nonnegative diagonal W
such that for all x ∈ Rd and c ∈ R,

∥Ax− cb∥G∞
≤
∥∥∥W 1

2−
1
pAx− cW1/2b

∥∥∥
2
≤ (2(d+ 1))

1
2−

1
p ∥Ax− cb∥G∞

.

2: Let x0 =
(
A⊤W1− 2

pA
)−1

A⊤W1− 2
p b. ▷ x0 := argmin

x∈Rd

∥∥∥W 1
2−

1
pAx−W

1
2−

1
p b
∥∥∥
2
.

3: Using Algorithm 4 and Lemma D.20, implement a 1
2 -MS oracle for f (Definition B.1)

4: Run Algorithm 3 with the oracle from the previous line and with x0 as the initialization for
O
(
poly(p)min {rank (A) ,m}

p−2
3p−2 log

(
d
ε

)3)
iterations.

5: return x̂ the output of the previous step.

Proof of Theorem 2. By writing the stationary condition of the proximal problem, it makes sense to
choose λt+1 = epp+1 ∥x̃t+1 − qt∥p−2

M .

It is easy to check that

∥x̃t+1 − qt∥M =

epp+1 ∥x̃t+1 − qt∥p−2
M(

(epp+1)
1

p−1

)p−1


1

(p−1)−1

,

and therefore the triple (x̃t+1, qt, ep
p+1 ∥x̃t+1 − qt∥p−2

M) always satisfies a (p−1, (epp+1)1/(p−1))-
movement bound (Definition B.2).

Next, we calculate the iteration complexity we need to reduce the error to half of what we started
with. For an arbitrary initial iterate x, let δ = 0.5(f(x)− f(x⋆)). By Lemma D.2, we have

∥x− x⋆∥s+1
M = ∥x− x⋆∥pM ≤ 23p/2dp/2−1(f(x)− f(x⋆)),

so combining this along with the fact that cs = epp+1 and applying Theorem B.3 with our proximal
solver Lemma D.20 yields

Tmin =
p− 1

3

(
pCp · 23p/2+1dp/2−1

) 2
3p−2

≲ p5/3d
p−2
3p−2 .

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

Next, we initialize x0 :=
(
A⊤W1−2/pA

)−1
A⊤W1−2/pb. Using Theorem E.3 and Theorem E.4,

we have

f(x0) ≤ (2d)p/2−1f(x⋆),

so reaching an iterate x for which f(x) − f(x⋆) ≤ εf(x⋆) takes Tmin · log
(
dp/2−1/ε

)
=

p8/3d
p−2
3p−2 log

(
d
ε

)
calls to Oprox.

We now resolve the full iteration complexity, including the bootstrapping step to show that f(xt) is
reasonably bounded so that we get an unconditional upper bound from Lemma D.20. At the end of
iteration t, from (loosely) inverting the bound in Theorem B.3, we know that

f(xt)− f(x⋆) ≤ (Cp3)
3p−2

2 (2d)
p
2−1

t
3p−2

2

.

Since x̃t+1 only depends on qt, which in turn only depends on xt and vt, it suffices to use the above
bound for f(xt), which gives us an iteration complexity of pO(1) log

(
pd
ε

)
to compute x̃t+1 (which

we get from plugging into Lemma D.20).

Combining this with the iteration complexity of Oprox gives us the result of Theorem 2.

E BLOCK LEWIS WEIGHTS AND PROPERTIES

In this section, we introduce block Lewis weights and explore some of their properties. Several of
these statements can be found in Jambulapati et al. (2023a); Manoj & Ovsiankin (2025), but we
include definitions and proofs here for self-completion.

We first need to define leverage scores.

Definition E.1 (Leverage scores). For a matrix A ∈ Rn×d with rows a1, . . . ,an, let τj denote the
jth leverage score of A, which we define to be

τj(A) := max
x∈Rd\{0}

⟨aj ,x⟩2

∥Ax∥22
= a⊤

j

(
A⊤A

)−1
aj .

We now introduce the main object of interest in this section, Definition E.2. Our version of the
definition is adapted from (Manoj & Ovsiankin, 2025, Definition 1.2) (there, we set p1 = · · · =
pm = 2, let their W = I, replace λ with w/ ∥w∥1, and rescale F ⋆ appropriately).

Definition E.2 (Adapted from (Manoj & Ovsiankin, 2025, Definition 1.2)). Let w ∈ Rm
≥0 and

W ∈ Rn×n
≥0 be a diagonal matrix for which for all j ∈ Si, we have Wjj = wi. Let p > 0. We say

that w is a block Lewis overestimate if for all i ∈ [m], we have∑
j∈Si

τj

(
W

1
2−

1
pA
)

wi
≤ 1 .

The main reason that Definition E.2 is interesting is that it gives us a formula with which we can
relate the level sets of the group norm ∥·∥Gp

to ℓ2. See Theorem E.3.

Theorem E.3 (Block Lewis weights give us ellipsoidal approximations to ∥·∥Gp
). Let p ≥ 2. If w

is a block Lewis overestimate, then for all x ∈ Rd, we have∥∥∥W 1
2−

1
pAx

∥∥∥
2

∥w∥
1
2−

1
p

1

≤ ∥Ax∥Gp
≤
∥∥∥W 1

2−
1
pAx

∥∥∥
2

.

We prove Theorem E.3 in Appendix E. An analogous statement can also be shown for p ≤ 2, but
since we do not use it in this paper, we do not write it here.

Observe that if we can get w that satisfies Definition E.2 and for which ∥w∥1 = rank (A), then
Theorem E.3 gives us the optimal relationship between ℓ2 and ∥·∥Gp

whenever rank (A) ≤ m.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

Furthermore, for intuition, suppose p = ∞. By John’s theorem, we know that for any symmetric
convex body, there exists an ellipsoid such that the ellipsoid approximates the convex body up to
a
√
d distortion. Moreover, this is worst-case tight (e.g. the best distortion we can get when we

approximate ℓd1 with ℓ2 is
√
d). Thus, assuming we can find ∥w∥1 ≈ rank (A), in this case, we get

a guarantee that is similar to what John’s theorem tells us.

Now, assuming we can find a low-distortion ellipsoidal approximation to the level sets of our loss,
we get that the “effective” diameter of our problem is ∼

√
d. Combining this and the discussion

in Section 2.3 (or, more formally, Theorem B.3), we can see why we should expect an iteration
complexity of ∼ d1/3 (or better, if we can find a better ellipsoid).

What is left is whether weights w satisfying Definition E.2 with small sum can be found. To this
end, we invoke (Manoj & Ovsiankin, 2025, Algorithm 2).

Theorem E.4 ((Manoj & Ovsiankin, 2025, Algorithm 2 and Lemma 5.6)). There exists an algorithm
that returns a block Lewis overestimate w for which ∥w∥1 ≤ 2rank (A). The algorithm runs in
O(logm) linear system solves with matrices of the form A⊤DA for nonnegative diagonal D.

Thus, by applying Theorem E.4 as a preprocessing step, we get an ℓ2 geometry under which we can
run the accelerated proximal algorithms. As an example of the power of this, observe the following.

Lemma E.5. Consider the matrix Â := A|b ∈ Rn×(d+1) that is formed by appending the column
vector b to the right of the matrix A. If we have a vector w of block Lewis overestimates for the
matrix Â, then there exists an algorithm that finds an initialization x0 for which

∥x0 − x⋆∥
A⊤W

1
2
− 1

p A
≤ 2 (2rank (A))

1
2−

1
p ∥Ax⋆ − b∥Gp

∥Ax0 − b∥Gp
≤ (2rank (A))

1
2−

1
p ∥Ax⋆ − b∥Gp

.

The algorithm runs in 1 linear system solve in Â⊤DÂ.

Proof of Lemma E.5. By Theorem E.3, our weights w are such that for all x ∈ Rn and reals c ∈ R,∥∥∥W 1
2−

1
pAx− cW

1
2−

1
p b
∥∥∥
2

(2(d+ 1))
1
2−

1
p

≤ ∥Ax− cb∥Gp
≤
∥∥∥W 1

2−
1
pAx− cW

1
2−

1
p b
∥∥∥
2
.

Let x0 be the solution to the least squares regression problem

x0 := argmin
x∈Rd

∥∥∥W 1
2−

1
pAx−W

1
2−

1
p b
∥∥∥
2
=
(
A⊤W1− 2

pA
)−1

A⊤W
1
2−

1
p b.

It is easy to see that computing x0 amounts to 1 linear system solve in A⊤DA.

Next, let M := A⊤W1− 2
pA and observe that

∥x0 − x⋆∥M =
∥∥∥(W 1

2−
1
pAx0 −W

1
2−

1
p b
)
−
(
W

1
2−

1
pAx⋆ −W

1
2−

1
p b
)∥∥∥

2

≤ 2
∥∥∥W 1

2−
1
pAx⋆ −W

1
2−

1
p b
∥∥∥
2
≤ 2 (2d)

1
2−

1
p ∥Ax⋆ − b∥Gp

.

Finally, write

∥Ax0 − b∥Gp
≤
∥∥∥W 1

2−
1
pAx0 −W

1
2−

1
p b
∥∥∥
2

≤
∥∥∥W 1

2−
1
pAx⋆ −W

1
2−

1
p b
∥∥∥
2
≤ (2d)

1
2−

1
p ∥Ax⋆ − b∥Gp

,

giving us the conclusion of Lemma E.5.

Proof of Theorem E.3. Let λ := w/ ∥w∥1 and Λ := W/ ∥w∥1. It is easy to check that λ is a
probability measure on [m]. When p ≥ 2, using monotonicity of Lp norms taken under probability
measures, we get(

m∑
i=1

∥ASi
x∥p2

) 1
p

=

(
m∑
i=1

λi

∥∥∥∥λ− 1
p

i ASi
x

∥∥∥∥p
2

) 1
p

≥

(
m∑
i=1

λi

∥∥∥∥λ− 1
p

i ASi
x

∥∥∥∥2
2

)1/2

.

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

Expanding the RHS and substituting λi = wi/ ∥w∥1 gives

∥Ax∥Gp
≥

∥∥∥W 1
2−

1
pAx

∥∥∥
2

∥w∥
1
2−

1
p

1

.

For the “hard” direction, we will use Definition E.2 in a nontrivial way. Notice that(
m∑
i=1

wi

∥∥∥∥w− 1
p

i ASi
x

∥∥∥∥p
2

) 1
p

=

(
m∑
i=1

wi

∥∥∥∥w− 1
p

i ASi
x

∥∥∥∥2
2

∥∥∥∥w− 1
p

i ASi
x

∥∥∥∥p−2

2

) 1
p

≤


m∑
i=1

wi

∥∥∥∥w− 1
p

i ASi
x

∥∥∥∥2
2

· max
x∈Rd\{0}

∥∥∥∥w− 1
p

i ASi
x

∥∥∥∥p−2

2∥∥∥W 1
2−

1
pAx

∥∥∥p−2

2


1
p

=


m∑
i=1

wi

∥∥∥∥w− 1
p

i ASix

∥∥∥∥2
2

·

 max
x∈Rd\{0}

∥∥∥∥w− 1
p

i ASi
x

∥∥∥∥2
2∥∥∥W 1

2−
1
pAx

∥∥∥2
2


p
2−1

·
∥∥∥W 1

2−
1
pAx

∥∥∥p−2

2


1
p

≤

 m∑
i=1

wi

∥∥∥∥w− 1
p

i ASi
x

∥∥∥∥2
2

·

∑j∈Si
τj

(
W

1
2−

1
pA
)

wi


p
2−1 ∥∥∥W 1

2−
1
pAx

∥∥∥p−2

2


1
p

Definition E.2
≤

(
m∑
i=1

wi

∥∥∥∥w− 1
p

i ASi
x

∥∥∥∥2
2

∥∥∥W 1
2−

1
pAx

∥∥∥p−2

2

) 1
p

=
∥∥∥W 1

2−
1
pAx

∥∥∥
2
,

so combining our upper and lower bounds gives the conclusion of Theorem E.3.

53

	Introduction
	Our Results
	Prior Results, Connections, and Open Problems
	Paper Outline

	Technical Overview
	Solving Proximal Subproblems
	The robust case (p=infinity).
	The Interpolating Case (2 <= p < infinity).

	Iterating Proximal Calls
	The Geometry of the Proximal Subproblems and Block Lewis Weights
	Algorithm for distributionally robust regression

	Mirror descent with inexact updates
	Optimal MS acceleration under custom Euclidean geometry
	Minimizing the distributionally robust loss
	Smoothly approximating the objective
	Calculus for LogSumExp
	Smoothness and quasi-self-concordance of the modified objective
	Analysis of Algorithm 1

	Interpolating between average and robust losses
	Calculus for the objective
	Strong convexity of the objective
	Smoothness of the objective

	Facts about the iterates
	Proximal subproblems – calculus, algorithms, proofs
	Hessian stability
	Strong convexity of the proximal objective and friends
	Smoothness of the proximal objective
	Solving the proximal subproblems

	The algorithm

	Block Lewis weights and properties

