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Abstract

Our world is inherently multimodal and recent
work highlights the importance of machine
learning models leveraging multiple streams
of information in making decisions. Multi-
modal sentiment analysis has been an active
area of research that requires models to take
advantage of the linguistic, acoustic, and vi-
sual signals available in an utterance. How-
ever, most current models do not take into
account any social common-sense knowledge
which is crucial in how we perceive senti-
ment in a conversation. To address that, in
this paper, we aim to influence or modulate
modality representations with common-sense
knowledge obtained from a generative social
common-sense knowledge base. We provide a
novel way to modulate the linguistic, acoustic,
and visual features corresponding to an utter-
ance by scaling and shifting these representa-
tions. We use the knowledge base to obtain
knowledge latent representations for an utter-
ance corresponding to different states of the
speaker such as the intent and the reaction and
use it to shift and scale the three modalities.
Our experiments on popular multimodal sen-
timent analysis benchmark datasets show that
our proposed method is on par and often sur-
passes the current state-of-the art models.

1 Introduction

Human communication often employs different
modalities of communication — language, audio,
and video being some of the most common ones.
The meaning of utterances and the perception of
mood and sentiment during conversations depend
not only on its content but also on its gestures and
intonations. With the large volumes of video avail-
able on the internet, multimodal sentiment analysis
has increasingly become a more important and ac-
tive area of research. Advances in the field of multi-
modal machine learning allow us to mine sentiment
from videos, for example, which have multiple ap-
plications such as social media monitoring for busi-

ness intelligence. In addition to the importance of
leveraging multiple modalities of information, re-
cent work in neuroscience sheds light on the impor-
tance of background knowledge or common-sense
reasoning in the way our brains perceive emotion
or sentiment of utterances during a conversation.

In this work, we explore methods to prime
our models with common-sense reasoning and in-
ject background knowledge to better interpret the
three modality signals when determining sentiment.
However, it is neither obvious how to obtain this
common-sense knowledge nor how to influence the
modality representations to take advantage of the
background information. Recent work by Bosse-
lut et al., 2019 proposed a generative model called
COMET for automatic knowledge graph construc-
tion, which can be fine-tuned on an atlas of every-
day common-sense reasoning to generate social
common-sense knowledge inferences. However,
COMET only generates phrases of knowledge in-
ferences. In this work, we instead propose lever-
aging COMET to obtain representations for the
different attributes of the speaker given an utter-
ance. To take advantage of this background social
knowledge, we propose using feature-wise trans-
formations to shift and scale representations of the
three modalities with the knowledge representa-
tions. We also introduce an adaptive fusion of the
three modalities which allows the model to dynami-
cally weigh the importance of the individual modal-
ities in determining the sentiment.

We evaluate our approach on two benchmark
datasets for multimodal sentiment analysis - CMU
MOSI and CMU MOSEI, and our results show the
effectiveness of our approach which surpasses cur-
rent state-of-the-art models. To further evaluate
the adaptability of our approach, we test its per-
formance on a similar benchmark for multimodal
humour detection — UR_FUNNY. We additionally
include ablation experiments which prove the im-
portance of the common-sense modulation.



2 Related work

Human multimodal sentiment analysis requires in-
ferring the sentiment of an utterance from three
modalities — language, audio, and video, and re-
quires fusing information from three modality sig-
nals while also accounting for temporality. Early
works adopted simple fusion strategies, such as
early concatenation of the three modalities (Ngiam
et al., 2011; Lazaridou et al. 2015) or a late-fusion
approach, where higher level modality representa-
tions learnt independently from the three modality
signals are combined (Nguyen et al., 2018; Ran-
ganathan et al., 2016). Later works placed greater
emphasis on sophisticated fusion mechanisms that
not only captured the individual modality-specific
information but also captured correlations among
the signals. Such approaches include models that
synchronize multimodal sequences using a multi-
view gated memory, recurrent models that capture
intra-modal and multiple cross-modal interactions
by assigning multiple attention coefficients, tensor-
based fusion mechanisms that capture unimodal,
bimodal and trimodal interactions across time (Liu
et al., 2018; Mai et al., 2019; Zadeh et al., 2017)
and models that capture modality invariant and
specific information using independent subspaces
(Hazarika et al., 2020). Other recent works either
influenced word representations with non-verbal
cues (Wang et al., 2018) or used cyclic translation
between modalities to effectively model correla-
tions (Pham et al., 2018).

Transformer architectures have also been ex-
tended to the multimodal sentiment analysis tasks
where it is crucial to model cross-modality interac-
tions in the temporal domain. Tsai et al., 2019 used
stacks of pairwise and bidirectional cross-modal
attention blocks that attend to low-level modal-
ity signals to model cross modal interactions. Lv
et al., 2021 extended this idea by introducing a
separate message hub so that higher level modality
interactions could be captured via self-attention to
higher-level representations. Rahman et al., 2019
introduced a mechanism to integrate multimodal
information into large pre-trained transformers by
shifting pre-trained weights using audio and visual
modalities. Contrary to these approaches, in this
work, we shift three modality representations by
incorporating background common-sense knowl-
edge.

Using common-sense knowledge to infer emo-
tion in conversations was explored in prior work

(Ghosal et al., 2020). However, concatenating
knowledge from a generative knowledge-base to
the input of the model, by Ghosal et al., 2020,
has the implicit assumption that the common-sense
reasoning is only used by the initial layers of the
model. In our approach, we do not impose any such
restrictions on the model and allow it to modulate
representations deeper within a network based on
common-sense reasoning.

3 Proposed Method

In this section, we provide an overview of our pro-
posed approach to address the task of multimodal
sentiment analysis using common-sense knowledge
modulation. Our task is to predict the sentiment of
an utterance given a sequence of word-aligned fea-
ture vectors for language (R *%), video (RT* %),
and audio (RT*%), where T is the length of the
sequence and d;, d,, and d, are the dimensions
of the language, visual, and acoustic features, re-
spectively. At a high level, our approach includes
modality-specific transformers for each of the lan-
guage, vision, and audio signals followed by an
attention-based adaptive fusion mechanism of the
three modalities. Our main contribution is to intro-
duce a novel way to influence latent variables for
the different modalities using a generative common-
sense knowledge base. Unlike prior works (Tsai
etal., 2019; Lv et al., 2021) that used either three
pairs of transformers or an additional transformer
to capture cross-modal interactions, we only use
a single modality-specific transformer and inject
background knowledge through feature-wise trans-
formations. The overall architecture is shown in
Figure 1. The following sections elaborate on our
approach.

3.1 Modality Specific Transformers

We use the three modalities — language, vision, and
audio. Each modality-specific backbone takes as in-
put X, = R7*m wherem € {l,a,v} represents
the three modalities. Our modality-specific trans-
formers consist of layers of transformer blocks that
have scaled dot product multihead self-attention
and feed forward sub-layers together with resid-
ual connections and layer norms. The scaled dot
product attention is given by

QK" )
Attn(Q, K, V) = softmax < V],
@5V Vi

where (), K, and V' are queries, keys, and values
which are linear projections of the input to a block
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Figure 1: Overall architecture of our proposed model
with modality-specific transformer backbones and
adaptive modality fusion. Common-sense representa-
tions from the knowledge base (KB) are used to influ-
ence the modality transformers. Audio and visual trans-
formers additionally cross-attend to raw language fea-
tures X (arrows left out for brevity).
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for modality m, I,,,. In our model, we use mul-
tihead self-attention, which allows the model to
attend to different representational subspaces and
is given by

MAttn(Q, K, V) = Concat(head; , ..., head), ) W °
where head; = Attn(QW/, KW}, VIW}Y).

After the multihead self-attention, we use
position-wise feed forward layers. Additionally, we
add sinusoidal position embeddings to X,,, before
it is input into the modality transformers. For the
audio and visual transformers, we also add a cross-
attention layer to the raw language features after
the self-attention sub-layer. Similar to the work by
Tsai et al., 2019, we empirically noticed that at-
tending to low-level language features works better
than attending to higher-level representations.

3.2 Generative Commonsense Knowledge

To inject common-sense knowledge into our model,
we leverage large pre-trained language models fine-
tuned on a social common-sense knowledge base.
Prior work by Bosselut et al., 2019 introduced a
COMET model that fine-tuned a GPT-2 (medium)
model (Radford et al., 2019) on an atlas of ‘ev-
eryday’ common-sense reasoning, called ATOMIC
(Sap et al., 2018). ATOMIC contains 877k textual
descriptions of inferential knowledge for if-then

reasoning. Fine-tuning a pre-trained GPT-2 model
on ATOMIC and using it to generate novel com-
monsense reasoning to input into our multimodal
pipeline gives our model the ability to make so-
cial common-sense inferences based on an utter-
ance. The COMET model proposed in Bosselut
et al. (2019) can generate novel common-sense in-
ferences with respect to 9 different attributes (eg
xAttr). However, the model is only able to generate
discrete textual inferences. To leverage the model
in our approach, we ignore the discrete inferences
and use the hidden state of the decoder correspond-
ing to the attribute token. More specifically, we
use the utterance as a input to the COMET model
and use the final hidden state from the decoder
corresponding to a specific attribute as a represen-
tation for that attribute. We then concatenate the
representations for multiple attributes to get the
aggregated common-sense representation, C'SK.
The attributes used in our approach are the relevant
social reasoning knowledge to inferring sentiment:

* xReact: speaker’s reaction to an utterance
* oReact: listeners’ reaction to an utterance
» xEffect: utterance’s effect on the speaker
» oEffect: utterance’s effect on listeners

* xIntent: the intent of the speaker

3.3 Sequence summarizer

We use attention to summarize each of the modality
sequences. After [ layers of modality-specific trans-
former blocks, we obtain {z}, ...,z } T-length se-
quences corresponding to the particular modality.
The sequence is passed through a linear projection
and softmax to get a score for each timestep, '
and the summarized sequence, Z;, is a weighted
combination of the timesteps, i.e.,

t_ exp(I/Vla;’f)
Sl exp (szf)

Z’Yﬂﬁl

SeqSum(l)

3.4 Latent modulation

Using the common-sense features extracted from
the COMET model, our main contribution is to
introduce a CSKMod module before the self atten-
tion sub-layer to modulate the intermediate repre-
sentations of the transformer blocks for the three
modalities as illustrated in Figure 2. Our approach



to modulate representations within a network is mo-
tivated by feature-wise transformations that have
been followed in prior works where representations
within a network are shifted and scaled based on
some conditioning input (Perez et al., 2017a; Perez
et al., 2017b; Strub et al., 2018; Dumoulin et al.,
2016). In our approach, for the language modality,
we first summarize the input sequence to the trans-
former block at layer [ to get ;. This, together with
the C'S K representation obtained from COMET, is
used to get shifting and scaling parameters «; and
B; respectively from a separate network (FiLM gen-
erator (Perez et al., 2017a)). Finally, the CSKMod
module modulates representations using dynamic
layer normalization in the following steps:

ay, i = MLP([z;; CSK])
b

o= 0 <M> + 8,
o)

where p; = %ZtT:l zi and o =

\/ * ST (f - m)z. The other modalities
are also modulated using the same steps. Finally,
identical to the other sub-layers within the
transformer block, we add a residual connection
around the CSKMod sub-layer.

Feature-wise transformations based on common-
sense background information allows the model
to leverage the information at different layers.
Additionally, in Section 5, we empirically show
that common-sense knowledge derived from the
COMET model is crucial to the boost in perfor-
mance. The increased performance can be at-
tributed to the fact that social knowledge derived
from the COMET, which is fine-tuned on a social
knowledge base, is more specific, tailored, and rel-
evant to interpreting sentiment compared to the
generic knowledge derived from a large pre-trained
language model. This is analogous to how one’s
perception of sentiment in a conversation is influ-
enced by his prior knowledge and exposure to dif-
ferent social settings from the past.

3.5 Adaptive modality fusion

After L layers of the modality-specific transform-
ers, we use the sequence summarizer to get modal-
ity summaries le, 7%, and 77 corresponding to the
language, acoustic, and visual modalities. The con-
catenated [#} ; #2; Y] is then passed through a lin-
ear projection and softmax to get scores s', s* and
s¥ which are the mixture weights for the linguistic,

-
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Figure 2: Transformer block including the CSKMod
sub-layer. Audio and visual transformers additionally
cross-attend to raw language features, X;. The lan-
guage transformer does not have the cross-attention
sub-layer. The FiLM generator is the auxiliary network
used to obtain ¢ and ;.

acoustic, and visual modalities, respectively. We
reason that not all modalities are equally informa-
tive for every utterance to determine the sentiment
and giving the model the ability to assign contribu-
tion weights to the different modalities gives it the
ability to emphasize contributions of some modali-
ties over others. The final fused representation is
given by

i =53l + 5938 + sU3Y,

which is then used to obtain the prediction, g,
through a linear transformation.

3.6 Modality correlation loss

To further capture correlations among the modal-

ity representations JZZL z7, and Z7 of the same

utterance, we first project these representations to



a shared embedding space with a linear projection
head and L2 normalized. The correlation loss be-
tween two modalities, Corr(m,m’), is then com-
puted as

LN
NZlog<

k=1

exp(zZ7 - /T) )

Zk’:l eXp(afk/ . wk/ /T)

where 7} is the normalized projection of the mth
modality for the k™" sample in the batch. To ac-
count for correlations among the pairs of modali-
ties, the final correlation loss is computed as

CL(l,a,v) =

4 [Experiments

4.1 Datasets

To empirically evaluate our approach of modulat-
ing hidden states with common-sense knowledge,
and to compare to prior works (Tsai et al., 2019;
Hazarika et al., 2020), we consider two benchmark
datasets for multimodal sentiment analysis — CMU
MOSI and CMU MOSEL

CMU MOSI (Zadeh et al., 2016) is a small mul-
timodal dataset often used as a benchmark for muti-
modal sentiment analysis in prior work (Tsai et al.,
2019; Hazarika et al., 2020). The dataset is a col-
lection of 2199 opinion video clips obtained from
YouTube. CMU MOSEI (Bagher Zadeh et al.,
2018) is similar to CMU-MOSI but of a much
larger scale; indeed, it is the largest dataset for
multimodal sentiment analysis with a collection of
22,840 sentence utterance videos from more than
1000 YouTube speakers. Both CMU MOSI and
CMU MOSEI are collections of monologues of
speakers expressing their opinions and sentiment
is annotated in the [—3, 3] range for sentiment in-
tensity with —3 and 3 representing strongly nega-
tive and strongly positive sentiments, respectively.
MOSI and MOSEI are accessed through the SDK!
available online.

Similar to Hazarika et al., 2020, we also evaluate
the adaptability of our model on a similar task of
multimodal humour detection on the UR_FUNNY
dataset. This dataset is a multimodal balanced col-
lection of punchlines from 1866 TED talk videos
(Hasan et al., 2019) chosen from 1741 different
speakers across 417 topics. Each punchline is
annotated with a binary label that is used for

"https://github.com/A2Zadeh/CMU-MultimodalSDK

humour/non-humour classification. Each punch-
line is also accompanied by its preceding context
in the form of the linguistic, acoustic, and visual
features for the utterances leading up to the punch-
line.

All of the datasets contain multimodal informa-
tion for a single utterance corresponding to the
linguistic, acoustic, and visual modalities. All of
the datasets were word aligned.

4.2 Features

For all the datasets, the language features used
are fixed pre-trained 300-dimensional GloVe em-

[Corr(l a) + Corr(1,v) 4 Corr(a,v)] beddings (Pennington et al., 2014) for each of the

words in the utterance. The acoustic features of the
utterances are extracted using the COVAREP (De-
gottex et al., 2014) toolkit. These are various low-
level acoustic features of the audio signal such as
12 Mel-frequency cepstral coefficients, pitch, track-
ing, voiced/unvoiced segmenting features, glottal
source parameters, peak slope parameters, and max-
ima dispersion quotients. For the MOSI and MO-
SEI datasets, these acoustic features are 74 dimen-
sional. For UR_FUNNY, these are 84 dimensional.

Visual features for the MOSI and MOSEI
datasets are extracted using Facet > to indicate
facial action units based on Facial Action Cod-
ing System (Ekman and Rosenberg, 1997), which
record facial muscle movements that correspond
to displayed emotions. These are 47 and 35 di-
mensional for MOSI and MOSEI respectively. For
UR_FUNNY, we use OpenFace (Baltrusaitis et al.,
2016) to extract the facial action units at a rate of 30
frame/sec. The visual features for UR_FUNNY are
75 dimensional. The linguistic, acoustic, and visual
features have different temporal resolution. These
features are word-aligned using a forced aligner
called P2FA (Yuan and Liberman, 2008) to obtain
aligned timesteps segmented on a word-level for
the audio and visual signals. The acoustic and vi-
sual features are then averaged over the duration of
a word to obtain a word-level representation.

4.2.1 BERT language features

In addition to GloVe embeddings, we consider us-
ing BERT embeddings for the language features
to fairly compare with some prior works. In this
setting, the language transformer in Figure 1 is re-
placed with BERT and the last 4 layers of the model
is fine-tuned. We do not modulate BERT hidden

Zhttps://imotions.com/platform/



Model MAE (L) Corr (H) Acc-2(H) Fl-score (H) Acc-7(H)
MFEN* - - 76.0/ - 76.0/ - -
RAVEN* 0.614 0.662 79.1/ - 795/ - 50.0
MCTN* 0.609 0.670 79.8 /- 80.6 / - 49.6
MulT* 0.580 0.703 -/82.5 -/82.3 51.8
PMR - - -/83.3 -182.6 52.5
CSKMod 0.550 0.732 79.9/83.3 80.7/83.3 53.8
ICCN (B)* 0.565 0.713 -/84.18 -/84.2 51.6
MISA (B)* 0.555 0.756 83.6/85.5 83.8/85.3 52.2
CSKMod (B) 0.536 0.764 83.4/85.8 83.7/85.6 54.0

Table 1: Results on CMU MOSEIL Acc-2 has two values represented as ‘-/-> with left values for ‘neg/non-neg’
classification accuracy and right values for ‘neg/pos’ classification accuracy of sentiment values. Models that take
BERT embeddings for language input are marked with ‘B’. MAE lower is better. For all other metrics, higher is
better. * from Hazarika et al., 2020; { from Lv et al., 2021.

Model MAE (L) Corr (H) Acc-2(H) Fl-score (H) Acc-7(H)
MFN* 0.965 0.632 774/ - 77.3/ - 34.1
RAVEN* 0.915 0.691 78.0/ - 76.6 /- 33.2
MCTN* 0.909 0.676 79.3/ - 79.1/ - 35.6
MulT* 0.871 0.698 -/83.0 -/82.8 40.0
PMR - - -/83.6 -/ 83.4 40.6
CSKMod 0.862 0.712 80.9/81.9 79.8/81.9 41.5
ICCN (B)* 0.860 0.710 -/83.0 -/83.0 39.0
MISA (B)* 0.783 0.761 81.8/83.4 81.7/83.6 42.3
CSKMod (B) 0.770 0.769 81.8/83.8 81.7/83.8 42.9

Table 2: Results on CMU MOSI. Acc-2 has two values represented as ‘-/-" with left values for ‘neg/mon-neg’
classification accuracy and right values for ‘neg/pos’ classification accuracy of sentiment values. Models that take
BERT embeddings for language input are marked with a ‘B’. MAE lower is better. For all other metrics, higher is
better. * from Hazarika et al., 2020; t from Lv et al., 2021.

states because modulating pre-trained weights per-
formed worse empirically. The remainder of the
architecture is similar to Figure 1.

4.3 Evaluation Criteria

We use the same evaluation criteria as in prior
works (Hazarika et al., 2020; Tsai et al., 2019).
The sentiment intensity prediction for the MOSI
and MOSETI datasets are regression tasks. Standard
metrics include the mean absolute error (MAE)
and Pearson correlation (Corr). Additionally, the
classification score for the seven-class accuracy cor-
responding to seven integer sentiment labels from
—3 to 3 is also used to empirically evaluate per-
formance. Finally, binary classification scores —
binary accuracy and F1-score — are also used. Fol-
lowing the approach in (Hazarika et al., 2020), for
binary classification, we report the two metrics us-
ing a segmentation marker -/-. The left number
corresponds to the score on binary classification

of neg/non-neg, where sentiment values for the in-
stances are divided into classes of < 0 and > 0. The
right number corresponds to the score on binary
classification of neg/pos where sentiment values
for the instances are divided into classes of < 0 and
> 0.

4.4 Baselines

We choose several competitive baselines to evaluate
our approach. MFN (Zadeh et al., 2018) performs
temporal modeling and modality fusion. A Recur-
rent Attended Variation Network (RAVEN) (Wang
et al., 2018) models the fine-grained structure of
non-verbal subword sequences and shifts word rep-
resentations based on non-verbal cues. MCTN
(Pham et al., 2018) learns robust representations
via cycle consistency loss to maximize the infor-
mation captured from all modalities. MulT (Tsai
et al., 2019) and the more recently proposed PMR
(Lv et al., 2021) use transformer architectures to



capture cross-modal interactions. ICCN (Sun et al.,
2019) learns representations via explicitly captur-
ing correlation among modalities of the same utter-
ance. Finally, MISA (Hazarika et al., 2020) learns
modality representations by projecting each modal-
ity into modality-invariant and modality-specific
subspaces.

4.5 Results

We evaluate our model on word-aligned sequences
for multimodal sentiment analysis. Results ob-
tained on MOSEI and MOSI are reported on Tables
1 and 2, respectively. Models marked with ‘B’ take
BERT embeddings for the language features. Most
notably, our approach performs better across most
metrics than competitive baselines on both datasets.
We noticed a significant improvement of over 3%
in MAE on the CMU MOSEI dataset compared
to MISA for our experiments using BERT embed-
dings. Our multiclass accuracy (Acc-7) was also
significantly higher on this dataset, with approxi-
mately 3.5% relative improvement (we improved
to 54.0 from MISA’s 52.2). Even with GloVe em-
beddings, our approach provided superior results
across most metrics relative to competitive reported
baseline (PMR) on both datasets.

Additionally, to evaluate the adaptability of our
model, we compare the binary classification ac-
curacy of our approach multimodal humor detec-
tion on the UR_FUNNY dataset with baselines as
reported in Table 3. The results point to the ef-
fectiveness of modulating modality representations
using commonsense knowledge representations not
just for sentiment analysis but also for the task of
humour detection.

Model Context Acc-2
C-MFN* 64.47
TEN* 64.71
LMF* 65.16
C-MFN* v 65.23
MISA* 68.60
CSKMod-COMET 69.20

Table 3: Binary accuracy results for models trained
on UR_FUNNY dataset. Results marked * are from
Hazarika et al., 2020.

S Analysis

5.1 Subsample Experiments

To further evaluate the efficacy of our approach, we
run two additional experiments on subsets of the
MOSEI dataset. Because there is greater variance
in the scores with smaller datasets, we consider
separate experiments where we randomly sample
either 5%, 10%, or 100% of the MOSEI training
data to train the models. We evaluate the models
on the entirety of the dev and test sets. For these
experiments, we compute the mean and standard
deviation of the metrics over runs using 15 different
but fixed seeds. 5% of MOSEI is approximately
800 training instances which is half the size of the
MOSI dataset. All experiments use GloVe embed-
dings for the language features.

Additionally, to quantify the influence of the
CSKMod layer, we also evaluate the performance
of our base model without any modulation for these
experiments (NoMod). Finally, to ablate the effects
of information injected from just the GPT-2 pre-
trained model, we evaluate a variant of our origi-
nal model that just modulates using GPT-2 hidden
states (CSKMod - GPT?2). In this model, each ut-
terance is input into a pre-trained GPT-2 model
and hidden state corresponding to the last time-step
from the encoder is used to modulate the modality
representations instead.

The results of our experiments, reported in Ta-
bles 4, 5, and 6, show that CSKMod-COMET
outperforms the baseline models on all three ex-
periments. Binary classification scores are only
reported for the neg/pos classification. Secondly,
in the experiments, CSKMod-GPT?2 performs ap-
proximately similar to our base model, NoMod,
which lacks any form of modulation or external
knowledge. These two observations point to the
efficacy of modulating modality representations
using a external generative social common-sense
knowledge base. The difference in performance
between modulation using pre-trained GPT-2 and
the model fine-tuned on ATOMIC can be attributed
to the fact that the knowledge obtained from the
generative knowledge base is more specific and
relevant to social contextual understanding.

5.2 Layer of modulation

In our experiments, we also noticed the importance
of the layer at which we start modulating the modal-
ity representations. We noticed that early modula-
tion degrades model performance. For our 8-layer



Model MAE (L) Corr (H) Acc-2(H) Fl-score (H) Acc-7(H)
MulTT 0.826 =0.015 0.355+0.098 65.7 + 3.8 625+56 400+1.0
MISAT 0.763 £ 0.016 0.461 £0.026 73.1 £0.9 72810 404+13
NoMod 0.711 £0.019 0.557 £0.027 77.1 £0.7 771 £07 427+14
CSKMod - GPT2 0.697 +0.020 0.578 £0.026 774 +1.2 774 +1.1 438 +1.8
CSKMod - COMET 0.637 + 0.010 0.650 = 0.010 80.8 + 1.1 808 1.0 473+1.0

Table 4: Results for models trained on 5% of the CMU MOSEI dataset over 15 runs. Acc-2 and Fl-score are
the binary classification metrics for neg/pos classes. 1 indicates results obtained using publicly available code and

applicable hyper-parameters.

Model MAE (L) Corr (H) Acc-2(H) Fl-score(H) Acc-7(H)
MulT? 0.753 £0.013 0.521 £0.023 75.6 £ 1.0 755+£09 408+1.1
MISAT 0.722 £0.013 0.535+£0.017 754 +0.8 752+£09 425+12
NoMod 0.664 £0.009 0.614 +£0.011 78.7+04 785+£0.6 463+1.0
CSKMod - GPT2 0.661 £0.016 0.624 +0.012 78.8 £0.8 785+0.8 465=+1.7
CSKMod - COMET 0.615 £+ 0.008 0.672 + 0.009 81.5+0.8 815+0.7 493 +0.8

Table 5: Results for models trained on 10% of CMU MOSEI over 15 runs.

publicly available code and applicable hyper-parameters.

t indicates results obtained using

Model MAE (L) Corr (H) Acc-2(H) Fl-score (H) Acc-7(H)
MulTT 0.582 £ 0.007 0.692 +0.010 81.7 04 81.4+05 492+0.7
MISAT 0.578 £0.010 0.701 £0.011 81.6 £0.9 8224+09 50.24+0.8
NoMod 0.595 £0.007 0.684 = 0.007 81.1 £0.5 81.0£05 493405
CSKMod - GPT2 0.569 + 0.005 0.699 £+ 0.006 81.6 £0.8 81.34+09 520404
CSKMod - COMET 0.556 + 0.004 0.730 = 0.004 83.2 + 0.5 83.2+05 534+0.3

Table 6: Results for models trained on entirety of CMU MOSEI over 15 runs. t indicates results obtained using
publicly available code and applicable hyper-parameters.

architectures, we achieved the best results when
we modulated representations for layers 6, 7, and
8. A possible explanation for the degraded perfor-
mance for early modulation might stem from the
fact that the model does not sufficiently capture dis-
criminative features from the individual modalities
before incorporating commonsense knowledge to
modulate these representations.

5.3 Segmentation by emotions

For additional fine-grained analysis, we segmented
the test set based on the emotion annotation for
the examples. For each of the emotions, we com-
puted the F1-score for the sentiments (multi-class),
and we noticed a significant improvement (over
0.05 Fl-score) in the F1-score for the neutral senti-
ment when using common-sense modulation with
COMET compared to the absence of any back-
ground information. This could result from the ef-
fectiveness of using common-sense inferences and
background knowledge to discriminate subtleties
in the sentiment expressed when the utterance has

positive/negative words, which could confuse the
model without any background information other-
wise.

6 Conclusion

Background knowledge and common-sense reason-
ing play crucial roles in the way we perceive senti-
ment and mood in a conversation. While most prior
works emphasize fusion mechanisms of the multi-
ple streams of signals — linguistics, acoustic, and
visual — in this work, we propose a way to modulate
modality representations using a common-sense
knowledge base. This is done by shifting and scal-
ing higher-level representations with a transformer
architecture and by introducing a CSKMod sub-
layer within a transformer block. Empirical results
prove the effectiveness of our approach. Addition-
ally, ablation studies highlight the importance of
the CSKMod module in the overall architecture.
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A t-SNE embeddings

t-SNE embeddings of hidden states prior to the
last layer for the CMU-MOSEI dataset with and
without COMET common-sense modulation.
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Figure 3: t-SNE embeddings without knowledge mod-

ulation
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Figure 4: t-SNE embeddings with COMET common-

sense modulation.

B Datasets

We use three benchmark datasets to evaluate
our model - CMU-MOSEI, CMU-MOSI and
UR_FUNNY. Table below lists the dataset sizes.

Dataset train  dev test
CMU-MOSI 1283 229 686
CMU-MOSEI 16315 1871 4654
UR_FUNNY 10598 2828 3290

Table 7: Number of utterances for the datasets in ex-

periments.

C Hyper-parameters

Hyper-parameters for our results

Hyper-parameter MOSI MOSEI UR_FUNNY
learning-rate le-4 le-4 le-4
batch-size 32 32 32
dropout 0.1 0.1 0
d_model 40 40 40
n_heads 4 4 8

T 1.0 1.0 1.0
gradient clip 1.0 0.8 1.0
activation ReLU  ReLU ReLU
correlation loss weight 0.1 1.0 0.1
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