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Abstract

Our world is inherently multimodal and recent001
work highlights the importance of machine002
learning models leveraging multiple streams003
of information in making decisions. Multi-004
modal sentiment analysis has been an active005
area of research that requires models to take006
advantage of the linguistic, acoustic, and vi-007
sual signals available in an utterance. How-008
ever, most current models do not take into009
account any social common-sense knowledge010
which is crucial in how we perceive senti-011
ment in a conversation. To address that, in012
this paper, we aim to influence or modulate013
modality representations with common-sense014
knowledge obtained from a generative social015
common-sense knowledge base. We provide a016
novel way to modulate the linguistic, acoustic,017
and visual features corresponding to an utter-018
ance by scaling and shifting these representa-019
tions. We use the knowledge base to obtain020
knowledge latent representations for an utter-021
ance corresponding to different states of the022
speaker such as the intent and the reaction and023
use it to shift and scale the three modalities.024
Our experiments on popular multimodal sen-025
timent analysis benchmark datasets show that026
our proposed method is on par and often sur-027
passes the current state-of-the art models.028

1 Introduction029

Human communication often employs different030

modalities of communication – language, audio,031

and video being some of the most common ones.032

The meaning of utterances and the perception of033

mood and sentiment during conversations depend034

not only on its content but also on its gestures and035

intonations. With the large volumes of video avail-036

able on the internet, multimodal sentiment analysis037

has increasingly become a more important and ac-038

tive area of research. Advances in the field of multi-039

modal machine learning allow us to mine sentiment040

from videos, for example, which have multiple ap-041

plications such as social media monitoring for busi-042

ness intelligence. In addition to the importance of 043

leveraging multiple modalities of information, re- 044

cent work in neuroscience sheds light on the impor- 045

tance of background knowledge or common-sense 046

reasoning in the way our brains perceive emotion 047

or sentiment of utterances during a conversation. 048

In this work, we explore methods to prime 049

our models with common-sense reasoning and in- 050

ject background knowledge to better interpret the 051

three modality signals when determining sentiment. 052

However, it is neither obvious how to obtain this 053

common-sense knowledge nor how to influence the 054

modality representations to take advantage of the 055

background information. Recent work by Bosse- 056

lut et al., 2019 proposed a generative model called 057

COMET for automatic knowledge graph construc- 058

tion, which can be fine-tuned on an atlas of every- 059

day common-sense reasoning to generate social 060

common-sense knowledge inferences. However, 061

COMET only generates phrases of knowledge in- 062

ferences. In this work, we instead propose lever- 063

aging COMET to obtain representations for the 064

different attributes of the speaker given an utter- 065

ance. To take advantage of this background social 066

knowledge, we propose using feature-wise trans- 067

formations to shift and scale representations of the 068

three modalities with the knowledge representa- 069

tions. We also introduce an adaptive fusion of the 070

three modalities which allows the model to dynami- 071

cally weigh the importance of the individual modal- 072

ities in determining the sentiment. 073

We evaluate our approach on two benchmark 074

datasets for multimodal sentiment analysis - CMU 075

MOSI and CMU MOSEI, and our results show the 076

effectiveness of our approach which surpasses cur- 077

rent state-of-the-art models. To further evaluate 078

the adaptability of our approach, we test its per- 079

formance on a similar benchmark for multimodal 080

humour detection – UR FUNNY. We additionally 081

include ablation experiments which prove the im- 082

portance of the common-sense modulation. 083
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2 Related work084

Human multimodal sentiment analysis requires in-085

ferring the sentiment of an utterance from three086

modalities – language, audio, and video, and re-087

quires fusing information from three modality sig-088

nals while also accounting for temporality. Early089

works adopted simple fusion strategies, such as090

early concatenation of the three modalities (Ngiam091

et al., 2011; Lazaridou et al. 2015) or a late-fusion092

approach, where higher level modality representa-093

tions learnt independently from the three modality094

signals are combined (Nguyen et al., 2018; Ran-095

ganathan et al., 2016). Later works placed greater096

emphasis on sophisticated fusion mechanisms that097

not only captured the individual modality-specific098

information but also captured correlations among099

the signals. Such approaches include models that100

synchronize multimodal sequences using a multi-101

view gated memory, recurrent models that capture102

intra-modal and multiple cross-modal interactions103

by assigning multiple attention coefficients, tensor-104

based fusion mechanisms that capture unimodal,105

bimodal and trimodal interactions across time (Liu106

et al., 2018; Mai et al., 2019; Zadeh et al., 2017)107

and models that capture modality invariant and108

specific information using independent subspaces109

(Hazarika et al., 2020). Other recent works either110

influenced word representations with non-verbal111

cues (Wang et al., 2018) or used cyclic translation112

between modalities to effectively model correla-113

tions (Pham et al., 2018).114

Transformer architectures have also been ex-115

tended to the multimodal sentiment analysis tasks116

where it is crucial to model cross-modality interac-117

tions in the temporal domain. Tsai et al., 2019 used118

stacks of pairwise and bidirectional cross-modal119

attention blocks that attend to low-level modal-120

ity signals to model cross modal interactions. Lv121

et al., 2021 extended this idea by introducing a122

separate message hub so that higher level modality123

interactions could be captured via self-attention to124

higher-level representations. Rahman et al., 2019125

introduced a mechanism to integrate multimodal126

information into large pre-trained transformers by127

shifting pre-trained weights using audio and visual128

modalities. Contrary to these approaches, in this129

work, we shift three modality representations by130

incorporating background common-sense knowl-131

edge.132

Using common-sense knowledge to infer emo-133

tion in conversations was explored in prior work134

(Ghosal et al., 2020). However, concatenating 135

knowledge from a generative knowledge-base to 136

the input of the model, by Ghosal et al., 2020, 137

has the implicit assumption that the common-sense 138

reasoning is only used by the initial layers of the 139

model. In our approach, we do not impose any such 140

restrictions on the model and allow it to modulate 141

representations deeper within a network based on 142

common-sense reasoning. 143

3 Proposed Method 144

In this section, we provide an overview of our pro- 145

posed approach to address the task of multimodal 146

sentiment analysis using common-sense knowledge 147

modulation. Our task is to predict the sentiment of 148

an utterance given a sequence of word-aligned fea- 149

ture vectors for language (RT×dl), video (RT×dv ), 150

and audio (RT×da), where T is the length of the 151

sequence and dl, dv, and da are the dimensions 152

of the language, visual, and acoustic features, re- 153

spectively. At a high level, our approach includes 154

modality-specific transformers for each of the lan- 155

guage, vision, and audio signals followed by an 156

attention-based adaptive fusion mechanism of the 157

three modalities. Our main contribution is to intro- 158

duce a novel way to influence latent variables for 159

the different modalities using a generative common- 160

sense knowledge base. Unlike prior works (Tsai 161

et al., 2019; Lv et al., 2021) that used either three 162

pairs of transformers or an additional transformer 163

to capture cross-modal interactions, we only use 164

a single modality-specific transformer and inject 165

background knowledge through feature-wise trans- 166

formations. The overall architecture is shown in 167

Figure 1. The following sections elaborate on our 168

approach. 169

3.1 Modality Specific Transformers 170

We use the three modalities – language, vision, and 171

audio. Each modality-specific backbone takes as in- 172

putXm = RT×dm , wherem ∈ {l, a, v} represents 173

the three modalities. Our modality-specific trans- 174

formers consist of layers of transformer blocks that 175

have scaled dot product multihead self-attention 176

and feed forward sub-layers together with resid- 177

ual connections and layer norms. The scaled dot 178

product attention is given by 179

Attn(Q,K, V ) = softmax
(
QKT

√
dk

V

)
, 180

where Q, K, and V are queries, keys, and values 181

which are linear projections of the input to a block 182
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Language 
Transformer

Audio 
Transformer

Visual 
Transformer

The product showcased
was great but a few things I
didn't like...

Adaptive fusion
KB

Figure 1: Overall architecture of our proposed model
with modality-specific transformer backbones and
adaptive modality fusion. Common-sense representa-
tions from the knowledge base (KB) are used to influ-
ence the modality transformers. Audio and visual trans-
formers additionally cross-attend to raw language fea-
tures Xl (arrows left out for brevity).

for modality m, Im. In our model, we use mul-183

tihead self-attention, which allows the model to184

attend to different representational subspaces and185

is given by186

MAttn(Q,K, V ) = Concat(head1, ..., headh)WO187

where headi = Attn(QW q
i ,KW

k
i , V W

v
i ).188

After the multihead self-attention, we use189

position-wise feed forward layers. Additionally, we190

add sinusoidal position embeddings to Xm before191

it is input into the modality transformers. For the192

audio and visual transformers, we also add a cross-193

attention layer to the raw language features after194

the self-attention sub-layer. Similar to the work by195

Tsai et al., 2019, we empirically noticed that at-196

tending to low-level language features works better197

than attending to higher-level representations.198

3.2 Generative Commonsense Knowledge199

To inject common-sense knowledge into our model,200

we leverage large pre-trained language models fine-201

tuned on a social common-sense knowledge base.202

Prior work by Bosselut et al., 2019 introduced a203

COMET model that fine-tuned a GPT-2 (medium)204

model (Radford et al., 2019) on an atlas of ‘ev-205

eryday’ common-sense reasoning, called ATOMIC206

(Sap et al., 2018). ATOMIC contains 877k textual207

descriptions of inferential knowledge for if-then208

reasoning. Fine-tuning a pre-trained GPT-2 model 209

on ATOMIC and using it to generate novel com- 210

monsense reasoning to input into our multimodal 211

pipeline gives our model the ability to make so- 212

cial common-sense inferences based on an utter- 213

ance. The COMET model proposed in Bosselut 214

et al. (2019) can generate novel common-sense in- 215

ferences with respect to 9 different attributes (eg 216

xAttr). However, the model is only able to generate 217

discrete textual inferences. To leverage the model 218

in our approach, we ignore the discrete inferences 219

and use the hidden state of the decoder correspond- 220

ing to the attribute token. More specifically, we 221

use the utterance as a input to the COMET model 222

and use the final hidden state from the decoder 223

corresponding to a specific attribute as a represen- 224

tation for that attribute. We then concatenate the 225

representations for multiple attributes to get the 226

aggregated common-sense representation, CSK. 227

The attributes used in our approach are the relevant 228

social reasoning knowledge to inferring sentiment: 229

• xReact: speaker’s reaction to an utterance 230

• oReact: listeners’ reaction to an utterance 231

• xEffect: utterance’s effect on the speaker 232

• oEffect: utterance’s effect on listeners 233

• xIntent: the intent of the speaker 234

3.3 Sequence summarizer 235

We use attention to summarize each of the modality 236

sequences. After l layers of modality-specific trans- 237

former blocks, we obtain {x1l , ..., xTl } T -length se- 238

quences corresponding to the particular modality. 239

The sequence is passed through a linear projection 240

and softmax to get a score for each timestep, γt 241

and the summarized sequence, x̃l, is a weighted 242

combination of the timesteps, i.e., 243

γt =
exp(Wlx

t
l)∑T

t=1 exp
(
Wlx

t
l

) 244

SeqSum(l) = x̃l =
T∑
t=1

γtxtl 245

3.4 Latent modulation 246

Using the common-sense features extracted from 247

the COMET model, our main contribution is to 248

introduce a CSKMod module before the self atten- 249

tion sub-layer to modulate the intermediate repre- 250

sentations of the transformer blocks for the three 251

modalities as illustrated in Figure 2. Our approach 252
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to modulate representations within a network is mo-253

tivated by feature-wise transformations that have254

been followed in prior works where representations255

within a network are shifted and scaled based on256

some conditioning input (Perez et al., 2017a; Perez257

et al., 2017b; Strub et al., 2018; Dumoulin et al.,258

2016). In our approach, for the language modality,259

we first summarize the input sequence to the trans-260

former block at layer l to get x̃l. This, together with261

the CSK representation obtained from COMET, is262

used to get shifting and scaling parameters αl and263

βl respectively from a separate network (FiLM gen-264

erator (Perez et al., 2017a)). Finally, the CSKMod265

module modulates representations using dynamic266

layer normalization in the following steps:267

αl, βl = MLP([x̃l;CSK])268

xtl = αl �
(
xtl − µl
σl

)
+ βl,269

where µl = 1
T

∑T
t=1 x

t
l and σl =270 √

1
T

∑T
t=1

(
xtl − µl

)2. The other modalities271

are also modulated using the same steps. Finally,272

identical to the other sub-layers within the273

transformer block, we add a residual connection274

around the CSKMod sub-layer.275

Feature-wise transformations based on common-276

sense background information allows the model277

to leverage the information at different layers.278

Additionally, in Section 5, we empirically show279

that common-sense knowledge derived from the280

COMET model is crucial to the boost in perfor-281

mance. The increased performance can be at-282

tributed to the fact that social knowledge derived283

from the COMET, which is fine-tuned on a social284

knowledge base, is more specific, tailored, and rel-285

evant to interpreting sentiment compared to the286

generic knowledge derived from a large pre-trained287

language model. This is analogous to how one’s288

perception of sentiment in a conversation is influ-289

enced by his prior knowledge and exposure to dif-290

ferent social settings from the past.291

3.5 Adaptive modality fusion292

After L layers of the modality-specific transform-293

ers, we use the sequence summarizer to get modal-294

ity summaries x̃lL, x̃aL, and x̃vL corresponding to the295

language, acoustic, and visual modalities. The con-296

catenated [x̃lL; x̃
a
L; x̃

v
L] is then passed through a lin-297

ear projection and softmax to get scores sl, sa and298

sv which are the mixture weights for the linguistic,299

Self Attention

Feed Forward

Summarizer

FiLM generator
Layer Norm

Layer Norm

There are ways to include
all those reports...

CSKMod

Knowledge base

Cross Attention

Layer Norm

Figure 2: Transformer block including the CSKMod
sub-layer. Audio and visual transformers additionally
cross-attend to raw language features, Xl. The lan-
guage transformer does not have the cross-attention
sub-layer. The FiLM generator is the auxiliary network
used to obtain αl and βl.

acoustic, and visual modalities, respectively. We 300

reason that not all modalities are equally informa- 301

tive for every utterance to determine the sentiment 302

and giving the model the ability to assign contribu- 303

tion weights to the different modalities gives it the 304

ability to emphasize contributions of some modali- 305

ties over others. The final fused representation is 306

given by 307

x̃ = slx̃lL + sax̃aL + svx̃vL, 308

which is then used to obtain the prediction, ŷ, 309

through a linear transformation. 310

3.6 Modality correlation loss 311

To further capture correlations among the modal- 312

ity representations x̃lL, x̃aL, and x̃vL of the same 313

utterance, we first project these representations to 314
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a shared embedding space with a linear projection315

head and L2 normalized. The correlation loss be-316

tween two modalities, Corr(m,m′), is then com-317

puted as318

− 1

N

N∑
k=1

log

(
exp(x̂mk · x̂m

′
k /τ)∑N

k′=1 exp(x̂mk′ · x̂m
′

k′ /τ)

)
,319

where x̂mk is the normalized projection of the mth320

modality for the kth sample in the batch. To ac-321

count for correlations among the pairs of modali-322

ties, the final correlation loss is computed as323

CL(l, a, v) =
1

3
[Corr(l, a) + Corr(l, v) + Corr(a, v)] .324

4 Experiments325

4.1 Datasets326

To empirically evaluate our approach of modulat-327

ing hidden states with common-sense knowledge,328

and to compare to prior works (Tsai et al., 2019;329

Hazarika et al., 2020), we consider two benchmark330

datasets for multimodal sentiment analysis – CMU331

MOSI and CMU MOSEI.332

CMU MOSI (Zadeh et al., 2016) is a small mul-333

timodal dataset often used as a benchmark for muti-334

modal sentiment analysis in prior work (Tsai et al.,335

2019; Hazarika et al., 2020). The dataset is a col-336

lection of 2199 opinion video clips obtained from337

YouTube. CMU MOSEI (Bagher Zadeh et al.,338

2018) is similar to CMU-MOSI but of a much339

larger scale; indeed, it is the largest dataset for340

multimodal sentiment analysis with a collection of341

22,840 sentence utterance videos from more than342

1000 YouTube speakers. Both CMU MOSI and343

CMU MOSEI are collections of monologues of344

speakers expressing their opinions and sentiment345

is annotated in the [−3, 3] range for sentiment in-346

tensity with −3 and 3 representing strongly nega-347

tive and strongly positive sentiments, respectively.348

MOSI and MOSEI are accessed through the SDK1349

available online.350

Similar to Hazarika et al., 2020, we also evaluate351

the adaptability of our model on a similar task of352

multimodal humour detection on the UR FUNNY353

dataset. This dataset is a multimodal balanced col-354

lection of punchlines from 1866 TED talk videos355

(Hasan et al., 2019) chosen from 1741 different356

speakers across 417 topics. Each punchline is357

annotated with a binary label that is used for358

1https://github.com/A2Zadeh/CMU-MultimodalSDK

humour/non-humour classification. Each punch- 359

line is also accompanied by its preceding context 360

in the form of the linguistic, acoustic, and visual 361

features for the utterances leading up to the punch- 362

line. 363

All of the datasets contain multimodal informa- 364

tion for a single utterance corresponding to the 365

linguistic, acoustic, and visual modalities. All of 366

the datasets were word aligned. 367

4.2 Features 368

For all the datasets, the language features used 369

are fixed pre-trained 300-dimensional GloVe em- 370

beddings (Pennington et al., 2014) for each of the 371

words in the utterance. The acoustic features of the 372

utterances are extracted using the COVAREP (De- 373

gottex et al., 2014) toolkit. These are various low- 374

level acoustic features of the audio signal such as 375

12 Mel-frequency cepstral coefficients, pitch, track- 376

ing, voiced/unvoiced segmenting features, glottal 377

source parameters, peak slope parameters, and max- 378

ima dispersion quotients. For the MOSI and MO- 379

SEI datasets, these acoustic features are 74 dimen- 380

sional. For UR FUNNY, these are 84 dimensional. 381

Visual features for the MOSI and MOSEI 382

datasets are extracted using Facet 2 to indicate 383

facial action units based on Facial Action Cod- 384

ing System (Ekman and Rosenberg, 1997), which 385

record facial muscle movements that correspond 386

to displayed emotions. These are 47 and 35 di- 387

mensional for MOSI and MOSEI respectively. For 388

UR FUNNY, we use OpenFace (Baltrušaitis et al., 389

2016) to extract the facial action units at a rate of 30 390

frame/sec. The visual features for UR FUNNY are 391

75 dimensional. The linguistic, acoustic, and visual 392

features have different temporal resolution. These 393

features are word-aligned using a forced aligner 394

called P2FA (Yuan and Liberman, 2008) to obtain 395

aligned timesteps segmented on a word-level for 396

the audio and visual signals. The acoustic and vi- 397

sual features are then averaged over the duration of 398

a word to obtain a word-level representation. 399

4.2.1 BERT language features 400

In addition to GloVe embeddings, we consider us- 401

ing BERT embeddings for the language features 402

to fairly compare with some prior works. In this 403

setting, the language transformer in Figure 1 is re- 404

placed with BERT and the last 4 layers of the model 405

is fine-tuned. We do not modulate BERT hidden 406

2https://imotions.com/platform/
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Model MAE (L) Corr (H) Acc-2 (H) F1-score (H) Acc-7 (H)
MFN∗ - - 76.0 / - 76.0 / - -
RAVEN∗ 0.614 0.662 79.1 / - 79.5 / - 50.0
MCTN∗ 0.609 0.670 79.8 / - 80.6 / - 49.6
MulT∗ 0.580 0.703 - / 82.5 - / 82.3 51.8
PMR† - - - / 83.3 - / 82.6 52.5
CSKMod 0.550 0.732 79.9 / 83.3 80.7 / 83.3 53.8
ICCN (B)* 0.565 0.713 - / 84.18 - / 84.2 51.6
MISA (B)* 0.555 0.756 83.6 / 85.5 83.8 / 85.3 52.2
CSKMod (B) 0.536 0.764 83.4 / 85.8 83.7 / 85.6 54.0

Table 1: Results on CMU MOSEI. Acc-2 has two values represented as ‘-/-’ with left values for ‘neg/non-neg’
classification accuracy and right values for ‘neg/pos’ classification accuracy of sentiment values. Models that take
BERT embeddings for language input are marked with ‘B’. MAE lower is better. For all other metrics, higher is
better. * from Hazarika et al., 2020; † from Lv et al., 2021.

Model MAE (L) Corr (H) Acc-2 (H) F1-score (H) Acc-7 (H)
MFN∗ 0.965 0.632 77.4 / - 77.3 / - 34.1
RAVEN∗ 0.915 0.691 78.0 / - 76.6 / - 33.2
MCTN∗ 0.909 0.676 79.3 / - 79.1 / - 35.6
MulT∗ 0.871 0.698 - / 83.0 - / 82.8 40.0
PMR† - - - / 83.6 -/ 83.4 40.6
CSKMod 0.862 0.712 80.9 / 81.9 79.8 / 81.9 41.5
ICCN (B)* 0.860 0.710 - / 83.0 - / 83.0 39.0
MISA (B)* 0.783 0.761 81.8 / 83.4 81.7 / 83.6 42.3
CSKMod (B) 0.770 0.769 81.8 / 83.8 81.7 / 83.8 42.9

Table 2: Results on CMU MOSI. Acc-2 has two values represented as ‘-/-’ with left values for ‘neg/non-neg’
classification accuracy and right values for ‘neg/pos’ classification accuracy of sentiment values. Models that take
BERT embeddings for language input are marked with a ‘B’. MAE lower is better. For all other metrics, higher is
better. * from Hazarika et al., 2020; † from Lv et al., 2021.

states because modulating pre-trained weights per-407

formed worse empirically. The remainder of the408

architecture is similar to Figure 1.409

4.3 Evaluation Criteria410

We use the same evaluation criteria as in prior411

works (Hazarika et al., 2020; Tsai et al., 2019).412

The sentiment intensity prediction for the MOSI413

and MOSEI datasets are regression tasks. Standard414

metrics include the mean absolute error (MAE)415

and Pearson correlation (Corr). Additionally, the416

classification score for the seven-class accuracy cor-417

responding to seven integer sentiment labels from418

−3 to 3 is also used to empirically evaluate per-419

formance. Finally, binary classification scores –420

binary accuracy and F1-score – are also used. Fol-421

lowing the approach in (Hazarika et al., 2020), for422

binary classification, we report the two metrics us-423

ing a segmentation marker -/-. The left number424

corresponds to the score on binary classification425

of neg/non-neg, where sentiment values for the in- 426

stances are divided into classes of< 0 and≥ 0. The 427

right number corresponds to the score on binary 428

classification of neg/pos where sentiment values 429

for the instances are divided into classes of< 0 and 430

> 0. 431

4.4 Baselines 432

We choose several competitive baselines to evaluate 433

our approach. MFN (Zadeh et al., 2018) performs 434

temporal modeling and modality fusion. A Recur- 435

rent Attended Variation Network (RAVEN) (Wang 436

et al., 2018) models the fine-grained structure of 437

non-verbal subword sequences and shifts word rep- 438

resentations based on non-verbal cues. MCTN 439

(Pham et al., 2018) learns robust representations 440

via cycle consistency loss to maximize the infor- 441

mation captured from all modalities. MulT (Tsai 442

et al., 2019) and the more recently proposed PMR 443

(Lv et al., 2021) use transformer architectures to 444
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capture cross-modal interactions. ICCN (Sun et al.,445

2019) learns representations via explicitly captur-446

ing correlation among modalities of the same utter-447

ance. Finally, MISA (Hazarika et al., 2020) learns448

modality representations by projecting each modal-449

ity into modality-invariant and modality-specific450

subspaces.451

4.5 Results452

We evaluate our model on word-aligned sequences453

for multimodal sentiment analysis. Results ob-454

tained on MOSEI and MOSI are reported on Tables455

1 and 2, respectively. Models marked with ‘B’ take456

BERT embeddings for the language features. Most457

notably, our approach performs better across most458

metrics than competitive baselines on both datasets.459

We noticed a significant improvement of over 3%460

in MAE on the CMU MOSEI dataset compared461

to MISA for our experiments using BERT embed-462

dings. Our multiclass accuracy (Acc-7) was also463

significantly higher on this dataset, with approxi-464

mately 3.5% relative improvement (we improved465

to 54.0 from MISA’s 52.2). Even with GloVe em-466

beddings, our approach provided superior results467

across most metrics relative to competitive reported468

baseline (PMR) on both datasets.469

Additionally, to evaluate the adaptability of our470

model, we compare the binary classification ac-471

curacy of our approach multimodal humor detec-472

tion on the UR FUNNY dataset with baselines as473

reported in Table 3. The results point to the ef-474

fectiveness of modulating modality representations475

using commonsense knowledge representations not476

just for sentiment analysis but also for the task of477

humour detection.478

Model Context Acc-2
C-MFN∗ 64.47
TFN∗ 64.71
LMF∗ 65.16
C-MFN∗ ! 65.23
MISA∗ 68.60
CSKMod-COMET 69.20

Table 3: Binary accuracy results for models trained
on UR FUNNY dataset. Results marked * are from
Hazarika et al., 2020.

5 Analysis 479

5.1 Subsample Experiments 480

To further evaluate the efficacy of our approach, we 481

run two additional experiments on subsets of the 482

MOSEI dataset. Because there is greater variance 483

in the scores with smaller datasets, we consider 484

separate experiments where we randomly sample 485

either 5%, 10%, or 100% of the MOSEI training 486

data to train the models. We evaluate the models 487

on the entirety of the dev and test sets. For these 488

experiments, we compute the mean and standard 489

deviation of the metrics over runs using 15 different 490

but fixed seeds. 5% of MOSEI is approximately 491

800 training instances which is half the size of the 492

MOSI dataset. All experiments use GloVe embed- 493

dings for the language features. 494

Additionally, to quantify the influence of the 495

CSKMod layer, we also evaluate the performance 496

of our base model without any modulation for these 497

experiments (NoMod). Finally, to ablate the effects 498

of information injected from just the GPT-2 pre- 499

trained model, we evaluate a variant of our origi- 500

nal model that just modulates using GPT-2 hidden 501

states (CSKMod - GPT2). In this model, each ut- 502

terance is input into a pre-trained GPT-2 model 503

and hidden state corresponding to the last time-step 504

from the encoder is used to modulate the modality 505

representations instead. 506

The results of our experiments, reported in Ta- 507

bles 4, 5, and 6, show that CSKMod-COMET 508

outperforms the baseline models on all three ex- 509

periments. Binary classification scores are only 510

reported for the neg/pos classification. Secondly, 511

in the experiments, CSKMod-GPT2 performs ap- 512

proximately similar to our base model, NoMod, 513

which lacks any form of modulation or external 514

knowledge. These two observations point to the 515

efficacy of modulating modality representations 516

using a external generative social common-sense 517

knowledge base. The difference in performance 518

between modulation using pre-trained GPT-2 and 519

the model fine-tuned on ATOMIC can be attributed 520

to the fact that the knowledge obtained from the 521

generative knowledge base is more specific and 522

relevant to social contextual understanding. 523

5.2 Layer of modulation 524

In our experiments, we also noticed the importance 525

of the layer at which we start modulating the modal- 526

ity representations. We noticed that early modula- 527

tion degrades model performance. For our 8-layer 528
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Model MAE (L) Corr (H) Acc-2 (H) F1-score (H) Acc-7 (H)
MulT† 0.826 ± 0.015 0.355 ± 0.098 65.7 ± 3.8 62.5 ± 5.6 40.0 ± 1.0
MISA† 0.763 ± 0.016 0.461 ± 0.026 73.1 ± 0.9 72.8 ± 1.0 40.4 ± 1.3
NoMod 0.711 ± 0.019 0.557 ± 0.027 77.1 ± 0.7 77.1 ± 0.7 42.7 ± 1.4
CSKMod - GPT2 0.697 ± 0.020 0.578 ± 0.026 77.4 ± 1.2 77.4 ± 1.1 43.8 ± 1.8
CSKMod - COMET 0.637 ± 0.010 0.650 ± 0.010 80.8 ± 1.1 80.8 ± 1.0 47.3 ± 1.0

Table 4: Results for models trained on 5% of the CMU MOSEI dataset over 15 runs. Acc-2 and F1-score are
the binary classification metrics for neg/pos classes. † indicates results obtained using publicly available code and
applicable hyper-parameters.

Model MAE (L) Corr (H) Acc-2 (H) F1-score (H) Acc-7 (H)
MulT† 0.753 ± 0.013 0.521 ± 0.023 75.6 ± 1.0 75.5 ± 0.9 40.8 ± 1.1
MISA† 0.722 ± 0.013 0.535 ± 0.017 75.4 ± 0.8 75.2 ± 0.9 42.5 ± 1.2
NoMod 0.664 ± 0.009 0.614 ± 0.011 78.7 ± 0.4 78.5 ± 0.6 46.3 ± 1.0
CSKMod - GPT2 0.661 ± 0.016 0.624 ± 0.012 78.8 ± 0.8 78.5 ± 0.8 46.5 ± 1.7
CSKMod - COMET 0.615 ± 0.008 0.672 ± 0.009 81.5 ± 0.8 81.5 ± 0.7 49.3 ± 0.8

Table 5: Results for models trained on 10% of CMU MOSEI over 15 runs. † indicates results obtained using
publicly available code and applicable hyper-parameters.

Model MAE (L) Corr (H) Acc-2 (H) F1-score (H) Acc-7 (H)
MulT† 0.582 ± 0.007 0.692 ± 0.010 81.7 ± 0.4 81.4 ± 0.5 49.2 ± 0.7
MISA† 0.578 ± 0.010 0.701 ± 0.011 81.6 ± 0.9 82.2 ± 0.9 50.2 ± 0.8
NoMod 0.595 ± 0.007 0.684 ± 0.007 81.1 ± 0.5 81.0 ± 0.5 49.3 ± 0.5
CSKMod - GPT2 0.569 ± 0.005 0.699 ± 0.006 81.6 ± 0.8 81.3 ± 0.9 52.0 ± 0.4
CSKMod - COMET 0.556 ± 0.004 0.730 ± 0.004 83.2 ± 0.5 83.2 ± 0.5 53.4 ± 0.3

Table 6: Results for models trained on entirety of CMU MOSEI over 15 runs. † indicates results obtained using
publicly available code and applicable hyper-parameters.

architectures, we achieved the best results when529

we modulated representations for layers 6, 7, and530

8. A possible explanation for the degraded perfor-531

mance for early modulation might stem from the532

fact that the model does not sufficiently capture dis-533

criminative features from the individual modalities534

before incorporating commonsense knowledge to535

modulate these representations.536

5.3 Segmentation by emotions537

For additional fine-grained analysis, we segmented538

the test set based on the emotion annotation for539

the examples. For each of the emotions, we com-540

puted the F1-score for the sentiments (multi-class),541

and we noticed a significant improvement (over542

0.05 F1-score) in the F1-score for the neutral senti-543

ment when using common-sense modulation with544

COMET compared to the absence of any back-545

ground information. This could result from the ef-546

fectiveness of using common-sense inferences and547

background knowledge to discriminate subtleties548

in the sentiment expressed when the utterance has549

positive/negative words, which could confuse the 550

model without any background information other- 551

wise. 552

6 Conclusion 553

Background knowledge and common-sense reason- 554

ing play crucial roles in the way we perceive senti- 555

ment and mood in a conversation. While most prior 556

works emphasize fusion mechanisms of the multi- 557

ple streams of signals – linguistics, acoustic, and 558

visual – in this work, we propose a way to modulate 559

modality representations using a common-sense 560

knowledge base. This is done by shifting and scal- 561

ing higher-level representations with a transformer 562

architecture and by introducing a CSKMod sub- 563

layer within a transformer block. Empirical results 564

prove the effectiveness of our approach. Addition- 565

ally, ablation studies highlight the importance of 566

the CSKMod module in the overall architecture. 567
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A t-SNE embeddings726

t-SNE embeddings of hidden states prior to the727

last layer for the CMU-MOSEI dataset with and728

without COMET common-sense modulation.729

Figure 3: t-SNE embeddings without knowledge mod-
ulation

Figure 4: t-SNE embeddings with COMET common-
sense modulation.

B Datasets730

We use three benchmark datasets to evaluate731

our model - CMU-MOSEI, CMU-MOSI and732

UR FUNNY. Table below lists the dataset sizes.733

Dataset train dev test
CMU-MOSI 1283 229 686
CMU-MOSEI 16315 1871 4654
UR FUNNY 10598 2828 3290

Table 7: Number of utterances for the datasets in ex-
periments.

C Hyper-parameters 734

Hyper-parameters for our results

Hyper-parameter MOSI MOSEI UR FUNNY
learning-rate 1e-4 1e-4 1e-4
batch-size 32 32 32
dropout 0.1 0.1 0
d model 40 40 40
n heads 4 4 8
τ 1.0 1.0 1.0
gradient clip 1.0 0.8 1.0
activation ReLU ReLU ReLU
correlation loss weight 0.1 1.0 0.1

735

11


